JP7438581B1 - Thermoacoustic engine and heat treatment furnace - Google Patents

Thermoacoustic engine and heat treatment furnace Download PDF

Info

Publication number
JP7438581B1
JP7438581B1 JP2023001388A JP2023001388A JP7438581B1 JP 7438581 B1 JP7438581 B1 JP 7438581B1 JP 2023001388 A JP2023001388 A JP 2023001388A JP 2023001388 A JP2023001388 A JP 2023001388A JP 7438581 B1 JP7438581 B1 JP 7438581B1
Authority
JP
Japan
Prior art keywords
heat
heat transfer
temperature side
transfer member
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023001388A
Other languages
Japanese (ja)
Inventor
愼一 ▲高▼橋
輝一 神田
浩 大下
亮 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Yakin Kogyo Co Ltd
Original Assignee
Kanto Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Yakin Kogyo Co Ltd filed Critical Kanto Yakin Kogyo Co Ltd
Priority to JP2023001388A priority Critical patent/JP7438581B1/en
Application granted granted Critical
Publication of JP7438581B1 publication Critical patent/JP7438581B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

Figure 0007438581000001

【課題】熱音響機関に関して、ガスを直接取り出すことなく、熱を取り出して、音波を発生させ、それによりエネルギーを発生させることを可能にする構成を提供する。
【解決手段】本開示の第1態様の熱音響機関12は、熱から音波を発生させるように構成された第1変換部14と、前記第1変換部14に接続配管を介して接続され、エネルギーを発生させるように構成された第2変換部とを備える。前記第1変換部14は、第1配管に配置された第1蓄熱器24と、第1高温側熱交換器26と、第1低温側熱交換器28と、前記第1高温側熱交換器から延出するように設けられる第1固体伝熱部材30とを備える。前記第2変換部20は、第2配管に配置された第2蓄熱器42と、第2高温側熱交換器44と、第2低温側熱交換器46と、前記第2高温側熱交換器から延出するように設けられる第2固体伝熱部材48とを備える。
【選択図】図1

Figure 0007438581000001

The present invention relates to a thermoacoustic engine and provides a configuration that makes it possible to extract heat and generate sound waves, thereby generating energy, without directly extracting gas.
A thermoacoustic engine 12 according to a first aspect of the present disclosure includes a first converting section 14 configured to generate sound waves from heat, and connected to the first converting section 14 via a connecting pipe, and a second conversion unit configured to generate energy. The first conversion unit 14 includes a first heat storage device 24 disposed in the first pipe, a first high temperature side heat exchanger 26, a first low temperature side heat exchanger 28, and the first high temperature side heat exchanger. The first solid heat transfer member 30 is provided so as to extend from the first solid heat transfer member 30 . The second conversion unit 20 includes a second heat storage device 42 disposed in the second pipe, a second high temperature side heat exchanger 44, a second low temperature side heat exchanger 46, and the second high temperature side heat exchanger. A second solid heat transfer member 48 is provided so as to extend from the second solid heat transfer member 48 .
[Selection diagram] Figure 1

Description

本開示は、熱音響機関、及び、この熱音響機関を備えた熱処理炉に関する。 The present disclosure relates to a thermoacoustic engine and a heat treatment furnace equipped with the thermoacoustic engine.

従来、各種の工場、発電所等において各種機械から排出される排熱を利用する構成が種々提案されていて、これらは省エネルギー化の観点から更なる発展が期待されている。例えば、特許文献1は、工業炉の炉設備の排気管に配置された高温側熱交換器、蓄熱器及び低温側熱交換器が順に接続された原動機が出力ループ配管に配置された第1変換部と、接続配管を介して第1変換部で生成された音波が伝達される第2変換部とを備えた、熱音響機関を開示する。第1変換部は、排気管の排熱から熱音響自励振動による音波を発生させる構成を有し、第2変換部は、接続配管から音波を入力して音波の振動から電力を発生させたり、冷熱を発生させたりするように構成されている。 Conventionally, various configurations have been proposed that utilize waste heat discharged from various machines in various factories, power plants, etc., and further development of these structures is expected from the viewpoint of energy conservation. For example, Patent Document 1 discloses a first conversion system in which a prime mover to which a high-temperature side heat exchanger, a heat storage device, and a low-temperature side heat exchanger arranged in an exhaust pipe of industrial furnace equipment are connected in order is arranged in an output loop piping. A thermoacoustic engine is disclosed, comprising: a second converting section, and a second converting section to which sound waves generated in the first converting section are transmitted via a connecting pipe. The first conversion section is configured to generate sound waves by thermoacoustic self-excited vibration from the exhaust heat of the exhaust pipe, and the second conversion section is configured to input sound waves from the connecting pipe and generate electric power from the vibrations of the sound waves. , and is configured to generate cold or heat.

特開2019-86176号公報Japanese Patent Application Publication No. 2019-86176

ところで、工場等において、各種機械の排熱を有効に取り出すために、例えば排ガスそのものを排気管から外部に取り出すことは、排気ガスの漏れの可能性などの点で改善の余地がある。一方で、上記特許文献1においては、排気管から排熱を取り出す構成については何ら記載されていない。 By the way, in factories and the like, in order to effectively extract exhaust heat from various machines, for example, extracting the exhaust gas itself to the outside from an exhaust pipe has room for improvement in terms of the possibility of leakage of exhaust gas. On the other hand, Patent Document 1 does not describe any configuration for extracting exhaust heat from the exhaust pipe.

また、熱処理炉には、窒素ガスなどの中性ガス又はアルゴンガス、ヘリウムガスなどの不活性ガス中で炭素材料を超高温に加熱して、その炭化又は黒鉛化を図るように構成された所謂炭化炉及び所謂黒鉛化炉がある。これらは、例えば、1000℃から3000℃の温度に材料を加熱するので、排熱も多く、その有効活用が望まれる。一方、この炭化炉又は黒鉛化炉内のガスは、材料由来のタール等を含むので、そのガスを取り出して排熱を回収することは更なる課題をもたらし得る。 In addition, the heat treatment furnace has a so-called so-called furnace configured to carbonize or graphitize the carbon material by heating the carbon material to an extremely high temperature in a neutral gas such as nitrogen gas or an inert gas such as argon gas or helium gas. There are carbonization furnaces and so-called graphitization furnaces. Since these heat the material to a temperature of, for example, 1000° C. to 3000° C., there is a lot of waste heat, and it is desired to utilize it effectively. On the other hand, since the gas in this carbonization furnace or graphitization furnace contains tar and the like derived from the materials, extracting the gas and recovering exhaust heat may bring about further problems.

本開示の目的は、熱音響機関に関して、ガスを直接取り出すことなく、熱を取り出して、音波を発生させ、それによりエネルギーを発生させることを可能にする構成を提供することにある。
また、本開示の更なる目的は、炭化炉、黒鉛化炉などの熱処理炉において、排熱をより好適に回収することを可能にする構成を提供することにある。
An object of the present disclosure is to provide a configuration for a thermoacoustic engine that makes it possible to extract heat and generate sound waves, thereby generating energy, without directly extracting gas.
A further object of the present disclosure is to provide a configuration that allows waste heat to be recovered more preferably in a heat treatment furnace such as a carbonization furnace or a graphitization furnace.

上記目的を達成するために、本開示の第1態様は、
熱から音波を発生させるように構成された第1変換部と、
前記第1変換部に接続配管を介して接続され、前記第1変換部で生成された音波からエネルギーを発生させるように構成された第2変換部と
を備え、
前記第1変換部は、
前記接続配管の一端が接続される環状の第1配管に設けられる第1蓄熱器と、
前記第1配管において前記第1蓄熱器の第1端部に連結される第1高温側熱交換器と、
前記第1配管において前記第1端部とは反対側の前記第1蓄熱器の第2端部に連結される第1低温側熱交換器と、
前記第1変換部の前記第1高温側熱交換器から延出するように設けられる第1固体伝熱部材であって、前記第1配管の外部に位置する第1熱源の第1取付部に取り付けられる第1固体伝熱部材と
を備え、
前記第2変換部は、
前記接続配管の他端が接続される環状の第2配管に設けられる第2蓄熱器と、
前記第2配管において前記第2蓄熱器の第1端部に連結される第2高温側熱交換器と、
前記第2配管において前記第2蓄熱器の前記第1端部とは反対側の前記第2蓄熱器の第2端部に連結される第2低温側熱交換器と、
前記第2変換部の前記第2低温側熱交換器から延出するように設けられる第2固体伝熱部材であって、前記第2配管の外部に位置する第2熱源の第2取付部に取り付けられる第2固体伝熱部材と
を備えている
熱音響機関
を提供する。
In order to achieve the above object, a first aspect of the present disclosure includes:
a first converter configured to generate sound waves from heat;
a second converting unit connected to the first converting unit via a connecting pipe and configured to generate energy from the sound wave generated in the first converting unit,
The first conversion unit is
a first heat storage device provided in an annular first pipe to which one end of the connection pipe is connected;
a first high temperature side heat exchanger connected to a first end of the first heat storage device in the first piping;
a first low-temperature side heat exchanger connected to a second end of the first heat storage device opposite to the first end in the first piping;
A first solid heat transfer member provided to extend from the first high-temperature side heat exchanger of the first conversion section, the first solid heat transfer member being attached to a first mounting portion of a first heat source located outside of the first piping. a first solid heat transfer member attached;
The second conversion unit is
a second heat storage device provided in an annular second pipe to which the other end of the connection pipe is connected;
a second high temperature side heat exchanger connected to the first end of the second heat storage device in the second piping;
a second low-temperature side heat exchanger connected to a second end of the second heat storage device opposite to the first end of the second heat storage device in the second piping;
A second solid heat transfer member provided to extend from the second low-temperature side heat exchanger of the second conversion section, the second solid heat transfer member being attached to a second attachment part of the second heat source located outside the second piping. a second solid heat transfer member attached thereto.

