JP6884491B2 - Thermoacoustic engine - Google Patents

Thermoacoustic engine Download PDF

Info

Publication number
JP6884491B2
JP6884491B2 JP2019556032A JP2019556032A JP6884491B2 JP 6884491 B2 JP6884491 B2 JP 6884491B2 JP 2019556032 A JP2019556032 A JP 2019556032A JP 2019556032 A JP2019556032 A JP 2019556032A JP 6884491 B2 JP6884491 B2 JP 6884491B2
Authority
JP
Japan
Prior art keywords
storage device
heat storage
heat exchanger
pipe
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019556032A
Other languages
Japanese (ja)
Other versions
JPWO2019102564A1 (en
Inventor
深谷 典之
典之 深谷
伊藤 剛
伊藤  剛
竜樹 加瀬
竜樹 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Motor Wheel Co Ltd
Original Assignee
Central Motor Wheel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motor Wheel Co Ltd filed Critical Central Motor Wheel Co Ltd
Publication of JPWO2019102564A1 publication Critical patent/JPWO2019102564A1/en
Application granted granted Critical
Publication of JP6884491B2 publication Critical patent/JP6884491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱音響エンジンに関する。 The present invention relates to a thermoacoustic engine.

従来より、作動気体が封入された熱音響用配管に組み込まれる熱音響エンジンが知られている(例えば、特許文献1を参照)。熱音響エンジンは、蓄熱器と、高温側熱交換器と、低温側熱交換器とを備える。蓄熱器は、熱音響用配管の長手方向に貫通する複数の流路を有する。高温側熱交換器は、蓄熱器の長手方向の一端部に連結されて、蓄熱器の一端部(及び、蓄熱器の一端部近傍に位置する作動気体)を加熱する。低温側熱交換器は、蓄熱器の長手方向の他端部に連結されて、蓄熱器の他端部(及び、蓄熱器の他端部近傍に位置する作動気体)を冷却する。 Conventionally, a thermoacoustic engine incorporated in a thermoacoustic pipe filled with a working gas has been known (see, for example, Patent Document 1). The thermoacoustic engine includes a heat storage device, a high temperature side heat exchanger, and a low temperature side heat exchanger. The heat storage device has a plurality of flow paths penetrating in the longitudinal direction of the thermoacoustic piping. The high temperature side heat exchanger is connected to one end of the heat storage in the longitudinal direction to heat one end of the heat storage (and the working gas located near one end of the heat storage). The low temperature side heat exchanger is connected to the other end of the heat storage in the longitudinal direction to cool the other end of the heat storage (and the working gas located near the other end of the heat storage).

熱音響エンジンによれば、蓄熱器の両端部にそれぞれ連結された高温側・低温側熱交換器の作用により、蓄熱器の両端部間にて温度勾配が発生する。この温度勾配によって作動気体が蓄熱器の長手方向に沿って自励振動することで、縦波による振動波(音波)が発生する。この結果、熱音響用配管内にて音響エネルギー(振動エネルギー)が発生する。このように熱音響用配管内で発生した音響エネルギーは、典型的には、発電機の発電駆動、及び、冷凍機の冷凍作動などに使用され得る。 According to the thermoacoustic engine, a temperature gradient is generated between both ends of the heat storage device due to the action of the high temperature side and low temperature side heat exchangers connected to both ends of the heat storage device. Due to this temperature gradient, the working gas self-excited and vibrates along the longitudinal direction of the heat storage device, so that a vibration wave (sound wave) due to a longitudinal wave is generated. As a result, acoustic energy (vibration energy) is generated in the thermoacoustic piping. The acoustic energy generated in the thermoacoustic piping can be typically used for power generation drive of a generator, refrigeration operation of a refrigerator, and the like.

WO2013/084830号公報WO2013 / 084830

ところで、工場等の設備、及び、車両等から排出・廃棄される高温の廃棄流体の排熱の量が未だ多いことに鑑み、高温の廃棄流体が有する熱エネルギーを高い効率で回収して有効活用する技術が望まれている。このため、上述した熱音響エンジンの高温側熱交換器に使用される熱源(常温より高温の加熱源)として、高温の廃棄流体を利用することが考えられる。 By the way, in view of the fact that the amount of exhaust heat of the high-temperature waste fluid discharged / discarded from equipment such as factories and vehicles is still large, the thermal energy of the high-temperature waste fluid is recovered with high efficiency and effectively utilized. Technology is desired. Therefore, it is conceivable to use a high-temperature waste fluid as a heat source (heat source having a temperature higher than normal temperature) used in the high-temperature side heat exchanger of the thermoacoustic engine described above.

この場合、高温の廃棄流体の流路(例えば、工場の煙突、及び、車両の排気管)から分岐・延出させた分岐管を、熱音響用配管における高温側熱交換器が組み込まれた部分に接続し、当該部分の内部にて横断させる構成が考えられる。この構成では、当該部分の内部にて、作動気体が、分岐管内の高温の廃棄流体との間で、分岐管の管壁を介して熱交換を行うことで、蓄熱器の一端部近傍に位置する作動気体(及び、蓄熱器の一端部)が加熱される。 In this case, a branch pipe branched / extended from a high-temperature waste fluid flow path (for example, a factory chimney and a vehicle exhaust pipe) is a portion of a thermoacoustic pipe in which a high-temperature side heat exchanger is incorporated. It is conceivable to connect to and cross the inside of the part. In this configuration, the working gas is located near one end of the heat storage device by exchanging heat with the high-temperature waste fluid in the branch pipe through the pipe wall of the branch pipe inside the portion. The working gas (and one end of the heat storage) is heated.

しかしながら、この構成では、分岐管内にて、廃棄流体の通過に起因する煤や汚れが付着し、分岐管の詰まりや劣化が発生する可能性がある。また、熱音響用配管における高温側熱交換器が組み込まれた部分にて分岐管を横断(貫通)させる必要があるため、高温側熱交換器そのものの構造が複雑になり、高温側熱交換器そのものの製造コストが高くなる。更には、高温の廃棄流体の流路から分岐管を分岐させるため、高温の廃棄流体の流路(例えば、工場の煙突、及び、車両の排気管)を大幅に改造する必要がある。 However, in this configuration, soot and dirt due to the passage of the waste fluid may adhere in the branch pipe, and the branch pipe may be clogged or deteriorated. In addition, since it is necessary to cross (penetrate) the branch pipe at the portion of the thermoacoustic piping in which the high temperature side heat exchanger is incorporated, the structure of the high temperature side heat exchanger itself becomes complicated, and the high temperature side heat exchanger itself. The manufacturing cost of itself becomes high. Furthermore, in order to branch the branch pipe from the flow path of the high temperature waste fluid, it is necessary to significantly modify the flow path of the high temperature waste fluid (for example, the chimney of the factory and the exhaust pipe of the vehicle).

本発明は上記の点に鑑みてなされたものであり、その目的は、簡易な構成を有し且つ製造コストが低い高温側熱交換器を備えた熱音響エンジンを提供することである。 The present invention has been made in view of the above points, and an object of the present invention is to provide a thermoacoustic engine provided with a high-temperature side heat exchanger having a simple configuration and a low manufacturing cost.

本発明に係る熱音響エンジンは、上述と同様の蓄熱器、高温側熱交換器、及び、低温側熱交換器を備える。本発明に係る熱音響エンジンの特徴は、前記高温側熱交換器が、前記蓄熱器の前記一端部に連結され、前記複数の流路に連通すると共に前記作動気体が通過する貫通孔である第1開口部が形成された第1部分と、前記熱音響用配管の外部に位置すると共に常温より高温の流体が通過する流路に介挿され、前記流体が通過する貫通孔である第2開口部が形成された第2部分と、前記第1部分から一体で前記熱音響用配管の外部に延出すると共に前記第1部分と前記第2部分とを一体で連結する連結部分と、を備え、熱伝導性を有する固体材料で構成され、前記第1開口部が、仕切り部によって仕切られている、ことにある。 The thermoacoustic engine according to the present invention includes the same heat storage device, high temperature side heat exchanger, and low temperature side heat exchanger as described above. A feature of the thermoacoustic engine according to the present invention is a through hole in which the high temperature side heat exchanger is connected to the one end portion of the heat storage device, communicates with the plurality of flow paths, and allows the working gas to pass through. The first portion in which one opening is formed and the second opening, which is a through hole located outside the thermoacoustic pipe and inserted into a flow path through which a fluid having a temperature higher than normal temperature passes, and through which the fluid passes. A second portion in which a portion is formed and a connecting portion that integrally extends from the first portion to the outside of the thermoacoustic pipe and integrally connects the first portion and the second portion are provided. The first opening is partitioned by a partition, which is made of a solid material having thermal conductivity.

