JP2012154251A - Muffler - Google Patents

Muffler Download PDF

Info

Publication number
JP2012154251A
JP2012154251A JP2011014115A JP2011014115A JP2012154251A JP 2012154251 A JP2012154251 A JP 2012154251A JP 2011014115 A JP2011014115 A JP 2011014115A JP 2011014115 A JP2011014115 A JP 2011014115A JP 2012154251 A JP2012154251 A JP 2012154251A
Authority
JP
Japan
Prior art keywords
temperature side
heat exchanger
heat
exhaust
thermoacoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011014115A
Other languages
Japanese (ja)
Inventor
Tetsushi Watanabe
哲史 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011014115A priority Critical patent/JP2012154251A/en
Publication of JP2012154251A publication Critical patent/JP2012154251A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a muffler in which a sound pressure level of discharge sound can be lowered by cooling exhaust.SOLUTION: A thermoacoustic cooling device 10 is provided to a discharge pipe 3 through which the exhaust from an engine circulates. The thermoacoustic cooling device 10 includes a loop pipe 11 in which working gas is sealed, a thermoacoustic generation part 12A connected to the loop pipe 11 to generate pulsation by thermoacoustic oscillation in the working gas, and a heat pump 12B operated by generation of the pulsation. The thermoacoustic generation part 12A and the heat pump 12B are respectively provided with a heat storage part 14 and a cooling storage part 16, and have heat exchangers 13A, 15A in the high temperature side and heat exchangers 13B, 15B in the low temperature side positioned in both sides thereof. The heat exchanger 13A in the high temperature side is connected to the discharge pipe 3 at a first position in a flow direction of the exhaust, and the heat exchanger 15B in the low temperature side is connected to a second position in a downstream side of the first position. The heat exchanger 13B in the low temperature side and the heat exchanger 15A in the high temperature side are cooled by removing heat with atmosphere or engine cooling water.

Description

本発明は、自動車の排気消音装置に関する。   The present invention relates to an automobile exhaust silencer.

従来から、自動車の排気消音装置としては、その基本型として特許文献1の図2に記載のように(a)拡張型、(b),(b’)拡張共振型、(c)共振型、(d)吸収型、(e)干渉型、(f)抵抗型に分類できる。
しかし、排気ガスが排気管の出口から大気中に放出される前に、排気ガスの温度を下げることにより排気音の音圧レベルを低減できることも一般に知られている。
また、特許文献2には、熱音響現象を利用したループ管気柱音響波動冷凍機の技術が記載されている。
Conventionally, as an automobile exhaust silencer, as shown in FIG. 2 of Patent Document 1, as its basic type, (a) extended type, (b), (b ′) extended resonant type, (c) resonant type, (D) Absorption type, (e) Interference type, and (f) Resistance type.
However, it is generally known that the sound pressure level of the exhaust sound can be reduced by lowering the temperature of the exhaust gas before the exhaust gas is released into the atmosphere from the outlet of the exhaust pipe.
Patent Document 2 describes a technique of a loop tube air column acoustic wave refrigerator using a thermoacoustic phenomenon.

特許第3337556号公報Japanese Patent No. 3337556 特許第3015786号公報Japanese Patent No. 3015786

しかしながら、排気ガスの温度を下げるために動力を用いて排気ガスを冷却することは、車両の燃費を増加させることになる。また、自動車の走行時の風を用いて空冷等により排気ガスを冷却する方法では、車両停車中の排気騒音の低減に関しては効率良く機能せず、又、排気ガスと大気との熱交換のための冷却部の体積が増加し、排気系統の体積を著しく増大させることになる。   However, cooling the exhaust gas using power to lower the temperature of the exhaust gas increases the fuel consumption of the vehicle. In addition, the method of cooling the exhaust gas by air cooling using the wind when the automobile is running does not function efficiently for reducing the exhaust noise while the vehicle is stopped, and because of the heat exchange between the exhaust gas and the atmosphere. As a result, the volume of the cooling part increases and the volume of the exhaust system increases significantly.

本発明は、前記した従来の課題を解決するものであり、簡単な構造で、動的機構を持たず、排気ガス自体を効率的に冷却することにより、排気音の音圧レベルを下げることができる排気消音装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and can reduce the sound pressure level of the exhaust sound by efficiently cooling the exhaust gas itself with a simple structure and no dynamic mechanism. An object of the present invention is to provide an exhaust silencer that can be used.

前記課題を解決するために、請求項1に係る発明の排気消音装置は、エンジンからの排気ガスが流通する排気管に設けられ、排気音を低減するものであって、作業ガスが封入されたループ状の配管と、作業ガスに熱音響自励振動による波動を発生させる波動発生手段と、波動の発生によって作動するヒートポンプと、を有する熱音響冷却装置を備え、波動発生手段と、ヒートポンプとは、それぞれスタックとその両側に位置する高温側熱交換器及び低温側熱交換器とを有し、波動発生手段の高温側熱交換器を排気管の排気ガスの流れ方向の第1の部位に接続するとともに、第1の部位よりも排気ガスの流れ方向の下流側の排気管の第2の部位にヒートポンプの低温側熱交換器を接続し、波動発生手段の低温側熱交換器及びヒートポンプの高温側熱交換器は、大気又はエンジン冷却水で除熱冷却され、排気管の第1の部位における排気ガスの熱を波動発生手段の高温側熱交換器に供給し、ヒートポンプの低温側熱交換器に生じる冷熱により、第2の部位における排気ガスを冷却することを特徴とする。   In order to solve the above-mentioned problem, an exhaust silencer of the invention according to claim 1 is provided in an exhaust pipe through which exhaust gas from an engine circulates to reduce exhaust noise, and is filled with working gas. A thermoacoustic cooling device having a loop-shaped pipe, a wave generating means for generating a wave due to thermoacoustic self-excited vibration in the working gas, and a heat pump that operates by the generation of the wave, the wave generating means and the heat pump Each having a stack and a high temperature side heat exchanger and a low temperature side heat exchanger located on both sides of the stack, and connecting the high temperature side heat exchanger of the wave generating means to the first part of the exhaust pipe in the flow direction of the exhaust gas In addition, the low temperature side heat exchanger of the heat pump is connected to the second portion of the exhaust pipe downstream of the first portion in the flow direction of the exhaust gas, and the low temperature side heat exchanger of the wave generating means and the high temperature of the heat pump are connected. The heat exchanger is heat-removed and cooled with air or engine cooling water, supplies the heat of the exhaust gas in the first part of the exhaust pipe to the high-temperature side heat exchanger of the wave generating means, and serves as the low-temperature side heat exchanger of the heat pump. The exhaust gas in the second part is cooled by the generated cold heat.