好ましくは、前記第1固体伝熱部材は、前記第1熱源と前記第1固体伝熱部材との間に介在するように前記第1熱源の前記第1取付部に配置される第1伝熱仕切部材と接するように設けられる。この場合、前記第1固体伝熱部材は、棒状部材であり、前記第1伝熱仕切部材は、一端が閉じられた管部材であるとよい。 Preferably, the first solid heat transfer member is a first heat transfer member disposed at the first attachment portion of the first heat source so as to be interposed between the first heat source and the first solid heat transfer member. It is provided so as to be in contact with the partition member. In this case, the first solid heat transfer member is preferably a rod-shaped member, and the first heat transfer partition member is preferably a tube member with one end closed.

好ましくは、前記第2固体伝熱部材は、前記第2熱源と前記第2固体伝熱部材との間に介在するように前記第2熱源の前記第2取付部に配置される第2伝熱仕切部材と接するように設けられる。この場合、前記第2固体伝熱部材は、棒状部材であり、前記第2伝熱仕切部材は、一端が閉じられた管部材であるとよい。 Preferably, the second solid heat transfer member is a second heat transfer member disposed at the second attachment portion of the second heat source so as to be interposed between the second heat source and the second solid heat transfer member. It is provided so as to be in contact with the partition member. In this case, the second solid heat transfer member is preferably a rod-shaped member, and the second heat transfer partition member is preferably a tube member with one end closed.

本開示の第2態様は、
前述の熱音響機関を備えた熱処理炉
を提供する。
A second aspect of the present disclosure includes:
A heat treatment furnace equipped with the aforementioned thermoacoustic engine is provided.

好ましくは、前記熱処理炉は炭化炉又は黒鉛化炉である。このとき、その熱処理炉は、上流側から下流側に向けて排気室、加熱室及び冷却室を備えることができる。この場合、前記第1変換部の前記第1高温側熱交換器から延出するように設けられた前記第1固体伝熱部材は、前記第1配管の外部に位置する前記加熱室の前記第1取付部に取り付けられ、前記第2変換部の前記第2低温側熱交換器から延出するように設けられた前記第2固体伝熱部材は、前記第2配管の外部に位置する前記加熱室又は前記排気室の前記第2取付部に取り付けられ、前記第2変換部の前記第2高温側熱交換器と前記排気室の排気管とは熱交換可能に構成されているとよい。
Preferably, the heat treatment furnace is a carbonization furnace or a graphitization furnace. At this time, the heat treatment furnace can include an exhaust chamber, a heating chamber, and a cooling chamber from the upstream side to the downstream side. In this case, the first solid heat transfer member provided so as to extend from the first high temperature side heat exchanger of the first conversion section is connected to the first solid heat transfer member of the heating chamber located outside the first piping. The second solid heat transfer member, which is attached to the first mounting part and extends from the second low-temperature side heat exchanger of the second conversion part, is configured to connect the heating element located outside the second piping. The second high-temperature side heat exchanger of the second conversion section and the exhaust pipe of the exhaust chamber may be configured to be able to exchange heat with each other.

本開示の上記第1態様によれば、上記構成を備えるので、熱音響機関に関して、ガスを直接取り出すことなく、熱を取り出して、音波を発生させ、よってエネルギーを発生させることが可能になる。
また、本開示の上記第2態様によれば、上記構成を備えるので、炭化炉、黒鉛化炉などの熱処理炉において、排熱をより好適に回収することが可能になる。
According to the first aspect of the present disclosure, since the above configuration is provided, it becomes possible to extract heat and generate sound waves, and thus generate energy, without directly extracting gas from the thermoacoustic engine.
Moreover, according to the second aspect of the present disclosure, since the above-mentioned configuration is provided, it becomes possible to more suitably recover exhaust heat in a heat treatment furnace such as a carbonization furnace or a graphitization furnace.

図1は、本開示に係る基本構成例の熱音響機関を説明するための概念図である。FIG. 1 is a conceptual diagram for explaining a thermoacoustic engine as a basic configuration example according to the present disclosure. 図2は、第1実施形態に係る熱処理炉である黒鉛化炉の概略構成図である。FIG. 2 is a schematic configuration diagram of a graphitization furnace, which is a heat treatment furnace according to the first embodiment. 図3は、図2の黒鉛化炉に設けられた熱音響機関及びその周囲の拡大図である。FIG. 3 is an enlarged view of the thermoacoustic engine provided in the graphitization furnace of FIG. 2 and its surroundings.

以下、本開示に係る実施形態を添付図に基づいて説明する。同一の部品(又は構成)には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, embodiments according to the present disclosure will be described based on the accompanying drawings. Identical parts (or configurations) are given the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

まず、本開示に係る基本構成例の熱音響機関12を図1に基づき説明する。熱音響機関12は、熱から音波を発生させるように構成された第1変換部14と、第1変換部14に接続配管18を介して接続された第2変換部20とを備えている。第2変換部20は、第1変換部14で生成された音波からエネルギーを発生させるように構成されている。 First, a thermoacoustic engine 12 as a basic configuration example according to the present disclosure will be described based on FIG. 1. The thermoacoustic engine 12 includes a first converting section 14 configured to generate sound waves from heat, and a second converting section 20 connected to the first converting section 14 via a connecting pipe 18. The second converter 20 is configured to generate energy from the sound waves generated by the first converter 14.

第1変換部14は音波発生装置10を備え、熱音響用配管16とコア部22とを備える。熱音響用配管16は、環状つまりループ状の配管であり、環状の第1配管に相当する。接続配管18の一端は熱音響用配管16に連通し、接続配管18の他端には第2変換部20が設けられている。熱音響用配管16及び接続配管18は互いに連通し、所定の作動気体(ここではヘリウム(He))が所定圧力下で封入されている。なお、作動気体は、ヘリウムに限定されず、種々の気体で有り得、例えばヘリウム、窒素、アルゴン及び空気のうちの1つの気体又はそれらのうちの2つ以上を含む混合気体であってもよい。また、第2変換部20の後述する環状配管40(環状の第2配管)にも、熱音響用配管16及び接続配管18内と同じく、所定の作動気体が所定圧力下で封入される。 The first converting section 14 includes a sound wave generator 10, a thermoacoustic pipe 16, and a core section 22. The thermoacoustic pipe 16 is an annular or loop-shaped pipe, and corresponds to a first annular pipe. One end of the connecting pipe 18 communicates with the thermoacoustic pipe 16, and the second converting section 20 is provided at the other end of the connecting pipe 18. The thermoacoustic pipe 16 and the connecting pipe 18 communicate with each other, and are filled with a predetermined working gas (here, helium (He)) under a predetermined pressure. Note that the working gas is not limited to helium, and may be various gases, such as one of helium, nitrogen, argon, and air, or a mixture containing two or more of them. Further, a predetermined working gas is sealed under a predetermined pressure in the annular pipe 40 (annular second pipe) of the second conversion unit 20, which will be described later, as well as in the thermoacoustic pipe 16 and the connection pipe 18.

第1変換部14つまり音波発生装置10は、前述のように、環状の熱音響用配管16と、コア部22とを備えている。コア部22は、原動機と称される場合もあり、蓄熱器24と、高温側熱交換器26と、低温側熱交換器28とを備えている。蓄熱器24と、高温側熱交換器26と、低温側熱交換器28とは、高温側熱交換器26と低温側熱交換器28とで蓄熱器24を挟むように熱音響用配管16に設けられる。高温側熱交換器26は、熱音響用配管16の流路方向FA1において蓄熱器24の一端(第1端部)に連結される。高温側熱交換器26は、蓄熱器24の第1端部を相対的に加熱するように構成されている。低温側熱交換器28は、熱音響用配管16の流路方向FA1において第1端部とは反対側の蓄熱器24の他端(第2端部)に連結される。低温側熱交換器28は、蓄熱器24の第2端部を相対的に冷却するように構成されている。 The first converting section 14, that is, the sound wave generator 10, includes the annular thermoacoustic pipe 16 and the core section 22, as described above. The core section 22 is sometimes referred to as a prime mover, and includes a heat storage device 24, a high temperature side heat exchanger 26, and a low temperature side heat exchanger 28. The heat storage device 24, the high temperature side heat exchanger 26, and the low temperature side heat exchanger 28 are connected to the thermoacoustic piping 16 so that the heat storage device 24 is sandwiched between the high temperature side heat exchanger 26 and the low temperature side heat exchanger 28. provided. The high temperature side heat exchanger 26 is connected to one end (first end) of the heat storage device 24 in the flow path direction FA1 of the thermoacoustic piping 16. The high temperature side heat exchanger 26 is configured to relatively heat the first end of the heat storage device 24 . The low temperature side heat exchanger 28 is connected to the other end (second end) of the heat storage device 24 on the opposite side to the first end in the flow path direction FA1 of the thermoacoustic piping 16. The low temperature side heat exchanger 28 is configured to relatively cool the second end of the heat storage device 24 .

