JP2013071061A - Method for increasing permeation flow rate of membrane filtration module - Google Patents

Method for increasing permeation flow rate of membrane filtration module Download PDF

Info

Publication number
JP2013071061A
JP2013071061A JP2011212509A JP2011212509A JP2013071061A JP 2013071061 A JP2013071061 A JP 2013071061A JP 2011212509 A JP2011212509 A JP 2011212509A JP 2011212509 A JP2011212509 A JP 2011212509A JP 2013071061 A JP2013071061 A JP 2013071061A
Authority
JP
Japan
Prior art keywords
membrane filtration
fluid
filtration module
temperature
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011212509A
Other languages
Japanese (ja)
Other versions
JP5799711B2 (en
Inventor
Makoto Ebihara
誠 海老原
Toshiki Manabe
俊樹 真鍋
Tatsuya Shimada
達哉 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011212509A priority Critical patent/JP5799711B2/en
Publication of JP2013071061A publication Critical patent/JP2013071061A/en
Application granted granted Critical
Publication of JP5799711B2 publication Critical patent/JP5799711B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for increasing a fluid permeation flow rate, when filtering a fluid by use of a membrane filtration module, without occurrence of fouling and with less fuel cost.SOLUTION: The method includes: causing a fluid supplied from a fluid storage tank to permeate the membrane filtration module after heating up by indirect heat exchange, using low-temperature waste heat of an iron foundry; guiding the fluid after being caused to permeate the membrane filtration module to a passage before the heating-up of the fluid by the low-temperature waste heat, and using the potential heat thereof to heat the fluid supplied from the fluid storage tank by indirect heat exchange.

Description

本発明は、膜ろ過モジュールを透過する流体の流量を増加させる方法に関するものである。   The present invention relates to a method for increasing the flow rate of fluid permeating a membrane filtration module.

製鉄所などの工場では、多量の工業用水を使用する。そのため、一度使用した工業用水を水処理して再利用するのが一般的である。この水処理の方法としては、膜ろ過モジュールを用いた膜ろ過方法という方法が多く用いられている。
膜ろ過とは、連続した組織の間にある孔や分子配列の隙間を利用して流体と流体中の固体の分離操作を行うものであり、半導体洗浄用水の精製や、飲料水製造の際によく利用されるものである。
Factories such as steelworks use a large amount of industrial water. Therefore, it is common to reuse industrial water once used after water treatment. As this water treatment method, a method called a membrane filtration method using a membrane filtration module is often used.
Membrane filtration is a process that separates fluids and solids in fluids using pores and gaps between molecular arrangements between successive tissues. During purification of semiconductor cleaning water and drinking water production Often used.

ここに、膜ろ過面積を増加させれば、当然、透過する流体の流量は増加するが、膜ろ過面積を一定、すなわち膜ろ過装置の数量を一定とした場合は、膜の一次側と二次側の差圧が大きいほど、または流体の温度が高いほど、透過する流体の流量を増やすことができる。   If the membrane filtration area is increased, the flow rate of the permeating fluid naturally increases. However, when the membrane filtration area is constant, that is, when the number of membrane filtration devices is constant, the primary side and the secondary side of the membrane The larger the differential pressure on the side or the higher the temperature of the fluid, the greater the flow rate of the permeating fluid.

しかしながら、上記した差圧を増やす方式および流体の温度を上げる方式ともに限界がある。特に、差圧を増やす方式において、差圧が過大となった場合には、膜孔に流体と流体中の不純物とが一緒に押し込まれることになるため、ファウリングと呼ばれる不可逆性の膜孔の詰りが生じ、膜の寿命が著しく短縮する現象が起こる。
また、当然ながら、膜を格納しているケーシングまたは膜ろ過モジュールそのものの物理的な破損の可能性も増大する。従って、ケーシングまたは膜ろ過モジュールそのものの物理的な破損を起こさない圧力が、当該膜ろ過装置にかけられる圧力の上限になり、自ずとかけられる差圧も限定される。
However, both the above-described method for increasing the differential pressure and the method for increasing the temperature of the fluid have limitations. In particular, in the method of increasing the differential pressure, when the differential pressure becomes excessive, the fluid and impurities in the fluid are pushed together into the membrane pore, so that the irreversible membrane pore called fouling Clogging occurs, causing a phenomenon in which the life of the film is significantly shortened.
Of course, the possibility of physical damage to the casing housing the membrane or the membrane filtration module itself is also increased. Accordingly, the pressure that does not cause physical damage to the casing or the membrane filtration module itself is the upper limit of the pressure applied to the membrane filtration device, and the differential pressure that is naturally applied is also limited.