請求項1に記載の発明によれば、動的機構を有しない簡単な構成の波動発生手段とヒートポンプを有する熱音響冷却装置により排気管内を流れる排気ガスの温度を効率的に下げて、排気音の音圧レベルを下げることができる。そして、例えば、排気管の前記第2の部位より下流側にメインマフラを設ける場合には、それに流入する排気ガスの温度が従来よりも低減され、メインマフラの寿命がより延びる効果がある。   According to the first aspect of the present invention, the temperature of the exhaust gas flowing in the exhaust pipe is efficiently reduced by the thermoacoustic cooling device having a simple structure wave generating means and a heat pump that does not have a dynamic mechanism. The sound pressure level can be lowered. For example, when the main muffler is provided on the downstream side of the second part of the exhaust pipe, the temperature of the exhaust gas flowing into the main muffler is reduced as compared with the conventional case, and the life of the main muffler is further extended.

請求項2に係る発明の排気消音装置は、請求項1に記載の発明の構成に加え、熱音響冷却装置は、排気管に接続された排気ガスを浄化する触媒装置よりも排気ガスの流れ方向の下流側に配置されることを特徴とする。   According to a second aspect of the present invention, in addition to the configuration of the first aspect of the invention, the thermoacoustic cooling device has a flow direction of the exhaust gas rather than the catalyst device that purifies the exhaust gas connected to the exhaust pipe. It arrange | positions in the downstream of this, It is characterized by the above-mentioned.

請求項2に記載の発明によれば、熱音響冷却装置は、排気ガスを浄化する触媒装置よりも排気ガスの流れ方向の下流側に配置されるので、エンジンから排気される排気ガスが熱音響冷却装置で冷却される前に触媒装置に到達し、エンジン始動時の触媒装置の温度の上昇を妨げることを防止できる。   According to the second aspect of the present invention, since the thermoacoustic cooling device is disposed downstream of the catalyst device for purifying the exhaust gas in the flow direction of the exhaust gas, the exhaust gas exhausted from the engine is thermoacoustic. It is possible to prevent the catalyst device from reaching the catalyst device before being cooled by the cooling device and preventing the temperature of the catalyst device from rising when the engine is started.

本発明によれば、簡単な構造で、動的機構を持たず、排気ガス自体を効率的に冷却することにより、排気音の音圧レベルを下げることができる排気消音装置を提供することができる。   According to the present invention, it is possible to provide an exhaust silencer that can reduce the sound pressure level of exhaust sound by efficiently cooling the exhaust gas itself with a simple structure and no dynamic mechanism. .

本実施形態に係る排気消音装置を含む排気系統の全体概略構成図である。1 is an overall schematic configuration diagram of an exhaust system including an exhaust silencer according to the present embodiment. 図1における熱音響冷却装置の概略構成図である。It is a schematic block diagram of the thermoacoustic cooling device in FIG. (a)は、図2における熱音響発生部のA−A矢視断面図、(b)は、図2におけるヒートポンプのB−B矢視断面図である。(A) is AA arrow sectional drawing of the thermoacoustic generating part in FIG. 2, (b) is BB arrow sectional drawing of the heat pump in FIG. (a)は、図2における熱音響発生部の変形例のA−A矢視断面図、(b)は、図2におけるヒートポンプの変形例のB−B矢視断面図である。(A) is AA arrow sectional drawing of the modification of the thermoacoustic generating part in FIG. 2, (b) is BB arrow sectional drawing of the modification of the heat pump in FIG.

以下に、本発明の実施形態に係る排気消音装置1を含む排気系統の全体概要について説明する。図1は、本実施形態に係る排気消音装置を含む排気系統の全体概略構成図であり、図2は、図1における熱音響冷却装置の概略構成図であり、図3の(a)は、図2における熱音響発生部のA−A矢視断面図、(b)は、図2におけるヒートポンプのB−B矢視断面図である。   Below, the whole outline | summary of the exhaust system containing the exhaust silencer 1 which concerns on embodiment of this invention is demonstrated. FIG. 1 is an overall schematic configuration diagram of an exhaust system including an exhaust silencer according to the present embodiment, FIG. 2 is a schematic configuration diagram of a thermoacoustic cooling device in FIG. 1, and FIG. 2 is a cross-sectional view taken along the line AA of the thermoacoustic generator in FIG. 2, and FIG. 2B is a cross-sectional view taken along the line BB of the heat pump in FIG.

図1に示すように排気系統の排気管3は、図示しない排気マニホールドにフランジをボルト締結されて接続され、触媒装置5に排気ガスを流し、更に下流の従来サブマフラ6と称される中間部分に熱音響冷却装置10を備える。サブマフラ6の下流側には、フランジをボルト締結されてメインマフラ7が接続される。   As shown in FIG. 1, the exhaust pipe 3 of the exhaust system is connected to an exhaust manifold (not shown) by fastening a flange with bolts, allows exhaust gas to flow through the catalyst device 5, and further downstream in an intermediate portion called a conventional sub-muffler 6. A thermoacoustic cooling device 10 is provided. A main muffler 7 is connected to the downstream side of the sub muffler 6 by fastening a flange with bolts.