蓄熱器24は、例えばハニカムのような細かい流路が設けられた構造体であり、セラミック又は金属から作製され得、ステンレス鋼製ハニカム状構造体を有してもよい。蓄熱器24は、熱音響用配管16の流路方向FA1に直交する断面において複数の流路つまり孔を有して構成され、例えば、その複数の孔の各々は、1mm未満のサイズ、例えば1mm未満の内径を有するとよい。高温側熱交換器26及び低温側熱交換器28は、それぞれ高い熱伝導率を有するとよく、それぞれ金属製であり得、例えば銅製である。高温側熱交換器26及び低温側熱交換器28は、それぞれ、蓄熱器24と同様に細かい流路を備え、熱音響用配管16に封入された作動気体を自励振動させるために蓄熱器24の複数の流路の両端部間に温度勾配が生じるように作動気体との間で熱交換を行う熱交換器を構成している。 The heat storage device 24 is a structure provided with fine channels, such as a honeycomb, and may be made of ceramic or metal, and may include a stainless steel honeycomb structure. The heat storage device 24 is configured to have a plurality of channels or holes in a cross section perpendicular to the flow direction FA1 of the thermoacoustic piping 16, and each of the plurality of holes has a size of less than 1 mm, for example, 1 mm. It is preferable to have an inner diameter of less than or equal to The hot side heat exchanger 26 and the cold side heat exchanger 28 each may have a high thermal conductivity and each may be made of metal, for example copper. The high-temperature side heat exchanger 26 and the low-temperature side heat exchanger 28 are each provided with fine flow paths similarly to the heat storage device 24, and the heat storage device 24 is used to cause self-excited vibration of the working gas sealed in the thermoacoustic pipe 16. A heat exchanger is configured to exchange heat with the working gas so that a temperature gradient is generated between both ends of the plurality of flow paths.

高温側熱交換器26から固体伝熱部材(以下、第1固体伝熱部材)30が延出するように第1固体伝熱部材30は設けられている。第1固体伝熱部材30は、耐熱性に優れるとともに、高い熱伝導率を有するとよい。第1固体伝熱部材30はここでは、グラファイト製の棒状部材であるが、他の材料、例えば炭化ケイ素(SiC)製であってもよく、また棒状以外の形状を有してもよい。第1固体伝熱部材30は、熱音響用配管16の外部に位置する熱源(以下、第1熱源)32に設けられた取付部34に取り付けられる。 The first solid heat transfer member 30 is provided so that the solid heat transfer member (hereinafter referred to as the first solid heat transfer member) 30 extends from the high temperature side heat exchanger 26 . The first solid heat transfer member 30 preferably has excellent heat resistance and high thermal conductivity. Although the first solid heat transfer member 30 is a rod-shaped member made of graphite here, it may be made of other materials, such as silicon carbide (SiC), and may have a shape other than a rod-shape. The first solid heat transfer member 30 is attached to a mounting portion 34 provided on a heat source (hereinafter referred to as a first heat source) 32 located outside the thermoacoustic pipe 16.

図1に示すように、第1熱源32の取付部34に伝熱仕切部材(以下、第1伝熱仕切部材)36が配置されている。この第1伝熱仕切部材36は、第1熱源32の温度などに応じて選定された材料で作製され得、例えば鉄製、ニッケル基合金製であり得、伝熱に優れるとよい。第1伝熱仕切部材36は、熱音響用配管16の外部に位置する第1熱源32と、第1固体伝熱部材30との間に介在するように第1熱源32に配置される。そして、第1伝熱仕切部材36に接するように、第1固体伝熱部材30は設けられる。例えば、第1固体伝熱部材30は、機械的接続手段により、第1伝熱仕切部材36に着脱可能に接続されて、これにより第1伝熱仕切部材36に接してもよい。具体的には、第1固体伝熱部材30は雌ねじ部又は雄ねじ部を有し、第1伝熱仕切部材36の対応する雄ねじ部又は雌ねじ部に着脱自在に螺合されてもよい。これにより、高温側熱交換器26は、第1伝熱仕切部材36及び第1固体伝熱部材30を介して第1熱源32からの熱を受け取り、常温を超えた所定温度域(第1所定温度域)にまで加熱され得る。なお、第1伝熱仕切部材36が設けられずに、第1熱源32の取付部34に、第1固体伝熱部材30が接するように設けられ、例えば第1固体伝熱部材30が直接取り付けられてもよい。例えば、取付部34に第1固体伝熱部材30が機械的接続手段により着脱自在に取り付けられてもよく、具体的には、取付部34が雌ねじ孔であるとき、第1固体伝熱部材30に雄ねじ部が設けられて、螺合されてもよい。 As shown in FIG. 1, a heat transfer partition member (hereinafter referred to as a first heat transfer partition member) 36 is arranged at the attachment portion 34 of the first heat source 32. As shown in FIG. The first heat transfer partition member 36 may be made of a material selected depending on the temperature of the first heat source 32, etc., and may be made of iron or a nickel-based alloy, for example, and preferably has excellent heat transfer. The first heat transfer partition member 36 is arranged at the first heat source 32 so as to be interposed between the first heat source 32 located outside the thermoacoustic pipe 16 and the first solid heat transfer member 30 . The first solid heat transfer member 30 is provided in contact with the first heat transfer partition member 36 . For example, the first solid heat transfer member 30 may be removably connected to and thereby contact the first heat transfer partition member 36 by a mechanical connection means. Specifically, the first solid heat transfer member 30 has a female threaded portion or a male threaded portion, and may be removably screwed into a corresponding male threaded portion or female threaded portion of the first heat transfer partition member 36. Thereby, the high temperature side heat exchanger 26 receives heat from the first heat source 32 via the first heat transfer partition member 36 and the first solid heat transfer member 30, and receives heat from the first heat source 32 through the first heat transfer partition member 36 and the first solid heat transfer member 30. temperature range). Note that the first heat transfer partition member 36 is not provided and the first solid heat transfer member 30 is provided in contact with the attachment portion 34 of the first heat source 32, for example, the first solid heat transfer member 30 is directly attached. It's okay to be hit. For example, the first solid heat transfer member 30 may be detachably attached to the attachment portion 34 by mechanical connection means. Specifically, when the attachment portion 34 is a female threaded hole, the first solid heat transfer member 30 A male threaded portion may be provided to be screwed together.

一方、低温側熱交換器28は、入熱無しに保たれることができ、又は水などの冷却液体を用いた冷却設備を有することができる。これにより、低温側熱交換器28は、高温側熱交換器26よりも低い所定温度域(第2所定温度域)の温度を有するようにされる。 On the other hand, the cold side heat exchanger 28 can be kept without heat input or can have cooling equipment with a cooling liquid such as water. Thereby, the low temperature side heat exchanger 28 is made to have a temperature in a predetermined temperature range (second predetermined temperature range) lower than that of the high temperature side heat exchanger 26.

したがって、蓄熱器24の両端では温度差が生じ、蓄熱器24では作動流体の流通方向FA1に温度勾配が形成される。よって、第1変換部14の熱音響用配管16では、内部に存在する作動気体の加熱による膨張と、冷却による収縮が行われ、熱音響自励振動が生じ、それにより音波が発生する。このように、音波発生装置10を備えた第1変換部14において、蓄熱器24を備えたコア部22では、入力された熱から音波への変換が行われる。 Therefore, a temperature difference occurs between both ends of the heat storage device 24, and a temperature gradient is formed in the heat storage device 24 in the working fluid flow direction FA1. Therefore, in the thermoacoustic pipe 16 of the first converting section 14, the working gas present therein expands due to heating and contracts due to cooling, resulting in thermoacoustic self-excited vibrations, thereby generating sound waves. In this manner, in the first conversion section 14 including the sound wave generator 10, the core section 22 including the heat storage device 24 converts input heat into sound waves.

第1変換部14で生成された音波は、熱音響用配管16に接続された接続配管18に伝わり、第2変換部20に伝達される。熱音響用配管16において、接続配管18が接続することで、接続配管18と熱音響用配管16とにより略T字状部17が形成されている。接続配管18が滑らかにつながる熱音響用配管16の流路部16A側に蓄熱器24の高温側熱交換器26が向き、接続配管18と熱音響用配管16との略T字状部17に突き当たるように延びる熱音響用配管16の流路部16B側に蓄熱器24の低温側熱交換器28が向くようにコア部22は熱音響用配管16に配置されている。そして、ここでは、低温側熱交換器28から相対的に遠く、かつ、高温側熱交換器26に相対的に近い箇所に、接続配管18の一端が接続されている。接続配管18の他端には第2変換部20が設けられている。第2変換部20は、第1変換部14で生成された音波からエネルギーを発生させるように構成されていて、より具体的には、第1変換部14で生成された音波から熱エネルギーを発生させるように構成されている。 The sound waves generated by the first converter 14 are transmitted to the connecting pipe 18 connected to the thermoacoustic pipe 16, and then to the second converter 20. In the thermoacoustic piping 16, the connecting piping 18 is connected, so that a substantially T-shaped portion 17 is formed by the connecting piping 18 and the thermoacoustic piping 16. The high-temperature side heat exchanger 26 of the heat storage device 24 faces the flow path section 16A side of the thermoacoustic piping 16 where the connecting piping 18 smoothly connects, and the high temperature side heat exchanger 26 of the heat storage device 24 faces the approximately T-shaped portion 17 between the connecting piping 18 and the thermoacoustic piping 16. The core portion 22 is arranged in the thermoacoustic piping 16 such that the low temperature side heat exchanger 28 of the heat storage device 24 faces the flow path portion 16B side of the thermoacoustic piping 16 that extends so as to abut against the core portion 22. Here, one end of the connection pipe 18 is connected to a location that is relatively far from the low temperature side heat exchanger 28 and relatively close to the high temperature side heat exchanger 26. A second conversion section 20 is provided at the other end of the connection pipe 18. The second conversion unit 20 is configured to generate energy from the sound waves generated by the first conversion unit 14, and more specifically, generates thermal energy from the sound waves generated by the first conversion unit 14. It is configured to allow