一方、流体の温度を上げる方式における流体温度であるが、水の場合、その密度が最も高くなる4℃を下限として、流体温度が上がるにつれ透過流量も単調に増加していく。しかしながら、一般的には、50℃程度(膜製品によって異なる)で膜が変性してしまうため、この温度が上限となる。   On the other hand, although it is the fluid temperature in the system which raises the temperature of the fluid, in the case of water, the permeate flow rate increases monotonically as the fluid temperature rises, with 4 ° C. being the lowest density as the lower limit. However, in general, since the film is denatured at about 50 ° C. (depending on the film product), this temperature is the upper limit.

現在のところ、膜ろ過面積を増加させずに流体透過量を増加させる場合、差圧を増やす方式を採用することが多い。例えば、特許文献1には、膜ろ過流量を常時計測し、流量が低下した際には膜モジュール一次側のポンプの回転数やトルクを上げることによって流量を増加させる方法を採用している。   At present, when the fluid permeation amount is increased without increasing the membrane filtration area, a method of increasing the differential pressure is often adopted. For example, Patent Document 1 employs a method of constantly measuring the membrane filtration flow rate and increasing the flow rate by increasing the rotation speed and torque of the pump on the membrane module primary side when the flow rate decreases.

特開2008−126137号公報JP 2008-126137 A

しかしながら、ポンプの回転数やトルクを上げると、前述したように、ファウリングが発生しやすくなり、さらには設備の破損といった問題がある。
また、流体の温度を上げる方式においては、昇温するための熱源が必要となるため、ヒーターなどの設備が別途必要となり、さらにはその燃料コストもかかるといった問題があった。
However, when the rotational speed and torque of the pump are increased, as described above, fouling is likely to occur, and there is a problem that the equipment is damaged.
Further, in the method of raising the temperature of the fluid, a heat source for raising the temperature is required, so that there is a problem that additional equipment such as a heater is required and the fuel cost is also increased.

本発明は、上記した現状に鑑み開発されたもので、膜ろ過モジュールを用いて流体をろ過する際に、ファウリングを発生させることなく、かつ燃料コストがかからない流体の透過流量増加方法を提供することを目的とする。   The present invention has been developed in view of the above-described present situation, and provides a method for increasing the permeate flow rate of a fluid without generating fouling and without incurring fuel costs when a fluid is filtered using a membrane filtration module. For the purpose.

すなわち、本発明の要旨構成は次のとおりである。
1.膜ろ過モジュールを用いる流体のろ過方法であって、
流体貯槽から供給された流体を、製鉄所の低温排熱を熱源として、間接熱交換により昇温させてから、上記膜ろ過モジュールを透過させると共に、該膜ろ過モジュール透過後の流体を、上記低温排熱による流体昇温前の経路に導いて、その保有熱を熱源として、間接熱交換により流体貯槽から供給された流体を加温することを特徴とする膜ろ過モジュールの透過流量増加方法。
That is, the gist configuration of the present invention is as follows.
1. A method of filtering a fluid using a membrane filtration module,
The fluid supplied from the fluid storage tank is heated by indirect heat exchange using the low-temperature exhaust heat from the steel mill as a heat source, and then permeated through the membrane filtration module. A method for increasing a permeate flow rate of a membrane filtration module, wherein the fluid supplied from a fluid storage tank is heated by indirect heat exchange by guiding to a path before the temperature rise of the fluid by exhaust heat and using the retained heat as a heat source.

2.前記膜ろ過モジュールに、導入される際の流体の温度が20〜50℃の範囲であることを特徴とする前記1に記載の膜ろ過モジュールの透過流量増加方法。 2. 2. The method for increasing the permeation flow rate of the membrane filtration module according to 1 above, wherein the temperature of the fluid when introduced into the membrane filtration module is in the range of 20 to 50 ° C.

3.前記製鉄所の低温排熱が、30〜100℃の高炉冷却水の熱であることを特徴とする前記1または2に記載の膜ろ過モジュールの透過流量増加方法。 3. 3. The method for increasing the permeation flow rate of the membrane filtration module according to 1 or 2, wherein the low-temperature exhaust heat of the steel works is heat of blast furnace cooling water of 30 to 100 ° C.