熱音響冷却装置10は、主にループ管(ループ状の配管)11で熱音響発生部(波動発生手段)12A、ヒートポンプ12Bを接続して構成されている。ループ管11内には、作業ガスとして不活性ガスが、例えば、所定の圧力のヘリウムガスが封入されている。
なお、作業ガスとしては、特許文献2に記載されているように他の成分の不活性ガス、例えば、窒素、アルゴン、ヘリウムとアルゴンの混合ガス等でも良い。
The thermoacoustic cooling device 10 is mainly configured by connecting a thermoacoustic generator (wave generation means) 12A and a heat pump 12B with a loop pipe (loop-shaped pipe) 11. In the loop tube 11, an inert gas as a working gas, for example, a helium gas having a predetermined pressure is sealed.
The working gas may be an inert gas having another component, for example, nitrogen, argon, a mixed gas of helium and argon, or the like as described in Patent Document 2.

熱音響発生部12Aは、触媒装置5の下流側に位置する排気管3の部位(第1の部位)に設けられ、ループ管11の直線管部11a(図2参照)に設けられた蓄熱部(スタック)14と、排気ガスの熱を蓄熱部14の一端側との間で熱交換する高温側熱交換器13Aと、蓄熱部14の他端側と外気との間で熱交換する低温側熱交換器13Bとを含んでいる。
蓄熱部14は、高温側熱交換器13Aと低温側熱交換器13Bとの間で熱勾配を持つことにより、熱エネルギを音響エネルギに変換して熱音響(波動)が自励発生し、直線管部11aの高温側熱交換器13A側から矢印31(図2参照)で示した方向に進行波が作業ガスにより図2の直線管部11aから連結管部11b、直線管部11cへと伝播して、ヒートポンプ12Bの蓄冷部16に伝達される(図2参照)。
The thermoacoustic generator 12 </ b> A is provided in a portion (first portion) of the exhaust pipe 3 located on the downstream side of the catalyst device 5, and is a heat storage portion provided in the straight pipe portion 11 a (see FIG. 2) of the loop pipe 11. (Stack) 14 and a high temperature side heat exchanger 13A for exchanging heat of the exhaust gas between one end side of the heat storage unit 14 and a low temperature side for heat exchange between the other end side of the heat storage unit 14 and the outside air And a heat exchanger 13B.
The heat storage unit 14 has a thermal gradient between the high temperature side heat exchanger 13A and the low temperature side heat exchanger 13B, thereby converting thermal energy into acoustic energy, and thermoacoustic (wave) is generated by self-excitation. A traveling wave propagates from the straight tube portion 11a of FIG. 2 to the connecting tube portion 11b and the straight tube portion 11c in the direction indicated by the arrow 31 (see FIG. 2) from the high temperature side heat exchanger 13A side of the tube portion 11a. And it is transmitted to the cool storage part 16 of the heat pump 12B (refer FIG. 2).

ヒートポンプ12Bは、前記した第1の部位より排気ガスの流れ方向で下流側に位置する排気管3の部位(第2の部位)に設けられ、ループ管11の直線管部11c(図2参照)に設けられた蓄冷部(スタック)16と、蓄冷部16の一端側と大気との間で熱交換する高温側熱交換器15Aと、蓄冷部16の他端側と排気管3の前記した第2の部位との間で熱交換する低温側熱交換器15Bとを含んでいる。高温側熱交換器15Aが、外気との間で熱交換することにより、高温側熱交換器15Aと低温側熱交換器15Bとの間に挟まれた蓄冷部16は熱勾配を持つことになる。そして、蓄冷部16は、音響エネルギを熱エネルギに変換するとともに、低温側熱交換器15Bから高温側熱交換器15Aへ熱輸送し、低温側熱交換器15Bは、排気管3の前記した第2の部位で排気ガスの熱を吸熱する。この吸熱機能については後記する。   The heat pump 12B is provided in a portion (second portion) of the exhaust pipe 3 located downstream in the exhaust gas flow direction from the first portion, and the straight pipe portion 11c of the loop pipe 11 (see FIG. 2). The regenerator (stack) 16 provided in the above, the high-temperature side heat exchanger 15A for exchanging heat between one end of the regenerator 16 and the atmosphere, the other end of the regenerator 16 and the exhaust pipe 3 described above. And a low temperature side heat exchanger 15B for exchanging heat with the two parts. When the high temperature side heat exchanger 15A exchanges heat with the outside air, the cold storage unit 16 sandwiched between the high temperature side heat exchanger 15A and the low temperature side heat exchanger 15B has a thermal gradient. . The cold storage unit 16 converts the acoustic energy into heat energy and transports heat from the low temperature side heat exchanger 15B to the high temperature side heat exchanger 15A. The low temperature side heat exchanger 15B The heat of the exhaust gas is absorbed at the part 2. This endothermic function will be described later.

本実施形態の熱音響冷却装置10のループ管11は、基本的に熱交換機能部分を除いてステンレス製の略矩形形状に配管された管で構成されており、熱音響発生部12Aの蓄熱部14及びヒートポンプ12Bの蓄冷部16は、それぞれ、例えば、外形が筒状のハニカム構造のセラミックス25,26(図3の(a),(b)参照)を格納して構成されている。そして、それぞれ、直線管部11a,11cを構成するステンレス製の管に格納されている。セラミックス25,26は、直線管部11a,11cの軸方向に並行な小さい並行通路25a,26a(図3の(a),(b)参照)を多数有している。この並行通路25a,26aは、ループ管11内の作業ガスを媒体として伝播する音波の波長よりも十分小さい流体力学的通路直径である。例えば、音波の波長の3千分の1程度の狭い通路である。   The loop tube 11 of the thermoacoustic cooling device 10 of the present embodiment is basically composed of a stainless steel tube that is piped in a substantially rectangular shape except for the heat exchange function portion, and the heat storage portion of the thermoacoustic generator 12A. 14 and the heat storage unit 16 of the heat pump 12B are configured to store, for example, ceramics 25 and 26 (see FIGS. 3A and 3B) having a honeycomb structure with a cylindrical outer shape. And each is accommodated in the stainless steel pipe | tube which comprises the straight pipe parts 11a and 11c. The ceramics 25 and 26 have a large number of small parallel passages 25a and 26a (see FIGS. 3A and 3B) parallel to the axial direction of the straight tube portions 11a and 11c. The parallel passages 25a and 26a have a hydrodynamic passage diameter that is sufficiently smaller than the wavelength of the sound wave propagating through the working gas in the loop tube 11 as a medium. For example, it is a narrow passage of about one-third of the wavelength of a sound wave.