これによれば、高温側熱交換器を構成する第1部分、第2部分、及び、連結部分が、熱伝導性を有する固体材料で一体に構成されている。熱音響用配管の外部に位置する流路を通過する常温より高温の流体(典型的には、廃棄流体)が有する熱が、固体の熱伝導によって、第2部分、連結部分、及び第1部分を順に介して、第1部分の近傍(即ち、蓄熱器の一端部の近傍)に位置する作動気体に伝達され、当該作動気体、及び、蓄熱器の一端部が加熱される。 According to this, the first portion, the second portion, and the connecting portion constituting the high temperature side heat exchanger are integrally formed of a solid material having thermal conductivity. The heat of a fluid (typically a waste fluid) that is hotter than room temperature and passes through a flow path located outside the thermoacoustic piping is transferred to the second part, the connecting part, and the first part due to the heat conduction of the solid. Is transmitted to the working gas located in the vicinity of the first portion (that is, in the vicinity of one end of the heat storage device), and the working gas and one end of the heat storage device are heated.

換言すれば、上述のように、高温の流体が通過する分岐管を熱音響用配管の内部に横断(貫通)させることなく、固体の熱伝導のみを利用して、互いに離れて位置する高温の流体と作動気体との間で熱交換を行わせることができる。このため、高温側熱交換器を、簡易な構成で且つ低い製造コストで製造することができる。 In other words, as described above, the high temperature temperature is located apart from each other by utilizing only the heat conduction of the solid without crossing (penetrating) the branch pipe through which the high temperature fluid passes inside the thermoacoustic pipe. Heat exchange can be performed between the fluid and the working gas. Therefore, the high temperature side heat exchanger can be manufactured with a simple structure and at a low manufacturing cost.

更に、蓄熱器内の複数の流路に連通する第1部分の第1開口部が、仕切り部によって仕切られている。これにより、このような仕切り部がない場合(即ち、第1開口部が1つの大きな貫通孔である場合)と比べて、作動気体と接触する第1開口部の表面積が大きくなるので、第1部分と作動気体との間の熱伝達効率が高くなる。 Further, the first opening of the first portion communicating with the plurality of flow paths in the heat storage device is partitioned by the partition portion. As a result, the surface area of the first opening in contact with the working gas is larger than that in the case where there is no such partition (that is, when the first opening is one large through hole). The heat transfer efficiency between the part and the working gas is increased.

加えて、このような仕切り部がない場合には、蓄熱器の一端部近傍で長手方向に沿って自励振動している作動気体が蓄熱器の一端から蓄熱器の外部(即ち、第1開口部)に移動した直後に広い空間に突然進入することに起因して、作動気体の自励振動が減衰する現象が発生し易い。これに対し、このような仕切り部が設けられることで、このような現象が発生し難くなり、高温の流体が有する熱エネルギーから音響エネルギーへの変換効率が高くなる。 In addition, in the absence of such a partition, the working gas self-excited and oscillated along the longitudinal direction near one end of the regenerator extends from one end of the regenerator to the outside of the regenerator (ie, the first opening). Due to the sudden entry into a wide space immediately after moving to the part), the phenomenon that the self-excited vibration of the working gas is attenuated tends to occur. On the other hand, by providing such a partition portion, such a phenomenon is less likely to occur, and the conversion efficiency from the thermal energy of the high-temperature fluid to the acoustic energy is increased.

上記本発明に係る熱音響エンジンでは、前記仕切り部が、前記第1開口部における前記連結部分側の縁部から前記連結部分側と反対側の縁部の近傍まで互いに平行に延びる片持ち梁状の形状を有していることが好適である。 In the thermoacoustic engine according to the present invention, the partition portion has a cantilever shape extending in parallel with each other from the edge portion on the connecting portion side of the first opening to the vicinity of the edge portion on the opposite side to the connecting portion side. It is preferable to have the shape of.

これによれば、仕切り部の基端が、第1開口部における連結部分側の縁部(即ち、高温の流体の熱が伝導してくる側の縁部)と繋がっている。従って、仕切り部の基端が、第1開口部における連結部分側の縁部とは異なる位置にある縁部と繋がっている態様と比べて、高温の流体の熱を仕切り部に効率良く伝導することができる。 According to this, the base end of the partition portion is connected to the edge portion on the connecting portion side of the first opening (that is, the edge portion on the side where the heat of the high-temperature fluid is conducted). Therefore, the heat of the high-temperature fluid is efficiently conducted to the partition portion as compared with the embodiment in which the base end of the partition portion is connected to the edge portion at a position different from the edge portion on the connecting portion side in the first opening. be able to.

更には、仕切り部の先端(自由端)が、第1開口部における連結部分側と反対側の縁部と繋がっていない(即ち、先端と縁部との間に空気層が介在する)。従って、仕切り部の先端が、第1開口部における連結部分側と反対側の縁部にも繋がっている態様(即ち、仕切り部が互いに平行に延びる両持ち梁状の形状を有している態様)と比べて、仕切り部の温度が、相対的に低温となっている「第1開口部における連結部分側と反対側の縁部」による影響を受けて低下する現象が発生し難くなる。この結果、仕切り部の温度が高い温度に維持され得るので、高温の流体と作動気体との間の熱伝達効率が高くなる。 Furthermore, the tip (free end) of the partition is not connected to the edge of the first opening opposite to the connecting portion side (that is, an air layer is interposed between the tip and the edge). Therefore, a mode in which the tip of the partition portion is also connected to the edge portion on the side opposite to the connecting portion side in the first opening (that is, the partition portion has a double-sided beam-like shape extending in parallel with each other). ), The temperature of the partition portion is less likely to decrease due to the influence of the "edge portion on the side opposite to the connecting portion side in the first opening" which is relatively low. As a result, the temperature of the partition portion can be maintained at a high temperature, so that the heat transfer efficiency between the hot fluid and the working gas is increased.

上記本発明に係る熱音響エンジンでは、前記高温側熱交換器の外縁の近傍部分には、前記外縁に沿う貫通孔であるスリットが形成されていることが好適である。 In the thermoacoustic engine according to the present invention, it is preferable that a slit, which is a through hole along the outer edge, is formed in a portion near the outer edge of the high temperature side heat exchanger.

これによれば、高温側熱交換器における外縁部と、外縁部を除く中央部分(即ち、高温の流体の熱が第2部分から第1部分へ伝導していく主たる経路となる部分)との間に空気層が介在する。従って、このようなスリットが全く設けられていない場合と比べて、高温側熱交換器の中央部分の温度が、相対的に低温となっている高温側熱交換器の外縁部による影響を受けて低下する現象が発生し難くなる。この結果、高温側熱交換器の中央部分の温度が高い温度に維持され得るので、高温の流体と作動気体との間の熱伝達効率が高くなる。 According to this, the outer edge portion of the high temperature side heat exchanger and the central portion excluding the outer edge portion (that is, the portion that becomes the main path through which the heat of the high temperature fluid is conducted from the second portion to the first portion). An air layer intervenes between them. Therefore, the temperature of the central portion of the high temperature side heat exchanger is affected by the outer edge of the high temperature side heat exchanger, which is relatively low, as compared with the case where such a slit is not provided at all. The phenomenon of decrease is less likely to occur. As a result, the temperature of the central portion of the high temperature side heat exchanger can be maintained at a high temperature, so that the heat transfer efficiency between the high temperature fluid and the working gas is increased.

図1は、本発明に係る熱音響エンジンを含む熱音響発電システムの概略構成を模式的に示す図である。FIG. 1 is a diagram schematically showing a schematic configuration of a thermoacoustic power generation system including a thermoacoustic engine according to the present invention. 図2は、図1に示した熱音響エンジンの構成を模式的に示す図である。FIG. 2 is a diagram schematically showing the configuration of the thermoacoustic engine shown in FIG. 図3は、図2に示した蓄熱器の端面(複数の流路)の一例を示す図である。FIG. 3 is a diagram showing an example of end faces (plurality of flow paths) of the heat storage device shown in FIG. 図4は、図2に示した高温側熱交換器の平面図である。FIG. 4 is a plan view of the high temperature side heat exchanger shown in FIG. 図5は、変形例に係る高温側熱交換器の平面図である。FIG. 5 is a plan view of the high temperature side heat exchanger according to the modified example.