本発明によれば、膜ろ過モジュールを用いて流体をろ過する際に、ファウリングを発生させることなく、かつ燃料コストがかからずに、膜ろ過モジュールに対する流体の透過流量を増加させることができる。   ADVANTAGE OF THE INVENTION According to this invention, when filtering a fluid using a membrane filtration module, the permeation | transmission flow rate of the fluid with respect to a membrane filtration module can be increased, without generating a fouling and not incurring fuel cost. .

本発明に従う基本フローを示した図である。It is the figure which showed the basic flow according to this invention. 本発明に従う方法を実施するための設備フローを示した図である。It is the figure which showed the equipment flow for implementing the method according to this invention.

以下、本発明を具体的に説明する。
本発明は、膜ろ過モジュールを用いて流体をろ過する前に、まず、膜ろ過モジュール透過後に流体が保有している熱によって、流体を加温する。ついで、製鉄所の低温排熱を熱源として流体を昇温することを特徴としている。なお、本発明において、以下の限定事項以外は、従来公知の膜ろ過装置を用いることができ、またクロスフロー方式等、従来公知の膜ろ過方法を適用することができる。
Hereinafter, the present invention will be specifically described.
In the present invention, before the fluid is filtered using the membrane filtration module, the fluid is first heated by the heat possessed by the fluid after passing through the membrane filtration module. Next, the temperature of the fluid is raised by using the low-temperature exhaust heat of the steel works as a heat source. In addition, in this invention, conventionally well-known membrane filtration apparatuses can be used except the following restrictions, and conventionally well-known membrane filtration methods, such as a crossflow system, can be applied.

図1に、本発明の基本フローを示す。図中、1は膜ろ過前流体貯槽、2は膜ろ過モジュールへの送液ポンプ、3は間接熱交換器(加温用)、4は間接熱交換器(昇温用)、5は膜ろ過モジュール、6は膜ろ過後流体貯槽、7は製鉄所低温排熱源である。
上記基本フローにおいて、ろ過の対象となる流体(以下、単に流体といった場合はろ過の対象となる流体を意味する)は、膜ろ過前流体貯槽1に蓄えられている。流体は、膜ろ過前流体貯槽1から送液ポンプ2を用いて、膜ろ過モジュール5に送られる。ついで膜ろ過モジュール5でろ過されたのち、膜ろ過後流体貯槽6に貯蔵される。
FIG. 1 shows a basic flow of the present invention. In the figure, 1 is a fluid storage tank before membrane filtration, 2 is a liquid feed pump to the membrane filtration module, 3 is an indirect heat exchanger (for heating), 4 is an indirect heat exchanger (for heating), and 5 is a membrane filtration A module, 6 is a fluid storage tank after membrane filtration, and 7 is a steelworks low-temperature waste heat source.
In the basic flow, a fluid to be filtered (hereinafter simply referred to as a fluid to be filtered in the case of a fluid) is stored in the fluid storage tank 1 before membrane filtration. The fluid is sent from the pre-membrane filtration fluid storage tank 1 to the membrane filtration module 5 using the liquid feed pump 2. Then, after being filtered by the membrane filtration module 5, it is stored in the fluid storage tank 6 after membrane filtration.

本発明では、膜ろ過前流体貯槽1と膜ろ過モジュール5の間に、昇温用の間接熱交換器4を設置し、膜ろ過モジュールを透過する流体と高温の熱源との間で間接熱交換を行い、流体を昇温することが重要である。また、その際の高温の熱源としては、エネルギーの有効利用の観点から、その多くが未利用となっている製鉄所の低温排熱を利用することが肝要である。   In the present invention, an indirect heat exchanger 4 for temperature rise is installed between the pre-membrane filtration fluid storage tank 1 and the membrane filtration module 5, and indirect heat exchange between the fluid that permeates the membrane filtration module and a high-temperature heat source. It is important to increase the temperature of the fluid. In addition, as a high-temperature heat source at that time, it is important to use the low-temperature exhaust heat of an iron mill, which is mostly unused, from the viewpoint of effective use of energy.