図3の(a)に示すように、熱音響発生部12Aの高温側熱交換器13Aは、排気管3の外周側にろう付け等で密着溶接して固定された、例えば、銅合金製の円筒形状の熱伝導部材21A、セラミックス25の一端側(蓄熱部14の一端側)の直線管部11aとその一端側が異種金属接合された、例えば、銅合金製の管形状の熱伝導部材21B、管形状の熱伝導部材21Bに格納された熱交換部材22、熱伝導部材21Aと熱伝導部材21Bとの間を熱伝導可能に接続する熱伝導部材21Cから構成されている。管形状の熱伝導部材21Bの他端側は、直線管部11aと異種金属接合されている。
熱交換部材22は、例えば、多数枚の薄肉金属板が微小間隔で配設されたものであり、作業ガスの音響波動がセラミックス25の小さい並行通路25aに伝わるように構成されているとともに、前記した多数枚の薄肉金属板がセラミックス25の一端側に接触しセラミックス25へ熱伝導可能な構成になっている。
As shown in FIG. 3A, the high temperature side heat exchanger 13A of the thermoacoustic generator 12A is fixed to the outer peripheral side of the exhaust pipe 3 by close welding, for example, made of copper alloy. Cylindrical heat conduction member 21A, straight tube portion 11a on one end side of ceramic 25 (one end side of heat storage portion 14) and one end side thereof are joined with dissimilar metals, for example, a copper-shaped tube heat conduction member 21B, The heat exchange member 22 stored in the tubular heat conduction member 21B, and the heat conduction member 21C that connects the heat conduction member 21A and the heat conduction member 21B so as to be capable of conducting heat are included. The other end side of the tubular heat conducting member 21B is joined to the straight tube portion 11a with a different metal.
The heat exchanging member 22 is, for example, a structure in which a large number of thin metal plates are arranged at minute intervals, and is configured so that the acoustic wave of the working gas is transmitted to the small parallel passage 25a of the ceramic 25. The plurality of thin metal plates contacted with one end side of the ceramic 25 so that heat conduction to the ceramic 25 is possible.

図3の(a)に示すように、熱音響発生部12Aの低温側熱交換器13Bは、セラミックス25の他端側(蓄熱部14の他端側)の直線管部11aにその一端側を異種金属接合された、例えば、銅合金製の冷却フィン付き管形状の熱伝導部材23と、熱伝導部材23に格納された熱交換部材24とから構成されている。熱伝導部材23は、その外周側に周方向に多数の冷却フィン23aを有し、冷却フィン23aで大気との熱交換表面積を増大させる構成となっている。熱伝導部材23の他端側は、直線管部11aと異種金属接合されている。
熱交換部材24は、例えば、多数枚の薄肉金属板が微小間隔で配設されたものであり、作業ガスの音響波動がセラミックス25の小さい並行通路25aに伝わるように構成されているとともに、前記した多数枚の薄肉金属板がセラミックス25の他端側に接触し、セラミックス25から熱伝導可能な構成になっている。
As shown to (a) of FIG. 3, the low temperature side heat exchanger 13B of the thermoacoustic generating part 12A has its one end side on the straight tube part 11a on the other end side (the other end side of the heat storage part 14) of the ceramic 25. For example, the heat conductive member 23 is formed of a copper alloy and has a fin shape with a cooling fin, and a heat exchange member 24 stored in the heat conductive member 23. The heat conducting member 23 has a large number of cooling fins 23a in the circumferential direction on the outer peripheral side thereof, and is configured to increase the heat exchange surface area with the atmosphere by the cooling fins 23a. The other end side of the heat conducting member 23 is joined to the straight tube portion 11a by dissimilar metal.
The heat exchanging member 24 is, for example, a structure in which a large number of thin metal plates are arranged at minute intervals, and the acoustic wave of the working gas is transmitted to the small parallel passage 25a of the ceramic 25. A number of the thin metal plates thus brought into contact with the other end of the ceramic 25 are configured to conduct heat from the ceramic 25.

図3の(b)に示すように、ヒートポンプ12Bの高温側熱交換器15Aは、セラミックス26の一端側(蓄冷部16の一端側)の直線管部11cにその一端側を異種金属接合された、例えば、銅合金製の冷却フィン付き管形状の熱伝導部材23と、熱伝導部材23に格納された熱交換部材24とから構成されている。熱伝導部材23は、その外周側に周方向に多数の冷却フィン23aを有し、冷却フィン23aで大気との熱交換表面積を増大させる構成となっている。熱伝導部材23の他端側は、直線管部11cと異種金属接合されている。
熱交換部材24は、例えば、多数枚の薄肉金属板が微小間隔で配設されたものであり、作業ガスの音響波動がセラミックス26の小さい並行通路26aに伝わるように構成されているとともに、前記した多数枚の薄肉金属板がセラミックス26の一端側に接触し、セラミックス26から熱伝導可能な構成になっている。
As shown in FIG. 3 (b), the high temperature side heat exchanger 15A of the heat pump 12B has one end side joined to the straight tube portion 11c on one end side of the ceramic 26 (one end side of the cold storage unit 16). For example, it is composed of a pipe-shaped heat conductive member 23 with a cooling fin made of a copper alloy and a heat exchange member 24 stored in the heat conductive member 23. The heat conducting member 23 has a large number of cooling fins 23a in the circumferential direction on the outer peripheral side thereof, and is configured to increase the heat exchange surface area with the atmosphere by the cooling fins 23a. The other end of the heat conducting member 23 is joined to the straight tube portion 11c with a different metal.
The heat exchange member 24 is, for example, a structure in which a large number of thin metal plates are arranged at a minute interval, and is configured so that the acoustic wave of the working gas is transmitted to the small parallel passage 26a of the ceramic 26. The multiple thin metal plates thus made contact with one end of the ceramic 26 so that heat can be conducted from the ceramic 26.