第2変換部20は、第1変換部14に接続配管18を介して接続する。第2変換部20は、環状配管40及び、蓄熱器42と高温側熱交換器44と低温側熱交換器46とを備えるコア部47を備える。環状配管40は、環状つまりループ状の配管であり、環状の第2配管に相当する。コア部47は、環状配管40に設けられている。蓄熱器42は上記蓄熱器24と同じ構成を備え、同様の変更が可能である。高温側熱交換器44は、上記高温側熱交換器26と同じ構成を備え、同様の変更が可能であり、環状配管40の流路方向FA2において蓄熱器42の一端(第1端部)に連結される。低温側熱交換器46は、上記低温側熱交換器28と同じ構成を備え、同様の変更が可能であり、環状配管40の流路方向FA2において第1端部とは反対側の蓄熱器42の他端(第2端部)に連結される。 The second converter 20 is connected to the first converter 14 via a connecting pipe 18 . The second conversion section 20 includes an annular pipe 40 and a core section 47 including a heat storage device 42 , a high temperature side heat exchanger 44 , and a low temperature side heat exchanger 46 . The annular pipe 40 is an annular or loop-shaped pipe, and corresponds to a second annular pipe. The core portion 47 is provided in the annular pipe 40. The heat storage device 42 has the same configuration as the heat storage device 24 described above, and can be modified in the same manner. The high-temperature side heat exchanger 44 has the same configuration as the high-temperature side heat exchanger 26, and can be modified in the same way. Concatenated. The low-temperature side heat exchanger 46 has the same configuration as the low-temperature side heat exchanger 28 and can be modified in the same way, and the heat storage 42 on the side opposite to the first end in the flow path direction FA2 of the annular pipe 40 is connected to the other end (second end).

低温側熱交換器46から固体伝熱部材(以下、第2固体伝熱部材)48が延出するように第2固体伝熱部材48は設けられている。第2固体伝熱部材48は、耐熱性に優れるとともに、高い熱伝導率を有するとよい。第2固体伝熱部材48はここでは、第1固体伝熱部材30と同様の構成を備え、ここではグラファイト製の棒状部材であるが、他の材料、例えば炭化ケイ素(SiC)製であってもよく、また棒状以外の形状を有してもよい。第2固体伝熱部材48は、環状配管40の外部に位置する熱源(以下、第2熱源)50に設けられた取付部52に取り付けられる。 The second solid heat transfer member 48 is provided so that the solid heat transfer member (hereinafter referred to as second solid heat transfer member) 48 extends from the low temperature side heat exchanger 46 . The second solid heat transfer member 48 preferably has excellent heat resistance and high thermal conductivity. The second solid heat transfer member 48 here has the same configuration as the first solid heat transfer member 30, and is a rod-shaped member made of graphite here, but may be made of another material, such as silicon carbide (SiC). It may also have a shape other than a rod shape. The second solid heat transfer member 48 is attached to a mounting portion 52 provided on a heat source (hereinafter referred to as a second heat source) 50 located outside the annular pipe 40 .

図1に示すように、第2熱源50の取付部52に伝熱仕切部材(以下、第2伝熱仕切部材)54が配置されている。この第2伝熱仕切部材54は、第2熱源50の温度などに応じて選定された材料で作製され得、例えば鉄製、ニッケル基合金製であり得、伝熱に優れるとよい。第2伝熱仕切部材54は、環状配管40の外部に位置する第2熱源50と、第2固体伝熱部材48との間に介在するように第2熱源50に配置される。そして、第2伝熱仕切部材54に接するように、第2固体伝熱部材48は設けられる。例えば、第2固体伝熱部材48は、機械的接続手段により、第2伝熱仕切部材54に着脱可能に接続されて、これにより第2伝熱仕切部材36に接してもよい。具体的には、第2固体伝熱部材48は雌ねじ部又は雄ねじ部を有し、第2伝熱仕切部材54の対応する雄ねじ部又は雌ねじ部に着脱自在に螺合されてもよい。これにより、低温側熱交換器46は、第2伝熱仕切部材54及び第2固体伝熱部材48を介して第2熱源50からの熱を受け取り、常温を超えた所定温度域、例えば上記第1所定温度域にまで加熱され得る。なお、第2伝熱仕切部材54が設けられずに、第2熱源50の取付部52に、第2固体伝熱部材48が接するように設けられ、例えば第2固体伝熱部材48が直接取り付けられてもよい。例えば、取付部52に第2固体伝熱部材48が機械的接続手段により着脱自在に取り付けられてもよく、具体的には、取付部52が雌ねじ孔であるとき、第2固体伝熱部材48に雄ねじ部が設けられて、螺合されてもよい。 As shown in FIG. 1, a heat transfer partition member (hereinafter referred to as a second heat transfer partition member) 54 is arranged at the attachment portion 52 of the second heat source 50. The second heat transfer partition member 54 may be made of a material selected depending on the temperature of the second heat source 50, etc., and may be made of iron or a nickel-based alloy, for example, and preferably has excellent heat transfer. The second heat transfer partition member 54 is arranged at the second heat source 50 so as to be interposed between the second heat source 50 located outside the annular pipe 40 and the second solid heat transfer member 48 . The second solid heat transfer member 48 is provided so as to be in contact with the second heat transfer partition member 54 . For example, the second solid heat transfer member 48 may be removably connected to the second heat transfer partition member 54 by mechanical connection means, thereby contacting the second heat transfer partition member 36 . Specifically, the second solid heat transfer member 48 has a female threaded portion or a male threaded portion, and may be removably screwed into a corresponding male threaded portion or female threaded portion of the second heat transfer partition member 54. Thereby, the low temperature side heat exchanger 46 receives heat from the second heat source 50 via the second heat transfer partition member 54 and the second solid heat transfer member 48, and maintains a predetermined temperature range above room temperature, for example, the 1. Can be heated to a predetermined temperature range. Note that the second heat transfer partition member 54 is not provided and the second solid heat transfer member 48 is provided in contact with the attachment portion 52 of the second heat source 50, for example, the second solid heat transfer member 48 is directly attached. It's okay to be hit. For example, the second solid heat transfer member 48 may be detachably attached to the attachment portion 52 by mechanical connection means. Specifically, when the attachment portion 52 is a female threaded hole, the second solid heat transfer member 48 A male threaded portion may be provided to be screwed together.

第2変換部20の環状配管40に、接続配管18の他端(熱音響用配管16に接続する接続配管18の一端と反対側の端部)は接続されて連通している。環状配管40に接続配管18が接続することで、接続配管18と環状配管40とにより略T字状部41が形成されている。接続配管18が滑らかにつながる環状配管40の流路部40A側に蓄熱器42の低温側熱交換器46が向き、接続配管18と環状配管40との略T字状部41に突き当たるように延びる環状配管40の流路部40B側に蓄熱器42の高温側熱交換器44が向くようにコア部47は環状配管40に配置されている。したがって、第2変換部20の高温側熱交換器44は第2変換部20の低温側熱交換器46よりも高い温度を有することができる。前述のように、低温側熱交換器46は、第2熱源50からの熱を受け取り、常温を超えた所定温度域、例えば上記第1所定温度域にまで加熱され得、このように第1変換部14の高温側熱交換器26と同様に熱が入力される。よって、第2変換部20の高温側熱交換器44は、低温側熱交換器46を超える温度を生じさせることができ、熱エネルギーを出力することができる。 The other end of the connection pipe 18 (the end opposite to the one end of the connection pipe 18 connected to the thermoacoustic pipe 16) is connected to and communicates with the annular pipe 40 of the second conversion section 20. By connecting the connecting pipe 18 to the annular pipe 40, a substantially T-shaped portion 41 is formed by the connecting pipe 18 and the annular pipe 40. The low-temperature side heat exchanger 46 of the heat storage device 42 faces toward the flow path portion 40A side of the annular pipe 40 to which the connection pipe 18 smoothly connects, and extends so as to hit the substantially T-shaped portion 41 between the connection pipe 18 and the annular pipe 40. The core portion 47 is arranged in the annular pipe 40 such that the high temperature side heat exchanger 44 of the heat storage device 42 faces the flow path portion 40B side of the annular pipe 40. Therefore, the high temperature side heat exchanger 44 of the second conversion section 20 can have a higher temperature than the low temperature side heat exchanger 46 of the second conversion section 20 . As described above, the low temperature side heat exchanger 46 receives heat from the second heat source 50 and can be heated to a predetermined temperature range above room temperature, for example, the first predetermined temperature range, and thus performs the first conversion. Heat is input similarly to the high temperature side heat exchanger 26 of the section 14. Therefore, the high temperature side heat exchanger 44 of the second conversion section 20 can generate a temperature exceeding that of the low temperature side heat exchanger 46, and can output thermal energy.