また、本発明は、間接熱交換器4のさらに前段に、もうひとつ、加温用の間接熱交換器3を設置することが重要である。この間接熱交換器3は、膜ろ過モジュール通過後の温められたままの流体によって、膜ろ過モジュール通過前の流体を加温(自己予熱)する。その結果、間接熱交換器4で使用する高温流体に必要な流量や温度の低減を図ることができる。すなわち、高温流体の流量が少量で済めば動力費の削減につながる一方、高温流体の温度が低くて済めば、熱源として用いることのできる排熱の発生源が増えることになり、未利用排熱の低減につながる。また、高温流体の温度が低くて済めば、熱源の温度低下をそれほど心配しなくてよいので、熱源と膜ろ過モジュールとの距離を長くすることができる。その結果、膜ろ過モジュールの設置場所に、裕度ができる等のメリットがある。   In the present invention, it is important to install another indirect heat exchanger 3 for heating further upstream of the indirect heat exchanger 4. The indirect heat exchanger 3 warms (self-preheats) the fluid before passing through the membrane filtration module with the fluid that has been heated after passing through the membrane filtration module. As a result, the flow rate and temperature required for the high temperature fluid used in the indirect heat exchanger 4 can be reduced. That is, if the flow rate of the high-temperature fluid is small, the power cost can be reduced. On the other hand, if the temperature of the high-temperature fluid is low, the number of sources of waste heat that can be used as a heat source increases. Leading to a reduction in Further, if the temperature of the high-temperature fluid is low, it is not necessary to worry so much about the temperature drop of the heat source, so that the distance between the heat source and the membrane filtration module can be increased. As a result, there is a merit that the installation place of the membrane filtration module has a margin.

上記膜ろ過モジュールのろ過膜は、精密ろ過膜、または限外ろ過膜とすることが好ましい。というのは、RO膜やイオン交換膜等の膜は、前述した工業用水の水処理などの用途の場合、コストが見合わないため、ほとんど使われることはないからである。また、ろ過膜の構造および素材は、従来公知のものがそれぞれ使用できるが、その構造は中空糸膜等が、その素材は酢酸セルロース、芳香族ポリアミド、ポリビニルアルコール、ポリスルホン等が好適である。なお、本発明に用いるろ過膜の孔の大きさは、流体によって適宜選択できるが、10nm〜10μm程度が好ましい。   The filtration membrane of the membrane filtration module is preferably a microfiltration membrane or an ultrafiltration membrane. This is because membranes such as RO membranes and ion exchange membranes are rarely used because the cost is not commensurate with the above-mentioned applications such as water treatment for industrial water. As the structure and material of the filtration membrane, conventionally known ones can be used, and the structure is preferably a hollow fiber membrane, and the material is preferably cellulose acetate, aromatic polyamide, polyvinyl alcohol, polysulfone or the like. In addition, although the magnitude | size of the hole of the filtration membrane used for this invention can be suitably selected according to the fluid, about 10 nm-10 micrometers are preferable.

本発明において、熱交換器は、流体に温度以外の変化を与えないことが重要で、間接熱交換型の機器に限定されるが、その形式は、プレート型、チューブ型等の形式を問わず用いることができる。なお、膜ろ過モジュールに導入される際の流体の温度は、膜ろ過モジュールの耐熱温度以下であれば、特に制限はないが、20〜50℃が好ましく、更に40〜50℃程度が最もろ過効率がよいため望ましい。   In the present invention, it is important that the heat exchanger does not give any change other than temperature to the fluid, and is limited to indirect heat exchange type equipment, but the type is not limited to plate type, tube type, etc. Can be used. The temperature of the fluid when introduced into the membrane filtration module is not particularly limited as long as it is equal to or lower than the heat resistant temperature of the membrane filtration module, but is preferably 20 to 50 ° C, and more preferably about 40 to 50 ° C. Is desirable because it is good.

本発明における流体は、膜ろ過によるろ過を行えるものであれば、特に限定はないが、工業用水が最も適している。前述したように、製鉄所などの工場では、多量の工業用水を使用し、その工業用水を再利用することが、コスト面、あるいは環境面において、本発明の効果が十分に発揮されるからである。   The fluid in the present invention is not particularly limited as long as it can be filtered by membrane filtration, but industrial water is most suitable. As described above, in factories such as steelworks, using a large amount of industrial water, and reusing the industrial water, the effects of the present invention can be sufficiently exerted in terms of cost or environment. is there.