図3の(b)に示すように、ヒートポンプ12Bの低温側熱交換器15Bは、排気管3の外周側にろう付け等で密着溶接して固定された、例えば、銅合金製の円筒形状の熱伝導部材21A、セラミックス26の他端側(蓄冷部16の他端側)の直線管部11cとその一端側が異種金属接合された、例えば、銅合金製の管形状の熱伝導部材21B、管形状の熱伝導部材21Bに格納された熱交換部材22、熱伝導部材21Aと熱伝導部材21Bとの間を熱伝導可能に接続する熱伝導部材21Cから構成されている。管形状の熱伝導部材21Bの他端側は、直線管部11cと異種金属接合されている。
熱交換部材22は、例えば、多数枚の薄肉金属板が微小間隔で配設されたものであり、作業ガスの音響波動がセラミックス26の小さい並行通路26aに伝わるように構成されているとともに、前記した多数枚の薄肉金属板がセラミックス26の他端側に接触し、セラミックス26へ熱伝導可能な構成になっている。
As shown in FIG. 3 (b), the low temperature side heat exchanger 15B of the heat pump 12B is fixed to the outer peripheral side of the exhaust pipe 3 by brazing or the like, for example, in a cylindrical shape made of copper alloy. The heat conducting member 21A, the straight tube portion 11c on the other end side of the ceramic 26 (the other end side of the cold storage unit 16) and the one end side thereof are joined with different metals, for example, a copper-shaped tube-shaped heat conducting member 21B, tube The heat exchange member 22 stored in the heat conduction member 21B having a shape, and the heat conduction member 21C that connects the heat conduction member 21A and the heat conduction member 21B so as to be capable of conducting heat are included. The other end side of the tubular heat conductive member 21B is joined to the straight tube portion 11c with a different metal.
The heat exchanging member 22 is, for example, a structure in which a large number of thin metal plates are arranged at a minute interval, and the acoustic wave of the working gas is transmitted to the small parallel passage 26a of the ceramic 26. A number of the thin metal plates thus brought into contact with the other end of the ceramic 26 are configured to conduct heat to the ceramic 26.

本実施形態によれば、特許文献2の図1に記載の技術のように、熱音響発生部12Aの高温側熱交換器13Aは、排気管3の第1の部位から排気ガスの熱を伝達されて高温となり、低温側熱交換器13Bは、大気との熱交換により除熱冷却されるので、蓄熱部14のセラミックス25の小さい並行通路25aの壁には、高温側熱交換器13A側から低温側熱交換器13B側に向かって軸方向に急激な温度勾配が生じる。そして、直線管部11a,11cの長さと連結管部11b,11dの長さとが所定のものに設定され、作業ガスの圧力が適切に設定されて封入されているので、セラミックス25の小さい並行通路25a内の作業ガスに与えられた熱エネルギがセラミックス25の小さい並行通路25aの壁によって圧力に変換され、変動する圧力から自励的振動を生じ、熱エネルギが音響エネルギに変換される。そして、セラミックス25の小さい並行通路25aの高温側熱交換器13A側から、図2の矢印31に示す方向に進む進行波と定在波の音波(波動)が発生する。   According to this embodiment, like the technique described in FIG. 1 of Patent Document 2, the high temperature side heat exchanger 13A of the thermoacoustic generator 12A transmits the heat of the exhaust gas from the first part of the exhaust pipe 3. As a result, the temperature of the low-temperature side heat exchanger 13B is removed and cooled by heat exchange with the atmosphere. Therefore, the wall of the small parallel passage 25a of the ceramic 25 of the heat storage unit 14 is placed on the wall of the high-temperature side heat exchanger 13A. A steep temperature gradient is generated in the axial direction toward the low temperature side heat exchanger 13B. Since the lengths of the straight pipe portions 11a and 11c and the lengths of the connecting pipe portions 11b and 11d are set to predetermined values and the working gas pressure is appropriately set and sealed, a small parallel passage of the ceramic 25 The thermal energy given to the working gas in 25a is converted into pressure by the wall of the small parallel passage 25a of the ceramic 25, and self-excited vibration is generated from the fluctuating pressure, and the thermal energy is converted into acoustic energy. Then, a traveling wave and a standing wave sound wave (wave) traveling in the direction indicated by the arrow 31 in FIG. 2 are generated from the high temperature side heat exchanger 13A side of the small parallel passage 25a of the ceramic 25.