以下、本発明に係る熱音響エンジンの実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the thermoacoustic engine according to the present invention will be described with reference to the drawings.

(構成)
図1に示すように、熱音響発電システム100は、金属製の配管からなる配管構成部101を備えている。配管構成部101は、環状(ループ状)の配管部分である環状配管102と、環状配管102から分岐し且つその管内空間が環状配管102の管内空間と連通する分岐配管103と、を含む。この環状配管102が本発明の「熱音響用配管」に相当する。
(Constitution)
As shown in FIG. 1, the thermoacoustic power generation system 100 includes a pipe component 101 made of a metal pipe. The pipe component 101 includes an annular pipe 102 which is an annular (loop-shaped) piping portion, and a branch pipe 103 which branches from the annular pipe 102 and whose in-pipe space communicates with the in-pipe space of the annular pipe 102. The annular pipe 102 corresponds to the "thermoacoustic pipe" of the present invention.

分岐配管103は、環状配管102から分岐する分岐点を一方端103aとし、この一方端103aから他方端103bまで長尺状に延びる配管部分である。分岐配管103が他方端103bにてエネルギー取り出し部160によって封止されている。環状配管102及び分岐配管103の双方に所定の作動気体(本実施形態では、ヘリウム)が所定圧力下で封入されている。尚、作動気体としては、ヘリウムに代えて或いは加えて、窒素、アルゴン、空気、これらの混合気体等が採用され得る。 The branch pipe 103 is a pipe portion having a branch point branching from the annular pipe 102 as one end 103a and extending from the one end 103a to the other end 103b in a long shape. The branch pipe 103 is sealed at the other end 103b by the energy extraction unit 160. A predetermined working gas (helium in this embodiment) is sealed in both the annular pipe 102 and the branch pipe 103 under a predetermined pressure. As the working gas, nitrogen, argon, air, a mixed gas thereof, or the like can be adopted in place of or in addition to helium.

環状配管102には、直列に接続された3つの熱音響エンジン(「原動機」ともいう)110が設けられている。これら3つの熱音響エンジン110によって、所謂「多段型の熱音響エンジン」が構成されている。各熱音響エンジン110は、環状配管102の管内に組み込まれた蓄熱器111と、蓄熱器111の高温部である一端部111aに連結された高温側熱交換器112と、蓄熱器111の常温部(或いは低温部)である他端部111bに連結された低温側熱交換器113と、を備えている。なお、熱音響エンジン110の設置数は、3つに限定されるものではなく、必要に応じてその他の設置数が選択され得る。 The annular pipe 102 is provided with three thermoacoustic engines (also referred to as "motors") 110 connected in series. These three thermoacoustic engines 110 constitute a so-called "multi-stage thermoacoustic engine". Each thermoacoustic engine 110 includes a heat storage device 111 incorporated in the annular pipe 102, a high temperature side heat exchanger 112 connected to one end portion 111a which is a high temperature part of the heat storage device 111, and a normal temperature part of the heat storage device 111. (Or a low temperature part), the low temperature side heat exchanger 113 connected to the other end portion 111b is provided. The number of thermoacoustic engines 110 installed is not limited to three, and other installations may be selected as needed.

図2、及び、図3に示すように、蓄熱器111は、環状配管102の配管長手方向(配管の延在方向、x軸方向)に垂直な方向の断面の形状が円形となる円柱状の構造体である。蓄熱器111の配管長手方向の両端面は、配管長手方向(x軸方向)と垂直な平面である。蓄熱器111は、一端部111aと他端部111bとの間で配管長手方向(x軸方向)に沿って互いに平行に延びる貫通した複数の流路111cを有する。この複数の流路111c内にて作動気体が振動するようになっている。 As shown in FIGS. 2 and 3, the heat storage device 111 is a columnar shape having a circular cross-sectional shape in the direction perpendicular to the pipe longitudinal direction (pipe extension direction, x-axis direction) of the annular pipe 102. It is a structure. Both end faces of the heat storage device 111 in the longitudinal direction of the pipe are planes perpendicular to the longitudinal direction of the pipe (x-axis direction). The heat storage device 111 has a plurality of penetrating flow paths 111c extending in parallel with each other along the longitudinal direction (x-axis direction) of the pipe between one end 111a and the other end 111b. The working gas vibrates in the plurality of flow paths 111c.

図3に示す例では、複数の流路111cは、蓄熱器111の内部を縦横に仕切る多数の壁によってマトリクス状に区画・形成されている。なお、蓄熱器111の内部にて配管長手方向に延びる貫通した複数の流路が形成されている限りにおいて、蓄熱器111の内部は、ハニカム状等を含みどのように仕切られていてもよい。 In the example shown in FIG. 3, the plurality of flow paths 111c are partitioned and formed in a matrix by a large number of walls that vertically and horizontally partition the inside of the heat storage device 111. As long as a plurality of penetrating flow paths extending in the longitudinal direction of the pipe are formed inside the heat storage device 111, the inside of the heat storage device 111 may be partitioned in any way including a honeycomb shape or the like.

蓄熱器111としては、例えば、典型的にはセラミック製の構造体や、ステンレス鋼によるメッシュ薄板の複数を微小ピッチで平行に積層した構造体、金属繊維からなる不織布状物などを用いることができる。尚、蓄熱器111として横断面が円形のもの代えて、横断面が楕円形、多角形等のものを採用することもできる。 As the heat storage device 111, for example, a structure made of ceramic, a structure in which a plurality of thin mesh plates made of stainless steel are laminated in parallel at a fine pitch, a non-woven fabric made of metal fibers, and the like can be used. .. As the heat storage device 111, one having an elliptical cross section, a polygonal cross section, or the like can be adopted instead of the one having a circular cross section.

蓄熱器111において、一端部111aと他端部111bとの間に所定の温度勾配が生じると、環状配管102内の作動気体が不安定になって配管長手方向に沿って自励振動する。この結果、配管長手方向に沿って振動する縦波による振動波(「音波」、「振動流」或いは「仕事流」ともいう)が形成され、この振動波が環状配管102の管内から分岐配管103の管内へと伝わるようになっている。 In the heat storage device 111, when a predetermined temperature gradient is generated between one end 111a and the other end 111b, the working gas in the annular pipe 102 becomes unstable and self-excited and vibrates along the longitudinal direction of the pipe. As a result, a vibration wave (also referred to as "sound wave", "vibration flow" or "work flow") due to a longitudinal wave vibrating along the longitudinal direction of the pipe is formed, and this vibration wave is generated from the inside of the annular pipe 102 to the branch pipe 103. It is designed to be transmitted to the inside of the jurisdiction of.

図2に示すように、低温側熱交換器113は、冷却源130から、冷風、冷水等の冷却用流体が供給されるように構成されている。具体的には、低温側熱交換器113は、蓄熱器111の他端部111bに組み付けられる本体ブロック113aと、本体ブロック113aに組み付けられる導入管113b、とを備える。本体ブロック113aには、配管長手方向(x軸方向)に沿って貫通する円柱状の冷却用内部空間113cが形成されている。 As shown in FIG. 2, the low temperature side heat exchanger 113 is configured so that a cooling fluid such as cold air or cold water is supplied from the cooling source 130. Specifically, the low temperature side heat exchanger 113 includes a main body block 113a assembled to the other end 111b of the heat storage device 111, and an introduction pipe 113b assembled to the main body block 113a. The main body block 113a is formed with a columnar cooling internal space 113c penetrating along the longitudinal direction (x-axis direction) of the pipe.

冷却用内部空間113cは、蓄熱器111の複数の流路111cと連通しており、冷却用内部空間113c内にて作動気体が振動するようになっている。導入管113bは、冷却用内部空間113cを配管長手方向に直交する方向(z軸方向)に横断(貫通)するように、本体ブロック113aに気密的に組み付けられている。 The cooling internal space 113c communicates with a plurality of flow paths 111c of the heat storage device 111, and the working gas vibrates in the cooling internal space 113c. The introduction pipe 113b is airtightly assembled to the main body block 113a so as to cross (penetrate) the cooling internal space 113c in a direction (z-axis direction) orthogonal to the longitudinal direction of the pipe.