本発明における製鉄所の低温排熱の媒体としては、液体または気体であることが好ましく、さらには腐食性のない液体または気体であることが好ましい。また、それらの流量や温度などが安定して得られる媒体であることが好ましい。
上記の低温排熱の温度に、特別の限定はないが、30〜100℃の範囲が、ろ過膜に流体を供給する際の温度制御等、その取扱いの観点から好ましい。より好ましくは、30〜60℃の範囲である。さらに、好ましくは、50〜60℃の範囲である。
In the present invention, the low-temperature waste heat medium of the steel mill is preferably a liquid or a gas, and more preferably a non-corrosive liquid or gas. In addition, it is preferable that the medium can stably obtain such flow rate and temperature.
Although there is no special limitation in the temperature of said low-temperature waste heat, the range of 30-100 degreeC is preferable from the viewpoint of the handling, such as temperature control at the time of supplying a fluid to a filtration membrane. More preferably, it is the range of 30-60 degreeC. Furthermore, Preferably, it is the range of 50-60 degreeC.

上記した低温排熱の熱源は、製鉄所内で発生するものであれば特に制限はないが、高炉冷却水由来の熱であることが好ましい。製鉄所内で最も安定的に発生している熱だからである。
また、本発明は、製鉄所などの様々な熱源で、100℃以下となって、その他の用途に使えない低温排熱も有効に使うことができるため、製鉄所などで発生する排熱エネルギーのより一層の有効利用を図ることができる。
The heat source for the low-temperature exhaust heat described above is not particularly limited as long as it is generated in the ironworks, but is preferably heat derived from blast furnace cooling water. This is because it is the most stable heat generated in the steelworks.
In addition, since the present invention can effectively use low-temperature exhaust heat that is not more than 100 ° C. and cannot be used for other purposes at various heat sources such as steelworks, the waste heat energy generated in steelworks and the like can be effectively used. Further effective use can be achieved.

図2に、本試験に用いた工業用水の膜ろ過モジュール付き膜ろ過精製装置を示す。
図中、8は工業用水貯槽、9は工場用水送液ポンプ、10はチューブ型熱交換器(加温用)、11はチューブ型熱交換器(昇温用)、12は膜ろ過モジュール、13は精製工業用水貯槽、14は高炉、15は冷却塔、16は高炉冷却水送水ポンプである。
FIG. 2 shows a membrane filtration purification apparatus with a membrane filtration module for industrial water used in this test.
In the figure, 8 is an industrial water storage tank, 9 is a factory water pump, 10 is a tube heat exchanger (for heating), 11 is a tube heat exchanger (for heating), 12 is a membrane filtration module, 13 Is a refined industrial water storage tank, 14 is a blast furnace, 15 is a cooling tower, and 16 is a blast furnace cooling water feed pump.

工業用水貯槽8内の工業用水は、夏季にその水温が23℃程度であり、その後段にある膜ろ過モジュール12は、流体温度が23℃で定格流量が出るように設計されている膜ろ過モジュールである。
一方、冬季の工業用水は、14℃程度まで低下する。そのため、膜モジュール前後での差圧を一定にしてポンプ9を運転した場合、夏季の透過水量を基準にすると、冬季の透過水量は75%程度にまで低下してしまう(従来例1)。
The industrial water in the industrial water storage tank 8 has a water temperature of about 23 ° C. in the summer, and the membrane filtration module 12 in the subsequent stage is a membrane filtration module designed to have a rated flow rate at a fluid temperature of 23 ° C. It is.
On the other hand, industrial water in winter falls to about 14 ° C. Therefore, when the pump 9 is operated with the differential pressure before and after the membrane module kept constant, the amount of permeated water in winter decreases to about 75% based on the amount of permeated water in summer (conventional example 1).

ここに、製鉄所の主要設備である高炉14は、内部が1500℃以上と高温なため、冷却水を利用して炉体を冷却しているが、冷却水の水温や流量は1年を通してほぼ安定している。また、冷却に使用した冷却水は、冷却塔15と呼ばれる設備で一部を蒸発させることにより蒸発潜熱を奪うことで冷却し、再度高炉へ送水している。すなわち、高炉炉体から冷却水が回収した熱は、最終的に大気中へと放散されているだけで、なんら有効利用されていない。   Here, the blast furnace 14, which is the main equipment of the steelworks, has a high internal temperature of 1500 ° C or higher, so the cooling body is used to cool the furnace body, but the water temperature and flow rate of the cooling water are almost constant throughout the year. stable. Further, the cooling water used for cooling is cooled by removing a part of latent heat of evaporation by evaporating a part of the cooling water using a facility called a cooling tower 15, and is sent to the blast furnace again. That is, the heat recovered by the cooling water from the blast furnace furnace body is finally dissipated into the atmosphere and is not effectively used at all.