ループ管11を伝播する音波は、ヒートポンプ12Bのセラミックス26の小さい並行通路26aの壁を通過することになる。ここで、音波がセラミックス26の小さい並行通路26aを高温側熱交換器15A側から進入すると、作業ガスと並行通路26aの壁との間で音響エネルギから熱エネルギへの変換と、熱エネルギから音響エネルギへの変換が繰り返される。その過程で、セラミックス26は低温側熱交換器15B側から高温側熱交換器15A側へ熱輸送するとともに、ヒートポンプ12Bの高温側熱交換器15Aにおいて大気との熱交換により除熱冷却され放熱される。その結果、低温側熱交換器15Bは、排気管3の第2の部位から排気ガスの熱を吸熱することができる。   The sound wave propagating through the loop tube 11 passes through the wall of the small parallel passage 26a of the ceramic 26 of the heat pump 12B. Here, when sound waves enter the small parallel passage 26a of the ceramic 26 from the high-temperature side heat exchanger 15A side, conversion from acoustic energy to thermal energy and acoustic energy to acoustic energy between the working gas and the wall of the parallel passage 26a. The conversion to energy is repeated. In the process, the ceramics 26 transports heat from the low-temperature side heat exchanger 15B side to the high-temperature side heat exchanger 15A side, and at the high-temperature side heat exchanger 15A of the heat pump 12B, heat is removed and cooled by heat exchange with the atmosphere. The As a result, the low temperature side heat exchanger 15B can absorb the heat of the exhaust gas from the second part of the exhaust pipe 3.

本実施形態によれば、熱音響冷却装置10は、排気管3の第1の部位で熱音響発生部12Aにより排気ガスの熱エネルギを音響エネルギに変換する過程で、排気ガスの温度を低減でき、更に、排気管3の第2の部位でヒートポンプ12Bにより排気ガスの熱エネルギを吸熱する過程でも排気ガスの温度を低減できる。
このように熱音響冷却装置10は、何等の動力を必要とすることなく排気管3の第1、第2の部位において2段階にわたり排気ガスの温度を低下させる効果により、効果的に排気ガスの消音が期待できる。また、メインマフラ7(図1参照)に到る排気ガスの温度を従来よりも低下させることが期待できるので、メインマフラ7の耐熱材料に要求される温度や耐酸化性の要求仕様を低減できコスト低減に役立つ。
According to this embodiment, the thermoacoustic cooling device 10 can reduce the temperature of the exhaust gas in the process of converting the thermal energy of the exhaust gas into acoustic energy by the thermoacoustic generator 12A at the first part of the exhaust pipe 3. Furthermore, the temperature of the exhaust gas can be reduced even in the process of absorbing the heat energy of the exhaust gas by the heat pump 12B at the second portion of the exhaust pipe 3.
Thus, the thermoacoustic cooling device 10 effectively reduces the temperature of the exhaust gas in two stages at the first and second portions of the exhaust pipe 3 without requiring any power. Can be silenced. In addition, since the temperature of the exhaust gas reaching the main muffler 7 (see FIG. 1) can be expected to be lower than before, the temperature required for the heat-resistant material of the main muffler 7 and the required specifications for oxidation resistance can be reduced. Helps reduce costs.

また、熱音響冷却装置10は、排気管3に設けられた触媒装置5よりも排気ガスの流れ方向で下流側に設置するので、エンジン始動時の触媒装置5の早期の温度上昇を妨げることが無く、触媒装置5による排気ガスの浄化機能を妨げることが無い。   Further, since the thermoacoustic cooling device 10 is installed downstream of the catalyst device 5 provided in the exhaust pipe 3 in the flow direction of the exhaust gas, it prevents an early temperature rise of the catalyst device 5 at the time of engine start. And the exhaust gas purification function of the catalyst device 5 is not hindered.

更に、従来のサブマフラにおいて排気ガスを小口径の孔を多数設けた部材を通過させて膨張を繰り返すことで消音する場合に比して排気ガスの圧損が少ないので、排気系の全体の背圧を従来よりも低くすることが可能となり、エンジンの出力増大に寄与することができる可能性がある。   Furthermore, since the exhaust gas has less pressure loss than the case where the exhaust gas is silenced by passing through a member having many small-diameter holes in a conventional sub-muffler and repeating expansion, the overall back pressure of the exhaust system is reduced. It becomes possible to make it lower than before, and it may contribute to an increase in engine output.

《変形例》
次に、図4を参照しながら熱音響発生部12A及びヒートポンプ12Bの変形例について説明する。図4の(a)は、図2における熱音響発生部の変形例のA−A矢視断面図、(b)は、図2におけるヒートポンプの変形例のB−B矢視断面図である。
本変形例では、ループ管11(図1参照)は薄肉のステンレス管で構成されていることから、実施形態の図3の(a),(b)に示すように高温側熱交換器13A、低温側熱交換器13B、高温側熱交換器15A、低温側熱交換器15Bは、直線管部11aや直線管部11cと異種金属接合する構造とはせず、図4に示すように直線管部11aや直線管部11cの外周側に熱伝導部材21B,23がろう付け溶接される構造でも良い。
<Modification>
Next, modified examples of the thermoacoustic generator 12A and the heat pump 12B will be described with reference to FIG. 4A is a cross-sectional view taken along the line AA of the modified example of the thermoacoustic generator in FIG. 2, and FIG. 4B is a cross-sectional view taken along the line BB of the modified example of the heat pump in FIG.
In the present modification, the loop pipe 11 (see FIG. 1) is formed of a thin stainless steel pipe, and therefore, as shown in FIGS. 3A and 3B of the embodiment, the high temperature side heat exchanger 13A, The low temperature side heat exchanger 13B, the high temperature side heat exchanger 15A, and the low temperature side heat exchanger 15B do not have a structure in which different kinds of metals are joined to the straight tube portion 11a and the straight tube portion 11c, but as shown in FIG. A structure in which the heat conducting members 21B and 23 are brazed and welded to the outer peripheral side of the portion 11a and the straight tube portion 11c may be employed.

