WO2019087952A1 - Industrial furnace - Google Patents

Industrial furnace Download PDF

Info

Publication number
WO2019087952A1
WO2019087952A1 PCT/JP2018/039815 JP2018039815W WO2019087952A1 WO 2019087952 A1 WO2019087952 A1 WO 2019087952A1 JP 2018039815 W JP2018039815 W JP 2018039815W WO 2019087952 A1 WO2019087952 A1 WO 2019087952A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound wave
pipe
input loop
conversion unit
inputting
Prior art date
Application number
PCT/JP2018/039815
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 大野
内田 和秀
卓哉 布施
基紘 白井
大輔 加藤
秀和 坂齊
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019087952A1 publication Critical patent/WO2019087952A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Definitions

  • the present disclosure relates to an industrial furnace that generates cold heat or electric power from waste heat generated in a year-round furnace facility.
  • Patent Document 1 proposes a cooling system that generates cold heat using exhaust heat of an exhaust source.
  • the cold generated by the cooling system is used, for example, for air conditioning.
  • waste heat is always discharged from the furnace facility in the furnace facility that operates throughout the year. Therefore, it is desirable to effectively use waste heat regardless of time.
  • this indication aims at providing an industrial furnace which can raise the effective use effect of waste heat regardless of time.
  • the industrial furnace generates exhaust gas temperature passing through the exhaust pipe for passing the waste heat generated in the year-round furnace facility and generates a temperature gradient through the exhaust pipe.
  • the first conversion unit for generating a sound wave by thermoacoustic self-excited vibration
  • the connection pipe for passing the sound wave generated by the first conversion unit, and any one of cold heat and electric power from the sound wave passing through the connection pipe
  • a second conversion unit that generates both.
  • the first conversion unit is configured to generate a sound wave by thermoacoustic self-excited vibration from waste heat of the exhaust pipe, cold heat or electric power can be generated from the waste heat throughout the year. Therefore, in an industrial furnace equipped with an exhaust pipe, the effective utilization effect of waste heat can be enhanced regardless of the time.
  • the drawing is It is a figure showing an industrial furnace concerning a 1st embodiment. It is a figure showing an industrial furnace concerning a 2nd embodiment. It is a figure showing an industrial furnace concerning a 3rd embodiment. It is a figure showing the modification concerning a 3rd embodiment. It is a figure showing the modification concerning a 3rd embodiment. It is a figure showing the modification concerning a 3rd embodiment. It is a figure showing an industrial furnace concerning a 4th embodiment. It is a figure showing an industrial furnace concerning a 5th embodiment. It is a figure showing an industrial furnace concerning a 6th embodiment.
  • the industrial furnace according to the present embodiment is a facility equipped with furnace equipment for heating in the process of manufacturing a product.
  • the industrial furnace 1 includes a furnace facility 100, exhaust pipes 101, 102, 103, a first conversion unit 200, a connection pipe 300, and a second conversion unit 400.
  • the furnace facility 100 is an industrial facility that operates year-round.
  • the furnace facility 100 is configured as a facility that brazes a heat exchanger, for example.
  • the furnace facility 100 includes a degreasing facility 104, a binder removal facility 105, air-breaking facilities 106 and 107, a brazing facility 108, a cooling cooler 109, and a cooling facility 110.
  • Each of the facilities 104 to 110 is a general facility for performing brazing.
  • Each facility 104-110 is configured to complete brazing of each part while introducing and moving the product.
  • Each of the facilities 104 to 110 is equipped with a facility for heating according to the process.
  • exhaust pipes 101 to 103 are connected to the degreasing facility 104, the binder removal facility 105, and the air-breaking facility 107, respectively, through which waste heat generated in the product manufacturing process is passed.
  • the waste heat is discharged from the industrial furnace 1 in a state of being contained in gas or liquid.
  • the heated gas is released to the atmosphere.
  • the exhaust pipes 101 to 103 always discharge waste heat, for example, around 300 ° C.
  • waste heat of different temperatures may be discharged to the exhaust pipes 101 to 103, respectively.
  • the first conversion unit 200, the connection pipe 300, and the second conversion unit 400 constitute a thermoacoustic engine.
  • the first conversion unit 200, the connection pipe 300, and the second conversion unit 400 constitute a thermoacoustic refrigerator.
  • the first conversion unit 200 is an apparatus to which waste heat energy is input from the outside.
  • the second conversion unit 400 is a device that outputs cold energy to the outside.
  • the first conversion unit 200 receives waste heat passing through the exhaust pipes 101, 102, and 103 of the furnace facility 100 to generate a temperature gradient, thereby generating a sound wave by thermoacoustic self-excited vibration. That is, the first conversion unit 200 has a function of converting waste heat into sound waves.
  • the waste heat of the exhaust pipe 101 connected to the degreasing facility 104 is used.
  • the first conversion unit 200 includes an output loop pipe 201 and a motor 202.
  • the output loop pipe 201 is an annular pipe that is connected to the connection pipe 300 and outputs the generated sound wave to the connection pipe 300.
  • the prime mover 202 can convert waste heat into sound waves.
  • the prime mover 202 includes a high temperature side heat exchanger 203, a heat accumulator 204, and a low temperature side heat exchanger 205.
  • the prime mover 202 is disposed in the middle of the output loop pipe 201 along the longitudinal direction.
  • the heat accumulator 204 is sandwiched between the high temperature side heat exchanger 203 and the low temperature side heat exchanger 205. That is, the high temperature side heat exchanger 203 is connected to one end side of the heat accumulator 204, and the low temperature side heat exchanger 205 is connected to the other end side of the heat accumulator 204.
  • the high temperature side heat exchanger 203 is connected to the exhaust pipe 101 installed in the degreasing facility 104 of the furnace facility 100. Thereby, the high temperature side heat exchanger 403 inputs waste heat passing through the exhaust pipe 101.
  • the heat storage unit 204 generates a temperature gradient.
  • the heat accumulator 204 is formed with a large number of flow channels having a diameter equal to or less than the temperature boundary layer thickness.
  • a structure provided with fine flow paths such as a ceramic honeycomb, or a structure obtained by laminating fine metal mesh such as a stainless steel mesh can be used.
  • the low temperature side heat exchanger 205 is configured to maintain the low temperature by heat dissipation naturally or by circulating cooling water.
  • connection pipe 300 is a pipe for transmitting the sound wave generated by the first conversion unit 200 to the second conversion unit 400. Since the connection piping 300 can be arbitrarily configured in length, shape, and the like, the degree of freedom in layout when the first conversion unit 200 and the second conversion unit 400 are installed in the furnace facility 100 can be enhanced.
  • the second conversion unit 400 generates cold from the sound wave passing through the connection pipe 300. That is, the second conversion unit 400 has a function of converting sound waves into cold energy.
  • the second conversion unit 400 includes an input loop pipe 401 and a refrigerator 402.
  • the input loop pipe 401 is an annular pipe that is connected to the connection pipe 300 and that inputs sound waves from the connection pipe 300.
  • the refrigerator 402 can convert the sound waves input through the pipes 201, 300, and 401 into cold energy.
  • the refrigerator 402 includes a high temperature side heat exchanger 403, a heat accumulator 404, and a low temperature side heat exchanger 405.
  • the high temperature side heat exchanger 403, the heat accumulator 404, and the low temperature side heat exchanger 405 are disposed along the longitudinal direction in the middle of the input loop piping 401.
  • the high temperature side heat exchanger 403 is connected to one end side of the heat accumulator 404, and the low temperature side heat exchanger 405 is connected to the other end side of the heat accumulator 404.
  • the configuration of the heat storage unit 404 is the same as the heat storage unit 204 of the first conversion unit 200.
  • the high temperature side heat exchanger 403 and the low temperature side heat exchanger 405 are configured to maintain a predetermined temperature by natural heat dissipation or by circulating cooling water.
  • the output loop piping 201, the connection piping 300, and the input loop piping 401 constitute a sealed space.
  • a cylindrical stainless steel pipe can be used as each of the pipes 201, 300, and 401.
  • each of the pipes 201, 300, 401 encloses the working fluid in the internal space.
  • Each of the pipes 201, 300, 401 can transmit acoustic energy of a sound wave via the working fluid.
  • the working fluid one or more types of gas or a mixture of gas and a liquid such as water can be used.
  • the gas for example, low molecular weight inert gas such as helium, nitrogen, argon or the like or air can be used.
  • connection pipe 300 constitutes a resonance pipe. That is, the thermoacoustic refrigerator is configured as a double loop type in which the output loop piping 201 for the thermoacoustic engine and the input loop piping 401 for the thermoacoustic refrigerator are connected by the connection piping 300.