導入管113bは、冷却源130と接続されている。冷却源130から供給される冷却用流体を導入管113bに流すことによって、導入管113b内の冷却用流体と、本体ブロック113aの冷却用内部空間113c内の作動気体との間で熱交換が行われる。この結果、蓄熱器111の他端部111b周辺の作動気体、及び、蓄熱器111の他端部111bが冷却されるようになっている。熱交換後の温度が上昇した導入管113b内の冷却用流体は、冷却源130に戻されて再び冷却されるようになっている。 The introduction pipe 113b is connected to the cooling source 130. By flowing the cooling fluid supplied from the cooling source 130 through the introduction pipe 113b, heat exchange is performed between the cooling fluid in the introduction pipe 113b and the working gas in the cooling internal space 113c of the main body block 113a. It is said. As a result, the working gas around the other end 111b of the heat storage 111 and the other end 111b of the heat storage 111 are cooled. The cooling fluid in the introduction pipe 113b whose temperature has risen after heat exchange is returned to the cooling source 130 and cooled again.

図2に示すように、高温側熱交換器112は、管路120内を流れる常温より高温の流体が有する熱を、蓄熱器111の一端部111a周辺の作動気体、及び、蓄熱器111の一端部に伝達し、これらを加熱するように構成されている。管路120内を流れる常温より高温の流体は、典型的には、工場等の設備、及び、車両等から排出・廃棄される高温の廃棄流体であり、従って、管路120は、工場の煙突、及び、車両の排気管等である。 As shown in FIG. 2, in the high temperature side heat exchanger 112, the heat contained in the fluid having a temperature higher than normal temperature flowing in the pipeline 120 is transferred to the working gas around one end 111a of the heat storage 111 and one end of the heat storage 111. It is configured to transmit to the parts and heat them. The fluid having a temperature higher than normal temperature flowing in the pipeline 120 is typically a waste fluid having a temperature higher than normal temperature discharged and discarded from equipment such as a factory and a vehicle or the like. Therefore, the pipeline 120 is a chimney of the factory. , And the exhaust pipe of the vehicle.

高温側熱交換器112は、互いに離れて位置する管路120の一部と蓄熱器111の一端部111a(環状配管102の一部)とを連結する、長尺板状の中実部材である(後述する図4も参照)。高温側熱交換器112は、固体の熱伝導のみを利用して、互いに離れて位置する高温の流体と作動気体との間で熱交換を行わせるように構成されている。高温側熱交換器112の詳細な構成については後述する。 The high temperature side heat exchanger 112 is a long plate-shaped solid member that connects a part of the pipeline 120 located apart from each other and one end 111a (a part of the annular pipe 102) of the heat storage device 111. (See also FIG. 4 described later). The high temperature side heat exchanger 112 is configured to exchange heat between a hot fluid located apart from each other and a working gas by utilizing only the heat conduction of a solid. The detailed configuration of the high temperature side heat exchanger 112 will be described later.

上述した高温側熱交換器112による加熱作用と低温側熱交換器113による冷却作用との協働によって、蓄熱器111において一端部111aと他端部111bとの間に所定の温度勾配が生じる。即ち、高温側熱交換器112及び低温側熱交換器113は、配管構成部101に封入された作動気体を自励振動させるために蓄熱器111の複数の流路111cの両端部間に温度勾配が生じるように作動気体との間で熱交換を行う熱交換器を構成している。 By the cooperation of the heating action by the high temperature side heat exchanger 112 and the cooling action by the low temperature side heat exchanger 113 described above, a predetermined temperature gradient is generated between the one end portion 111a and the other end portion 111b in the heat storage device 111. That is, the high temperature side heat exchanger 112 and the low temperature side heat exchanger 113 have a temperature gradient between both ends of the plurality of flow paths 111c of the heat storage device 111 in order to self-excited and vibrate the working gas sealed in the piping component 101. A heat exchanger is configured to exchange heat with the working gas so as to generate heat.

図1に戻り、分岐配管103は、環状配管102とタービン140との間に直線状に延在する第1配管部104と、タービン140を挟んで環状配管102とは反対側に直線状に延在する第2配管部105と、第1配管部104と第2配管部105を連結するようにクランク状に屈曲したクランク配管部106と、を備えている。 Returning to FIG. 1, the branch pipe 103 extends linearly to the side opposite to the annular pipe 102 with the turbine 140 sandwiched between the first pipe portion 104 extending linearly between the annular pipe 102 and the turbine 140. It includes an existing second piping section 105, and a crank piping section 106 bent in a crank shape so as to connect the first piping section 104 and the second piping section 105.

タービン140は、分岐配管103の管内に連通するように構成され、分岐配管103の管内に存在する作動気体の振動波による音響エネルギー(「振動エネルギー」ともいう)を機械的な回転エネルギーに変換する機能を果たす。即ち、このタービン140は、分岐配管103に設けられ熱音響エンジン110における作動気体の自励振動によって生じた音響エネルギーを受けて回転する。タービン140には、このタービン140の回転による運動エネルギー(回転エネルギー)を電力に変換するための発電機150が接続されている。 The turbine 140 is configured to communicate with the inside of the branch pipe 103, and converts the acoustic energy (also referred to as “vibration energy”) due to the vibration wave of the working gas existing in the pipe of the branch pipe 103 into mechanical rotational energy. Fulfill function. That is, the turbine 140 rotates by receiving the acoustic energy generated by the self-excited vibration of the working gas in the thermoacoustic engine 110 provided in the branch pipe 103. A generator 150 for converting kinetic energy (rotational energy) due to rotation of the turbine 140 into electric power is connected to the turbine 140.

分岐配管103の他方端103b、即ち、第2配管105の両側の管端部のうちタービン140とは反対側の管端部には、作動気体の音響エネルギーを分岐配管103から管外に取り出すためのエネルギー取り出し部160が設けられている。このエネルギー取り出し部160は、典型的には圧力振動を受けて電気エネルギー(電力)を出力することが可能な公知のリニア発電機やスピーカー型発電機等によって構成される。 In order to extract the acoustic energy of the working gas from the branch pipe 103 to the other end 103b of the branch pipe 103, that is, at the pipe ends on both sides of the second pipe 105 on the side opposite to the turbine 140. The energy extraction unit 160 of the above is provided. The energy extraction unit 160 is typically composed of a known linear generator, speaker type generator, or the like capable of receiving electric energy (electric power) by receiving pressure vibration.

(作動)
以下、上記のように構成された熱音響発電システム100の作動について、前述の内容に沿って簡単に説明する。図1に示すように、各熱音響エンジン110において、蓄熱器111の一端部111aが高温側熱交換器112によって加熱され、且つ蓄熱器111の他端部111bが低温側熱交換器113によって冷却されると、蓄熱器111の一端部111aと他端部111bとの間に温度勾配が生じる。この温度勾配によって、各蓄熱器111では主として作動気体の自励振動による振動波が形成される。この振動波(音波)による音響エネルギー(振動エネルギー)は、配管構成部101の環状配管102から分岐配管103を通じてタービン140に伝達され、更にはエネルギー取り出し部160に伝達される。この場合、分岐配管103は、熱音響エンジン110において発生した作動気体の音響エネルギーを導くための共鳴管(導波管)として構成される。音響エネルギーの一部は、エネルギー取り出し手段であるタービン140によって取り出され当該タービン140に接続された発電機150によって電気エネルギー(電力)に変換され、またエネルギー取り出し部160によって取り出されて所定のエネルギー(例えば、振動エネルギーや電気エネルギー等)に変換される。
(Operation)
Hereinafter, the operation of the thermoacoustic power generation system 100 configured as described above will be briefly described in accordance with the above-mentioned contents. As shown in FIG. 1, in each thermoacoustic engine 110, one end 111a of the heat storage device 111 is heated by the high temperature side heat exchanger 112, and the other end 111b of the heat storage device 111 is cooled by the low temperature side heat exchanger 113. Then, a temperature gradient is generated between one end 111a and the other end 111b of the heat storage device 111. Due to this temperature gradient, vibration waves mainly due to self-excited vibration of the working gas are formed in each heat storage device 111. The acoustic energy (vibration energy) generated by the vibration wave (sound wave) is transmitted from the annular pipe 102 of the pipe configuration unit 101 to the turbine 140 through the branch pipe 103, and further transmitted to the energy extraction unit 160. In this case, the branch pipe 103 is configured as a resonance tube (waveguide) for guiding the acoustic energy of the working gas generated in the thermoacoustic engine 110. A part of the acoustic energy is taken out by the turbine 140 which is an energy extraction means, converted into electric energy (electric power) by the generator 150 connected to the turbine 140, and is taken out by the energy extraction unit 160 to determine the predetermined energy ( For example, it is converted into vibration energy, electrical energy, etc.).