本実施形態及び変形例では、蓄熱部14としてハニカム構造のセラミックス25を用いたがそれに限定されることは無く、特許文献2に記載のように多数枚のステンレス鋼メッシュ薄板が微小間隔で配置されたもの、ステンレス鋼繊維を集合した不織布、狭い複数の通路を有する焼結金属でも良い。同様に蓄冷部16としてハニカム構造のセラミックス26を用いたがそれに限定されることは無く、ステンレス鋼、銅、鉛等を用いてメッシュ状、球状、板状、板を円筒状に丸めた形状、エッチングで処理された板等多様なものが利用できる。ただ、作業ガスを媒体として高温側熱交換器15Aと低温側熱交換器15Bとの間に音響波動を伝播することが可能な狭い通路を多数確保されたものであれば良い。   In the present embodiment and the modified example, the ceramics 25 having a honeycomb structure is used as the heat storage unit 14, but the present invention is not limited thereto. As described in Patent Document 2, a large number of stainless steel mesh thin plates are arranged at minute intervals. Or a sintered metal having a plurality of narrow passages. Similarly, the ceramics 26 having a honeycomb structure is used as the cold storage unit 16, but is not limited thereto. The shape is a mesh, sphere, plate, or plate rounded into a cylindrical shape using stainless steel, copper, lead, or the like, Various things such as a plate processed by etching can be used. However, it is only necessary that a large number of narrow passages capable of propagating acoustic waves are secured between the high temperature side heat exchanger 15A and the low temperature side heat exchanger 15B using the working gas as a medium.

更に、本実施形態及び変形例では、低温側熱交換器13B、高温側熱交換器15Aは、大気に放熱する構成としたがそれに限定されること無く、熱伝導部材23の外周側に水ジャケットを被せ、熱伝導部材23の外周側にエンジン冷却水を循環させて放熱させる構成としても良い。この場合は、車両が走行状態で無い場合でも、又、大気温度が高い場合でも冷却フィン23aからの放熱が十分に期待でき、熱音響冷却装置10による消音効果が高まる。   Furthermore, in the present embodiment and the modification, the low temperature side heat exchanger 13B and the high temperature side heat exchanger 15A are configured to radiate heat to the atmosphere, but the present invention is not limited thereto. It is good also as a structure which circulates engine cooling water on the outer peripheral side of the heat conductive member 23, and radiates heat. In this case, even when the vehicle is not in a running state or when the atmospheric temperature is high, sufficient heat dissipation from the cooling fins 23a can be expected, and the noise reduction effect by the thermoacoustic cooling device 10 is enhanced.

1 排気消音装置
3 排気管
5 触媒装置
6 サブマフラ
7 メインマフラ
10 熱音響冷却装置
11 ループ管(ループ状の配管)
11a,11c 直線管部
11b,11d 連結管部
12A 熱音響発生部(波動発生手段)
12B ヒートポンプ
13A 高温側熱交換器
13B 低温側熱交換器
14 蓄熱部(スタック)
15A 高温側熱交換器
15B 低温側熱交換器
16 蓄冷部(スタック)
21A,21B,21C 熱伝導部材
22 熱交換部材
23 熱伝導部材
23a 冷却フィン
24 熱交換部材
25 蓄熱部材(スタック)
25a 並行通路
26 蓄冷部材(スタック)
26a 並行通路
DESCRIPTION OF SYMBOLS 1 Exhaust silencer 3 Exhaust pipe 5 Catalytic device 6 Sub muffler 7 Main muffler 10 Thermoacoustic cooling device 11 Loop pipe (loop-like piping)
11a, 11c Straight tube portion 11b, 11d Connecting tube portion 12A Thermoacoustic generator (wave generating means)
12B Heat pump 13A High temperature side heat exchanger 13B Low temperature side heat exchanger 14 Heat storage part (stack)
15A High temperature side heat exchanger 15B Low temperature side heat exchanger 16 Cold storage unit (stack)
21A, 21B, 21C Heat conduction member 22 Heat exchange member 23 Heat conduction member 23a Cooling fin 24 Heat exchange member 25 Heat storage member (stack)
25a Parallel passage 26 Cold storage member (stack)
26a Parallel passage

Claims (2)

エンジンからの排気ガスが流通する排気管に設けられ、排気音を低減する排気消音装置であって、
作業ガスが封入されたループ状の配管と、前記作業ガスに熱音響自励振動による波動を発生させる波動発生手段と、前記波動の発生によって作動するヒートポンプと、を有する熱音響冷却装置を備え、
前記波動発生手段と、前記ヒートポンプとは、それぞれスタックとその両側に位置する高温側熱交換器及び低温側熱交換器とを有し、
前記波動発生手段の前記高温側熱交換器を前記排気管の排気ガスの流れ方向の第1の部位に接続するとともに、
前記第1の部位よりも排気ガスの流れ方向の下流側の前記排気管の第2の部位に前記ヒートポンプの低温側熱交換器を接続し、
前記波動発生手段の前記低温側熱交換器及び前記ヒートポンプの高温側熱交換器は、大気又はエンジン冷却水で除熱冷却され、
前記排気管の前記第1の部位における排気ガスの熱を前記波動発生手段の前記高温側熱交換器に供給し、前記ヒートポンプの前記低温側熱交換器に生じる冷熱により、前記第2の部位における排気ガスを冷却することを特徴とする排気消音装置。
An exhaust silencer that is provided in an exhaust pipe through which exhaust gas from an engine flows and reduces exhaust noise,
A thermoacoustic cooling device having a loop-shaped pipe filled with a working gas, a wave generating means for generating a wave by thermoacoustic self-excited vibration in the working gas, and a heat pump that operates by the generation of the wave,
The wave generating means and the heat pump each have a stack and a high temperature side heat exchanger and a low temperature side heat exchanger located on both sides thereof,
Connecting the high temperature side heat exchanger of the wave generating means to a first portion of the exhaust pipe in the flow direction of the exhaust gas;
Connecting a low temperature side heat exchanger of the heat pump to a second part of the exhaust pipe downstream of the first part in the flow direction of the exhaust gas,
The low temperature side heat exchanger of the wave generating means and the high temperature side heat exchanger of the heat pump are cooled by removing heat with the atmosphere or engine cooling water,
The heat of the exhaust gas in the first part of the exhaust pipe is supplied to the high temperature side heat exchanger of the wave generating means, and the cold heat generated in the low temperature side heat exchanger of the heat pump causes the heat in the second part. An exhaust silencer for cooling exhaust gas.
前記熱音響冷却装置は、前記排気管に接続された排気ガスを浄化する触媒装置よりも排気ガスの流れ方向の下流側に配置されることを特徴とする請求項1に記載の排気消音装置。   2. The exhaust silencer according to claim 1, wherein the thermoacoustic cooling device is disposed downstream of the catalyst device that purifies the exhaust gas connected to the exhaust pipe in the flow direction of the exhaust gas.
JP2011014115A 2011-01-26 2011-01-26 Muffler Pending JP2012154251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011014115A JP2012154251A (en) 2011-01-26 2011-01-26 Muffler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011014115A JP2012154251A (en) 2011-01-26 2011-01-26 Muffler