  • the above is the configuration of the industrial furnace 1.
  • waste heat in the industrial furnace 1 As mentioned above, the furnace installation 100 of the industrial furnace 1 operates year-round. Along with this, waste heat is always discharged from the exhaust pipe 101. That is, waste heat is constantly input to the high temperature side heat exchanger 203 of the first conversion unit 200. Thereby, a temperature gradient is formed in the heat storage unit 204 connected to the high temperature side heat exchanger 203.
  • thermoacoustic self-excited vibrations are generated. That is, in the heat accumulator 204, conversion from waste heat to sound waves is performed.
  • the sound wave generated by the first conversion unit 200 is transmitted from the output loop piping 201 to the input loop piping 401 of the second conversion unit 400 via the connection piping 300.
  • the sound waves generated by the first conversion unit 200 are transmitted to generate a temperature gradient at both ends.
  • the low temperature side heat exchange 405 side is lower in temperature than the high temperature side heat exchanger 403 side. Thereby, in the thermal storage device 404, conversion from sound waves to heat is performed. That is, cold is generated.
  • the refrigerator 402 As long as the waste heat input to the first conversion unit 200 is not stopped, throughout the year, the refrigerator 402 generates a temperature gradient by generating a temperature gradient by inputting an acoustic wave passing through the input loop piping 401. As described above, since cold heat can be generated from waste heat, cold heat can be effectively used for cooling and cooling processes and the like.
  • the first conversion unit 200 installed in the industrial furnace 1 is configured to generate a sound wave from thermoacoustic self-excited vibration from the waste heat of the exhaust pipe 101.
  • cold heat can be generated from waste heat throughout the year. That is, the thermoacoustic refrigerator can be driven by the waste heat discharged to the outside. Therefore, in the industrial furnace provided with the exhaust pipe 101, the effective utilization effect of the waste heat can be enhanced regardless of the time.
  • the second conversion unit 400 is configured as a generator 406.
  • the generator 406 is connected to the end of the connection pipe 300.
  • the generator 406 is configured to receive a sound wave from the connection pipe 300 and generate power from the vibration of the sound wave.
  • the first conversion unit 200, the connection pipe 300, and the generator 406 constitute a thermoacoustic generator.
  • a linear type that converts an oscillating flow of sound waves to an electromotive force of a coil or an impulse turbine type that converts an oscillating flow of sound waves to a rotational force in one direction can be used.
  • the second conversion unit 400 is configured to include both the refrigerator 402 and the generator 406.
  • the generator 406 is disposed in the middle of the connection pipe 300.
  • the generator 406 includes piping through which the sound wave passes, a vibrator that can vibrate in the sound wave transmission direction, and a coil disposed around the vibrator.
  • the generator 406 generates an electric power by inputting a sound wave from the connection pipe 300 and vibrating the vibrator. Although a part of the energy of the sound wave is converted into the vibration of the vibrator, a part of the sound wave that does not contribute to the vibration of the vibrator passes through the generator 406.
  • the refrigerator 402 is disposed in the middle of the input loop pipe 401. Therefore, the refrigerator 402 receives an acoustic wave passing through the input loop pipe 401 to generate cold heat.
  • the generator 406 generates electric power from part of the sound wave passing through the connection pipe 300, and the refrigerator 402 generates cold from the sound wave not converted to electric power by the generator 406.
  • both cold energy and electric power can be generated from waste heat.
  • cold heat and power can be used properly according to the demand for use. That is, the amount of power to be generated and the amount of cold energy can be made variable.
  • the generator 406 may be disposed in the middle of the input loop piping 401.
  • the generator 406 generates power from the sound waves passing through the input loop tubing 401.
  • the refrigerator 402 generates cold from the sound waves that do not contribute to the power generation of the generator 406 among the sound waves passing through the input loop piping 401.
  • the generator 406 may be disposed in the middle of the output loop pipe 201.
  • the generator 406 generates power from the sound waves passing through the output loop tubing 201.
  • sound waves that do not contribute to the power generation of the generator 406 are input to the refrigerator 402 via the connection pipe 300 and the input loop pipe 401.
  • connection piping 300 contains branching part 301 which branched from the connection piping 300 concerned.
  • the generator 406 is connected to the end of the branch unit 301.
  • the generator 406 generates power from the sound wave passing through the branch portion 301.
  • the furnace equipment 100 includes a ventilation pipe 111 connected to the cooling equipment 110 and a blower 112 disposed in the ventilation pipe 111.
  • the cooling facility 110 is a facility for performing a cooling process for cooling a product in the manufacturing process.
  • the first conversion unit 200 includes a plurality of prime movers 202.
  • the first conversion unit 200 includes three prime movers 202 corresponding to the three exhaust pipes 101 to 103, respectively.
  • Each high temperature side heat exchanger 203 of each motor 202 is connected to each exhaust pipe 101-103.
  • the three prime movers 202 are connected in series by being disposed in the middle of the input loop piping 401. According to this, since each prime mover 202 oscillates at a low temperature, it is possible to increase the amount of heat input when the temperature of the waste heat is high. Specifically, the heat amount corresponding to the temperature difference between the temperature of the waste heat and the operating temperature of the prime mover 202 is input from the high temperature side heat exchangers 203 of the prime movers 202 to the thermoacoustic engine. Since the operating temperature of each motor 202 can be lowered by connecting the plurality of motors 202 in series, the amount of heat input to the thermoacoustic device can be increased. As a result, there is an advantage that cold energy and electric energy can be increased.
  • the refrigerator 402 of the second conversion unit 400 is connected to the vent pipe 111 of the cooling device 110.
  • the low temperature side heat exchanger 405 of the refrigerator 402 is connected so as to be able to exchange heat with the gas passing through the vent pipe 111.
  • the low temperature side heat exchanger 405 is configured such that the gas passing through the vent pipe 111 can exchange heat with the fins. Thereby, the gas passing through the ventilation pipe 111 can be cooled to the outside air temperature or less.
  • the furnace installation 100 includes a private room 500.
  • the private room 500 is a space surrounded by walls, such as a meeting room, for example.
  • the low temperature side heat exchanger 405 of the refrigerator 402 of the second conversion unit 400 is configured to be able to supply cold to the individual chamber 500.
  • the furnace installation 100 includes a heater 113 for heating.
  • the heater 113 is one of the equipment for performing heating.
  • the heater 113 is provided, for example, in the degreasing facility 104 and the binder removal facility 105.
  • the generator 406 also includes an electric wire 407 connected to the heater 113. Therefore, the generator 406 heats the heater 113 by supplying power to the heater 113 via the electric wire 407.
  • the heater 113 can be heated by the power generated from the waste heat, the operating power of the furnace facility 100 can be reduced.
  • the configuration of the industrial furnace 1 shown in each of the above embodiments is an example, and is not limited to the configuration described above, and may be another configuration that can realize the present disclosure.
  • the modification of the said embodiment is described.
  • the industrial furnace 1 may be any facility provided with the exhaust pipes 101 to 103, and the furnace facility 100 may be configured as a facility other than the brazing apparatus.
  • the output loop piping 201 may be connected in parallel to the connection piping 300, and the motor 202 may be provided in each output loop piping 201.
  • the input loop piping 401 may be connected in parallel to the connection piping 300, and the refrigerator 402 may be provided in each input loop piping 401. That is, the motor 202 and the refrigerator 402 may be provided in parallel.
  • the generator 406 may be provided in all the output loop piping 201 and the input loop piping 401, or may be provided in a specific output loop piping 201 or the input loop piping 401. Since the refrigerator 402 and the generator 406 can be installed in each of the exhaust pipes 101 to 103, there is an advantage that the degree of freedom in installing the thermoacoustic engine in the furnace facility 100 is increased.
  • the fourth to fifth embodiments can be combined with the third embodiment.
  • the fourth to sixth embodiments may be combined with each other.
  • the generator 406 may be provided in the middle of the connection piping 300 in the fourth and fifth embodiments, or the generator 406 may be provided in the output loop piping 201 and the input loop piping 401 as in the third embodiment. Also good.
  • the input loop piping 401 may be configured in parallel, or one low temperature side heat exchanger 405 may be connected to both the trachea 111 and the individual chamber 500 through Also good.

Abstract

An industrial furnace comprising: exhaust pipes (101, 102, 103) through which passes waste heat generated in furnace equipment (100) operating year-round; a first conversion unit (200) into which the waste heat passing through the exhaust pipes is input, generating a temperature gradient and thereby generating sound waves due to thermoacoustic self-induced oscillations; connection piping (300) through which the sound waves generated in the first conversion unit pass; and a second conversion unit (400) that generates cold energy and/or electricity from the sound waves passing through the connection piping.

Description

工業炉Industrial furnace 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年11月2日に出願された日本特許出願番号2017-212496号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-212496 filed on November 2, 2017, the contents of which are incorporated herein by reference.
 本開示は、通年で稼働する炉設備において発生する廃熱から冷熱あるいは電力を発生させる工業炉に関する。 The present disclosure relates to an industrial furnace that generates cold heat or electric power from waste heat generated in a year-round furnace facility.
 従来より、排気源の排熱を利用して冷熱を生成する冷却システムが、例えば特許文献1で提案されている。冷却システムで生成される冷熱は、例えば空調に利用される。 BACKGROUND ART Conventionally, for example, Patent Document 1 proposes a cooling system that generates cold heat using exhaust heat of an exhaust source. The cold generated by the cooling system is used, for example, for air conditioning.
特開2016-80310号公報JP, 2016-80310, A
 しかしながら、上記従来の技術では、冷熱が空調に不要な時期では、そもそも冷熱の生成が不要になる。このため、排熱源の排熱が有効利用されない時期が生じてしまう。 However, in the above-mentioned prior art, at the time when cold energy is unnecessary for air conditioning, the generation of cold energy is not necessary from the beginning. For this reason, the time when the exhaust heat of the exhaust heat source is not effectively used will occur.
 また、通年で稼働する炉設備においては、常時、廃熱が炉施設から排出される。このため、時期にかかわらずに廃熱を有効利用することが望まれている。 In addition, waste heat is always discharged from the furnace facility in the furnace facility that operates throughout the year. Therefore, it is desirable to effectively use waste heat regardless of time.
 本開示は上記点に鑑み、時期にかかわらずに廃熱の有効利用効果を高めることができる工業炉を提供することを目的とする。 In light of the above-mentioned point, this indication aims at providing an industrial furnace which can raise the effective use effect of waste heat regardless of time.
 上記目的を達成するため、本開示の1つの態様では、工業炉は、通年で稼働する炉設備において発生する廃熱を通す排気管と、排気管を通る廃熱を入力して温度勾配を発生させることで熱音響自励振動による音波を発生させる第1変換部と、第1変換部で生成された音波を通過させる接続配管と、接続配管を通過する音波から冷熱及び電力のいずれか一方または両方を発生させる第2変換部と、を備えている。 In order to achieve the above object, in one aspect of the present disclosure, the industrial furnace generates exhaust gas temperature passing through the exhaust pipe for passing the waste heat generated in the year-round furnace facility and generates a temperature gradient through the exhaust pipe. The first conversion unit for generating a sound wave by thermoacoustic self-excited vibration, the connection pipe for passing the sound wave generated by the first conversion unit, and any one of cold heat and electric power from the sound wave passing through the connection pipe And a second conversion unit that generates both.
 これによると、第1変換部が排気管の廃熱から熱音響自励振動による音波を発生させる構成になっているので、通年で廃熱から冷熱あるいは電力を発生させることができる。したがって、排気管を備えた工業炉において、時期にかかわらずに廃熱の有効利用効果を高めることができる。 According to this, since the first conversion unit is configured to generate a sound wave by thermoacoustic self-excited vibration from waste heat of the exhaust pipe, cold heat or electric power can be generated from the waste heat throughout the year. Therefore, in an industrial furnace equipped with an exhaust pipe, the effective utilization effect of waste heat can be enhanced regardless of the time.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1実施形態に係る工業炉を示した図である。 第2実施形態に係る工業炉を示した図である。 第3実施形態に係る工業炉を示した図である 第3実施形態に係る変形例を示した図である。 第3実施形態に係る変形例を示した図である。 第3実施形態に係る変形例を示した図である。 第4実施形態に係る工業炉を示した図である。 第5実施形態に係る工業炉を示した図である。 第6実施形態に係る工業炉を示した図である。
The above object and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the attached drawings. The drawing is
It is a figure showing an industrial furnace concerning a 1st embodiment. It is a figure showing an industrial furnace concerning a 2nd embodiment. It is a figure showing an industrial furnace concerning a 3rd embodiment. It is a figure showing the modification concerning a 3rd embodiment. It is a figure showing the modification concerning a 3rd embodiment. It is a figure showing the modification concerning a 3rd embodiment. It is a figure showing an industrial furnace concerning a 4th embodiment. It is a figure showing an industrial furnace concerning a 5th embodiment. It is a figure showing an industrial furnace concerning a 6th embodiment.
 以下、複数の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
 以下、第1実施形態について図を参照して説明する。本実施形態に係る工業炉は、製品の製造過程で加熱を行うための炉設備を備えた施設である。
Hereinafter, a plurality of embodiments will be described based on the drawings. In the following embodiments, parts identical or equivalent to each other are denoted by the same reference numerals in the drawings.
First Embodiment
Hereinafter, a first embodiment will be described with reference to the drawings. The industrial furnace according to the present embodiment is a facility equipped with furnace equipment for heating in the process of manufacturing a product.
 図1に示されるように、工業炉1は、炉設備100、排気管101、102、103、第1変換部200、接続配管300、及び第2変換部400を備えている。 As shown in FIG. 1, the industrial furnace 1 includes a furnace facility 100, exhaust pipes 101, 102, 103, a first conversion unit 200, a connection pipe 300, and a second conversion unit 400.
 炉設備100は、通年で稼働する工業施設である。炉設備100は、例えば熱交換器等のろう付けを行う施設として構成されている。 The furnace facility 100 is an industrial facility that operates year-round. The furnace facility 100 is configured as a facility that brazes a heat exchanger, for example.
 炉設備100は、脱脂設備104、バインダ除去設備105、断気設備106、107、ろう付け設備108、除冷設備109、冷却設備110を含んでいる。各設備104~110は、ろう付けを行うための一般的な設備である。各設備104~110は、製品を導入し、移動させつつ、各部品のろう付けを完成させるように構成されている。各設備104~110には、工程に応じて、加熱のための設備が備えられている。 The furnace facility 100 includes a degreasing facility 104, a binder removal facility 105, air- breaking facilities 106 and 107, a brazing facility 108, a cooling cooler 109, and a cooling facility 110. Each of the facilities 104 to 110 is a general facility for performing brazing. Each facility 104-110 is configured to complete brazing of each part while introducing and moving the product. Each of the facilities 104 to 110 is equipped with a facility for heating according to the process.
 例えば、各設備104~110のうち脱脂設備104、バインダ除去設備105、断気設備107には、製品の製造過程において発生する廃熱を通す排気管101~103が接続されている。廃熱は、気体あるいは液体に含まれた状態で工業炉1から排出される。例えば、加熱されたガスが大気に放出される。各排気管101~103は、例えば300℃前後の廃熱を常時排出する。もちろん、排気管101~103毎に異なる温度の廃熱が排出されることがある。 For example, among the facilities 104 to 110, exhaust pipes 101 to 103 are connected to the degreasing facility 104, the binder removal facility 105, and the air-breaking facility 107, respectively, through which waste heat generated in the product manufacturing process is passed. The waste heat is discharged from the industrial furnace 1 in a state of being contained in gas or liquid. For example, the heated gas is released to the atmosphere. The exhaust pipes 101 to 103 always discharge waste heat, for example, around 300 ° C. Of course, waste heat of different temperatures may be discharged to the exhaust pipes 101 to 103, respectively.
 本実施形態では、第1変換部200、接続配管300、及び第2変換部400は、熱音響機関を構成している。本実施形態では、第1変換部200、接続配管300、及び第2変換部400は、熱音響冷凍機を構成している。第1変換部200は、外部から廃熱のエネルギーの入力が行われる装置である。第2変換部400は、外部に冷熱のエネルギーを出力する装置である。 In the present embodiment, the first conversion unit 200, the connection pipe 300, and the second conversion unit 400 constitute a thermoacoustic engine. In the present embodiment, the first conversion unit 200, the connection pipe 300, and the second conversion unit 400 constitute a thermoacoustic refrigerator. The first conversion unit 200 is an apparatus to which waste heat energy is input from the outside. The second conversion unit 400 is a device that outputs cold energy to the outside.
 第1変換部200は、炉設備100の排気管101、102、103を通る廃熱を入力して温度勾配を発生させることで熱音響自励振動による音波を発生させる。つまり、第1変換部200は、廃熱を音波に変換する機能を有する。本実施形態では、脱脂設備104に接続された排気管101の廃熱を利用する。 The first conversion unit 200 receives waste heat passing through the exhaust pipes 101, 102, and 103 of the furnace facility 100 to generate a temperature gradient, thereby generating a sound wave by thermoacoustic self-excited vibration. That is, the first conversion unit 200 has a function of converting waste heat into sound waves. In the present embodiment, the waste heat of the exhaust pipe 101 connected to the degreasing facility 104 is used.
 第1変換部200は、出力ループ配管201及び原動機202を含んでいる。出力ループ配管201は、接続配管300に接続されていると共に、生成された音波を接続配管300に出力する環状の管である。 The first conversion unit 200 includes an output loop pipe 201 and a motor 202. The output loop pipe 201 is an annular pipe that is connected to the connection pipe 300 and outputs the generated sound wave to the connection pipe 300.
 原動機202は、廃熱を音波に変換可能となっている。原動機202は、高温側熱交換器203、蓄熱器204、及び低温側熱交換器205を含んでいる。 The prime mover 202 can convert waste heat into sound waves. The prime mover 202 includes a high temperature side heat exchanger 203, a heat accumulator 204, and a low temperature side heat exchanger 205.
 原動機202は、出力ループ配管201の途中に長手方向に沿って配置されている。蓄熱器204は、高温側熱交換器203と低温側熱交換器205とに挟まれている。すなわち、蓄熱器204の一端側に高温側熱交換器203が接続され、蓄熱器204の他端側に低温側熱交換器205が接続されている。 The prime mover 202 is disposed in the middle of the output loop pipe 201 along the longitudinal direction. The heat accumulator 204 is sandwiched between the high temperature side heat exchanger 203 and the low temperature side heat exchanger 205. That is, the high temperature side heat exchanger 203 is connected to one end side of the heat accumulator 204, and the low temperature side heat exchanger 205 is connected to the other end side of the heat accumulator 204.
 高温側熱交換器203は、炉設備100の脱脂設備104に設置された排気管101に接続されている。これにより、高温側熱交換器403は、排気管101を通る廃熱を入力する。 The high temperature side heat exchanger 203 is connected to the exhaust pipe 101 installed in the degreasing facility 104 of the furnace facility 100. Thereby, the high temperature side heat exchanger 403 inputs waste heat passing through the exhaust pipe 101.
 蓄熱器204は、温度勾配を発生させるものである。蓄熱器204は、温度境界層厚さと同程度以下の径を有する流路が多数形成されたものである。蓄熱器204としては、例えばセラミックスハニカムのような細かい流路が設けられた構造体、あるいはステンレスメッシュのような目の細かい金網が積層された構造体等を用いることができる。 The heat storage unit 204 generates a temperature gradient. The heat accumulator 204 is formed with a large number of flow channels having a diameter equal to or less than the temperature boundary layer thickness. As the heat storage unit 204, for example, a structure provided with fine flow paths such as a ceramic honeycomb, or a structure obtained by laminating fine metal mesh such as a stainless steel mesh can be used.
 低温側熱交換器205は、自然放熱とするか、または冷却水が循環することで低温を維持するように構成されている。 The low temperature side heat exchanger 205 is configured to maintain the low temperature by heat dissipation naturally or by circulating cooling water.
 接続配管300は、第1変換部200で生成された音波を通過させて第2変換部400に伝達するための管である。接続配管300は長さや形状等を任意に構成することができるので、第1変換部200及び第2変換部400を炉設備100に設置する際のレイアウトの自由度を高めることができる。 The connection pipe 300 is a pipe for transmitting the sound wave generated by the first conversion unit 200 to the second conversion unit 400. Since the connection piping 300 can be arbitrarily configured in length, shape, and the like, the degree of freedom in layout when the first conversion unit 200 and the second conversion unit 400 are installed in the furnace facility 100 can be enhanced.
 第2変換部400は、接続配管300を通過する音波から冷熱を発生させる。つまり、第2変換部400は、音波を冷熱に変換する機能を有する。 The second conversion unit 400 generates cold from the sound wave passing through the connection pipe 300. That is, the second conversion unit 400 has a function of converting sound waves into cold energy.
 第2変換部400は、入力ループ配管401及び冷凍機402を含んでいる。入力ループ配管401は、接続配管300に接続されていると共に、接続配管300から音波を入力する環状の管である。 The second conversion unit 400 includes an input loop pipe 401 and a refrigerator 402. The input loop pipe 401 is an annular pipe that is connected to the connection pipe 300 and that inputs sound waves from the connection pipe 300.
 冷凍機402は、各配管201、300、401を介して入力された音波を冷熱に変換可能となっている。冷凍機402は、高温側熱交換器403、蓄熱器404、及び低温側熱交換器405を含んでいる。 The refrigerator 402 can convert the sound waves input through the pipes 201, 300, and 401 into cold energy. The refrigerator 402 includes a high temperature side heat exchanger 403, a heat accumulator 404, and a low temperature side heat exchanger 405.
 高温側熱交換器403、蓄熱器404、及び低温側熱交換器405は、入力ループ配管401の途中に長手方向に沿って配置されている。蓄熱器404の一端側に高温側熱交換器403が接続され、蓄熱器404の他端側に低温側熱交換器405が接続されている。 The high temperature side heat exchanger 403, the heat accumulator 404, and the low temperature side heat exchanger 405 are disposed along the longitudinal direction in the middle of the input loop piping 401. The high temperature side heat exchanger 403 is connected to one end side of the heat accumulator 404, and the low temperature side heat exchanger 405 is connected to the other end side of the heat accumulator 404.
 蓄熱器404の構成は、第1変換部200の蓄熱器204と同じである。高温側熱交換器403及び低温側熱交換器405は、自然放熱とするか、または冷却水が循環することで所定の温度を維持するように構成されている。 The configuration of the heat storage unit 404 is the same as the heat storage unit 204 of the first conversion unit 200. The high temperature side heat exchanger 403 and the low temperature side heat exchanger 405 are configured to maintain a predetermined temperature by natural heat dissipation or by circulating cooling water.
 出力ループ配管201、接続配管300、及び入力ループ配管401は密閉空間を構成している。各配管201、300、401として、例えば円筒形状のステンレス製配管を用いることができる。 The output loop piping 201, the connection piping 300, and the input loop piping 401 constitute a sealed space. For example, a cylindrical stainless steel pipe can be used as each of the pipes 201, 300, and 401.
 また、各配管201、300、401は、内部空間に作動流体を封入している。各配管201、300、401は、作動流体を介して音波の音響エネルギーを伝達可能となっている。作動流体としては、1種類以上の気体、または気体と水等の液体との混合物を用いることができる。気体としては、例えばヘリウム、窒素、アルゴン等の低分子量の不活性ガスや空気を用いることができる。 In addition, each of the pipes 201, 300, 401 encloses the working fluid in the internal space. Each of the pipes 201, 300, 401 can transmit acoustic energy of a sound wave via the working fluid. As the working fluid, one or more types of gas or a mixture of gas and a liquid such as water can be used. As the gas, for example, low molecular weight inert gas such as helium, nitrogen, argon or the like or air can be used.
 接続配管300は共鳴管を構成する。つまり、熱音響冷凍機は、熱音響原動機用の出力ループ配管201と熱音響冷凍機用の入力ループ配管401が接続配管300で接続されたダブルループ型として構成されている。以上が、工業炉1の構成である。 The connection pipe 300 constitutes a resonance pipe. That is, the thermoacoustic refrigerator is configured as a double loop type in which the output loop piping 201 for the thermoacoustic engine and the input loop piping 401 for the thermoacoustic refrigerator are connected by the connection piping 300. The above is the configuration of the industrial furnace 1.
 次に、工業炉1における廃熱の利用について説明する。上述のように、工業炉1の炉設備100は通年で稼働する。これに伴い、排気管101から廃熱が常時排出される。つまり、第1変換部200の高温側熱交換器203には廃熱が常時入力される。これにより、当該高温側熱交換器203に接続された蓄熱器204に温度勾配が形成される。 Next, utilization of waste heat in the industrial furnace 1 will be described. As mentioned above, the furnace installation 100 of the industrial furnace 1 operates year-round. Along with this, waste heat is always discharged from the exhaust pipe 101. That is, waste heat is constantly input to the high temperature side heat exchanger 203 of the first conversion unit 200. Thereby, a temperature gradient is formed in the heat storage unit 204 connected to the high temperature side heat exchanger 203.
 蓄熱器204では、作動流体の流通方向に温度勾配が形成されることで、内部に存在する作動流体の圧縮、加熱、膨張、冷却が行われ、熱音響自励振動である音波が発生する。つまり、蓄熱器204では、廃熱から音波への変換が行われる。 In the heat accumulator 204, a temperature gradient is formed in the flow direction of the working fluid, whereby compression, heating, expansion, and cooling of the working fluid present inside are performed, and sound waves that are thermoacoustic self-excited vibrations are generated. That is, in the heat accumulator 204, conversion from waste heat to sound waves is performed.
 第1変換部200で生成された音波は、出力ループ配管201から接続配管300を介して第2変換部400の入力ループ配管401に伝達される。 The sound wave generated by the first conversion unit 200 is transmitted from the output loop piping 201 to the input loop piping 401 of the second conversion unit 400 via the connection piping 300.
 第2変換部400の蓄熱器404では、第1変換部200で生成された音波が伝達されることで、両端に温度勾配が生じる。蓄熱器404は、低温側熱交換405側が高温側熱交換器403側よりも低温になる。これにより、蓄熱器404では、音波から熱への変換が行われる。つまり、冷熱が生成される。 In the heat storage unit 404 of the second conversion unit 400, the sound waves generated by the first conversion unit 200 are transmitted to generate a temperature gradient at both ends. In the heat accumulator 404, the low temperature side heat exchange 405 side is lower in temperature than the high temperature side heat exchanger 403 side. Thereby, in the thermal storage device 404, conversion from sound waves to heat is performed. That is, cold is generated.
 第1変換部200への廃熱の入力を停止しない限り、一年を通して、冷凍機402は入力ループ配管401を通る音波を入力して温度勾配を発生させることで冷熱を発生させる。このように、廃熱から冷熱を発生させることができるので、冷熱を冷房や冷却工程等に有効利用することができる。 As long as the waste heat input to the first conversion unit 200 is not stopped, throughout the year, the refrigerator 402 generates a temperature gradient by generating a temperature gradient by inputting an acoustic wave passing through the input loop piping 401. As described above, since cold heat can be generated from waste heat, cold heat can be effectively used for cooling and cooling processes and the like.
 以上説明したように、工業炉1に設置された第1変換部200が排気管101の廃熱から熱音響自励振動による音波を発生させる構成になっている。これにより、通年で廃熱から冷熱を発生させることができる。すなわち、外に排出される廃熱によって熱音響冷凍機を駆動することができる。したがって、排気管101を備えた工業炉において、時期にかかわらずに廃熱の有効利用効果を高めることができる。
(第2実施形態)
 本実施形態では、第1実施形態と異なる部分について説明する。図2に示されるように、第2変換部400は、発電機406として構成されている。発電機406は、接続配管300の終端に接続されている。
As described above, the first conversion unit 200 installed in the industrial furnace 1 is configured to generate a sound wave from thermoacoustic self-excited vibration from the waste heat of the exhaust pipe 101. Thereby, cold heat can be generated from waste heat throughout the year. That is, the thermoacoustic refrigerator can be driven by the waste heat discharged to the outside. Therefore, in the industrial furnace provided with the exhaust pipe 101, the effective utilization effect of the waste heat can be enhanced regardless of the time.
Second Embodiment
In this embodiment, parts different from the first embodiment will be described. As shown in FIG. 2, the second conversion unit 400 is configured as a generator 406. The generator 406 is connected to the end of the connection pipe 300.
 また、発電機406は、接続配管300から音波を入力して音波の振動から電力を発生させるように構成されている。本実施形態では、第1変換部200、接続配管300、及び発電機406は、熱音響発電機を構成している。 Further, the generator 406 is configured to receive a sound wave from the connection pipe 300 and generate power from the vibration of the sound wave. In the present embodiment, the first conversion unit 200, the connection pipe 300, and the generator 406 constitute a thermoacoustic generator.
 発電機406としては、音波の振動流をコイルの起電力に変換するリニア型や、音波の振動流を一方向の回転力に変換する衝動タービン型を用いることができる。 As the generator 406, a linear type that converts an oscillating flow of sound waves to an electromotive force of a coil or an impulse turbine type that converts an oscillating flow of sound waves to a rotational force in one direction can be used.
 以上の構成により、廃熱から電力を発生させることができるので、廃熱を電気として工業炉1の各施設に有効利用することができる。
(第3実施形態)
 本実施形態では、第1、第2実施形態と異なる部分について説明する。図3に示されるように、第2変換部400は、冷凍機402及び発電機406の両方を備えた構成になっている。
With the above configuration, since power can be generated from waste heat, waste heat can be effectively used as electricity in each facility of the industrial furnace 1.
Third Embodiment
In this embodiment, parts different from the first and second embodiments will be described. As shown in FIG. 3, the second conversion unit 400 is configured to include both the refrigerator 402 and the generator 406.
 発電機406は、接続配管300の途中に配置されている。例えば、発電機406は、音波が通る配管、音波の伝達方向に振動可能な振動子、及び振動子の周囲に配置されたコイルを含んでいる。これにより、発電機406は、接続配管300から音波を入力して振動子を振動させることにより電力を発生させる。音波のエネルギーの一部は振動子の振動に変換されるが、音波のうち振動子の振動に寄与しない分は発電機406を通過していく。 The generator 406 is disposed in the middle of the connection pipe 300. For example, the generator 406 includes piping through which the sound wave passes, a vibrator that can vibrate in the sound wave transmission direction, and a coil disposed around the vibrator. Thereby, the generator 406 generates an electric power by inputting a sound wave from the connection pipe 300 and vibrating the vibrator. Although a part of the energy of the sound wave is converted into the vibration of the vibrator, a part of the sound wave that does not contribute to the vibration of the vibrator passes through the generator 406.
 冷凍機402は、入力ループ配管401の途中に配置されている。したがって、冷凍機402は、入力ループ配管401を通る音波を入力して冷熱を発生させる。 The refrigerator 402 is disposed in the middle of the input loop pipe 401. Therefore, the refrigerator 402 receives an acoustic wave passing through the input loop pipe 401 to generate cold heat.
 以上の構成によると、発電機406は、接続配管300を通る音波の一部から電力を発生させ、冷凍機402は、発電機406で電力に変換されなかった音波から冷熱を発生させている。このように、廃熱から冷熱及び電力の両方を発生させることができる。また、冷熱及び電力を利用の要求に応じた使い分けが可能になる。すなわち、発生させる電力量と冷熱量を可変にすることができる。 According to the above configuration, the generator 406 generates electric power from part of the sound wave passing through the connection pipe 300, and the refrigerator 402 generates cold from the sound wave not converted to electric power by the generator 406. In this way, both cold energy and electric power can be generated from waste heat. In addition, cold heat and power can be used properly according to the demand for use. That is, the amount of power to be generated and the amount of cold energy can be made variable.
 第1の変形例として、図4に示されるように、発電機406は入力ループ配管401の途中に配置されていても良い。この構成では、発電機406は入力ループ配管401を通る音波から電力を発生させる。冷凍機402は、入力ループ配管401を通る音波のうち発電機406の発電に寄与しない音波から冷熱を発生させる。 As a first modification, as shown in FIG. 4, the generator 406 may be disposed in the middle of the input loop piping 401. In this configuration, the generator 406 generates power from the sound waves passing through the input loop tubing 401. The refrigerator 402 generates cold from the sound waves that do not contribute to the power generation of the generator 406 among the sound waves passing through the input loop piping 401.
 第2の変形例として、図5に示されるように、発電機406は出力ループ配管201の途中に配置されていても良い。この構成では、発電機406は出力ループ配管201を通る音波から電力を発生させる。音波のうち発電機406の発電に寄与しない音波は、接続配管300及び入力ループ配管401を介して冷凍機402に入力する。 As a second modification, as shown in FIG. 5, the generator 406 may be disposed in the middle of the output loop pipe 201. In this configuration, the generator 406 generates power from the sound waves passing through the output loop tubing 201. Among the sound waves, sound waves that do not contribute to the power generation of the generator 406 are input to the refrigerator 402 via the connection pipe 300 and the input loop pipe 401.
 第3の変形例として、図6に示されるように、接続配管300は、当該接続配管300から分岐した分岐部301を含んでいる。そして、発電機406は、分岐部301の終端に接続されている。よって、発電機406は、分岐部301を通る音波から電力を発生させる。
(第4実施形態)
 本実施形態では、第1~第3実施形態と異なる部分について説明する。図7に示されるように、炉設備100は、冷却設備110に接続された通気管111と、通気管111内に配置された送風機112と、を含んでいる。冷却設備110は、製造過程の製品を冷却させる冷却工程を実施するための施設である。
As a 3rd modification, as shown in Drawing 6, connection piping 300 contains branching part 301 which branched from the connection piping 300 concerned. The generator 406 is connected to the end of the branch unit 301. Thus, the generator 406 generates power from the sound wave passing through the branch portion 301.
Fourth Embodiment
In this embodiment, parts different from the first to third embodiments will be described. As shown in FIG. 7, the furnace equipment 100 includes a ventilation pipe 111 connected to the cooling equipment 110 and a blower 112 disposed in the ventilation pipe 111. The cooling facility 110 is a facility for performing a cooling process for cooling a product in the manufacturing process.
 第1変換部200は複数の原動機202を含んでいる。本実施形態では、第1変換部200は、3つの排気管101~103にそれぞれ対応した3つの原動機202を含んでいる。各原動機202の各高温側熱交換器203は、各排気管101~103に接続されている。 The first conversion unit 200 includes a plurality of prime movers 202. In the present embodiment, the first conversion unit 200 includes three prime movers 202 corresponding to the three exhaust pipes 101 to 103, respectively. Each high temperature side heat exchanger 203 of each motor 202 is connected to each exhaust pipe 101-103.