以上説明した熱音響機関12によれば、上記構成を備えるので、熱音響機関12に関して、仮に第1熱源32及び第2熱源50が高温のガスを有するものであっても、そのガスを直接取り出すことなく、第1固体伝熱部材30を介して熱を取り出して、第1変換部14で音波を発生させ、その音波が伝達された第2変換部20では、第2固体伝熱部材48を介して熱を取り出して、高温側熱交換器44で熱エネルギーを発生させることができる。 According to the thermoacoustic engine 12 described above, since it has the above configuration, even if the first heat source 32 and the second heat source 50 have high-temperature gas, the gas can be directly extracted. The heat is extracted through the first solid heat transfer member 30 and the first conversion section 14 generates a sound wave, and the second conversion section 20 to which the sound wave is transmitted converts the second solid heat transfer member 48. The heat can be extracted through the high temperature side heat exchanger 44 to generate thermal energy.

次に、図1に示す熱音響機関12の構成が適用された、本開示の好適な実施形態を添付図面に基づいて詳細に説明する。 Next, a preferred embodiment of the present disclosure to which the configuration of the thermoacoustic engine 12 shown in FIG. 1 is applied will be described in detail based on the accompanying drawings.

図2に、一実施形態に係る熱処理炉60の概略構成図を示し、図3に、図2の熱処理炉60に設けられた熱音響機関12及びその周囲の拡大図を示す。熱処理炉60は、所謂黒鉛化炉であり、熱処理炉60に搬入された例えば炭素材料である被処理物Wに対して、加熱手段の一例であるヒータ62により所定の温度(例えば1000℃~3000℃)に設定された高温下の窒素ガスなどの中性ガス、アルゴンガス、ヘリウムガスなどの不活性ガス中で熱処理が行われる。なお、熱処理炉60は炭化炉であってもよく、この場合、熱処理炉60は、黒鉛化炉であるときと同じ構成を備え、黒鉛化炉であるときと異なる温度に、ヒータ62による加熱が行われ得る。 FIG. 2 shows a schematic configuration diagram of a heat treatment furnace 60 according to an embodiment, and FIG. 3 shows an enlarged view of the thermoacoustic engine 12 provided in the heat treatment furnace 60 of FIG. 2 and its surroundings. The heat treatment furnace 60 is a so-called graphitization furnace, and the workpiece W, which is a carbon material, for example, carried into the heat treatment furnace 60 is heated to a predetermined temperature (for example, 1000° C. to 3000° C.) by a heater 62, which is an example of a heating means. The heat treatment is performed in a neutral gas such as nitrogen gas, or an inert gas such as argon gas or helium gas at a high temperature set at ℃. Note that the heat treatment furnace 60 may be a carbonization furnace. In this case, the heat treatment furnace 60 has the same configuration as the graphitization furnace, and is heated by the heater 62 to a temperature different from that of the graphitization furnace. It can be done.

熱処理炉60は、上流側から下流側に向けて、入口シール室64、排気室66、加熱室68、冷却室70及び出口シール室72が順に配置されている。入口シール室64から出口シール室72にかけて駆動装置で駆動される無端環状の搬送ベルト74が設けられていて、これらにより、被熱処理物Wは、入口シール室64から出口シール室72まで搬送される。あるいは、搬送ベルト74を有さず、炉外に存在する巻取装置などによって、被熱処理物Wが移動されてもよい。この巻取装置は、例えば被熱処理物Wが糸状の場合に用いられ得る。 The heat treatment furnace 60 has an inlet seal chamber 64, an exhaust chamber 66, a heating chamber 68, a cooling chamber 70, and an outlet seal chamber 72 arranged in this order from the upstream side to the downstream side. An endless annular conveyor belt 74 driven by a drive device is provided from the inlet seal chamber 64 to the outlet seal chamber 72, and the heat-treated object W is conveyed from the inlet seal chamber 64 to the outlet seal chamber 72 by these belts. . Alternatively, the object to be heat-treated W may be moved by a winding device or the like that does not include the conveyor belt 74 and is located outside the furnace. This winding device can be used, for example, when the object W to be heat-treated is thread-like.

入口シール室64は、炉内の雰囲気に炉外の大気が侵入しづらくするように、複数のカーテン76を備える。この複数のカーテン76は、ラビリンス構造を有するように配置されるとよい。同様に、出口シール室72も、炉内の雰囲気に炉外の大気が侵入しづらくするように、複数のカーテン78を備える。この複数のカーテン78も、ラビリンス構造を有するように配置されるとよい。 The entrance seal chamber 64 includes a plurality of curtains 76 to make it difficult for the atmosphere outside the furnace to enter the atmosphere inside the furnace. The plurality of curtains 76 may be arranged to have a labyrinth structure. Similarly, the exit sealing chamber 72 is also provided with a plurality of curtains 78 to make it difficult for the atmosphere outside the furnace to enter the atmosphere inside the furnace. The plurality of curtains 78 may also be arranged to have a labyrinth structure.

加熱室68は、複数のヒータ62を備え、被熱処理物Wを加熱するように構成されている。冷却室70は、ここでは、ヒータ62などの加熱設備に加えて、冷却設備も有さず、投入雰囲気ガスによる冷却を促すように構成されている。しかし、水冷冷却装置、例えば水冷ジャケットなどが冷却室70に設けられてもよい。 The heating chamber 68 includes a plurality of heaters 62 and is configured to heat the object W to be heat treated. Here, the cooling chamber 70 has no cooling equipment in addition to heating equipment such as the heater 62, and is configured to promote cooling by the input atmospheric gas. However, a water-cooled cooling device, such as a water-cooled jacket, may also be provided in the cooling chamber 70.

中性ガス又は不活性ガスを供給するように構成された図示しないガス供給装置は、炉内雰囲気ガスとなるガス(図2の矢印A1参照)を冷却室70から炉内に入れ、上流側の加熱室68側に向けて流すように構成されている。したがって、冷却室70は、供給されたガスで一定温度以下の冷却状態に維持され、加熱室68ではヒータ62により炉内雰囲気ガスは加熱される。こうして加熱された炉内雰囲気ガスは、排気室66に流れることになる。 A gas supply device (not shown) configured to supply neutral gas or inert gas supplies gas (see arrow A1 in FIG. 2), which will become the furnace atmosphere gas, into the furnace from the cooling chamber 70, and It is configured to flow toward the heating chamber 68 side. Therefore, the cooling chamber 70 is maintained in a cooled state below a certain temperature by the supplied gas, and the furnace atmosphere gas is heated in the heating chamber 68 by the heater 62. The furnace atmosphere gas thus heated flows into the exhaust chamber 66.

排気室66は、ヒータ62などの加熱設備を備えないが、加熱されたガスにより加熱された状態にされる。このように、加熱室68に加えて、排気室66も、その炉内に高温の炉内雰囲気ガスが流れ、これら加熱室68及び排気室66はそれぞれ加熱部Hに相当する。 Although the exhaust chamber 66 is not equipped with heating equipment such as the heater 62, it is heated by the heated gas. In this way, in addition to the heating chamber 68, the exhaust chamber 66 also has a high-temperature furnace atmosphere gas flowing into the furnace, and the heating chamber 68 and the exhaust chamber 66 each correspond to the heating section H.

そして、排気室66には排気管80、つまり煙突に相当する構成が設けられ、その排気管80の先に二次燃焼室82が設けられている。排気管80には加熱室68を通過して排気室66に至った炉内雰囲気ガスが排ガスとして流入する。二次燃焼室82は、ヒータ62を備え、そこに排気管80を介して流入した排ガス中の不純物、例えばタール成分、一酸化炭素などを燃焼させて排出させるように構成されている。 The exhaust chamber 66 is provided with an exhaust pipe 80, that is, a structure corresponding to a chimney, and a secondary combustion chamber 82 is provided at the tip of the exhaust pipe 80. The furnace atmosphere gas that has passed through the heating chamber 68 and reached the exhaust chamber 66 flows into the exhaust pipe 80 as exhaust gas. The secondary combustion chamber 82 includes a heater 62 and is configured to combust and discharge impurities in the exhaust gas, such as tar components and carbon monoxide, which have flowed into the secondary combustion chamber through the exhaust pipe 80.

ここで、排気管80内を通過する過程で、排ガスの温度が下がると、タール成分が排気管66の内壁面に付着し、固化する可能性がある。このような現象の発生は、排ガスの好適な処理及び熱処理炉60の連続運転を確保するため、抑制する又は防ぐことが望まれる。そこで、本実施形態では、熱音響機関12の第2変換部20の高温側熱交換器44で発生させた熱エネルギーで、排気管80つまりそこを流れる排ガスを加熱する。この加熱を可能にするように、高温側熱交換器44と排気管80とは熱交換可能に構成され、例えば排気管80は鉄製又は銅製である。 Here, if the temperature of the exhaust gas decreases during the process of passing through the exhaust pipe 80, tar components may adhere to the inner wall surface of the exhaust pipe 66 and solidify. It is desirable to suppress or prevent the occurrence of such a phenomenon in order to ensure proper treatment of exhaust gas and continuous operation of the heat treatment furnace 60. Therefore, in this embodiment, the exhaust pipe 80, that is, the exhaust gas flowing therein, is heated by the thermal energy generated by the high temperature side heat exchanger 44 of the second conversion section 20 of the thermoacoustic engine 12. To enable this heating, the high temperature side heat exchanger 44 and the exhaust pipe 80 are configured to be able to exchange heat, and the exhaust pipe 80 is made of iron or copper, for example.