(高温側熱交換器の構成、並びに、作用・効果)
上述のように、高温側熱交換器112は、熱源(常温より高温の加熱源)として、工場等の設備、及び、車両等から排出・廃棄される高温の廃棄流体を利用している。この場合、高温側熱交換器112として、低温側熱交換器113と同様、管路120から、高温の廃棄流体が供給されるように構成され得る。即ち、高温側熱交換器112として、管路120から分岐・延出させた分岐管を、蓄熱器111の一端部111aに組み付けられた本体ブロックに接続し、本体ブロックの内部空間にて横断させる構成が考えられる。
(Structure of high temperature side heat exchanger, as well as action / effect)
As described above, the high-temperature side heat exchanger 112 uses high-temperature waste fluid discharged / discarded from equipment such as factories and vehicles as a heat source (heat source having a temperature higher than normal temperature). In this case, the high temperature side heat exchanger 112 may be configured to supply the high temperature waste fluid from the pipeline 120 as in the low temperature side heat exchanger 113. That is, as the high temperature side heat exchanger 112, the branch pipe branched / extended from the pipeline 120 is connected to the main body block assembled to one end 111a of the heat storage device 111 and crossed in the internal space of the main body block. The configuration is conceivable.

しかしながら、この構成では、分岐管内にて、廃棄流体の通過に起因する煤や汚れが付着し、分岐管の詰まりや劣化が発生する可能性がある。また、蓄熱器111の一端部111aに組み付けられた本体ブロックにて分岐管を気密的に横断(貫通)させる必要があるため、高温側熱交換器そのものの構造が複雑になり、高温側熱交換器そのものの製造コストが高くなる。更には、管路120から分岐管を分岐させるため、管路120を大幅に改造する必要がある。 However, in this configuration, soot and dirt due to the passage of the waste fluid may adhere in the branch pipe, and the branch pipe may be clogged or deteriorated. Further, since it is necessary to airtightly cross (penetrate) the branch pipe with the main body block attached to one end 111a of the heat storage device 111, the structure of the high temperature side heat exchanger itself becomes complicated, and the high temperature side heat exchange The manufacturing cost of the vessel itself becomes high. Furthermore, in order to branch the branch pipe from the pipeline 120, it is necessary to significantly modify the pipeline 120.

そこで、本実施形態では、図2及び図4に示すように、高温側熱交換器112が、熱伝導性が良好な固体材料(典型的には、金属材料)からなる長尺板状の1つの中実部材のみで構成されている。具体的には、高温側熱交換器112は、蓄熱器111の一端部111aに連結された第1部分112aと、管路120に介挿・固定された第2部分112bと、第1部分112aから一体で環状配管102の外部に延出すると共に第1部分112aと第2部分112bとを一体で連結する連結部分112cと、から構成される。本例では、連結部分112cは、蓄熱器111の一端部111aと管路120との間を結ぶ方向(z軸方向)に沿って、第1、第2部分112a,112b間を直線状に延びている。なお、連結部分112cが、第1、第2部分112a,112b間を屈曲しながら延びていてもよいことはもちろんである。 Therefore, in the present embodiment, as shown in FIGS. 2 and 4, the high temperature side heat exchanger 112 is a long plate-shaped 1 made of a solid material (typically a metal material) having good thermal conductivity. It consists of only one solid member. Specifically, the high temperature side heat exchanger 112 includes a first portion 112a connected to one end portion 111a of the heat storage device 111, a second portion 112b inserted and fixed in the pipeline 120, and a first portion 112a. It is composed of a connecting portion 112c that integrally extends to the outside of the annular pipe 102 and integrally connects the first portion 112a and the second portion 112b. In this example, the connecting portion 112c extends linearly between the first and second portions 112a and 112b along the direction (z-axis direction) connecting one end portion 111a of the heat storage device 111 and the conduit 120. ing. Of course, the connecting portion 112c may extend while bending between the first and second portions 112a and 112b.

第1部分112aには、板厚方向(x軸方向、配管長手方向)に貫通する貫通孔である第1開口部112a1が形成されている。第1開口部112a1の輪郭形状は、円柱状の蓄熱器111(図3を参照)の内径と略同一寸法の直径を有する円形状となっている。第1開口部112a1は、蓄熱器111の複数の流路111c(図3を参照)と連通しており、作動気体が第1開口部112a1を通過可能となっている。 The first portion 112a is formed with a first opening 112a1 which is a through hole penetrating in the plate thickness direction (x-axis direction, pipe longitudinal direction). The contour shape of the first opening 112a1 is a circular shape having a diameter substantially the same as the inner diameter of the columnar heat storage device 111 (see FIG. 3). The first opening 112a1 communicates with a plurality of flow paths 111c (see FIG. 3) of the heat storage device 111, so that the working gas can pass through the first opening 112a1.

第1開口部112a1は、複数の仕切り部112a2によって仕切られた複数の開口で構成されている。複数の仕切り部112a2それぞれは、第1開口部112a1における連結部分112c側(z軸正方向側)の縁部から連結部分112c側と反対側(z軸負方向側)の縁部の近傍まで、連結部分112cの延在方向(z軸方向)に沿って互いに平行に延びる片持ち梁状の形状を有している。 The first opening 112a1 is composed of a plurality of openings partitioned by the plurality of partition portions 112a2. Each of the plurality of partition portions 112a2 extends from the edge portion of the first opening 112a1 on the connecting portion 112c side (positive direction side of the z-axis) to the vicinity of the edge portion opposite to the connecting portion 112c side (negative direction side of the z-axis). The connecting portion 112c has a cantilever-like shape extending parallel to each other along the extending direction (z-axis direction).

第2部分112bには、板厚方向(x軸方向、管路120の延在方向)に貫通する貫通孔である第2開口部112b1が形成されている。第2開口部112b1の輪郭形状は、円管状の管路120(図2を参照)の内径と略同一寸法の直径を有する円形状となっている。第2開口部112b1は、管路120の内部空間と連通しており、高温の廃棄流体が第2開口部112b1を通過可能となっている。 The second portion 112b is formed with a second opening 112b1 which is a through hole penetrating in the plate thickness direction (x-axis direction, extending direction of the pipeline 120). The contour shape of the second opening 112b1 is a circular shape having a diameter substantially the same as the inner diameter of the circular tubular pipe line 120 (see FIG. 2). The second opening 112b1 communicates with the internal space of the pipeline 120 so that high-temperature waste fluid can pass through the second opening 112b1.

第2開口部112b1は、複数の仕切り部112b2によって仕切られた複数の開口で構成されている。複数の仕切り部112b2それぞれは、第2開口部112b1における連結部分112c側(z軸負方向側)の縁部から連結部分112c側と反対側(z軸正方向側)の縁部の近傍まで、連結部分112cの延在方向(z軸方向)に沿って互いに平行に延びる片持ち梁状の形状を有している。 The second opening 112b1 is composed of a plurality of openings partitioned by the plurality of partition portions 112b2. Each of the plurality of partition portions 112b2 extends from the edge portion of the second opening 112b1 on the connecting portion 112c side (negative direction side of the z-axis) to the vicinity of the edge portion opposite to the connecting portion 112c side (positive direction side of the z-axis). The connecting portion 112c has a cantilever-like shape extending parallel to each other along the extending direction (z-axis direction).

本例では、第1開口部112a1が第2開口部112b1より大きいことに起因して、第1部分112aが第2部分112bより大きくなっている。このため、連結部分112cは、第2部分112bから第1部分112aに向けて幅寸法(y軸方向の寸法)が次第に大きくなる形状を有している。なお、第1部分112aが第2部分112bより小さくても、或いは、第1、第2部分112a,112bの大きさが同じであってもよいことはもちろんである。 In this example, the first portion 112a is larger than the second portion 112b because the first opening 112a1 is larger than the second opening 112b1. Therefore, the connecting portion 112c has a shape in which the width dimension (dimension in the y-axis direction) gradually increases from the second portion 112b toward the first portion 112a. Of course, the first portion 112a may be smaller than the second portion 112b, or the first and second portions 112a and 112b may have the same size.

以上の構成を有する高温側熱交換器112によれば、環状配管102の外部に位置する管路120を通過する常温より高温の流体(典型的には、廃棄流体)が有する熱が、固体の熱伝導によって、第2部分112b、連結部分112c、及び第1部分112aを順に介して、第1部分112aの近傍(即ち、蓄熱器111の一端部111aの近傍)に位置する作動気体に伝達され、当該作動気体、及び、蓄熱器111の一端部111aが加熱される。 According to the high temperature side heat exchanger 112 having the above configuration, the heat of the fluid (typically, waste fluid) having a temperature higher than normal temperature passing through the conduit 120 located outside the annular pipe 102 is solid. By heat conduction, it is transmitted to a working gas located in the vicinity of the first portion 112a (that is, in the vicinity of one end portion 111a of the regenerator 111) via the second portion 112b, the connecting portion 112c, and the first portion 112a in order. , The working gas and one end 111a of the heat storage device 111 are heated.

換言すれば、高温の流体が通過する分岐管を環状配管102の内部に横断(貫通)させることなく、固体の熱伝導のみを利用して、互いに離れて位置する高温の流体と作動気体との間で熱交換を行わせることができる。このため、高温側熱交換器112を、簡易な構成で且つ低い製造コストで製造することができる。 In other words, the hot fluid and the working gas, which are located apart from each other, utilize only the heat conduction of the solid without crossing (penetrating) the branch pipe through which the hot fluid passes inside the annular pipe 102. Heat exchange can be performed between them. Therefore, the high temperature side heat exchanger 112 can be manufactured with a simple structure and at a low manufacturing cost.

また、蓄熱器111内の複数の流路111cに連通する第1部分112aの第1開口部112a1が、片持ち梁状の複数の仕切り部112a2によって仕切られた複数の開口で構成される。これにより、このような複数の仕切り部112a2がない場合(即ち、第1開口部112a1が1つの大きな貫通孔である場合)と比べて、作動気体と接触する第1開口部112a1の表面積が大きくなるので、第1部分112aと作動気体との間の熱伝達効率が高くなる。 Further, the first opening 112a1 of the first portion 112a communicating with the plurality of flow paths 111c in the heat storage device 111 is composed of a plurality of openings partitioned by a plurality of cantilever-shaped partition portions 112a2. As a result, the surface area of the first opening 112a1 in contact with the working gas is larger than that in the case where there is no such a plurality of partition portions 112a2 (that is, when the first opening 112a1 is one large through hole). Therefore, the heat transfer efficiency between the first portion 112a and the working gas is increased.

また、このような複数の仕切り部112a2がない場合には、蓄熱器111の一端部111a近傍で配管長手方向(x軸方向)に沿って自励振動している作動気体が蓄熱器111の一端111aから蓄熱器111の外部(即ち、第1開口部112a1)に移動した直後に広い空間に突然進入することに起因して、作動気体の自励振動が減衰する現象が発生し易い。これに対し、このような複数の仕切り部112a2が設けられることで、このような現象が発生し難くなり、高温の流体が有する熱エネルギーから音響エネルギーへの変換効率が高くなる。 Further, when there is no such a plurality of partition portions 112a2, the working gas self-excited and vibrated along the pipe longitudinal direction (x-axis direction) in the vicinity of one end portion 111a of the regenerator 111 is one end of the regenerator 111. The self-excited vibration of the working gas is likely to be attenuated due to the sudden entry into a wide space immediately after moving from the 111a to the outside of the heat storage device 111 (that is, the first opening 112a1). On the other hand, by providing such a plurality of partition portions 112a2, such a phenomenon is less likely to occur, and the conversion efficiency from the thermal energy of the high-temperature fluid to the acoustic energy is increased.

また、片持ち梁状の複数の仕切り部112a2それぞれの基端が、第1開口部112a1における連結部分112c側(z軸正方向側)の縁部(即ち、高温の流体の熱が伝導してくる側の縁部)と繋がっている。従って、複数の仕切り部112a2それぞれの基端が、第1開口部112a1における連結部分112c側の縁部とは異なる位置にある縁部と繋がっている態様と比べて、高温の流体の熱を複数の仕切り部112a2に効率良く伝導することができる。 Further, the base end of each of the plurality of cantilever-shaped partition portions 112a2 conducts the heat of the high-temperature fluid at the edge portion of the first opening 112a1 on the connecting portion 112c side (z-axis positive direction side). It is connected to the edge on the coming side). Therefore, as compared with the embodiment in which the base end of each of the plurality of partition portions 112a2 is connected to the edge portion at a position different from the edge portion on the connecting portion 112c side in the first opening 112a1, a plurality of heats of the high temperature fluid are generated. It can be efficiently conducted to the partition portion 112a2 of the above.

また、片持ち梁状の複数の仕切り部112a2それぞれの先端(自由端)が、第1開口部112a1における連結部分112c側と反対側(z軸負方向側)の縁部と繋がっていない(即ち、先端と縁部との間に空気層が介在する)。従って、複数の仕切り部112a2それぞれの先端が、第1開口部112a1における連結部分112c側と反対側の縁部にも繋がっている態様(即ち、複数の仕切り部112a2それぞれが互いに平行に延びる両持ち梁状の形状を有している態様)と比べて、複数の仕切り部112a2の温度が、相対的に低温となっている「第1開口部112a1における連結部分112c側と反対側の縁部」による影響を受けて低下する現象が発生し難くなる。この結果、複数の仕切り部112a2の温度が高い温度に維持され得るので、高温の流体と作動気体との間の熱伝達効率が高くなる。 Further, the tip (free end) of each of the plurality of cantilever-shaped partition portions 112a2 is not connected to the edge portion of the first opening 112a1 opposite to the connecting portion 112c side (z-axis negative direction side) (that is,). , An air layer intervenes between the tip and the edge). Therefore, the tip of each of the plurality of partition portions 112a2 is also connected to the edge portion of the first opening 112a1 on the side opposite to the connecting portion 112c side (that is, the plurality of partition portions 112a2 each extend in parallel with each other. The temperature of the plurality of partition portions 112a2 is relatively low as compared with the embodiment having a beam-like shape) "the edge portion of the first opening 112a1 opposite to the connecting portion 112c side". It becomes difficult for the phenomenon of decrease due to the influence of As a result, the temperature of the plurality of partition portions 112a2 can be maintained at a high temperature, so that the heat transfer efficiency between the high-temperature fluid and the working gas becomes high.

また、管路120の内部空間に連通する第2部分112bの第2開口部112b1が、片持ち梁状の複数の仕切り部112b2によって仕切られた複数の開口で構成される。これにより、このような複数の仕切り部112b2がない場合(即ち、第2開口部112b1が1つの大きな貫通孔である場合)と比べて、高温の流体と接触する第2開口部112b1の表面積が大きくなるので、第2部分112bと高温の流体との間の熱伝達効率が高くなる。 Further, the second opening 112b1 of the second portion 112b communicating with the internal space of the pipeline 120 is composed of a plurality of openings partitioned by a plurality of cantilever-shaped partition portions 112b2. As a result, the surface area of the second opening 112b1 in contact with the hot fluid is larger than that in the absence of such a plurality of partition 112b2 (that is, when the second opening 112b1 is one large through hole). As the size increases, the heat transfer efficiency between the second portion 112b and the hot fluid increases.

また、片持ち梁状の複数の仕切り部112b2それぞれの基端が、第2開口部112b1における連結部分112c側(z軸負方向側)の縁部(即ち、高温の流体の熱が伝導していく側の縁部)と繋がっている。従って、複数の仕切り部112b2それぞれの基端が、第2開口部112b1における連結部分112c側の縁部とは異なる位置にある縁部と繋がっている態様と比べて、高温の流体の熱を連結部分112cに効率良く伝導することができる。 Further, the base end of each of the plurality of cantilever-shaped partition portions 112b2 is the edge portion of the second opening 112b1 on the connecting portion 112c side (z-axis negative direction side) (that is, the heat of the high-temperature fluid is conducted. It is connected to the edge on the side of the road). Therefore, the heat of the high-temperature fluid is connected as compared with the embodiment in which the base end of each of the plurality of partition portions 112b2 is connected to the edge portion at a position different from the edge portion on the connecting portion 112c side in the second opening 112b1. It can be efficiently conducted to the portion 112c.

また、片持ち梁状の複数の仕切り部112b2それぞれの先端(自由端)が、第2開口部112b1における連結部分112c側と反対側(z軸正方向側)の縁部と繋がっていない(即ち、先端と縁部との間に空気層が介在する)。従って、複数の仕切り部112b2それぞれの先端が、第2開口部112b1における連結部分112c側と反対側の縁部にも繋がっている態様(即ち、複数の仕切り部112b2それぞれが互いに平行に延びる両持ち梁状の形状を有している態様)と比べて、複数の仕切り部112b2の温度が、相対的に低温となっている「第2開口部112b1における連結部分112c側と反対側の縁部」による影響を受けて低下する現象が発生し難くなる。この結果、複数の仕切り部112b2の温度が高い温度に維持され得るので、高温の流体と作動気体との間の熱伝達効率が高くなる。 Further, the tip (free end) of each of the plurality of cantilever-shaped partition portions 112b2 is not connected to the edge portion of the second opening 112b1 opposite to the connecting portion 112c side (z-axis positive direction side) (that is,). , An air layer intervenes between the tip and the edge). Therefore, the tip of each of the plurality of partition portions 112b2 is also connected to the edge portion on the side opposite to the connecting portion 112c side of the second opening portion 112b1 (that is, the plurality of partition portions 112b2 each extend in parallel with each other. The temperature of the plurality of partition portions 112b2 is relatively low as compared with the mode having a beam-like shape) "the edge portion of the second opening 112b1 opposite to the connecting portion 112c side". It becomes difficult for the phenomenon of decrease due to the influence of As a result, the temperature of the plurality of partition portions 112b2 can be maintained at a high temperature, so that the heat transfer efficiency between the high-temperature fluid and the working gas is increased.

本発明は、上記の典型的な実施形態のみに限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の応用や変形が考えられる。例えば、上記実施形態を応用した次の各形態を実施することもできる。 The present invention is not limited to the above-mentioned typical embodiments, and various applications and modifications can be considered as long as the object of the present invention is not deviated. For example, the following embodiments to which the above embodiments are applied can also be implemented.

上記実施形態では、第1部分112aの第1開口部112a1が、片持ち梁状の複数の仕切り部112a2によって仕切られているが、両持ち梁状の複数の仕切り部によって仕切られていてもよい。また、片持ち梁状の複数の仕切り部112a2の基端が、第1開口部112a1における連結部分112c側(z軸正方向側)の縁部と繋がっているが、第1開口部112a1における連結部分112c側とは異なる位置の縁部と繋がっていてもよい。 In the above embodiment, the first opening 112a1 of the first portion 112a is partitioned by a plurality of cantilever-shaped partition portions 112a2, but may be partitioned by a plurality of double-sided beam-shaped partition portions 112a2. .. Further, the base ends of the plurality of cantilever-shaped partition portions 112a2 are connected to the edge portion of the connecting portion 112c side (z-axis positive direction side) of the first opening 112a1, but the connection at the first opening 112a1. It may be connected to an edge portion at a position different from that of the portion 112c side.

また、上記実施形態では、第2部分112bの第2開口部112b1が、片持ち梁状の複数の仕切り部112b2によって仕切られているが、両持ち梁状の複数の仕切り部によって仕切られていてもよい。また、片持ち梁状の複数の仕切り部112b2の基端が、第2開口部112b1における連結部分112c側(z軸負方向側)の縁部と繋がっているが、第2開口部112b1における連結部分112c側とは異なる位置の縁部と繋がっていてもよい。更には、このような複数の仕切り部112b2がなくてもよい(即ち、第2開口部112b1が1つの大きな貫通孔であってもよい)。 Further, in the above embodiment, the second opening 112b1 of the second portion 112b is partitioned by a plurality of cantilever-shaped partition portions 112b2, but is partitioned by a plurality of double-sided beam-shaped partition portions. May be good. Further, the base ends of the plurality of cantilever-shaped partition portions 112b2 are connected to the edge portion of the connecting portion 112c side (z-axis negative direction side) in the second opening portion 112b1, but the connection in the second opening portion 112b1. It may be connected to an edge portion at a position different from that of the portion 112c side. Furthermore, such a plurality of partition portions 112b2 may not be present (that is, the second opening portion 112b1 may be one large through hole).

また、上記実施形態では、高温側熱交換器112が、長尺板状の1つの中実部材で構成されているが、平面視同一形状の薄板部材を積層して構成されてもよい。高温側熱交換器112が板厚の比較的大きい1つの中実部材で構成される場合には、非常に複雑な形状を有する片持ち梁状の複数の仕切り部112a2,112b2を形成するために、高温側熱交換器112をワイヤーカット放電加工等を用いて製造する必要がある。これに対し、高温側熱交換器112が薄板部材を積層して構成される場合には、各薄板部材をプレス加工等で製造することができるので、高温側熱交換器112の製造コストを低減することが可能である。 Further, in the above embodiment, the high temperature side heat exchanger 112 is composed of one solid member having a long plate shape, but may be formed by laminating thin plate members having the same shape in a plan view. When the high temperature side heat exchanger 112 is composed of one solid member having a relatively large plate thickness, in order to form a plurality of cantilever-shaped partition portions 112a2 and 112b2 having a very complicated shape. , The high temperature side heat exchanger 112 needs to be manufactured by wire cut electric discharge machining or the like. On the other hand, when the high temperature side heat exchanger 112 is configured by laminating thin plate members, each thin plate member can be manufactured by press working or the like, so that the manufacturing cost of the high temperature side heat exchanger 112 is reduced. It is possible to do.

また、上記実施形態においては、図5に示すように、高温側熱交換器112の外縁の近傍部分に、外縁に沿う貫通孔であるスリット112dが形成されてもよい。図5に示す例では、高温側熱交換器112の外縁の4か所(第1部分112aにおける連結部分112c側と反対側の縁部、第2部分112bにおける連結部分112c側と反対側の縁部、連結部分112cにおける幅方向両側のそれぞれの縁部)にスリット112dが形成されているが、これらのうち1か所、2か所、或いは3か所にスリット112dが形成されていてもよい。 Further, in the above embodiment, as shown in FIG. 5, a slit 112d, which is a through hole along the outer edge, may be formed in a portion near the outer edge of the high temperature side heat exchanger 112. In the example shown in FIG. 5, four locations on the outer edge of the high temperature side heat exchanger 112 (the edge on the side opposite to the connecting portion 112c side in the first portion 112a and the edge on the opposite side to the connecting portion 112c side in the second portion 112b). Slits 112d are formed at the edges of the portion and the connecting portion 112c on both sides in the width direction), but slits 112d may be formed at one, two, or three of these. ..

このように、スリット112dを設けることで、高温側熱交換器112における外縁部と、外縁部を除く中央部分(即ち、高温の流体の熱が第2部分112bから第1部分112aへ伝導していく主たる経路となる部分)との間に空気層が介在する。従って、このようなスリット112dが全く設けられていない場合(図4を参照)と比べて、高温側熱交換器112の中央部分の温度が、相対的に低温となっている高温側熱交換器112の外縁部による影響を受けて低下する現象が発生し難くなる。この結果、高温側熱交換器112の中央部分の温度が高い温度に維持され得るので、高温の流体と作動気体との間の熱伝達効率が高くなる。 By providing the slit 112d in this way, the heat of the outer edge portion of the high temperature side heat exchanger 112 and the central portion excluding the outer edge portion (that is, the heat of the high temperature fluid is conducted from the second portion 112b to the first portion 112a). An air layer intervenes between the main route and the air layer. Therefore, the temperature of the central portion of the high temperature side heat exchanger 112 is relatively low as compared with the case where such a slit 112d is not provided at all (see FIG. 4). The phenomenon of lowering due to the influence of the outer edge of 112 is less likely to occur. As a result, the temperature of the central portion of the high temperature side heat exchanger 112 can be maintained at a high temperature, so that the heat transfer efficiency between the high temperature fluid and the working gas becomes high.