 また、3つの原動機202は入力ループ配管401の途中に配置されていることで、直列に接続されている。これによると、各原動機202が低温度で発振するため、廃熱の温度が高い場合には入熱量を増やすことができる。具体的には、各原動機202の各高温側熱交換器203から熱音響機関へは廃熱の温度と原動機202の作動温度との温度差に応じた熱量が入熱される。複数の原動機202が直列に接続されていることで各原動機202の作動温度を低くできるので、熱音響装置への入熱量を増やすことができる。その結果、冷熱エネルギーや電気エネルギーを増やすことができるというメリットがある。 Further, the three prime movers 202 are connected in series by being disposed in the middle of the input loop piping 401. According to this, since each prime mover 202 oscillates at a low temperature, it is possible to increase the amount of heat input when the temperature of the waste heat is high. Specifically, the heat amount corresponding to the temperature difference between the temperature of the waste heat and the operating temperature of the prime mover 202 is input from the high temperature side heat exchangers 203 of the prime movers 202 to the thermoacoustic engine. Since the operating temperature of each motor 202 can be lowered by connecting the plurality of motors 202 in series, the amount of heat input to the thermoacoustic device can be increased. As a result, there is an advantage that cold energy and electric energy can be increased.
 第2変換部400の冷凍機402は、冷却設備110の通気管111に接続されている。具体的には、冷凍機402の低温側熱交換器405が、通気管111を通過する気体と熱交換可能に接続されている。例えば、低温側熱交換器405は、通気管111を通る気体がフィンと熱交換できるように構成されている。これにより、通気管111を通過する気体を外気温度以下に冷やすことができる。 The refrigerator 402 of the second conversion unit 400 is connected to the vent pipe 111 of the cooling device 110. Specifically, the low temperature side heat exchanger 405 of the refrigerator 402 is connected so as to be able to exchange heat with the gas passing through the vent pipe 111. For example, the low temperature side heat exchanger 405 is configured such that the gas passing through the vent pipe 111 can exchange heat with the fins. Thereby, the gas passing through the ventilation pipe 111 can be cooled to the outside air temperature or less.
 以上の構成によると、冷凍機402で生成した冷熱から冷風を生成することができる。冷風は、通気管111内の送風機112によって冷却設備110に送風される。このため、冷却設備110の冷却効率が向上し、冷却工程を短縮することができる。また、冷風を作るための設備が不要になるので、冷却設備110を小型化できる。さらに、通気管111を通る冷風によって冷却設備110の冷却動力の一部を補うことができるので、冷却設備110の冷却動力を低減できるというメリットもある。
(第5実施形態)
 本実施形態では、第1実施形態~第4と異なる部分について説明する。図8に示されるように、炉設備100は、個室500を含んでいる。個室500は、例えば会議室等のように壁に囲まれた空間である。
According to the above configuration, cold air can be generated from the cold generated by the refrigerator 402. The cold air is blown to the cooling equipment 110 by the blower 112 in the ventilation pipe 111. Therefore, the cooling efficiency of the cooling facility 110 can be improved, and the cooling process can be shortened. In addition, since the equipment for producing cold air is not necessary, the cooling equipment 110 can be miniaturized. Furthermore, since a part of the cooling power of the cooling equipment 110 can be compensated by the cold air passing through the aeration pipe 111, there is an advantage that the cooling power of the cooling equipment 110 can be reduced.
Fifth Embodiment
In this embodiment, parts different from the first to fourth embodiments will be described. As shown in FIG. 8, the furnace installation 100 includes a private room 500. The private room 500 is a space surrounded by walls, such as a meeting room, for example.
 第2変換部400の冷凍機402の低温側熱交換器405は、冷熱を個室500に供給可能に構成されている。もちろん、低温側熱交換器405で生成された冷熱が個室500に直接供給されるのではなく、空調の冷風として個室500に供給されるように、冷風の温度、冷風の吹き出し方向、冷風の風量等の調整が可能になっている。 The low temperature side heat exchanger 405 of the refrigerator 402 of the second conversion unit 400 is configured to be able to supply cold to the individual chamber 500. Of course, the temperature of the cold air, the blowing direction of the cold air, the volume of the cold air so that the cold generated by the low temperature side heat exchanger 405 is not supplied directly to the room 500 but is supplied to the room 500 as cold air for air conditioning. Adjustment of etc. is possible.
 以上の構成により、冷熱を個室500の空調に利用することができる。このため、炉設備100の空調動力を低減することができる。
(第6実施形態)
 本実施形態では、第1~第5実施形態と異なる部分について説明する。図9に示されるように、炉設備100は、加熱用ヒータ113を含んでいる。加熱用ヒータ113は、加熱を行うための設備の一つである。加熱用ヒータ113は、例えば脱脂設備104及びバインダ除去設備105に設けられている。
With the above configuration, cold heat can be used for air conditioning of the individual room 500. For this reason, the air-conditioning motive power of the furnace installation 100 can be reduced.
Sixth Embodiment
In this embodiment, parts different from the first to fifth embodiments will be described. As shown in FIG. 9, the furnace installation 100 includes a heater 113 for heating. The heater 113 is one of the equipment for performing heating. The heater 113 is provided, for example, in the degreasing facility 104 and the binder removal facility 105.
 また、発電機406は、加熱用ヒータ113に接続された電線407を含んでいる。したがって、発電機406は、電線407を介して加熱用ヒータ113に電力を供給することにより加熱用ヒータ113を加熱する。 The generator 406 also includes an electric wire 407 connected to the heater 113. Therefore, the generator 406 heats the heater 113 by supplying power to the heater 113 via the electric wire 407.
 以上の構成によると、廃熱から生成された電力によって加熱用ヒータ113を加熱することができるので、炉設備100の稼働動力を低減することができる。 According to the above configuration, since the heater 113 can be heated by the power generated from the waste heat, the operating power of the furnace facility 100 can be reduced.
 上記各実施形態で示された工業炉1の構成は一例であり、上記で示した構成に限定されることなく、本開示を実現できる他の構成とすることもできる。上記実施形態の変形例について述べる。例えば、工業炉1は、排気管101~103を備えた施設であれば良く、炉設備100はろう付け装置以外の設備として構成されていても良い。 The configuration of the industrial furnace 1 shown in each of the above embodiments is an example, and is not limited to the configuration described above, and may be another configuration that can realize the present disclosure. The modification of the said embodiment is described. For example, the industrial furnace 1 may be any facility provided with the exhaust pipes 101 to 103, and the furnace facility 100 may be configured as a facility other than the brazing apparatus.
 また、原動機202を複数直列接続する構成を第1~第3、第6実施形態に適用しても良い。さらに、出力ループ配管201が接続配管300に対して並列に接続されると共に、各出力ループ配管201に原動機202が設けられていても良い。同様に、入力ループ配管401が接続配管300に対して並列に接続されると共に、各入力ループ配管401に冷凍機402が設けられていても良い。つまり、原動機202や冷凍機402を並列に設けても良い。この場合、発電機406は、全ての出力ループ配管201及び入力ループ配管401に設けられていても良いし、特定の出力ループ配管201や入力ループ配管401に設けられていても良い。それぞれの排気管101~103に冷凍機402や発電機406を設置できるので、炉設備100への熱音響機関の設置自由度が高くなるというメリットがある。 Furthermore, a configuration in which a plurality of prime movers 202 are connected in series may be applied to the first to third and sixth embodiments. Furthermore, the output loop piping 201 may be connected in parallel to the connection piping 300, and the motor 202 may be provided in each output loop piping 201. Similarly, the input loop piping 401 may be connected in parallel to the connection piping 300, and the refrigerator 402 may be provided in each input loop piping 401. That is, the motor 202 and the refrigerator 402 may be provided in parallel. In this case, the generator 406 may be provided in all the output loop piping 201 and the input loop piping 401, or may be provided in a specific output loop piping 201 or the input loop piping 401. Since the refrigerator 402 and the generator 406 can be installed in each of the exhaust pipes 101 to 103, there is an advantage that the degree of freedom in installing the thermoacoustic engine in the furnace facility 100 is increased.
 上記各実施形態は、適宜組み合わせて実施することができる。例えば、第3実施形態に第4~第5実施形態を組み合わせることができる。また、第4~第6実施形態を相互に組み合わせても良い。この場合、第4、第5実施形態における接続配管300の途中に発電機406を設けても良いし、第3実施形態のように出力ループ配管201や入力ループ配管401に発電機406を設けても良い。第4実施形態と第5実施形態とを組み合わせる場合は、入力ループ配管401を並列に構成しても良いし、1つの低温側熱交換器405を通気管111と個室500の両方に接続しても良い。 The above embodiments can be implemented in combination as appropriate. For example, the fourth to fifth embodiments can be combined with the third embodiment. Further, the fourth to sixth embodiments may be combined with each other. In this case, the generator 406 may be provided in the middle of the connection piping 300 in the fourth and fifth embodiments, or the generator 406 may be provided in the output loop piping 201 and the input loop piping 401 as in the third embodiment. Also good. When combining the fourth embodiment and the fifth embodiment, the input loop piping 401 may be configured in parallel, or one low temperature side heat exchanger 405 may be connected to both the trachea 111 and the individual chamber 500 through Also good.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and further, other combinations and forms including only one element, or more or less than these elements are also within the scope and the scope of the present disclosure.

Claims (11)

  1.  通年で稼働する炉設備(100)において発生する廃熱を通す排気管(101、102、103)と、
     前記排気管を通る前記廃熱を入力して温度勾配を発生させることで熱音響自励振動による音波を発生させる第1変換部(200)と、
     前記第1変換部で生成された前記音波を通過させる接続配管(300)と、
     前記接続配管を通過する前記音波から冷熱及び電力のいずれか一方または両方を発生させる第2変換部(400)と、
     を備えている工業炉。
    Exhaust pipes (101, 102, 103) for passing waste heat generated in the year-round furnace equipment (100);
    A first conversion unit (200) for generating a sound wave by thermoacoustic self-oscillation by generating the temperature gradient by inputting the waste heat passing through the exhaust pipe;
    A connection pipe (300) for passing the sound wave generated by the first conversion unit;
    A second conversion unit (400) generating cold heat and / or electric power from the sound wave passing through the connection pipe;
    Industrial furnace equipped with.
  2.  前記第2変換部は、
     前記接続配管から前記音波を入力する環状の入力ループ配管(401)と、
     前記入力ループ配管の途中に配置され、前記入力ループ配管を通る前記音波を入力して温度勾配を発生させることで前記冷熱を発生させる冷凍機(402)と、
     を含んでいる請求項1に記載の工業炉。
    The second conversion unit is
    An annular input loop pipe (401) for inputting the sound wave from the connection pipe;
    A refrigerator (402) disposed in the middle of the input loop piping and generating the cold heat by generating the temperature gradient by inputting the sound wave passing through the input loop piping;
    The industrial furnace according to claim 1, comprising
  3.  前記第2変換部は、前記接続配管から前記音波を入力して前記音波の振動から前記電力を発生させる発電機(406)として構成されている請求項1に記載の工業炉。 The industrial furnace according to claim 1, wherein the second conversion unit is configured as a generator (406) which receives the sound wave from the connection pipe and generates the electric power from the vibration of the sound wave.
  4.  前記第2変換部は、
     前記音波を入力して前記音波の振動から前記電力を発生させる発電機(406)と、
     前記音波を入力して温度勾配を発生させることで前記冷熱を発生させる冷凍機(402)と、
     を含んでいる請求項1に記載の工業炉。
    The second conversion unit is
    A generator (406) for generating the electric power from the vibration of the sound wave by inputting the sound wave;
    A refrigerator (402) for generating the cold energy by generating the temperature gradient by inputting the sound wave;
    The industrial furnace according to claim 1, comprising
  5.  前記第2変換部は、前記接続配管から前記音波を入力する環状の入力ループ配管(401)を含み、
     前記発電機は、前記接続配管の途中に配置され、前記接続配管を通る前記音波から前記電力を発生させ、
     前記冷凍機は、前記入力ループ配管の途中に配置され、前記入力ループ配管を通る前記音波を入力して前記冷熱を発生させる請求項4に記載の工業炉。
    The second conversion unit includes an annular input loop pipe (401) for inputting the sound wave from the connection pipe,
    The generator is disposed in the middle of the connection pipe and generates the electric power from the sound wave passing through the connection pipe.
    5. The industrial furnace according to claim 4, wherein the refrigerator is disposed in the middle of the input loop piping and generates the cold heat by inputting the sound wave passing through the input loop piping.
  6.  前記第2変換部は、前記接続配管から前記音波を入力する環状の入力ループ配管(401)を含み、
     前記発電機は、前記入力ループ配管の途中に配置され、前記入力ループ配管を通る前記音波から前記電力を発生させ、
     前記冷凍機は、前記入力ループ配管の途中に配置され、前記入力ループ配管を通る前記音波から前記冷熱を発生させる請求項4に記載の工業炉。
    The second conversion unit includes an annular input loop pipe (401) for inputting the sound wave from the connection pipe,
    The generator is disposed in the middle of the input loop piping and generates the electric power from the sound wave passing through the input loop piping.
    The industrial furnace according to claim 4, wherein the refrigerator is disposed in the middle of the input loop piping and generates the cold heat from the sound wave passing through the input loop piping.
  7.  前記第1変換部は、前記接続配管に前記音波を出力する環状の出力ループ配管(201)を含み、
     前記第2変換部は、前記接続配管から前記音波を入力する環状の入力ループ配管(401)を含み、
     前記発電機は、前記出力ループ配管の途中に配置され、前記出力ループ配管を通る前記音波から前記電力を発生させ、
     前記冷凍機は、前記入力ループ配管の途中に配置され、前記入力ループ配管を通る前記音波を入力して前記冷熱を発生させる請求項4に記載の工業炉。
    The first conversion unit includes an annular output loop pipe (201) that outputs the sound wave to the connection pipe,
    The second conversion unit includes an annular input loop pipe (401) for inputting the sound wave from the connection pipe,
    The generator is disposed in the middle of the output loop piping and generates the electric power from the sound wave passing through the output loop piping.
    5. The industrial furnace according to claim 4, wherein the refrigerator is disposed in the middle of the input loop piping and generates the cold heat by inputting the sound wave passing through the input loop piping.
  8.  前記接続配管は、当該接続配管から分岐した分岐部(301)を含み、
     前記第2変換部は、前記接続配管から前記音波を入力する環状の入力ループ配管(401)を含み、
     前記発電機は、前記分岐部の終端に接続され、前記分岐部を通る前記音波から前記電力を発生させ、
     前記冷凍機は、前記入力ループ配管の途中に配置され、前記入力ループ配管を通る前記音波を入力して前記冷熱を発生させる請求項4に記載の工業炉。
    The connection pipe includes a branch portion (301) branched from the connection pipe,
    The second conversion unit includes an annular input loop pipe (401) for inputting the sound wave from the connection pipe,
    The generator is connected to an end of the branch and generates the power from the sound wave passing through the branch;
    5. The industrial furnace according to claim 4, wherein the refrigerator is disposed in the middle of the input loop piping and generates the cold heat by inputting the sound wave passing through the input loop piping.
  9.  前記炉設備は、製造過程の製品を冷却させる冷却設備(110)と、前記冷却設備に接続された通気管(111)と、を含み、
     前記第2変換部は、前記接続配管から前記音波を入力する環状の入力ループ配管(401)と、前記入力ループ配管の途中に配置され、前記入力ループ配管を通る前記音波を入力して温度勾配を発生させることで前記冷熱を発生させる冷凍機(402)と、を含み、
     前記冷凍機は、前記音波を入力する高温側熱交換器(403)と、前記冷熱を発生させる低温側熱交換器(405)と、前記高温側熱交換器と前記低温側熱交換器とに挟まれていると共に温度勾配を発生させる蓄熱器(404)と、を含み、
     前記低温側熱交換器は、前記通気管を通過する気体と熱交換可能に接続されている請求項1、2、4ないし8のいずれか1つに記載の工業炉。
    The furnace facility includes a cooling facility (110) for cooling a product in the process of manufacture, and a vent pipe (111) connected to the cooling facility;
    The second conversion unit is disposed in the middle of the input loop pipe and an annular input loop pipe (401) for inputting the sound wave from the connection pipe, and receives the sound wave passing through the input loop pipe and receives a temperature gradient And a refrigerator (402) for generating the cold energy by generating
    The refrigerator includes a high temperature side heat exchanger (403) for inputting the sound wave, a low temperature side heat exchanger (405) for generating the cold heat, the high temperature side heat exchanger and the low temperature side heat exchanger. A heat accumulator (404) which is sandwiched and generates a temperature gradient,
    The industrial furnace according to any one of claims 1, 2, 4 to 8, wherein the low temperature side heat exchanger is connected so as to exchange heat with the gas passing through the vent pipe.
  10.  前記炉設備は、個室(500)を含み、
     前記第2変換部は、前記接続配管から前記音波を入力する環状の入力ループ配管(401)と、前記入力ループ配管の途中に配置され、前記入力ループ配管を通る前記音波を入力して温度勾配を発生させることで前記冷熱を発生させる冷凍機(402)と、を含み、
     前記冷凍機は、前記音波を入力する高温側熱交換器(403)と、前記冷熱を発生させる低温側熱交換器(405)と、前記高温側熱交換器と前記低温側熱交換器とに挟まれていると共に温度勾配を発生させる蓄熱器(404)と、を含み、
     前記低温側熱交換器は、前記冷熱を前記個室に供給可能に構成されている請求項1、2、4ないし9のいずれか1つに記載の工業炉。
    The furnace installation includes a private room (500),
    The second conversion unit is disposed in the middle of the input loop pipe and an annular input loop pipe (401) for inputting the sound wave from the connection pipe, and receives the sound wave passing through the input loop pipe and receives a temperature gradient And a refrigerator (402) for generating the cold energy by generating
    The refrigerator includes a high temperature side heat exchanger (403) for inputting the sound wave, a low temperature side heat exchanger (405) for generating the cold heat, the high temperature side heat exchanger and the low temperature side heat exchanger. A heat accumulator (404) which is sandwiched and generates a temperature gradient,
    The industrial furnace according to any one of claims 1, 2, 4 to 9, wherein the low temperature side heat exchanger is configured to be able to supply the cold heat to the individual chamber.
  11.  前記炉設備は、加熱用ヒータ(113)を含み、
     前記発電機は、前記加熱用ヒータに接続された電線(407)を含み、前記電線を介して前記電力を供給することにより前記加熱用ヒータを加熱する請求項3ないし8のいずれか1つに記載の工業炉。
    The furnace facility includes a heater (113) for heating,
    The generator according to any one of claims 3 to 8, wherein the generator includes a wire (407) connected to the heater, and the heater is heated by supplying the electric power through the wire. Industrial furnace described.
PCT/JP2018/039815 2017-11-02 2018-10-26 Industrial furnace WO2019087952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-212496 2017-11-02
JP2017212496A JP2019086176A (en) 2017-11-02 2017-11-02 Industrial furnace

Publications (1)

Publication Number Publication Date
WO2019087952A1 true WO2019087952A1 (en) 2019-05-09

Family

ID=66331825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039815 WO2019087952A1 (en) 2017-11-02 2018-10-26 Industrial furnace

Country Status (2)

Country Link
JP (1) JP2019086176A (en)
WO (1) WO2019087952A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223417A (en) * 1998-02-04 1999-08-17 Sumitomo Metal Ind Ltd Recovering method of low-temperature waste heat generated by iron making process
JP2001324242A (en) * 2000-05-15 2001-11-22 Shokuhin Sangyo Center Heating/processing apparatus for foods
JP2011208507A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Energy recovery method from exhaust heat of equipment high temperature part
JP2013050087A (en) * 2011-08-31 2013-03-14 Isuzu Motors Ltd Heat exchanger for thermoacoustic engine
JP2013071061A (en) * 2011-09-28 2013-04-22 Jfe Steel Corp Method for increasing permeation flow rate of membrane filtration module
JP2014222128A (en) * 2013-05-14 2014-11-27 Jfeスチール株式会社 Intake air cooling device and cooling method in air compressor
JP2016080310A (en) * 2014-10-21 2016-05-16 株式会社デンソー Cooling system
JP2016211517A (en) * 2015-05-13 2016-12-15 日本碍子株式会社 Water recovery device
JP2017106699A (en) * 2015-12-11 2017-06-15 日本特殊陶業株式会社 Thermoacoustic engine
JP2018123982A (en) * 2017-01-30 2018-08-09 大阪瓦斯株式会社 Steam generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223417A (en) * 1998-02-04 1999-08-17 Sumitomo Metal Ind Ltd Recovering method of low-temperature waste heat generated by iron making process
JP2001324242A (en) * 2000-05-15 2001-11-22 Shokuhin Sangyo Center Heating/processing apparatus for foods
JP2011208507A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Energy recovery method from exhaust heat of equipment high temperature part
JP2013050087A (en) * 2011-08-31 2013-03-14 Isuzu Motors Ltd Heat exchanger for thermoacoustic engine
JP2013071061A (en) * 2011-09-28 2013-04-22 Jfe Steel Corp Method for increasing permeation flow rate of membrane filtration module
JP2014222128A (en) * 2013-05-14 2014-11-27 Jfeスチール株式会社 Intake air cooling device and cooling method in air compressor
JP2016080310A (en) * 2014-10-21 2016-05-16 株式会社デンソー Cooling system
JP2016211517A (en) * 2015-05-13 2016-12-15 日本碍子株式会社 Water recovery device
JP2017106699A (en) * 2015-12-11 2017-06-15 日本特殊陶業株式会社 Thermoacoustic engine
JP2018123982A (en) * 2017-01-30 2018-08-09 大阪瓦斯株式会社 Steam generator

Also Published As

Publication number Publication date
JP2019086176A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
US9777951B2 (en) Thermoacoustic engine
US6560970B1 (en) Oscillating side-branch enhancements of thermoacoustic heat exchangers
Chen et al. Development and assessment of thermoacoustic generators operating by waste heat from cooking stove
JP7032987B2 (en) Thermoacoustic device
US10844847B2 (en) Thermoacoustic engine
JP5453950B2 (en) Thermoacoustic engine
JP6884491B2 (en) Thermoacoustic engine
JP2013234820A (en) Thermoacoustic engine
JP5423484B2 (en) Thermoacoustic engine
WO2018066250A1 (en) Energy conversion device
WO2019087952A1 (en) Industrial furnace
JP5526600B2 (en) Thermoacoustic engine
WO2018220981A1 (en) Thermoacoustic device
JP3216536U (en) Thermoacoustic engine
Hamood et al. Two-stage thermoacoustic electricity generator for waste heat recovery
JP5446498B2 (en) Thermoacoustic engine
Tiwatane et al. Thermoacoustic effect: the power of conversion of sound energy & heat energy
CN107614869B (en) Thermoacoustic power generation system
WO2018220980A1 (en) Vehicle temperature adjustment device
Hamood et al. Design of two-stage thermoacoustic stirling engine coupled with push-pull linear alternator for waste heat recovery
JP5768687B2 (en) Thermoacoustic refrigeration equipment
Ibrahim et al. Innovative solar-energy-driven power converter: Efficient operation of thermo-acoustic engines
JP6938095B2 (en) Thermoacoustic engine
JP2022065498A (en) Heat acoustic system, control method of heat acoustic system, and adjustment method of heat acoustic system
JP2021135005A (en) Thermoacoustic system and control method for thermoacoustic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874216

Country of ref document: EP

Kind code of ref document: A1