Publications (1)

Publication Number Publication Date
JP2012154251A true JP2012154251A (en) 2012-08-16

Family

ID=46836241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011014115A Pending JP2012154251A (en) 2011-01-26 2011-01-26 Muffler

Country Status (1)

Country Link
JP (1) JP2012154251A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101383204B1 (en) 2012-11-07 2014-04-17 자동차부품연구원 Cooling device for muffler of vehicle using loop type thermosyphon which uses nano fluid as working fluid
JP2015081734A (en) * 2013-10-23 2015-04-27 いすゞ自動車株式会社 Thermoacoustic temperature raising machine
JP2016194381A (en) * 2015-03-31 2016-11-17 国立研究開発法人 海上・港湾・航空技術研究所 Thermoacoustic engine cold water manufacturing device and ship with thermoacoustic engine cold water manufacturing device
JP2016211517A (en) * 2015-05-13 2016-12-15 日本碍子株式会社 Water recovery device
CN106907214A (en) * 2017-04-25 2017-06-30 侯东风 The method and apparatus of steam in a kind of improvement motor-vehicle tail-gas
CN108050093A (en) * 2017-12-28 2018-05-18 南京磁谷科技有限公司 A kind of air-to-air energy recovery silencing means
DE112017005100T5 (en) 2016-10-06 2019-08-01 Denso Corporation Energy conversion device
JP2020017194A (en) * 2018-07-27 2020-01-30 株式会社Csイノベーション Alarm device
CN111997751A (en) * 2020-08-19 2020-11-27 哈尔滨工程大学 Utilize generator cooling system of marine diesel engine bypass waste gas
JP7547915B2 (en) 2020-10-12 2024-09-10 株式会社ジェイテクト Thermoacoustic Device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101383204B1 (en) 2012-11-07 2014-04-17 자동차부품연구원 Cooling device for muffler of vehicle using loop type thermosyphon which uses nano fluid as working fluid
JP2015081734A (en) * 2013-10-23 2015-04-27 いすゞ自動車株式会社 Thermoacoustic temperature raising machine
CN105593614A (en) * 2013-10-23 2016-05-18 五十铃自动车株式会社 Thermo-acoustic heating device
JP2016194381A (en) * 2015-03-31 2016-11-17 国立研究開発法人 海上・港湾・航空技術研究所 Thermoacoustic engine cold water manufacturing device and ship with thermoacoustic engine cold water manufacturing device
JP2016211517A (en) * 2015-05-13 2016-12-15 日本碍子株式会社 Water recovery device
US10767538B2 (en) 2016-10-06 2020-09-08 Denso Corporation Energy conversion device
DE112017005100T5 (en) 2016-10-06 2019-08-01 Denso Corporation Energy conversion device
DE112017005100B4 (en) * 2016-10-06 2021-04-15 Denso Corporation Energy conversion device
CN106907214A (en) * 2017-04-25 2017-06-30 侯东风 The method and apparatus of steam in a kind of improvement motor-vehicle tail-gas
CN108050093A (en) * 2017-12-28 2018-05-18 南京磁谷科技有限公司 A kind of air-to-air energy recovery silencing means
JP2020017194A (en) * 2018-07-27 2020-01-30 株式会社Csイノベーション Alarm device
CN111997751A (en) * 2020-08-19 2020-11-27 哈尔滨工程大学 Utilize generator cooling system of marine diesel engine bypass waste gas
JP7547915B2 (en) 2020-10-12 2024-09-10 株式会社ジェイテクト Thermoacoustic Device

Similar Documents

Publication Publication Date Title
JP2012154251A (en) Muffler
EP1201906B1 (en) Exhaust heat energy recovery system for internal combustion engine
US7404296B2 (en) Cooling device
JP2016211517A5 (en)
JP2013234820A (en) Thermoacoustic engine
JP2011231940A (en) Thermoacoustic engine
JP2008068687A (en) Exhaust heat energy recovering system for hybrid vehicle
EP3062038B1 (en) Thermo-acoustic heating device
JP2007263541A (en) High temperature generator
JP5443952B2 (en) Thermoelectric generator
JP4035069B2 (en) Piping equipment equipped with a sound amplifying / attenuator using thermoacoustic effect
JP5423484B2 (en) Thermoacoustic engine
JP6884491B2 (en) Thermoacoustic engine
JP2007211734A (en) Exhaust muffling device
JP5227755B2 (en) EGR cooler
JP5434680B2 (en) Thermoacoustic engine
JP2007155167A (en) Thermoacoustic cooling device
CN103982328A (en) U-shaped heat recovery unit for diesel engine waste heat generation ORC (organic Rankine cycle) systems
JP2015102051A (en) EGR cooler
JP2017106699A (en) Thermoacoustic engine
JP2011256799A (en) Diesel engine and method of cooling egr gas of the diesel engine
TWI385302B (en) Engine waste heat recovery thermoelectric conversion system
JP2011002119A (en) Thermoacoustic engine
JP2006002598A (en) Thermal acoustic engine
JP2006145176A (en) Thermoacoustic engine