第1変換部14のコア部22の高温側熱交換器26から延出する第1固体伝熱部材30の先端は、熱処理炉60の加熱室68の貫通孔84に配置された第1伝熱仕切部材36に接するように設けられている。貫通孔84は、熱処理炉60の加熱室68の取付部34に、加熱室68の外壁86及びその外壁86の内側の断熱壁88を貫通するように形成され、加熱室68の内外を連通する。貫通孔84は、第1伝熱仕切部材36の一例である管部材90が隙間がないように取り付けられている。管部材90の閉じられた一端部つまり閉端部90Aは、加熱室68内に露出するように設けられ、炉内雰囲気ガスの熱を第1固体伝熱部材30に伝達することができる。なお、取付部34に設けられるのは貫通孔84に限定されず、凹部等であってもよく、管部材90は、加熱室68内に露出しないように設けられてもよい。これは、加熱室68の炉内温度、第1伝熱仕切部材36又は管部材90の材料特性などに応じて設計されるとよい。これは、取付部34に第1固体伝熱部材30が直接取り付けられる場合にも、同様である。 The tip of the first solid heat transfer member 30 extending from the high temperature side heat exchanger 26 of the core section 22 of the first conversion section 14 is connected to the first heat transfer member 30 disposed in the through hole 84 of the heating chamber 68 of the heat treatment furnace 60. It is provided so as to be in contact with the partition member 36. The through hole 84 is formed in the attachment part 34 of the heating chamber 68 of the heat treatment furnace 60 so as to penetrate through the outer wall 86 of the heating chamber 68 and the insulation wall 88 inside the outer wall 86, and communicates the inside and outside of the heating chamber 68. . A tube member 90, which is an example of the first heat transfer partition member 36, is attached to the through hole 84 so that there is no gap. The closed end portion 90A of the tube member 90 is provided so as to be exposed within the heating chamber 68, and can transfer the heat of the furnace atmosphere gas to the first solid heat transfer member 30. Note that what is provided in the attachment portion 34 is not limited to the through hole 84, but may be a recessed portion or the like, and the tube member 90 may be provided so as not to be exposed inside the heating chamber 68. This may be designed depending on the furnace temperature of the heating chamber 68, the material characteristics of the first heat transfer partition member 36 or the tube member 90, and the like. This also applies when the first solid heat transfer member 30 is directly attached to the attachment portion 34.

一方、第2変換部20のコア部47の低温側熱交換器46から延出する第2固体伝熱部材48の先端は、熱処理炉60の排気室66の貫通孔92に配置された第2伝熱仕切部材54に接するように設けられている。貫通孔92は、熱処理炉60の排気室66の取付部52に、排気室66の外壁94を貫通するように形成され、排気室66の内外を連通する。貫通孔92は、第2伝熱仕切部材54の一例である管部材96が隙間がないように取り付けられている。管部材96の閉じたれた一端部つまり閉端部96Aは、排気室66内に露出するように設けられ、炉内雰囲気ガスの熱を第2固体伝熱部材48に伝達することができる。なお、取付部52及びそこに形成される貫通孔92は、取付部34及びそこに形成される貫通孔84と同様に、加熱室68に設けられてもよい。このように、ここでは第1熱源32は加熱室68又はそこを流れる炉内雰囲気ガスであり、第2熱源50は排気室66又は加熱室68、そしてそれらを流れる炉内雰囲気ガスである。これにより、第1変換部14の高温側熱交換器26への入熱と、第2変換部20の低温側熱交換器46の入熱をほぼ等しくされるとよい。ただし、取付部52に設けられるのは貫通孔92に限定されず、凹部等であってもよく、管部材96は、排気室66内に露出しないように設けられてもよい。これは、排気室66又は加熱室68の炉内温度、第2伝熱仕切部材54又は管部材96の材料特性などに応じて設計されるとよい。これは、取付部52に第2固体伝熱部材48が直接取り付けられる場合にも、同様である。 On the other hand, the tip of the second solid heat transfer member 48 extending from the low-temperature side heat exchanger 46 of the core portion 47 of the second conversion unit 20 is connected to the second It is provided so as to be in contact with the heat transfer partition member 54. The through hole 92 is formed in the attachment portion 52 of the exhaust chamber 66 of the heat treatment furnace 60 so as to penetrate the outer wall 94 of the exhaust chamber 66, and communicates the inside and outside of the exhaust chamber 66. A tube member 96, which is an example of the second heat transfer partition member 54, is attached to the through hole 92 so that there is no gap. One closed end portion, that is, a closed end portion 96A of the tube member 96 is provided so as to be exposed in the exhaust chamber 66, and can transfer the heat of the furnace atmosphere gas to the second solid heat transfer member 48. Note that the attachment portion 52 and the through hole 92 formed therein may be provided in the heating chamber 68 similarly to the attachment portion 34 and the through hole 84 formed therein. Thus, here, the first heat source 32 is the heating chamber 68 or the furnace atmosphere gas flowing therein, and the second heat source 50 is the exhaust chamber 66 or the heating chamber 68 and the furnace atmosphere gas flowing therethrough. Thereby, the heat input to the high temperature side heat exchanger 26 of the first conversion section 14 and the heat input to the low temperature side heat exchanger 46 of the second conversion section 20 may be made approximately equal. However, what is provided in the attachment portion 52 is not limited to the through hole 92, but may be a recessed portion or the like, and the pipe member 96 may be provided so as not to be exposed inside the exhaust chamber 66. This may be designed depending on the furnace temperature of the exhaust chamber 66 or the heating chamber 68, the material characteristics of the second heat transfer partition member 54 or the pipe member 96, and the like. This also applies when the second solid heat transfer member 48 is directly attached to the attachment portion 52.

上記構成を備える熱処理炉60によれば、加熱室68又はそこを流れる炉内雰囲気ガスの熱が第1伝熱仕切部材36及び第1固体伝熱部材30を介して第1変換部14の高温側熱交換器26に伝達され、蓄熱器24の両端に温度勾配を生じさせ、よって第1変換部14で熱音響自励振動により熱音響用配管16内において音波を発生させることができる。第1変換部14の音波は、接続配管18を介して、第2変換部20の環状配管40に伝達される。第2変換部20の低温側熱交換器46には、第2伝熱仕切部材54及び第2固体伝熱部材48を介して排気室66又はそこを流れる炉内雰囲気ガス(あるいは、加熱室68又はそこを流れる炉内雰囲気ガス)の熱が伝達される。したがって、第2変換部20では音波が蓄熱器42に入力されることで、蓄熱器42内にて低温側から高温側へ熱が移動し、具体的には低温側熱交換器46の熱が高温側熱交換器44へ汲み上げられるため、高温側熱交換器44において低温側熱交換器46よりも高い温度を有する熱エネルギーを出力することができる。この熱エネルギーは排気管66及びそこを流れる排ガスの加熱に用いられる。 According to the heat treatment furnace 60 having the above configuration, the heat of the heating chamber 68 or the in-furnace atmosphere gas flowing therein is transferred to the high temperature of the first conversion section 14 via the first heat transfer partition member 36 and the first solid heat transfer member 30. The heat is transmitted to the side heat exchanger 26 to generate a temperature gradient at both ends of the heat storage device 24, so that the first converter 14 can generate sound waves in the thermoacoustic pipe 16 by thermoacoustic self-excited vibration. The sound waves from the first converting section 14 are transmitted to the annular pipe 40 of the second converting section 20 via the connecting pipe 18 . The low-temperature side heat exchanger 46 of the second conversion section 20 is connected to the exhaust chamber 66 or the furnace atmosphere gas flowing therethrough (or the heating chamber 68 or the heat of the furnace atmosphere gas flowing therein is transferred. Therefore, in the second conversion unit 20, by inputting the sound wave to the heat storage device 42, heat moves from the low temperature side to the high temperature side within the heat storage device 42, and specifically, the heat of the low temperature side heat exchanger 46 is transferred. Since the heat is pumped up to the high temperature side heat exchanger 44, thermal energy having a higher temperature than the low temperature side heat exchanger 46 can be outputted in the high temperature side heat exchanger 44. This thermal energy is used to heat the exhaust pipe 66 and the exhaust gas flowing therein.

以上、本開示に係る基本構成例、実施形態及びその変形例について説明したが、本開示はそれらに限定されない。本願の特許請求の範囲によって定義される本開示の精神及び範囲から逸脱しない限り、種々の置換、変更が可能である。本開示において説明した処理や手段は、技術的な矛盾が生じない限りにおいて、自由に組み合わせて実施することができる。 Although basic configuration examples, embodiments, and modifications thereof according to the present disclosure have been described above, the present disclosure is not limited thereto. Various substitutions and changes are possible without departing from the spirit and scope of the present disclosure as defined by the claims of this application. The processes and means described in this disclosure can be implemented in any combination as long as no technical contradiction occurs.

例えば、上記実施形態では、熱音響用配管16に設けられるコア部22の数は1つであったが、複数であってもよい。また、第2変換部20のコア部47の数も、1つでも複数でもよい。 For example, in the above embodiment, the number of core portions 22 provided in the thermoacoustic pipe 16 is one, but it may be plural. Further, the number of core sections 47 of the second conversion section 20 may be one or more.

また、上記実施形態では、熱処理炉60は黒鉛化炉(又は炭化炉)であったが、本開示の技術は黒鉛化炉、炭化炉以外の熱処理炉にも適用可能である。 Further, in the above embodiment, the heat treatment furnace 60 is a graphitization furnace (or carbonization furnace), but the technology of the present disclosure is also applicable to heat treatment furnaces other than graphitization furnaces and carbonization furnaces.

10 音波発生装置
12 熱音響機関
14 第1変換部
16 熱音響用配管
18 接続配管
20 第2変換部
22 コア部
24 蓄熱器
26 高温側熱交換器
28 低温側熱交換器
30 固体伝熱部材
34 取付部
36 伝熱仕切部材
40 環状配管
42 蓄熱器
44 高温側熱交換器
46 低温側熱交換器
47 コア部
48 固体伝熱部材
54 伝熱仕切部材
60 熱処理炉


10 Sound wave generator 12 Thermoacoustic engine 14 First conversion section 16 Thermoacoustic piping 18 Connection piping 20 Second conversion section 22 Core section 24 Heat storage device 26 High temperature side heat exchanger 28 Low temperature side heat exchanger 30 Solid heat transfer member 34 Attachment part 36 Heat transfer partition member 40 Annular pipe 42 Heat storage unit 44 High temperature side heat exchanger 46 Low temperature side heat exchanger 47 Core part 48 Solid heat transfer member 54 Heat transfer partition member 60 Heat treatment furnace


Claims (9)

熱から音波を発生させるように構成された第1変換部と、
前記第1変換部に接続配管を介して接続され、前記第1変換部で生成された音波からエネルギーを発生させるように構成された第2変換部と
を備え、
前記第1変換部は、
前記接続配管の一端が接続される環状の第1配管に設けられる第1蓄熱器と、
前記第1配管において前記第1蓄熱器の第1端部に連結される第1高温側熱交換器と、
前記第1配管において前記第1端部とは反対側の前記第1蓄熱器の第2端部に連結される第1低温側熱交換器と、
前記第1変換部の前記第1高温側熱交換器から延出するように設けられる第1固体伝熱部材であって、前記第1配管の外部に位置する第1熱源の第1取付部に取り付けられる第1固体伝熱部材と
を備え、
前記第2変換部は、
前記接続配管の他端が接続される環状の第2配管に設けられる第2蓄熱器と、
前記第2配管において前記第2蓄熱器の第1端部に連結される第2高温側熱交換器と、
前記第2配管において前記第2蓄熱器の前記第1端部とは反対側の前記第2蓄熱器の第2端部に連結される第2低温側熱交換器と、
前記第2変換部の前記第2低温側熱交換器から延出するように設けられる第2固体伝熱部材であって、前記第2配管の外部に位置する第2熱源の第2取付部に取り付けられる第2固体伝熱部材と
を備え、
前記第2変換部の前記第2低温側熱交換器は、前記第2熱源から熱を受け取り、常温を超えた所定温度域にまで加熱され、
前記第2変換部の前記第2高温側熱交換器は、熱エネルギーを出力する、
熱音響機関。
a first converter configured to generate sound waves from heat;
a second converting unit connected to the first converting unit via a connecting pipe and configured to generate energy from the sound wave generated in the first converting unit,
The first conversion unit is
a first heat storage device provided in an annular first pipe to which one end of the connection pipe is connected;
a first high temperature side heat exchanger connected to a first end of the first heat storage device in the first piping;
a first low-temperature side heat exchanger connected to a second end of the first heat storage device opposite to the first end in the first piping;
A first solid heat transfer member provided to extend from the first high-temperature side heat exchanger of the first conversion section, the first solid heat transfer member being attached to a first mounting portion of a first heat source located outside of the first piping. a first solid heat transfer member attached;
The second conversion unit is
a second heat storage device provided in an annular second pipe to which the other end of the connection pipe is connected;
a second high temperature side heat exchanger connected to the first end of the second heat storage device in the second piping;
a second low-temperature side heat exchanger connected to a second end of the second heat storage device opposite to the first end of the second heat storage device in the second piping;
A second solid heat transfer member provided to extend from the second low-temperature side heat exchanger of the second conversion section, the second solid heat transfer member being attached to a second attachment part of the second heat source located outside the second piping. a second solid heat transfer member attached;
The second low-temperature side heat exchanger of the second conversion section receives heat from the second heat source and is heated to a predetermined temperature range exceeding room temperature,
the second high temperature side heat exchanger of the second conversion section outputs thermal energy;
Thermoacoustic engine.
前記第1固体伝熱部材は、前記第1熱源の内外を連通する貫通孔を閉じるように前記第1熱源の前記第1取付部に配置される第1伝熱仕切部材と接するように設けられる、 The first solid heat transfer member is provided so as to be in contact with a first heat transfer partition member disposed at the first attachment portion of the first heat source so as to close a through hole communicating between the inside and outside of the first heat source. ,
請求項1に記載の熱音響機関。Thermoacoustic engine according to claim 1.
前記第2固体伝熱部材は、前記第2熱源の内外を連通する貫通孔を閉じるように前記第2熱源の前記第2取付部に配置される第2伝熱仕切部材と接するように設けられる、 The second solid heat transfer member is provided so as to be in contact with a second heat transfer partition member disposed at the second attachment portion of the second heat source so as to close a through hole communicating between the inside and outside of the second heat source. ,
請求項1又は2に記載の熱音響機関。The thermoacoustic engine according to claim 1 or 2.
前記第1固体伝熱部材は、前記第1熱源の内外を連通する貫通孔を閉じるように前記第1熱源の前記第1取付部に配置される第1伝熱仕切部材と接するように設けられ、
前記第1固体伝熱部材は、棒状部材であり、
前記第1伝熱仕切部材は、一端が閉じられた管部材である、
請求項1に記載の熱音響機関。
The first solid heat transfer member is provided so as to be in contact with a first heat transfer partition member disposed at the first attachment portion of the first heat source so as to close a through hole that communicates between the inside and outside of the first heat source. ,
The first solid heat transfer member is a rod-shaped member,
The first heat transfer partition member is a tube member with one end closed.
Thermoacoustic engine according to claim 1.
前記第2固体伝熱部材は、前記第2熱源の内外を連通する貫通孔を閉じるように前記第2熱源の前記第2取付部に配置される第2伝熱仕切部材と接するように設けられ、
前記第2固体伝熱部材は、棒状部材であり、
前記第2伝熱仕切部材は、一端が閉じられた管部材である、
請求項1又はに記載の熱音響機関。
The second solid heat transfer member is provided so as to be in contact with a second heat transfer partition member disposed at the second attachment portion of the second heat source so as to close a through hole that communicates between the inside and outside of the second heat source. ,
The second solid heat transfer member is a rod-shaped member,
The second heat transfer partition member is a tube member with one end closed.
The thermoacoustic engine according to claim 1 or 4 .
請求項1に記載の熱音響機関を備えた熱処理炉。 A heat treatment furnace comprising the thermoacoustic engine according to claim 1. 前記熱処理炉は炭化炉又は黒鉛化炉であり、上流側から下流側に向けて排気室、加熱室及び冷却室を備え、
前記第1変換部の前記第1高温側熱交換器から延出するように設けられた前記第1固体伝熱部材は、前記第1配管の外部に位置する前記加熱室の前記第1取付部に取り付けられ、
前記第2変換部の前記第2低温側熱交換器から延出するように設けられた前記第2固体伝熱部材は、前記第2配管の外部に位置する前記加熱室又は前記排気室の前記第2取付部に取り付けられ、
前記第2変換部の前記第2高温側熱交換器と前記排気室の排気管とは熱交換可能に構成されている、
請求項に記載の熱処理炉。
The heat treatment furnace is a carbonization furnace or a graphitization furnace, and includes an exhaust chamber, a heating chamber, and a cooling chamber from the upstream side to the downstream side,
The first solid heat transfer member provided to extend from the first high-temperature side heat exchanger of the first conversion section is attached to the first mounting section of the heating chamber located outside of the first piping. attached to
The second solid heat transfer member, which is provided to extend from the second low-temperature side heat exchanger of the second conversion section, is connected to the heating chamber or the exhaust chamber located outside the second piping. attached to the second mounting part,
The second high temperature side heat exchanger of the second conversion section and the exhaust pipe of the exhaust chamber are configured to be able to exchange heat.
The heat treatment furnace according to claim 6 .
熱から音波を発生させるように構成された第1変換部と、 a first converter configured to generate sound waves from heat;
前記第1変換部に接続配管を介して接続され、前記第1変換部で生成された音波からエネルギーを発生させるように構成された第2変換部と a second conversion section connected to the first conversion section via a connecting pipe and configured to generate energy from the sound waves generated in the first conversion section;
を備え、Equipped with
前記第1変換部は、 The first conversion unit is
前記接続配管の一端が接続される環状の第1配管に設けられる第1蓄熱器と、 a first heat storage device provided in an annular first pipe to which one end of the connection pipe is connected;
前記第1配管において前記第1蓄熱器の第1端部に連結される第1高温側熱交換器と、 a first high temperature side heat exchanger connected to a first end of the first heat storage device in the first piping;
前記第1配管において前記第1端部とは反対側の前記第1蓄熱器の第2端部に連結される第1低温側熱交換器と、 a first low-temperature side heat exchanger connected to a second end of the first heat storage device opposite to the first end in the first piping;
前記第1変換部の前記第1高温側熱交換器から延出するように設けられる第1固体伝熱部材であって、前記第1配管の外部に位置する第1熱源の第1取付部に取り付けられる第1固体伝熱部材と A first solid heat transfer member provided to extend from the first high-temperature side heat exchanger of the first conversion section, the first solid heat transfer member being attached to a first mounting portion of a first heat source located outside of the first piping. a first solid heat transfer member to be attached;
を備え、Equipped with
前記第2変換部は、 The second converter includes:
前記接続配管の他端が接続される環状の第2配管に設けられる第2蓄熱器と、 a second heat storage device provided in an annular second pipe to which the other end of the connection pipe is connected;
前記第2配管において前記第2蓄熱器の第1端部に連結される第2高温側熱交換器と、 a second high temperature side heat exchanger connected to the first end of the second heat storage device in the second piping;
前記第2配管において前記第2蓄熱器の前記第1端部とは反対側の前記第2蓄熱器の第2端部に連結される第2低温側熱交換器と、 a second low-temperature side heat exchanger connected to a second end of the second heat storage device opposite to the first end of the second heat storage device in the second piping;
前記第2変換部の前記第2低温側熱交換器から延出するように設けられる第2固体伝熱部材であって、前記第2配管の外部に位置する第2熱源の第2取付部に取り付けられる第2固体伝熱部材と A second solid heat transfer member provided to extend from the second low-temperature side heat exchanger of the second conversion section, the second solid heat transfer member being attached to a second attachment part of the second heat source located outside the second piping. a second solid heat transfer member attached;
を備え、Equipped with
前記第1固体伝熱部材は、前記第1熱源の内外を連通する貫通孔を閉じるように前記第1熱源の前記第1取付部に配置される第1伝熱仕切部材と接するように設けられ、 The first solid heat transfer member is provided so as to be in contact with a first heat transfer partition member disposed at the first attachment portion of the first heat source so as to close a through hole that communicates between the inside and outside of the first heat source. ,
前記第2変換部の前記第2高温側熱交換器は、熱エネルギーを出力する、 the second high temperature side heat exchanger of the second conversion section outputs thermal energy;
熱音響機関。Thermoacoustic engine.
熱から音波を発生させるように構成された第1変換部と、 a first converter configured to generate sound waves from heat;
前記第1変換部に接続配管を介して接続され、前記第1変換部で生成された音波からエネルギーを発生させるように構成された第2変換部と a second conversion section connected to the first conversion section via a connecting pipe and configured to generate energy from the sound waves generated in the first conversion section;
を備え、Equipped with
前記第1変換部は、 The first conversion unit is
前記接続配管の一端が接続される環状の第1配管に設けられる第1蓄熱器と、 a first heat storage device provided in an annular first pipe to which one end of the connection pipe is connected;
前記第1配管において前記第1蓄熱器の第1端部に連結される第1高温側熱交換器と、 a first high temperature side heat exchanger connected to a first end of the first heat storage device in the first piping;
前記第1配管において前記第1端部とは反対側の前記第1蓄熱器の第2端部に連結される第1低温側熱交換器と、 a first low-temperature side heat exchanger connected to a second end of the first heat storage device opposite to the first end in the first piping;
前記第1変換部の前記第1高温側熱交換器から延出するように設けられる第1固体伝熱部材であって、前記第1配管の外部に位置する第1熱源の第1取付部に取り付けられる第1固体伝熱部材と A first solid heat transfer member provided to extend from the first high-temperature side heat exchanger of the first conversion section, the first solid heat transfer member being attached to a first mounting portion of a first heat source located outside of the first piping. a first solid heat transfer member to be attached;
を備え、Equipped with
前記第2変換部は、 The second conversion unit is
前記接続配管の他端が接続される環状の第2配管に設けられる第2蓄熱器と、 a second heat storage device provided in an annular second pipe to which the other end of the connection pipe is connected;
前記第2配管において前記第2蓄熱器の第1端部に連結される第2高温側熱交換器と、 a second high temperature side heat exchanger connected to the first end of the second heat storage device in the second piping;
前記第2配管において前記第2蓄熱器の前記第1端部とは反対側の前記第2蓄熱器の第2端部に連結される第2低温側熱交換器と、 a second low-temperature side heat exchanger connected to a second end of the second heat storage device opposite to the first end of the second heat storage device in the second piping;
前記第2変換部の前記第2低温側熱交換器から延出するように設けられる第2固体伝熱部材であって、前記第2配管の外部に位置する第2熱源の第2取付部に取り付けられる第2固体伝熱部材と A second solid heat transfer member provided to extend from the second low-temperature side heat exchanger of the second conversion section, the second solid heat transfer member being attached to a second attachment part of the second heat source located outside the second piping. a second solid heat transfer member attached;
を備え、Equipped with
前記第2固体伝熱部材は、前記第2熱源の内外を連通する貫通孔を閉じるように前記第2熱源の前記第2取付部に配置される第2伝熱仕切部材と接するように設けられ、 The second solid heat transfer member is provided so as to be in contact with a second heat transfer partition member disposed at the second attachment portion of the second heat source so as to close a through hole that communicates between the inside and outside of the second heat source. ,
前記第2変換部の前記第2高温側熱交換器は、熱エネルギーを出力する、 the second high temperature side heat exchanger of the second conversion section outputs thermal energy;
熱音響機関。Thermoacoustic engine.
JP2023001388A 2023-01-06 2023-01-06 Thermoacoustic engine and heat treatment furnace Active JP7438581B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023001388A JP7438581B1 (en) 2023-01-06 2023-01-06 Thermoacoustic engine and heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023001388A JP7438581B1 (en) 2023-01-06 2023-01-06 Thermoacoustic engine and heat treatment furnace

Publications (1)

Publication Number Publication Date
JP7438581B1 true JP7438581B1 (en) 2024-02-27

Family

ID=90011453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023001388A Active JP7438581B1 (en) 2023-01-06 2023-01-06 Thermoacoustic engine and heat treatment furnace

Country Status (1)

Country Link
JP (1) JP7438581B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351223A (en) 2004-06-11 2005-12-22 Toyota Motor Corp Thermal acoustic engine
JP2018044730A (en) 2016-09-15 2018-03-22 株式会社ジェイテクト Transport device
JP2018091580A (en) 2016-12-06 2018-06-14 株式会社Soken Thermoacoustic engine
WO2019102564A1 (en) 2017-11-23 2019-05-31 中央精機株式会社 Thermoacoustic engine
JP2019207040A (en) 2018-05-28 2019-12-05 株式会社Soken Thermoacoustic device
JP2020183849A (en) 2019-05-09 2020-11-12 株式会社ジェイテクト Thermoacoustic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351223A (en) 2004-06-11 2005-12-22 Toyota Motor Corp Thermal acoustic engine
JP2018044730A (en) 2016-09-15 2018-03-22 株式会社ジェイテクト Transport device
JP2018091580A (en) 2016-12-06 2018-06-14 株式会社Soken Thermoacoustic engine
WO2019102564A1 (en) 2017-11-23 2019-05-31 中央精機株式会社 Thermoacoustic engine
JP2019207040A (en) 2018-05-28 2019-12-05 株式会社Soken Thermoacoustic device
JP2020183849A (en) 2019-05-09 2020-11-12 株式会社ジェイテクト Thermoacoustic device

Similar Documents

Publication Publication Date Title
EP0895030B1 (en) Steam cooling method for gas turbine combustor and apparatus therefor
US2404938A (en) Gas turbine plant
CN109312964B (en) Thermoacoustic engine and design method thereof
JP6152296B2 (en) Integrated gas cooling system for electric arc furnaces
JP7438581B1 (en) Thermoacoustic engine and heat treatment furnace
JP5357866B2 (en) A system for generating power, in particular electric power, by means of a gas turbine and a regenerative heat exchanger
JP7374534B1 (en) Sonic generator, thermoacoustic engine and heat treatment furnace
JP2001280863A5 (en)
CN107614868B (en) Thermoacoustic power generation system
JP2014222128A (en) Intake air cooling device and cooling method in air compressor
EP2746549B1 (en) Catalytic converter apparatus
JP2011112003A (en) Co2 heater
US20220190227A1 (en) Tubular heat exchanger with thermoelectric power generation function
KR20090028784A (en) A stirling engine assembly
US20230366635A1 (en) Modular thermoacoustic energy converter
JPS5813902A (en) Waste heat recovering heat exchanger
US10539045B2 (en) System for recovering thermal energy produced in pyrometallurgical process plants or similar, to convert same into, or generate, electrical energy
JP2005042961A (en) Waste heat recovery boiler and operating method thereof
JP2002061540A (en) Direct power generating method utilizing high temperature exhaust gas system in melting furnace
JP3365862B2 (en) Gas turbine device with air-cooled tube nest combustion type combustor
JP3167708B2 (en) Method and apparatus for recovering generated gas energy from high pressure metallurgical furnace
JP4376137B2 (en) Power generation system
JP2019086176A5 (en)
JP2006086419A (en) Exhaust heat collection equipment
JP3633667B2 (en) Support structure of heat transfer panel in exhaust heat recovery boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240206

R150 Certificate of patent or registration of utility model

Ref document number: 7438581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150