そこで、高炉14で熱を回収した後冷却塔15で冷却される前の、40℃程度となっている高炉冷却水を熱源として、チューブ型熱交換器11により膜ろ過モジュールに入る前の工業用水を昇温し、水温を夏季平均と同等の23℃とした後に、膜ろ過モジュール12を通過させた(比較例1)。なお、膜ろ過モジュールを通過させる流体温度としては、前述したように、40〜50℃程度の高温の方が有利であるが、本実施例では、熱源である高炉冷却水が40℃程度しかないこと、および、23℃でも必要水量は確保できることから、23℃で行った。
その結果、夏季と同等の透過流量を確保することができた。なお、この時の昇温に必要な高炉冷却水の流量は、10000m/hであった。
Therefore, industrial water before entering the membrane filtration module by the tube-type heat exchanger 11 using the blast furnace cooling water at about 40 ° C. before being cooled by the cooling tower 15 after recovering heat in the blast furnace 14 as a heat source. After the temperature was raised to 23 ° C. equivalent to the summer average, the membrane filtration module 12 was passed (Comparative Example 1). As described above, a high temperature of about 40 to 50 ° C. is more advantageous as the fluid temperature that passes through the membrane filtration module, but in this embodiment, the blast furnace cooling water that is a heat source is only about 40 ° C. In addition, since the necessary amount of water can be secured even at 23 ° C., it was performed at 23 ° C.
As a result, it was possible to secure the same permeation flow rate as in summer. In addition, the flow rate of the blast furnace cooling water required for temperature increase at this time was 10,000 m 3 / h.

しかしながら、膜ろ過モジュール12通過後の工業用水は、必ずしも23℃の水温を必要とせず、むしろ低温の方が使い勝手が良い。そこで、熱交換器11の通過前の工業用水経路に、もうひとつのチューブ型熱交換器10を設置し、その熱交換器10に、膜ろ過モジュール通過後の工業用水を通過させて膜ろ過モジュール通過前の工業用水を加温することで、膜ろ過モジュール通過後の工業用水の水温を下げることを試みた(発明例1)。
その結果、膜ろ過モジュール通過後の工業用水は、23℃から21℃へ冷却され、膜ろ過モジュール通過前の工業用水は、14℃から16℃まで予熱されることになり、熱源としての高炉冷却水の量を22%減らすことができると同時に、高炉冷却水をチューブ型熱交換器11に送るためのエネルギーを22%減らすことができた。さらに、膜ろ過モジュール通過後の工業用水の温度を、21℃という使い勝手の良い温度に低減することができた。
However, the industrial water after passing through the membrane filtration module 12 does not necessarily require a water temperature of 23 ° C., but rather is easier to use at a lower temperature. Therefore, another tube-type heat exchanger 10 is installed in the industrial water path before passing through the heat exchanger 11, and the industrial water after passing through the membrane filtration module is passed through the heat exchanger 10 to pass through the membrane filtration module. An attempt was made to lower the temperature of industrial water after passing through the membrane filtration module by heating industrial water before passing (Invention Example 1).
As a result, the industrial water after passing through the membrane filtration module is cooled from 23 ° C. to 21 ° C., and the industrial water before passing through the membrane filtration module is preheated from 14 ° C. to 16 ° C., and cooled as a blast furnace as a heat source. The amount of water could be reduced by 22%, and at the same time, the energy for sending the blast furnace cooling water to the tube heat exchanger 11 could be reduced by 22%. Furthermore, the temperature of industrial water after passing through the membrane filtration module could be reduced to a convenient temperature of 21 ° C.

本発明に従う膜ろ過モジュールの透過流量増加方法を用いた発明例1は、上記した従来例1に比べて、30%の設備数量減が実現され、設備費及びメンテナス費の低廉化も併せて達成された。また、上記した比較例1に比べて、膜ろ過モジュール通過後の工業用水の温度を最適化すると共に、送液ポンプの動力費を22%程度低減することができた。   Inventive Example 1 using the method for increasing the permeate flow rate of the membrane filtration module according to the present invention achieves a 30% reduction in equipment quantity compared with the above-mentioned Conventional Example 1, and also achieves a reduction in equipment costs and maintenance costs. It was done. Moreover, compared with the above-described Comparative Example 1, the temperature of industrial water after passing through the membrane filtration module was optimized, and the power cost of the liquid feeding pump could be reduced by about 22%.