110…熱音響エンジン、102…環状配管(熱音響用配管)、111…蓄熱器、111a…一端部、111b…他端部、111c…複数の流路、112…高温側熱交換器、112a…第1部分、112a1…第1開口部、112a2…仕切り部、112b…第2部分、112b1…第2開口部、112b2…仕切り部、112c…連結部分、112d…スリット、113…低温側熱交換器 110 ... thermoacoustic engine, 102 ... annular pipe (thermoacoustic pipe), 111 ... heat storage, 111a ... one end, 111b ... other end, 111c ... multiple channels, 112 ... high temperature side heat exchanger, 112a ... 1st part, 112a1 ... 1st opening, 112a2 ... Partition, 112b ... 2nd part, 112b1 ... 2nd opening, 112b2 ... Partition, 112c ... Connecting part, 112d ... Slit, 113 ... Low temperature side heat exchanger

Claims (2)

作動気体が封入された熱音響用配管に組み込まれる熱音響エンジンであって、
前記熱音響用配管の長手方向に貫通する複数の流路を有する蓄熱器と、
前記蓄熱器の前記長手方向の一端部に連結され、前記蓄熱器の前記一端部を加熱する高温側熱交換器と、
前記蓄熱器の前記長手方向の他端部に連結され、前記蓄熱器の前記他端部を冷却する低温側熱交換器と、
を備え、
前記高温側熱交換器は、
前記蓄熱器の前記一端部に連結され、前記複数の流路に連通すると共に前記作動気体が通過する貫通孔である第1開口部が形成された第1部分と、
前記熱音響用配管の外部に位置すると共に常温より高温の流体が通過する流路に介挿され、前記流体が通過する貫通孔である第2開口部が形成された第2部分と、
前記第1部分から一体で前記熱音響用配管の外部に延出すると共に前記第1部分と前記第2部分とを一体で連結する連結部分と、
を備え、熱伝導性を有する固体材料で構成され、
前記第1開口部は、仕切り部によって仕切られ
前記高温側熱交換器の外縁の近傍部分には、前記外縁に沿う貫通孔であるスリットが形成されている、熱音響エンジン。
A thermoacoustic engine built into a thermoacoustic pipe filled with working gas.
A heat storage device having a plurality of flow paths penetrating in the longitudinal direction of the thermoacoustic pipe,
A high-temperature side heat exchanger that is connected to one end of the heat storage device in the longitudinal direction and heats the one end of the heat storage device.
A low-temperature side heat exchanger connected to the other end of the heat storage device in the longitudinal direction and cooling the other end of the heat storage device.
With
The high temperature side heat exchanger is
A first portion which is connected to the one end portion of the heat storage device, communicates with the plurality of flow paths, and has a first opening which is a through hole through which the working gas passes.
A second portion located outside the thermoacoustic pipe and inserted into a flow path through which a fluid having a temperature higher than normal temperature passes, and a second opening formed as a through hole through which the fluid passes.
A connecting portion that integrally extends from the first portion to the outside of the thermoacoustic pipe and integrally connects the first portion and the second portion.
Consists of a solid material with thermal conductivity,
The first opening is partitioned by a partition .
A thermoacoustic engine in which a slit, which is a through hole along the outer edge, is formed in a portion near the outer edge of the high temperature side heat exchanger.
請求項1に記載の熱音響エンジンにおいて、
前記仕切り部は、前記第1開口部における前記連結部分側の縁部から前記連結部分側と反対側の縁部の近傍まで互いに平行に延びる片持ち梁状の形状を有している、熱音響エンジン。

In the thermoacoustic engine according to claim 1.
The partition portion has a thermoacoustic shape extending in parallel with each other from the edge portion on the connecting portion side of the first opening to the vicinity of the edge portion on the opposite side to the connecting portion side. engine.

JP2019556032A 2017-11-23 2017-11-23 Thermoacoustic engine Active JP6884491B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042118 WO2019102564A1 (en) 2017-11-23 2017-11-23 Thermoacoustic engine

Publications (2)

Publication Number Publication Date
JPWO2019102564A1 JPWO2019102564A1 (en) 2020-10-22
JP6884491B2 true JP6884491B2 (en) 2021-06-09

Family

ID=66631849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019556032A Active JP6884491B2 (en) 2017-11-23 2017-11-23 Thermoacoustic engine

Country Status (2)

Country Link
JP (1) JP6884491B2 (en)
WO (1) WO2019102564A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110341924B (en) * 2018-04-03 2020-09-01 中国科学院理化技术研究所 Ship propulsion system
JP7438581B1 (en) 2023-01-06 2024-02-27 関東冶金工業株式会社 Thermoacoustic engine and heat treatment furnace
JP7374534B1 (en) 2023-01-06 2023-11-07 関東冶金工業株式会社 Sonic generator, thermoacoustic engine and heat treatment furnace

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2457467A1 (en) * 1979-01-17 1980-12-19 Collard Et A Trolart Sa G Heat exchanger for multiple fluids - has number of tubes side by side by side with cross plates penetrating each tube
JPS5769956U (en) * 1980-10-17 1982-04-27
CN1916404A (en) * 2006-09-05 2007-02-21 浙江大学 Heat-phonomotor driven by heat transfer through heat pipe
JP2009024931A (en) * 2007-07-19 2009-02-05 Tokyo Univ Of Agriculture & Technology Heat exchanger
CN201513994U (en) * 2008-07-22 2010-06-23 杨泰和 Device using temperature energy of tap water as uniform temperature
JP4888480B2 (en) * 2008-12-15 2012-02-29 株式会社デンソー Control device for exhaust purification system
DE102010029663A1 (en) * 2010-06-02 2011-12-08 Willy Kretz Heat conducting module for use in heat exchanger, has separating base, and projections arranged at base for heat exchange with heat exchanger medium, where base comprises connection region connected with another heat conducting module
US20140209070A1 (en) * 2013-01-25 2014-07-31 Woodward, Inc. Heat Exchange in a Vehicle Engine System
JP6233835B2 (en) * 2013-09-13 2017-11-22 学校法人東海大学 Thermoacoustic engine and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2019102564A1 (en) 2020-10-22
WO2019102564A1 (en) 2019-05-31

Similar Documents

Publication Publication Date Title
JP4958910B2 (en) Thermoacoustic device
JP6884491B2 (en) Thermoacoustic engine
JP6632029B2 (en) Thermoacoustic engine and thermoacoustic engine design method
JP7032987B2 (en) Thermoacoustic device
JP2013234820A (en) Thermoacoustic engine
JP2012202586A (en) Stack for thermoacoustic device and manufacturing method of stack for thermoacoustic device
JP4035069B2 (en) Piping equipment equipped with a sound amplifying / attenuator using thermoacoustic effect
JP6495097B2 (en) Thermoacoustic power generation system
JP6257412B2 (en) Method for manufacturing thermal / sonic wave conversion component, thermal / sonic wave conversion component, and thermal / sonic wave transducer
JP5453950B2 (en) Thermoacoustic engine
CN107614868B (en) Thermoacoustic power generation system
JP5310287B2 (en) Thermoacoustic engine
JP6158926B2 (en) Heat / sonic transducer and heat / sonic transducer
JP6178735B2 (en) Thermal / sonic conversion component, thermal / sonic transducer, and method for manufacturing thermal / sonic conversion component
JP5526600B2 (en) Thermoacoustic engine
JP2006145176A (en) Thermoacoustic engine
JP5532959B2 (en) Thermoacoustic engine
JP6532819B2 (en) Thermoacoustic engine
JP2019163924A (en) Thermoacoustic system heat exchanger, energy converter using reciprocating vibration flow, thermoacoustic engine, and stirling engine
WO2017098938A1 (en) Method for producing thermoacoustic engine
JP5446498B2 (en) Thermoacoustic engine
WO2019087952A1 (en) Industrial furnace
WO2021084868A1 (en) Thermoacoustic device
JP2018091525A (en) Thermoacoustic engine and heat accumulator
JP5768687B2 (en) Thermoacoustic refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210511

R150 Certificate of patent or registration of utility model

Ref document number: 6884491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250