なお、上記実施例では、23℃で行っているが、膜ろ過モジュールを通過させる流体温度を、40〜50℃程度としても同等以上の効果が得られることを確認している。   In addition, although it is performed at 23 degreeC in the said Example, it has confirmed that the effect more than equivalent is acquired even if the fluid temperature which lets a membrane filtration module pass is about 40-50 degreeC.

1 膜ろ過前流体貯槽
2 膜ろ過モジュールへの送液ポンプ
3 間接熱交換器(加温用)
4 間接熱交換器(昇温用)
5 膜ろ過モジュール
6 膜ろ過後流体貯槽
7 製鉄所低温排熱源
8 工業用水貯槽
9 工場用水送液ポンプ
10 チューブ型熱交換器(加温用)
11 チューブ型熱交換器(昇温用)
12 膜ろ過モジュール
13 精製工業用水貯槽
14 高炉
15 冷却塔
16 高炉冷却水送水ポンプ
1 Fluid storage tank before membrane filtration 2 Liquid feed pump to membrane filtration module 3 Indirect heat exchanger (for heating)
4 Indirect heat exchanger (for heating)
5 Membrane filtration module 6 Fluid storage tank after membrane filtration Steel mill low temperature waste heat source 8 Industrial water storage tank 9 Factory water pump
10 Tube heat exchanger (for heating)
11 Tube heat exchanger (for heating)
12 Membrane filtration module
13 Water tank for refining industry
14 Blast furnace
15 Cooling tower
16 Blast furnace cooling water pump

Claims (3)

膜ろ過モジュールを用いる流体のろ過方法であって、
流体貯槽から供給された流体を、製鉄所の低温排熱を熱源として、間接熱交換により昇温させてから、上記膜ろ過モジュールを透過させると共に、該膜ろ過モジュール透過後の流体を、上記低温排熱による流体昇温前の経路に導いて、その保有熱を熱源として、間接熱交換により流体貯槽から供給された流体を加温することを特徴とする膜ろ過モジュールの透過流量増加方法。
A method of filtering a fluid using a membrane filtration module,
The fluid supplied from the fluid storage tank is heated by indirect heat exchange using the low-temperature exhaust heat from the steel mill as a heat source, and then permeated through the membrane filtration module. A method for increasing a permeate flow rate of a membrane filtration module, wherein the fluid supplied from a fluid storage tank is heated by indirect heat exchange by guiding to a path before the temperature rise of the fluid by exhaust heat and using the retained heat as a heat source.
前記膜ろ過モジュールに、導入される際の流体の温度が20〜50℃の範囲であることを特徴とする請求項1に記載の膜ろ過モジュールの透過流量増加方法。   The method for increasing the permeation flow rate of a membrane filtration module according to claim 1, wherein the temperature of the fluid when introduced into the membrane filtration module is in the range of 20 to 50 ° C. 前記製鉄所の低温排熱が、30〜100℃の高炉冷却水の熱であることを特徴とする請求項1または2に記載の膜ろ過モジュールの透過流量増加方法。
The method for increasing the permeate flow rate of a membrane filtration module according to claim 1 or 2, wherein the low-temperature exhaust heat of the steel works is heat of blast furnace cooling water at 30 to 100 ° C.
JP2011212509A 2011-09-28 2011-09-28 Method of increasing permeate flow rate of membrane filtration module Expired - Fee Related JP5799711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011212509A JP5799711B2 (en) 2011-09-28 2011-09-28 Method of increasing permeate flow rate of membrane filtration module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212509A JP5799711B2 (en) 2011-09-28 2011-09-28 Method of increasing permeate flow rate of membrane filtration module

Publications (2)

Publication Number Publication Date
JP2013071061A true JP2013071061A (en) 2013-04-22
JP5799711B2 JP5799711B2 (en) 2015-10-28

Family

ID=48475996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212509A Expired - Fee Related JP5799711B2 (en) 2011-09-28 2011-09-28 Method of increasing permeate flow rate of membrane filtration module

Country Status (1)

Country Link
JP (1) JP5799711B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196103A (en) * 2014-03-31 2015-11-09 パンパシフィック・カッパー株式会社 Method of utilizing cooling water
JP2018058021A (en) * 2016-10-05 2018-04-12 Jfeエンジニアリング株式会社 Water treatment method and water treatment apparatus
WO2019087952A1 (en) * 2017-11-02 2019-05-09 株式会社デンソー Industrial furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193207A (en) * 1983-04-19 1984-11-01 Nippon Kokan Kk <Nkk> Recovery of energy from furnace top gas of shaft furnace
JPH10309575A (en) * 1997-05-09 1998-11-24 Kurita Water Ind Ltd Pure water production device
JPH11138160A (en) * 1997-11-07 1999-05-25 Shinko Pantec Co Ltd Filtering method of water and filter device thereof
JP2003145150A (en) * 2001-11-15 2003-05-20 Japan Organo Co Ltd Water treatment method and apparatus using membrane module
JP2009039599A (en) * 2007-08-06 2009-02-26 Kurita Water Ind Ltd Water treatment system
JP2009270183A (en) * 2008-05-12 2009-11-19 Jfe Steel Corp Cooling system for furnace body of blast furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193207A (en) * 1983-04-19 1984-11-01 Nippon Kokan Kk <Nkk> Recovery of energy from furnace top gas of shaft furnace
JPH10309575A (en) * 1997-05-09 1998-11-24 Kurita Water Ind Ltd Pure water production device
JPH11138160A (en) * 1997-11-07 1999-05-25 Shinko Pantec Co Ltd Filtering method of water and filter device thereof
JP2003145150A (en) * 2001-11-15 2003-05-20 Japan Organo Co Ltd Water treatment method and apparatus using membrane module
JP2009039599A (en) * 2007-08-06 2009-02-26 Kurita Water Ind Ltd Water treatment system
JP2009270183A (en) * 2008-05-12 2009-11-19 Jfe Steel Corp Cooling system for furnace body of blast furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196103A (en) * 2014-03-31 2015-11-09 パンパシフィック・カッパー株式会社 Method of utilizing cooling water
JP2018058021A (en) * 2016-10-05 2018-04-12 Jfeエンジニアリング株式会社 Water treatment method and water treatment apparatus
WO2019087952A1 (en) * 2017-11-02 2019-05-09 株式会社デンソー Industrial furnace
JP2019086176A (en) * 2017-11-02 2019-06-06 株式会社Soken Industrial furnace

Also Published As

Publication number Publication date
JP5799711B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
Li et al. Study on concentration of aqueous sulfuric acid solution by multiple-effect membrane distillation
WO2013065293A1 (en) Method and device for preparing fresh water
JP6149993B1 (en) Ultrapure water production equipment
JP5799711B2 (en) Method of increasing permeate flow rate of membrane filtration module
CN101664642A (en) Device and method for air-blowing vacuum membrane distillation
WO2009084522A1 (en) Dehydrating system and method
CN101564649A (en) Air compressing membrane distillation device and method
US20130333299A1 (en) Abrasive recovery method and abrasive recovery device
JP2013202581A (en) Ultrapure water production apparatus
CN209735356U (en) constant-temperature reverse osmosis system
JP6469400B2 (en) Ultrapure water production equipment
JP6028645B2 (en) Water treatment equipment
JP2010162527A (en) Method and apparatus for manufacturing fresh water
WO2011132427A1 (en) Method for fluid membrane-separation power generation and system for fluid membrane-separation power generation
WO2019004281A1 (en) Water treatment device and water treatment method
Meindersma et al. Water recycling and desalination by air gap membrane distillation
JP5130708B2 (en) Boiler system
JP2009162514A (en) System for purifying system water in secondary system of nuclear power plant with pressurized water reactor
JP6350718B2 (en) Ultrapure water production equipment
JP2013204956A (en) Operation method for pure water cooling device
JP2013202610A (en) Ultrapure water production apparatus
Ban et al. Enrichment of semi-volatile organic acids from aqueous solutions by multiple-effect membrane distillation
JP6879228B2 (en) Water treatment equipment and water treatment method
WO2023058592A1 (en) Water treatment method and water treatment system
CN105271539A (en) High-temperature condensation water fine treatment system and high-temperature condensation water fine treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150810

R150 Certificate of patent or registration of utility model

Ref document number: 5799711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees