WO2011132427A1 - Method for fluid membrane-separation power generation and system for fluid membrane-separation power generation - Google Patents

Method for fluid membrane-separation power generation and system for fluid membrane-separation power generation Download PDF

Info

Publication number
WO2011132427A1
WO2011132427A1 PCT/JP2011/002335 JP2011002335W WO2011132427A1 WO 2011132427 A1 WO2011132427 A1 WO 2011132427A1 JP 2011002335 W JP2011002335 W JP 2011002335W WO 2011132427 A1 WO2011132427 A1 WO 2011132427A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
power generation
membrane separation
supply
concentrated
Prior art date
Application number
PCT/JP2011/002335
Other languages
French (fr)
Japanese (ja)
Inventor
小西貴久
小林顕太郎
小泓誠
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2011132427A1 publication Critical patent/WO2011132427A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/10Cross-flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration

Definitions

  • the present invention relates to a cross-flow type membrane separation apparatus using a separation membrane such as a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), a nanofiltration membrane (NF membrane), and a reverse osmosis membrane (RO membrane).
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • NF membrane nanofiltration membrane
  • RO membrane reverse osmosis membrane
  • the present invention relates to a fluid membrane separation power generation method and a fluid membrane separation power generation system in which a supply fluid is separated into a permeation fluid and a concentrated fluid by using a temperature difference power generation device.
  • membrane separation refers to the physical and chemical properties of the membrane such as the shape and size of the pores of the membrane, the physical and chemical properties such as the molecular shape and size of the substance to be treated, and the pressure.
  • This is a separation method performed by a combination of three elements related to driving force such as a difference.
  • separation membranes intended for water treatment use microfiltration membranes (MF membranes), ultrafiltration membranes (UF membranes), nanofiltration membranes (NF membranes), reverse osmosis membranes (depending on the type and size of the substance to be separated. (RO membrane) and the like.
  • MF membranes microfiltration membranes
  • UF membranes ultrafiltration membranes
  • NF membranes nanofiltration membranes
  • RO membrane reverse osmosis membranes
  • These separation membranes are preferably used for ultrapure water production, brine or seawater desalination, wastewater treatment, and the like.
  • it can be used for advanced processing such as separation, removal and recovery of harmful components from dyeing wastewater, electrodeposition paint wastewater, sewage, etc
  • a composite reverse osmosis membrane provided with a polyamide-based separation functional layer is generally used.
  • This composite reverse osmosis membrane constitutes a spiral type separation membrane element, and this separation membrane element is loaded in a pressure vessel to provide a cross flow type membrane separation device.
  • a seawater desalination apparatus including such a membrane separator attempts have been made to recover pressure energy remaining in concentrated water by a recovery apparatus and use it for driving a pump (see Patent Document 1).
  • a temperature difference power generation device that uses a temperature difference between hot seawater at high temperatures in the ocean surface and cold cold seawater at deep ocean depths.
  • a temperature difference power generation device includes an evaporator, a condenser, a turbine directly connected to the generator, a pump, and the like, and these components are connected by pipes.
  • a working fluid such as ammonia sealed in the apparatus is sent to an evaporator in a liquid state, and heated at a temperature of a high-temperature fluid such as warm seawater to become steam.
  • JP 2000-167358 A Japanese Patent Application Laid-Open No. 07-091361 International Publication No. 2007/020707 Pamphlet
  • a pressure higher than the osmotic pressure of seawater that is, a pressure of about 5 to 7 MPa is required at the time of membrane separation by the reverse osmosis membrane method in seawater desalination.
  • the energy required for water occupies most of the operating cost of the seawater desalination equipment, and is a factor that pushes up the water production cost.
  • efficiency has been studied by the method of recovering residual pressure energy as described above, but it is not sufficient because of its limitations in principle. Along with the increase, further efficiency and reduction of water production costs are required.
  • the seawater desalination has been studied in the temperature difference power generation device as described above, the so-called evaporation method is used, and it has been difficult to secure a sufficient amount of fresh water in the power generation device.
  • the present invention provides a fluid membrane separation power generation method and a fluid membrane separation power generation system capable of effectively utilizing energy generated in a fluid processing apparatus including a pressurized membrane separation apparatus and obtaining a sufficient amount of pure fluid.
  • the purpose is to do.
  • a pressurized supply fluid is separated into a permeation fluid and a concentrated fluid using a cross-flow type membrane separator, and then the concentrated fluid is used as a high temperature fluid in a temperature difference power generation device using a high temperature fluid and a low temperature fluid.
  • the present invention provides a fluid membrane separation power generation method characterized by being used as a power generator.
  • the supply fluid before being supplied to the membrane separator is preferably used as the low-temperature fluid, and the concentrated fluid is preferably heated so that the temperature difference between the high-temperature fluid and the low-temperature fluid is 20 ° C. or more. Furthermore, it is preferable to use solar energy when heating the concentrated fluid.
  • the supply fluid is preferably seawater or water obtained by separating seawater, and the supply fluid is preferably pressurized at a pressure of 1 MPa to 10 MPa.
  • the present invention also includes a fluid processing apparatus including a pressurizing pump that pressurizes a supply fluid, and a cross-flow type membrane separator that separates the supply fluid pressurized by the pressurization pump into a permeating fluid and a concentrated fluid;
  • a temperature difference power generation device that generates power using a temperature difference between a high temperature fluid and a low temperature fluid, wherein the concentrated fluid is directly supplied as a high temperature fluid from the fluid processing device.
  • a fluid membrane separation power generation system is provided.
  • the fluid processing device further includes a supply pump that supplies a supply fluid to the pressurizing pump, and a part of the supply fluid discharged from the supply pump is supplied to the temperature difference power generation system as a low temperature fluid.
  • the fluid processing apparatus further includes a storage tank that stores the supply fluid upstream of the supply pump, and the supply fluid used as the low-temperature fluid in the temperature difference power generation system may be returned to the storage tank. preferable.
  • the fluid treatment device further includes a heating device for heating the concentrated fluid separated by the membrane separation device.
  • the heating device is preferably a solar heating device that heats the concentrated fluid using solar energy.
  • a fluid processing apparatus including a pressurization type membrane separator
  • heat energy is transferred from a pressurization pump to a supply fluid, so that the temperature of the supply fluid after pressurization becomes higher than the temperature of the supply fluid before pressurization.
  • the thermal energy generated in the fluid processing device can be effectively utilized.
  • a membrane separator if a membrane separator is used, a larger amount of pure fluid can be produced than the evaporation method, and a sufficient amount of pure fluid can be obtained.
  • the generated electric power is used as power for the pressure pump, the operating cost of the fluid processing apparatus can be reduced.
  • the fluid membrane separation power generation method of the present invention is a temperature difference power generation device that uses a high-temperature fluid and a low-temperature fluid after separating a pressurized supply fluid into a permeation fluid and a concentrated fluid using a cross-flow type membrane separation device. Electric power is generated using the concentrated fluid as a high temperature fluid.
  • the “cross-flow type membrane separation device” refers to a membrane separation device that discharges a permeated fluid and a concentrated fluid separately when supplied fluid is supplied.
  • the supply fluid used in the present invention is not limited as long as it can be separated into a permeated fluid and a concentrated fluid in a separation membrane included in a cross-flow type membrane separation device. It can be used for known methods such as desalination, wastewater treatment, dyeing wastewater, electrodeposition paint wastewater, sewage and other methods for separating harmful components, and concentration of active ingredients in food applications. It is preferably a fluid that continuously treats a certain amount such as domestic wastewater, agricultural water, and seawater. Among these, seawater for desalination of seawater, and water obtained by pretreating the seawater and the wastewater by sand filtration, precipitation and / or membrane separation can be preferably used.
  • the supply fluid is pressurized and supplied to the membrane separator.
  • a mechanical means such as a known pressurizing pump can be used, and the pressure applied at this time may be appropriately determined according to the performance of the supply fluid and the separation membrane, but generally 1 MPa.
  • the pressure is preferably 10 MPa or less and more preferably 1.5 MPa to 8 MPa.
  • the membrane separation device generally has a configuration in which the separation membrane element is loaded in a pressure vessel that can withstand the pressurization of the supply fluid, or a configuration in which the separation membrane element is integrated with the pressure vessel.
  • the separation membrane element is not particularly limited as long as it is a pressure-type and cross-flow type membrane separation device.
  • a spiral type separation membrane including a polyamide-based composite separation membrane is used in a seawater desalination treatment.
  • a membrane element is used.
  • thermoelectric power generation device There are an open cycle system, a closed cycle system, and a hybrid cycle system of these as the temperature difference power generation device, and an appropriate configuration among them can be used. These are commonly composed of an evaporator, a condenser, a turbine directly connected to a generator, a pump, and the like, and these components are connected by pipes.
  • a working fluid such as ammonia enclosed in this device is sent to the evaporator in a liquid state, and the inside of the evaporator Then, the steam is heated at the temperature of the surface water of the sea surface and becomes steam.
  • the steam is cooled by the condenser having the temperature of the deep sea water and becomes liquid again. Power can be generated by repeating this process.
  • the concentrated fluid separated by the membrane separator is used as the high temperature fluid.
  • the concentrated fluid discharged from the membrane separation device and supplied to the temperature difference power generation device is appropriately heated as necessary and sent to the temperature difference power generation device as a high temperature fluid. Since such a concentrated fluid has a higher specific heat than seawater or tap water, the energy required for heating can be greatly reduced.
  • the heating temperature of the concentrated fluid is appropriately determined according to the vaporization temperature of the working fluid and the sealing pressure, but is 15 ° C. or higher and 120 ° C. or lower. It is preferable that the temperature difference power generator operates with a high-temperature fluid of 15 ° C. or more and 50 ° C. or less. Further, the heating of the concentrated fluid is preferably performed so that the temperature difference between the high temperature fluid and the low temperature fluid is 20 ° C. or more.
  • the method of heating the concentrated fluid is not particularly limited, and heating power, heating wire, solar heat, etc. can be used as appropriate according to the surrounding environment and device design, but from the viewpoint of energy efficiency, sunlight, solar heat, etc.
  • the method of heating using solar energy is preferable.
  • a material having a high thermal conductivity such as a metal may be used as a supply fluid or concentrated fluid pipe, and appropriate known heating may be performed on the portion.
  • a concave mirror is installed at a position symmetrical to sunlight and the fluid is heated, or one side of the transparent pipe facing the position symmetrical to sunlight is used as a mirror surface. It is also preferable to collect solar energy into a fluid and heat it.
  • the heating position is preferably performed on the pressurized supply fluid in consideration of heat transfer from the pressurizing pump. Furthermore, it may be any of before, after and after membrane separation, and may be combined at a plurality of positions, but it is preferable to heat before and / or after membrane separation. Since it is known that when the fluid is heated before the membrane separation, the permeation performance of the separation membrane can be improved when a fluid having a temperature higher than room temperature is supplied to the separation membrane element, the permeation performance of the separation membrane can be improved. Further, since the membrane can be supplied to the membrane separation device at a constant temperature, the membrane separation performance can be easily controlled to be constant. Further, when heating is performed after membrane separation, only the concentrated fluid used as the high-temperature fluid can be efficiently heated without wasting heating energy. Therefore, it is preferable to preheat the pressurized supply fluid to about 40 ° C. or less before membrane separation and to heat to the required level after membrane separation.
  • the low-temperature fluid supplied to the temperature difference power generation device is not particularly limited except that it is a fluid that is not frozen and has no malfunction in flow, and preferably has a low temperature as much as possible. It is preferable to use a fluid of less than or equal to ° C.
  • a fluid other than the separation target fluid such as supply fluid to the separation membrane, river water, seawater, deep ocean water, or alcohol can be used. It is preferable to use a part of the supply fluid to the membrane, more preferably the supply fluid before pressurization.
  • the temperature difference between the low-temperature fluid and the high-temperature fluid is preferably 20 ° C. or higher, and preferably 25 ° C. or higher, when using a highly efficient apparatus such as a carina cycle or Uehara cycle using ammonia as the working fluid.
  • the temperature difference from the viewpoint of energy efficiency is 90 ° C. or less, preferably 50 ° C. or less.
  • the temperature of the supply fluid rises by 2 to 3 ° C due to the transfer of thermal energy. This is because the difference in operating temperature required in the above wafer cycle is about 25 ° C., so this thermal energy is equivalent to about 10%, and this energy can be used without surplus.
  • the concentrated fluid separated by the membrane separator has a high pressure
  • the pressure energy recovery device include PX series manufactured by Energy-Recovery.
  • the pipes and devices up to the recovery device need to have a pressure resistant configuration capable of withstanding a high fluid pressure.
  • the pressure energy recovery device is provided immediately after the membrane separation device for supplying the pressurized supply fluid so that the pressure resistance configuration is minimized, and the subsequent fluid is appropriately decompressed.
  • the pressure after depressurization at this time is not particularly limited, but is preferably about 0.1 to 2 MPa.
  • the fluid pressure of the membrane separation process can be used. It is possible to omit a flow pump other than the pump for flowing the working fluid in the apparatus.
  • the concentrated fluid is connected by a flow path so that the concentrated fluid flows continuously from the membrane separator of the fluid treatment device to the evaporator of the temperature difference power generator, and the pressure when the concentrated fluid is discharged from the membrane separator is used. If the concentrated fluid is supplied to the temperature difference power generation device, the pump for the high temperature fluid can be omitted. Further, when the supply fluid is used as the low temperature fluid, the pump for the low temperature fluid can be omitted. In either case, the energy saving effect is high.
  • the high-temperature fluid and the low-temperature fluid after being used for power generation by the temperature difference power generation device are not particularly limited, but it is preferable that the energy and fluid itself be returned to the fluid processing device and circulated.
  • a method of desalination by various evaporation methods can be preferably used in combination.
  • the low-temperature fluid is preferably returned as a supply fluid to the separation membrane element, but a method of supplying the pressure energy as a supply fluid to the pressure energy recovery device and supplying the pressure energy to the membrane separation device is preferably used. .
  • FIG. 1 shows a fluid membrane separation system according to an embodiment of the present invention.
  • a temperature difference power generation device 40 is provided on the downstream side of the fluid processing device 30. This will be explained step by step.
  • the fluid processing apparatus 30 of this embodiment desalinates seawater.
  • the fluid processing apparatus 30 includes a cross-flow type membrane separation apparatus 10.
  • the water intake pump 1, the sand filtration device 2, the ultrafiltration membrane (UF membrane) pretreatment device 3, the UF filtration water tank (into the storage tank of the present invention) in order from the upstream side. 5), a supply pump 6, and a high-pressure pump 9 (corresponding to the pressurizing pump of the present invention) 9 are provided.
  • the membrane separation device 10 separates the high-pressure supply water 102 supplied from the high-pressure pump 9 into permeated water 103 and concentrated water 104.
  • a pressure energy recovery device 21, a solar heating device 11, and an electric boiler (second heating device) 12 are provided in this order from the upstream side on a line that guides the concentrated water 104 from the membrane separation device 10.
  • a reverse osmosis membrane (RO membrane) separation device in which a spiral type separation membrane element including a polyamide composite separation membrane is loaded in a pressure vessel is used as the membrane separation device 10.
  • the spiral separation membrane element is formed around a central tube (water collecting tube) 51 in a state where a separation membrane 52, a supply-side flow passage material 54 and a permeation-side flow passage material 53 are laminated. It is wound in a spiral shape and fixed with an end member or an exterior material. At this time, each side of the separation membrane 52 is bonded as necessary, and the supply water 102 and the permeated water 103 are not mixed.
  • polyamide composite separation membrane examples include a porous support provided with a separation functional layer made of a polyamide polymer.
  • the porous support is not particularly limited as long as it can form a separation functional layer, and a porous support made of polysulfone on a substrate such as a nonwoven fabric or a woven fabric is preferably used.
  • a porous film such as polyimide, polyvinylidene fluoride, and epoxy can be used alone.
  • the average pore diameter of the surface on which the separation functional layer of the porous support is provided is about 0.01 ⁇ m to 1 ⁇ m, and the thickness of the porous support is about 10 to 150 ⁇ m.
  • the polyamide-based separation functional layer can be formed using a known method. For example, an aqueous solution coating layer containing a polyfunctional amine component is formed on a porous support, and a polyfunctional acid halide component is formed there.
  • the polyamide-based separation functional layer can be formed by contacting a solution containing. The contact time is usually 5 seconds to 5 minutes, and after the excess solution is removed, condensation polymerization is performed at the interface generated by the contact. Further, it is preferable to dry in air at 15 ° C. to 35 ° C. for about 1 to 10 minutes, and after the drying, the membrane surface is washed with deionized water.
  • polyfunctional amine component examples include aromatic, aliphatic, or alicyclic polyfunctional amines. Moreover, these polyfunctional amine components may be used alone or as a mixture.
  • polyfunctional acid halide component aromatic, aliphatic, or alicyclic polyfunctional acid halides can be used. These polyfunctional acid halide components may be used alone or as a mixture.
  • the fluid treatment device 30 first takes raw seawater (raw water) 101 from the intake pump 1 and stores it in the UF membrane filtration water tank 5 via the sand filtration device 2 and the ultrafiltration membrane (UF membrane) pretreatment device 3. At this time, for example, about 1 ppm of sodium hypochlorite is added from the drug injection device 4 for the purpose of suppressing the growth of microorganisms and sterilization. Thereafter, the water stored in the UF membrane filtration water tank 5 is supplied by the supply pump 6 at a pressure of, for example, about 0.5 MPa and supplied to the high-pressure pump 9.
  • the pressure energy is recovered from the concentrated water 104 by the pressure energy recovery device 21 immediately after. Specifically, in the pressure energy recovery device 21, the pressure energy is transferred to the supply water taken from the upstream side of the high-pressure pump 9, and the supply water that has become high pressure thereby is discharged from the high-pressure pump 9. Mix with.
  • the concentrated water 104 depressurized by the pressure energy recovery device 21 is heated to, for example, 30 ° C. by the solar heating device 11 configured with black outdoor piping, and further heated to, for example, 50 ° C. by the electric boiler 12.
  • the electric boiler 12 is provided to raise the temperature to 50 ° C.
  • the electric boiler 12 is provided in conjunction with the heating state of the heating device 11, but depending on the temperature difference between the high temperature fluid and the low temperature fluid in the temperature difference power generation device 40.
  • the electric boiler 12 is provided.
  • One or both of the solar heating device 11 and the solar heating device 11 may not be provided.
  • the heated concentrated water directly flows into the evaporator 13 described later as the high-temperature fluid 105 used in the temperature difference power generation device 40.
  • Temperature difference power generator As the temperature difference power generation device 40, a concentrated fluid directly supplied from the fluid processing device 30 is used as the high temperature fluid 105, and a low temperature fluid 106 supplied separately is used to generate power based on these temperature differences. If it is, it will not be limited, but in this embodiment, the closed cycle system which repeats vaporization and liquefaction in the state which enclosed the working fluid 107 is employ
  • the temperature difference power generation device 40 has a working fluid circuit for circulating the working fluid.
  • This working fluid circuit is configured by connecting an evaporator 13, a gas-liquid separator 15, a turbine 16 directly connected to the generator 17, a condenser 14, a storage tank 19, and a pump 20 in this order by pipes. .
  • the working fluid 107 exchanges heat with the high temperature fluid 105 in the evaporator 13, and then is separated into working fluid vapor and working fluid liquid in the gas-liquid separator 15.
  • the working fluid vapor is sent to the turbine 16 to generate electricity by rotating the generator 17.
  • the electric power generated by the generator 17 is used as power for the high-pressure pump 9, for example.
  • the working fluid vapor discharged from the turbine 16 is sent to the condenser 14, exchanges heat with the low temperature fluid 106, becomes a liquid, and enters the storage tank 19.
  • a part of the supply water discharged from the supply pump 6 in the fluid processing device 30 is supplied to the temperature difference power generation device 40 as the low temperature fluid 106, and the supply water used as the low temperature fluid 106 in the condenser 14 is supplied. It is returned to the UF filtration water tank 5 arranged on the upstream side of the supply pump 6. More specifically, as the low temperature fluid 106, water downstream from the supply pump 6 and upstream from the drug injection devices 7 and 8 is used.
  • the working fluid liquid separated by the gas-liquid separator 15 is temporarily stored in the storage tank 18, sent to the condenser 14, and then stored in the storage tank 19. The working fluid stored in the storage tank 19 is sent to the evaporator 13 by the pump 20. Power generation is performed by repeating this operation.
  • the evaporator 13 and the condenser 14 are not particularly limited as long as the high-temperature fluid, the low-temperature fluid, and the working fluid are not mixed, heat exchange can be appropriately performed, and further, no corrosion is caused by the fluid. Can be used. In the evaporator 13, it is preferable to reduce the pressure from the atmospheric pressure in order to facilitate vaporization. In addition, the size and shape of the evaporator 13 and the condenser 14 are preferably designed appropriately in consideration of heat exchange efficiency. As the turbine 16 and the generator 17, commercially available ones can be used as long as they are not corroded by the working fluid vapor.
  • the working fluid examples include ammonia, a chlorofluorocarbon compound, a hydrocarbon compound, water, and a mixture thereof.
  • a working fluid is a mixture of ammonia and water, and a substance using 70 to 95% by weight of ammonia. It can be particularly preferably used. For example, a mixture of 90% by weight of ammonia and 10% by weight of pure water may be used as the working fluid 107.
  • the pipe for connecting the constituent devices is not particularly limited, and a metal or resin pipe can be used, but a pipe having a particularly high heat insulating effect can be preferably used. If necessary, it is preferable to use an appropriate heat insulating material in order to increase efficiency.
  • the fluid membrane separation power generation system of the present invention is not limited to the one having the above-described configuration, and various modifications are possible.
  • a tank 24 having a heat insulating structure that temporarily stores the concentrated water 104 may be provided between the fluid treatment device 30 and the temperature difference power generation device 40. Then, the concentrated water stored in the tank 24 may be circulated as the high-temperature fluid 105 by the circulation pump 23 via the evaporator 13 of the temperature difference power generator 40.
  • a heating device that heats the concentrated water may be provided on the flow path that guides the concentrated water from the tank 24 to the evaporator 13.
  • the same raw seawater 101 as the raw water processed by the fluid processing device 30 may be supplied from the intake pump 25 to the condenser 14 of the temperature difference supply device 40 as the low temperature fluid 106.
  • the same raw seawater 101 as the raw water processed by the fluid processing device 30 may be supplied from the intake pump 25 to the condenser 14 of the temperature difference supply device 40 as the low temperature fluid 106.
  • a configuration in which the low-temperature fluid that has flowed out of the condenser 14 is guided to the tank 24 by a flow path with the on-off valve 29 may be employed.
  • concentration difference power generation device 50 on the route through which the concentrated water is discharged from the tank 24, and to generate power using the forward osmotic pressure energy of the concentrated water.
  • the concentrated water discharged from the tank 24 and the raw seawater that has passed through the condenser 14 are guided to the membrane separation device 26 including a forward osmosis membrane.
  • the concentrated water evaporates and rotates the turbine 27 directly connected to the generator 28 and then mixes with the raw seawater that has passed through the membrane separation device 26.
  • the present invention provides a fluid membrane separation power generation method and a fluid membrane separation power generation system using a fluid treatment device and a temperature difference power generation device.
  • the pressure and thermal energy applied to the fluid of the fluid membrane separation that has been wasted until now can be consumed without wasting without affecting the performance of the fluid separation in the membrane separation.
  • the energy of 2 to 3 ° C. applied to the fluid by pressurization for membrane separation is about 10% with respect to the temperature difference of 20 to 30 ° C. which can drive the temperature difference power generation device with high efficiency. Since it is energy, at least the same level of energy saving can be realized.
  • the power generation function can be operated without using a pump for flowing the high temperature fluid and the low temperature fluid, which is indispensable for driving the temperature difference power generation device.

Abstract

Disclosed is a method for fluid membrane-separation power generation, said method being able to obtain a sufficient amount of pure fluid and to effectively take advantage of energy generated by a fluid treatment device containing a membrane separation device that is pressurized and cross-flow. The method for fluid membrane-separation power generation is characterized by separating a pressurized supplied fluid into a permeated fluid and a concentrated fluid using a cross-flow membrane separation device, and then, in a temperature difference power generation device that uses a high temperature fluid and a low temperature fluid, generating power using the aforementioned concentrated fluid as the high temperature fluid.

Description

流体膜分離発電方法および流体膜分離発電システムFluid membrane separation power generation method and fluid membrane separation power generation system
 本発明は、精密濾過膜(MF膜)、限外濾過膜(UF膜)、ナノ濾過膜(NF膜)、逆浸透膜(RO膜)などの分離膜を用いたクロスフロー方式の膜分離装置を用いて、供給流体を透過流体と濃縮流体に分離するとともに、温度差発電装置を用いて発電する流体膜分離発電方法および流体膜分離発電システムに関する。 The present invention relates to a cross-flow type membrane separation apparatus using a separation membrane such as a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), a nanofiltration membrane (NF membrane), and a reverse osmosis membrane (RO membrane). The present invention relates to a fluid membrane separation power generation method and a fluid membrane separation power generation system in which a supply fluid is separated into a permeation fluid and a concentrated fluid by using a temperature difference power generation device.
 流体分離を行なう場合の膜分離とは、膜の有する孔の形状や大きさなどの膜の持つ物理的化学的特性、処理対象物質の分子形状及び大きさなどの物理的化学的特性、ならびに圧力差などの駆動力、に関する3つの要素の組み合わせによって行われる分離法である。例えば水処理を目的とする分離膜は、その分離対象物質の種類やサイズによって、精密濾過膜(MF膜)、限外濾過膜(UF膜)、ナノ濾過膜(NF膜)、逆浸透膜(RO膜)などに分類される。これらの分離膜は、超純水の製造、かん水または海水の脱塩や、排水処理などに好適に用いられる。さらには、染色排水、電着塗料排水や下水などから有害成分を分離し、除去・回収することや、食品用途における有効成分の濃縮などの高度処理に用いることができる。 When performing fluid separation, membrane separation refers to the physical and chemical properties of the membrane such as the shape and size of the pores of the membrane, the physical and chemical properties such as the molecular shape and size of the substance to be treated, and the pressure. This is a separation method performed by a combination of three elements related to driving force such as a difference. For example, separation membranes intended for water treatment use microfiltration membranes (MF membranes), ultrafiltration membranes (UF membranes), nanofiltration membranes (NF membranes), reverse osmosis membranes (depending on the type and size of the substance to be separated. (RO membrane) and the like. These separation membranes are preferably used for ultrapure water production, brine or seawater desalination, wastewater treatment, and the like. Furthermore, it can be used for advanced processing such as separation, removal and recovery of harmful components from dyeing wastewater, electrodeposition paint wastewater, sewage, etc., and concentration of active ingredients in food applications.
 例えば、海水の脱塩、つまり海水淡水化処理では一般に、ポリアミド系分離機能層を設けた複合逆浸透膜が用いられる。この複合逆浸透膜はスパイラル型の分離膜エレメントを構成し、この分離膜エレメントが圧力容器内に装填されることによりクロスフロー方式の膜分離装置が提供される。さらに、このような膜分離装置を含む海水淡水化装置においては、濃縮水に残留した圧力エネルギーを回収装置により回収し、ポンプの駆動に利用する試みが行なわれてきた(特許文献1参照)。 For example, in the case of seawater desalination, that is, seawater desalination treatment, a composite reverse osmosis membrane provided with a polyamide-based separation functional layer is generally used. This composite reverse osmosis membrane constitutes a spiral type separation membrane element, and this separation membrane element is loaded in a pressure vessel to provide a cross flow type membrane separation device. Furthermore, in a seawater desalination apparatus including such a membrane separator, attempts have been made to recover pressure energy remaining in concentrated water by a recovery apparatus and use it for driving a pump (see Patent Document 1).
 温度差発電については、海洋表層における高温の温海水と海洋深層における低温の冷海水との温度差を利用した温度差発電装置が知られている。このような温度差発電装置は、蒸発器、凝縮器、発電機に直結されたタービン、ポンプなどから構成され、これらの構成機器はパイプで接続されている。クローズドサイクルシステムの場合、この装置内に封入されたアンモニア等の作動流体が、液体の状態で蒸発器に送られ、温海水などの高温流体の温度で加熱され、蒸気となる。この蒸気がタービンと発電機を回転させて発電した後、凝縮器で冷海水などの低温流体によって冷却され再び液体になる。この繰り返しによって発電する方法が温度差発電方法である(特許文献2参照)。 Regarding temperature difference power generation, a temperature difference power generation device that uses a temperature difference between hot seawater at high temperatures in the ocean surface and cold cold seawater at deep ocean depths is known. Such a temperature difference power generation device includes an evaporator, a condenser, a turbine directly connected to the generator, a pump, and the like, and these components are connected by pipes. In the case of a closed cycle system, a working fluid such as ammonia sealed in the apparatus is sent to an evaporator in a liquid state, and heated at a temperature of a high-temperature fluid such as warm seawater to become steam. After the steam rotates the turbine and the generator to generate electric power, the steam is cooled by a low-temperature fluid such as cold seawater in a condenser and becomes liquid again. A method of generating electricity by repeating this is a temperature difference power generation method (see Patent Document 2).
 また、温度差発電装置を用いて海水淡水化を行う方法として、オープンサイクルシステムにおいて、蒸発器から流出した高温流体の一部を負圧条件下で蒸発させて水蒸気を得るとともに、その水蒸気を凝縮させて蒸留水を得る造水方法が提案されている(特許文献3参照)。 In addition, as a method of desalinating seawater using a temperature difference power generation device, in an open cycle system, a part of the high-temperature fluid flowing out from the evaporator is evaporated under negative pressure conditions to obtain water vapor, and the water vapor is condensed. There has been proposed a fresh water producing method for obtaining distilled water (see Patent Document 3).
特開2000-167358号公報JP 2000-167358 A 特開平07-091361号公報Japanese Patent Application Laid-Open No. 07-091361 国際公開第2007/020707号パンフレットInternational Publication No. 2007/020707 Pamphlet
 前記のような従来の膜分離装置においては、例えば、海水淡水化における逆浸透膜法での膜分離時には海水の浸透圧以上、つまり5~7MPa程度の加圧が必要となるため、この加圧に必要とされるエネルギーが海水淡水化装置における運転コストの大部分を占め、造水コストを押し上げる要因となっている。これに対しては前記のように残留圧力エネルギーを回収する方法などで効率化が検討されているが、原理上限界があるため、十分なものとは言えず、また、世界的な水需要の高まりとともに、さらなる効率化、造水コストの低減が求められている。また、温度差発電装置においても、前記のように海水淡水化が検討されているものの、いわゆる蒸発法を用いるものであり、発電装置内で十分な造水量を確保することは困難であった。 In the conventional membrane separation apparatus as described above, for example, a pressure higher than the osmotic pressure of seawater, that is, a pressure of about 5 to 7 MPa is required at the time of membrane separation by the reverse osmosis membrane method in seawater desalination. The energy required for water occupies most of the operating cost of the seawater desalination equipment, and is a factor that pushes up the water production cost. In response to this, efficiency has been studied by the method of recovering residual pressure energy as described above, but it is not sufficient because of its limitations in principle. Along with the increase, further efficiency and reduction of water production costs are required. In addition, although the seawater desalination has been studied in the temperature difference power generation device as described above, the so-called evaporation method is used, and it has been difficult to secure a sufficient amount of fresh water in the power generation device.
 本発明では、加圧型の膜分離装置を含む流体処理装置で生じたエネルギーを有効に活用するとともに、十分な量の純流体を得ることができる流体膜分離発電方法および流体膜分離発電システムを提供することを目的とする。 The present invention provides a fluid membrane separation power generation method and a fluid membrane separation power generation system capable of effectively utilizing energy generated in a fluid processing apparatus including a pressurized membrane separation apparatus and obtaining a sufficient amount of pure fluid. The purpose is to do.
 本発明は、加圧した供給流体を、クロスフロー方式の膜分離装置を用いて透過流体と濃縮流体に分離した後、高温流体と低温流体を使用する温度差発電装置において前記濃縮流体を高温流体として用いて発電することを特徴とする流体膜分離発電方法を提供する。 According to the present invention, a pressurized supply fluid is separated into a permeation fluid and a concentrated fluid using a cross-flow type membrane separator, and then the concentrated fluid is used as a high temperature fluid in a temperature difference power generation device using a high temperature fluid and a low temperature fluid. The present invention provides a fluid membrane separation power generation method characterized by being used as a power generator.
 前記低温流体は、前記膜分離装置に供給する前の供給流体を用いることが好ましく、前記高温流体と前記低温流体の温度差は20℃以上になるように前記濃縮流体を加熱することが好ましい。さらに、前記濃縮流体を加熱する場合には太陽エネルギーを用いることが好ましい。 The supply fluid before being supplied to the membrane separator is preferably used as the low-temperature fluid, and the concentrated fluid is preferably heated so that the temperature difference between the high-temperature fluid and the low-temperature fluid is 20 ° C. or more. Furthermore, it is preferable to use solar energy when heating the concentrated fluid.
 前記供給流体としては海水または海水を分離処理した水であることが好ましく、さらには、前記供給流体が1MPa以上10MPa以下の圧力で加圧されていることが好ましい。 The supply fluid is preferably seawater or water obtained by separating seawater, and the supply fluid is preferably pressurized at a pressure of 1 MPa to 10 MPa.
 また本発明は、供給流体を加圧する加圧ポンプ、および前記加圧ポンプで加圧された供給流体を透過流体と濃縮流体に分離するクロスフロー方式の膜分離装置、を含む流体処理装置と、高温流体と低温流体の温度差を利用して発電を行う温度差発電装置であって前記流体処理装置から前記濃縮流体が高温流体として直接的に供給される温度差発電装置と、を備えた、流体膜分離発電システムを提供する。 The present invention also includes a fluid processing apparatus including a pressurizing pump that pressurizes a supply fluid, and a cross-flow type membrane separator that separates the supply fluid pressurized by the pressurization pump into a permeating fluid and a concentrated fluid; A temperature difference power generation device that generates power using a temperature difference between a high temperature fluid and a low temperature fluid, wherein the concentrated fluid is directly supplied as a high temperature fluid from the fluid processing device. A fluid membrane separation power generation system is provided.
 前記流体処理装置は、前記加圧ポンプに供給流体を供給する供給ポンプをさらに含み、前記供給ポンプから吐出される供給流体の一部が低温流体として前記温度差発電システムに供給されることが好ましい。この場合、前記流体処理装置は、前記供給ポンプの上流側で供給流体を貯留する貯留槽をさらに含み、前記温度差発電システムで低温流体として使用された供給流体が前記貯留槽に戻されることが好ましい。 Preferably, the fluid processing device further includes a supply pump that supplies a supply fluid to the pressurizing pump, and a part of the supply fluid discharged from the supply pump is supplied to the temperature difference power generation system as a low temperature fluid. . In this case, the fluid processing apparatus further includes a storage tank that stores the supply fluid upstream of the supply pump, and the supply fluid used as the low-temperature fluid in the temperature difference power generation system may be returned to the storage tank. preferable.
 また、前記流体処理装置は、前記膜分離装置で分離された濃縮流体を加熱する加熱装置をさらに含むことが好ましい。この場合、前記加熱装置は、太陽エネルギーを用いて濃縮流体を加熱する太陽熱加熱装置であることが好ましい。 Moreover, it is preferable that the fluid treatment device further includes a heating device for heating the concentrated fluid separated by the membrane separation device. In this case, the heating device is preferably a solar heating device that heats the concentrated fluid using solar energy.
 加圧型の膜分離装置を含む流体処理装置では、加圧ポンプから供給流体に熱エネルギーが転移するため、加圧後の供給流体の温度が加圧前の供給流体の温度よりも高くなる。そして、この温度が上昇した供給流体から分離された濃縮流体を温度差発電装置において高温流体として使用することで、流体処理装置で発生した熱エネルギーを有効に活用することができる。また、膜分離装置を用いれば、蒸発法よりも多量の純流体を製造することができ、十分な量の純流体を得ることができる。さらに、発電された電力を加圧ポンプの動力として用いれば、流体処理装置の運転コストを低減することができる。 In a fluid processing apparatus including a pressurization type membrane separator, heat energy is transferred from a pressurization pump to a supply fluid, so that the temperature of the supply fluid after pressurization becomes higher than the temperature of the supply fluid before pressurization. Then, by using the concentrated fluid separated from the supply fluid whose temperature has increased as a high-temperature fluid in the temperature difference power generation device, the thermal energy generated in the fluid processing device can be effectively utilized. In addition, if a membrane separator is used, a larger amount of pure fluid can be produced than the evaporation method, and a sufficient amount of pure fluid can be obtained. Furthermore, if the generated electric power is used as power for the pressure pump, the operating cost of the fluid processing apparatus can be reduced.
本発明の一実施形態に係る流体膜分離発電システムの構成を示すブロック線図である。It is a block diagram which shows the structure of the fluid membrane separation power generation system which concerns on one Embodiment of this invention. 分離膜エレメントの一例を示す概略構成図である。It is a schematic block diagram which shows an example of a separation membrane element. 変形例の流体膜分離発電システムの構成を示すブロック線図である。It is a block diagram which shows the structure of the fluid membrane separation power generation system of a modification.
 <流体膜分離発電方法>
 本発明の流体膜分離発電方法は、加圧した供給流体を、クロスフロー方式の膜分離装置を用いて透過流体と濃縮流体に分離した後、高温流体と低温流体を使用する温度差発電装置において前記濃縮流体を高温流体として用いて発電することを特徴とする。ここで、「クロスフロー方式の膜分離装置」とは、供給流体が供給されると、透過流体と濃縮流体を別々に排出する膜分離装置をいう。
<Fluid membrane separation power generation method>
The fluid membrane separation power generation method of the present invention is a temperature difference power generation device that uses a high-temperature fluid and a low-temperature fluid after separating a pressurized supply fluid into a permeation fluid and a concentrated fluid using a cross-flow type membrane separation device. Electric power is generated using the concentrated fluid as a high temperature fluid. Here, the “cross-flow type membrane separation device” refers to a membrane separation device that discharges a permeated fluid and a concentrated fluid separately when supplied fluid is supplied.
 本発明で用いる供給流体としては、クロスフロー方式の膜分離装置に含まれる分離膜において透過流体と濃縮流体に分離できるものであれば制限されるものではなく、超純水の製造、かん水または海水の脱塩や、排水処理、さらには、染色排水、電着塗料排水や下水などから有害成分を分離する方法、食品用途における有効成分の濃縮など、公知の方法に用いることができるが、工業排水や生活排水、農業用水、海水など、一定の量を継続的に処理する流体であることが好ましい。中でも海水淡水化のための海水や、この海水や前記排水を、砂濾過処理、沈殿処理および/または膜分離処理などにより前処理した水を好ましく用いることができる。 The supply fluid used in the present invention is not limited as long as it can be separated into a permeated fluid and a concentrated fluid in a separation membrane included in a cross-flow type membrane separation device. It can be used for known methods such as desalination, wastewater treatment, dyeing wastewater, electrodeposition paint wastewater, sewage and other methods for separating harmful components, and concentration of active ingredients in food applications. It is preferably a fluid that continuously treats a certain amount such as domestic wastewater, agricultural water, and seawater. Among these, seawater for desalination of seawater, and water obtained by pretreating the seawater and the wastewater by sand filtration, precipitation and / or membrane separation can be preferably used.
 前記供給流体は加圧して膜分離装置に供給される。この加圧の方法としては、公知の加圧ポンプなどの機械的手段を用いることができ、このときに加えられる圧力は供給流体と分離膜の性能に応じて適宜決定すればよいが、一般に1MPa以上10MPa以下であることが好ましく、1.5MPa~8MPaがより好ましい。 The supply fluid is pressurized and supplied to the membrane separator. As this pressurizing method, a mechanical means such as a known pressurizing pump can be used, and the pressure applied at this time may be appropriately determined according to the performance of the supply fluid and the separation membrane, but generally 1 MPa. The pressure is preferably 10 MPa or less and more preferably 1.5 MPa to 8 MPa.
 前記膜分離装置は一般に、分離膜エレメントが供給流体の加圧に耐えうる圧力容器に装填された構成を有しているか、分離膜エレメントが圧力容器と一体になった構成を有している。本発明では、加圧型でクロスフロー方式の膜分離装置である限り分離膜エレメントは特に限定されるものではないが、一例として、海水淡水化処理などではポリアミド系複合分離膜を含むスパイラル型の分離膜エレメントが用いられる。 The membrane separation device generally has a configuration in which the separation membrane element is loaded in a pressure vessel that can withstand the pressurization of the supply fluid, or a configuration in which the separation membrane element is integrated with the pressure vessel. In the present invention, the separation membrane element is not particularly limited as long as it is a pressure-type and cross-flow type membrane separation device. For example, in a seawater desalination treatment, a spiral type separation membrane including a polyamide-based composite separation membrane is used. A membrane element is used.
 温度差発電装置としては、オープンサイクルシステムやクローズドサイクルシステム、これらのハイブリットサイクルシステムがあるが、これらのうちで適切な構成のものを用いることができる。これらは共通して、蒸発器、凝縮器、発電機に直結されたタービン、ポンプなどから構成され、これらの構成機器はパイプで接続される。例えば海面表層水を高温流体とし、海洋深層水を低温流体とするクローズドサイクルシステムの場合、この装置内に封入されたアンモニア等の作動流体が、液体の状態で蒸発器に送られ、蒸発器内で海面表層水の温度で加熱され蒸気となり、この蒸気がタービンと発電機を回転させて発電した後、海洋深層水の温度となっている凝縮器によって冷却され再び液体になる。この繰り返しによって発電することができる。本発明では、高温流体として膜分離装置で分離された濃縮流体が用いられる。 There are an open cycle system, a closed cycle system, and a hybrid cycle system of these as the temperature difference power generation device, and an appropriate configuration among them can be used. These are commonly composed of an evaporator, a condenser, a turbine directly connected to a generator, a pump, and the like, and these components are connected by pipes. For example, in the case of a closed cycle system in which sea surface water is a high-temperature fluid and deep ocean water is a low-temperature fluid, a working fluid such as ammonia enclosed in this device is sent to the evaporator in a liquid state, and the inside of the evaporator Then, the steam is heated at the temperature of the surface water of the sea surface and becomes steam. After generating power by rotating the turbine and the generator, the steam is cooled by the condenser having the temperature of the deep sea water and becomes liquid again. Power can be generated by repeating this process. In the present invention, the concentrated fluid separated by the membrane separator is used as the high temperature fluid.
 膜分離装置から排出され、温度差発電装置に供給される濃縮流体は、適宜必要に応じて加熱され、温度差発電装置に高温流体として送られる。このような濃縮流体は海水や水道水と比べて比熱が高いため、加熱に要するエネルギーを大幅に削減することができる。濃縮流体の加熱温度は、作動流体の気化温度や封入圧力に応じて適宜決定されるが、15℃以上120℃以下である。温度差発電装置は、15℃以上50℃以下の高温流体で動作することが好ましい。また、濃縮流体の加熱は、高温流体と低温流体の温度差が20℃以上となるように行われることが好ましい。 The concentrated fluid discharged from the membrane separation device and supplied to the temperature difference power generation device is appropriately heated as necessary and sent to the temperature difference power generation device as a high temperature fluid. Since such a concentrated fluid has a higher specific heat than seawater or tap water, the energy required for heating can be greatly reduced. The heating temperature of the concentrated fluid is appropriately determined according to the vaporization temperature of the working fluid and the sealing pressure, but is 15 ° C. or higher and 120 ° C. or lower. It is preferable that the temperature difference power generator operates with a high-temperature fluid of 15 ° C. or more and 50 ° C. or less. Further, the heating of the concentrated fluid is preferably performed so that the temperature difference between the high temperature fluid and the low temperature fluid is 20 ° C. or more.
 濃縮流体を加熱する方法は特に限定されるものではなく、適宜周辺環境や装置設計に応じて火力、電熱線、太陽熱などを用いることができるが、エネルギー効率の観点からは、太陽光や太陽熱などの太陽エネルギーを用いて加熱する方法が好ましい。加熱方法としては、供給流体や濃縮流体の配管として金属などの熱伝導率の高い物質を用いるとともに、その部位に適切な公知の加熱を行えば良い。他には、前記配管として透明配管を用いるとともに、太陽光との対称位置に凹面鏡を設置して流体を加熱することや、透明配管内の太陽光との対称位置に当たる片面を鏡面とすることで太陽エネルギーを流体に集めて加熱することも好ましく用いられる。また加熱位置としては、加圧ポンプからの熱転移を考慮すると、加圧後の供給流体に対して行うことが好ましい。さらには、膜分離前、膜分離後、膜分離装置内、のいずれでも良く、これらを複数位置で組み合わせても良いが、膜分離前および/または膜分離後に加熱することが好ましい。膜分離前に加熱すると、常温よりも高温の流体を分離膜エレメントに供給した場合に分離膜の透過性能を向上させられることがわかっているため、分離膜の透過性能を向上することができる。さらに、一定の温度で膜分離装置に供給することができるため、膜分離性能を一定に制御しやすくなる。また、膜分離後に加熱した場合には、加熱のエネルギーを無駄にすることなく、高温流体として用いる濃縮流体のみを効率的に加熱することができる。したがって、加圧された供給流体に対して、膜分離前に40℃以下程度の予備加熱を行い、膜分離後に必要水準までの加熱を行うことが好ましい。 The method of heating the concentrated fluid is not particularly limited, and heating power, heating wire, solar heat, etc. can be used as appropriate according to the surrounding environment and device design, but from the viewpoint of energy efficiency, sunlight, solar heat, etc. The method of heating using solar energy is preferable. As a heating method, a material having a high thermal conductivity such as a metal may be used as a supply fluid or concentrated fluid pipe, and appropriate known heating may be performed on the portion. In addition to using a transparent pipe as the pipe, a concave mirror is installed at a position symmetrical to sunlight and the fluid is heated, or one side of the transparent pipe facing the position symmetrical to sunlight is used as a mirror surface. It is also preferable to collect solar energy into a fluid and heat it. The heating position is preferably performed on the pressurized supply fluid in consideration of heat transfer from the pressurizing pump. Furthermore, it may be any of before, after and after membrane separation, and may be combined at a plurality of positions, but it is preferable to heat before and / or after membrane separation. Since it is known that when the fluid is heated before the membrane separation, the permeation performance of the separation membrane can be improved when a fluid having a temperature higher than room temperature is supplied to the separation membrane element, the permeation performance of the separation membrane can be improved. Further, since the membrane can be supplied to the membrane separation device at a constant temperature, the membrane separation performance can be easily controlled to be constant. Further, when heating is performed after membrane separation, only the concentrated fluid used as the high-temperature fluid can be efficiently heated without wasting heating energy. Therefore, it is preferable to preheat the pressurized supply fluid to about 40 ° C. or less before membrane separation and to heat to the required level after membrane separation.
 温度差発電装置に供給される低温流体は、凍結しておらず、流動に不具合のない流体であるとともに、できる限り低温のものが好ましいこと以外は特に限定されるものではなく、4℃以上20℃以下の流体を用いることが好ましい。例えば、分離膜への供給流体、河川水、海水、海洋深層水や、アルコールなどの分離対象流体以外の流体、を用いることができるが、特に、膜分離と発電におけるシステム効率の観点からは分離膜への供給流体の一部を用いることが好ましく、より好ましくは、加圧前の供給流体である。 The low-temperature fluid supplied to the temperature difference power generation device is not particularly limited except that it is a fluid that is not frozen and has no malfunction in flow, and preferably has a low temperature as much as possible. It is preferable to use a fluid of less than or equal to ° C. For example, a fluid other than the separation target fluid such as supply fluid to the separation membrane, river water, seawater, deep ocean water, or alcohol can be used. It is preferable to use a part of the supply fluid to the membrane, more preferably the supply fluid before pressurization.
 低温流体と高温流体の温度差は、作動流体にアンモニアを用いた、カリーナサイクルやウエハラサイクルなどの高効率の装置を用いる場合、20℃以上あることが好ましく、25℃以上であることが好ましい。温度差は高ければ高い方が良いが、エネルギー効率の観点からの温度差としては90℃以下、好ましくは50℃以下である。 The temperature difference between the low-temperature fluid and the high-temperature fluid is preferably 20 ° C. or higher, and preferably 25 ° C. or higher, when using a highly efficient apparatus such as a carina cycle or Uehara cycle using ammonia as the working fluid. The higher the temperature difference, the better. However, the temperature difference from the viewpoint of energy efficiency is 90 ° C. or less, preferably 50 ° C. or less.
 供給流体は加圧のためにポンプを経由する際、熱エネルギーの転移により供給流体の温度が2~3℃上昇する。これは上記ウエハラサイクルで必要とする動作温度差が25℃程度であるため、この熱エネルギーは10%程度にも相当するものであり、このエネルギーを余すことなく利用できる。 When the supply fluid passes through the pump for pressurization, the temperature of the supply fluid rises by 2 to 3 ° C due to the transfer of thermal energy. This is because the difference in operating temperature required in the above wafer cycle is about 25 ° C., so this thermal energy is equivalent to about 10%, and this energy can be used without surplus.
 膜分離装置で分離された濃縮流体は高い圧力を有するために、温度差発電装置に送られる前に、濃縮流体から圧力エネルギー回収装置を用いて圧力エネルギーを回収することが好ましい。圧力エネルギー回収装置としては例えば、Energy Recovery社のPXシリーズなどが挙げられる。前記圧力エネルギー回収装置を用いる場合、この回収装置までの配管や装置などは高圧の流体圧力に耐えうる耐圧仕様の構成とする必要がある。そのため、耐圧構成が最小限度で済むように、加圧した供給流体を供給する膜分離装置の直後に前記圧力エネルギー回収装置を設け、これ以降の流体を適度に減圧することが好ましい。このときの減圧後の圧力は、特に限定されるものではないが、好ましくは0.1~2MPa程度である。 Since the concentrated fluid separated by the membrane separator has a high pressure, it is preferable to recover pressure energy from the concentrated fluid using a pressure energy recovery device before being sent to the temperature difference power generation device. Examples of the pressure energy recovery device include PX series manufactured by Energy-Recovery. In the case of using the pressure energy recovery device, the pipes and devices up to the recovery device need to have a pressure resistant configuration capable of withstanding a high fluid pressure. For this reason, it is preferable that the pressure energy recovery device is provided immediately after the membrane separation device for supplying the pressurized supply fluid so that the pressure resistance configuration is minimized, and the subsequent fluid is appropriately decompressed. The pressure after depressurization at this time is not particularly limited, but is preferably about 0.1 to 2 MPa.
 他に、温度差発電装置単独のシステムにおいては高温流体および低温流体を流動させるためのポンプがそれぞれ必要であるが、本発明によれば、膜分離処理の流体圧力を利用できるため、温度差発電装置における作動流体を流動させるポンプ以外の流動ポンプを省略することが可能である。例えば、流体処理装置の膜分離装置から温度差発電装置の蒸発器まで濃縮流体が連続的に流れるようにそれらを流路で結び、濃縮流体が膜分離装置から排出されるときの圧力を利用して濃縮流体を温度差発電装置に供給すれば、高温流体用のポンプを省略することができる。また、低温流体に供給流体を用いた場合には低温流体用のポンプを省略することができる。いずれの場合も、省エネルギー効果が高い。 In addition, in the system of the temperature difference power generation device alone, a pump for flowing the high temperature fluid and the low temperature fluid is required respectively. However, according to the present invention, the fluid pressure of the membrane separation process can be used. It is possible to omit a flow pump other than the pump for flowing the working fluid in the apparatus. For example, the concentrated fluid is connected by a flow path so that the concentrated fluid flows continuously from the membrane separator of the fluid treatment device to the evaporator of the temperature difference power generator, and the pressure when the concentrated fluid is discharged from the membrane separator is used. If the concentrated fluid is supplied to the temperature difference power generation device, the pump for the high temperature fluid can be omitted. Further, when the supply fluid is used as the low temperature fluid, the pump for the low temperature fluid can be omitted. In either case, the energy saving effect is high.
 温度差発電装置での発電に利用した後の高温流体および低温流体は、特に限定されるものではないが、そのエネルギーや流体自体が流体処理装置に戻されて循環されることが好ましい。高温流体に関しては、高温であることを有効利用するために、各種蒸発法により淡水化する方法も組み合わせて好ましく用いることができる。低温流体は、分離膜エレメントへの供給流体として戻すことが好ましいが、さらに、前記圧力エネルギー回収装置への供給流体として供給し、圧力エネルギーを付加して膜分離装置に供給する方法が好ましく用いられる。 The high-temperature fluid and the low-temperature fluid after being used for power generation by the temperature difference power generation device are not particularly limited, but it is preferable that the energy and fluid itself be returned to the fluid processing device and circulated. Regarding the high temperature fluid, in order to effectively use the high temperature, a method of desalination by various evaporation methods can be preferably used in combination. The low-temperature fluid is preferably returned as a supply fluid to the separation membrane element, but a method of supplying the pressure energy as a supply fluid to the pressure energy recovery device and supplying the pressure energy to the membrane separation device is preferably used. .
 <流体膜分離発電システム>
 以下に、本発明の流体膜分離方法を実行する流体膜分離発電システムの具体例を図1に基づいて示すが、本発明はこれに限定されるものではない。
<Fluid membrane power generation system>
Although the specific example of the fluid membrane separation power generation system which performs the fluid membrane separation method of this invention is shown below based on FIG. 1, this invention is not limited to this.
 図1は、本発明の一実施形態に係る流体膜分離システムを示す。この流体膜分離システムでは、流体処理装置30の下流側に温度差発電装置40が設けられている。これについて順を追って説明する。 FIG. 1 shows a fluid membrane separation system according to an embodiment of the present invention. In this fluid membrane separation system, a temperature difference power generation device 40 is provided on the downstream side of the fluid processing device 30. This will be explained step by step.
 (流体処理装置)
 本実施形態の流体処理装置30は、海水を淡水化するものである。具体的に、流体処理装置30は、クロスフロー方式の膜分離装置10を備えている。膜分離装置10に海水を導くライン上には、上流側から順に、取水ポンプ1、砂濾過装置2、限外濾過膜(UF膜)前処理装置3、UFろ過水槽(本発明の貯留槽に相当)5、供給ポンプ6、および高圧ポンプ(本発明の加圧ポンプに相当)9が設けられている。膜分離装置10は、高圧ポンプ9から供給される高圧の供給水102を透過水103と濃縮水104に分離する。膜分離装置10から濃縮水104を導くライン上には、上流側から順に、圧力エネルギー回収装置21、太陽加熱装置11、および電気ボイラ(第2の加熱装置)12が設けられている。
(Fluid treatment device)
The fluid processing apparatus 30 of this embodiment desalinates seawater. Specifically, the fluid processing apparatus 30 includes a cross-flow type membrane separation apparatus 10. On the line leading seawater to the membrane separation device 10, the water intake pump 1, the sand filtration device 2, the ultrafiltration membrane (UF membrane) pretreatment device 3, the UF filtration water tank (into the storage tank of the present invention) in order from the upstream side. 5), a supply pump 6, and a high-pressure pump 9 (corresponding to the pressurizing pump of the present invention) 9 are provided. The membrane separation device 10 separates the high-pressure supply water 102 supplied from the high-pressure pump 9 into permeated water 103 and concentrated water 104. A pressure energy recovery device 21, a solar heating device 11, and an electric boiler (second heating device) 12 are provided in this order from the upstream side on a line that guides the concentrated water 104 from the membrane separation device 10.
 本実施形態では、膜分離装置10として、ポリアミド系複合分離膜を含むスパイラル型の分離膜エレメントが圧力容器内に装填された逆浸透膜(RO膜)分離装置が用いられている。スパイラル型の分離膜エレメントは、図2に示されるように、分離膜52と供給側流路材54と透過側流路材53とが積層された状態で中心管(集水管)51の周囲にスパイラル状に巻回され、端部材や外装材などで固定される。このとき、必要に応じて分離膜52の各辺は接着され、供給水102と透過水103が混合しない構造になっている。 In this embodiment, a reverse osmosis membrane (RO membrane) separation device in which a spiral type separation membrane element including a polyamide composite separation membrane is loaded in a pressure vessel is used as the membrane separation device 10. As shown in FIG. 2, the spiral separation membrane element is formed around a central tube (water collecting tube) 51 in a state where a separation membrane 52, a supply-side flow passage material 54 and a permeation-side flow passage material 53 are laminated. It is wound in a spiral shape and fixed with an end member or an exterior material. At this time, each side of the separation membrane 52 is bonded as necessary, and the supply water 102 and the permeated water 103 are not mixed.
 ポリアミド系複合分離膜としては、多孔性支持体上にポリアミド系重合物からなる分離機能層を設けたものが挙げられる。 Examples of the polyamide composite separation membrane include a porous support provided with a separation functional layer made of a polyamide polymer.
 前記多孔性支持体としては、分離機能層を形成しうるものであれば特に限定されず、不織布や織布等の基材上にポリスルホンからなる微多孔層を設けたものが好ましく用いられる。他には、ポリイミドやポリフッ化ビニリデン、エポキシ等の多孔性膜を単独で用いることもできる。このとき、多孔性支持体の分離機能層を設ける表面の平均孔径は0.01μm以上1μm以下程度であり、多孔性支持体の厚さとしては、10~150μm程度である。 The porous support is not particularly limited as long as it can form a separation functional layer, and a porous support made of polysulfone on a substrate such as a nonwoven fabric or a woven fabric is preferably used. In addition, a porous film such as polyimide, polyvinylidene fluoride, and epoxy can be used alone. At this time, the average pore diameter of the surface on which the separation functional layer of the porous support is provided is about 0.01 μm to 1 μm, and the thickness of the porous support is about 10 to 150 μm.
 前記ポリアミド系の分離機能層は、公知の方法を用いて形成することができるが、例えば、多孔性支持体上に多官能アミン成分を含む水溶液被覆層を形成し、そこに多官能酸ハライド成分を含む溶液を接触させることで前記ポリアミド系分離機能層を形成することができる。接触時間としては、通常5秒~5分であり、余分な溶液を除去した後、接触により生じた界面で縮重合させる。さらに15℃~35℃の空気中で約1~10分間乾燥させ、乾燥後に脱イオン水で膜面を洗浄することが好ましい。 The polyamide-based separation functional layer can be formed using a known method. For example, an aqueous solution coating layer containing a polyfunctional amine component is formed on a porous support, and a polyfunctional acid halide component is formed there. The polyamide-based separation functional layer can be formed by contacting a solution containing. The contact time is usually 5 seconds to 5 minutes, and after the excess solution is removed, condensation polymerization is performed at the interface generated by the contact. Further, it is preferable to dry in air at 15 ° C. to 35 ° C. for about 1 to 10 minutes, and after the drying, the membrane surface is washed with deionized water.
 前記多官能アミン成分としては、芳香族、脂肪族、または脂環式の多官能アミンがあげられる。またこれらの多官能アミン成分は単独で用いてもよく、混合物としてもよい。前記多官能酸ハライド成分としては、芳香族、脂肪族、または脂環式の多官能酸ハロゲン化物を用いることができる。これらの多官能酸ハライド成分においても単独で用いてもよいが、混合物として用いてもよい。 Examples of the polyfunctional amine component include aromatic, aliphatic, or alicyclic polyfunctional amines. Moreover, these polyfunctional amine components may be used alone or as a mixture. As the polyfunctional acid halide component, aromatic, aliphatic, or alicyclic polyfunctional acid halides can be used. These polyfunctional acid halide components may be used alone or as a mixture.
 次に、流体処理装置30の動作を説明する。 Next, the operation of the fluid processing apparatus 30 will be described.
 流体処理装置30は、まず、取水ポンプ1から原海水(原水)101を取水し、砂濾過装置2、限外濾過膜(UF膜)前処理装置3を経てUF膜ろ過水槽5に貯留する。この際、微生物の繁殖抑制や殺菌の目的で薬剤注入装置4から次亜塩素酸ナトリウムを例えば約1ppmを添加する。その後、UF膜ろ過水槽5に貯留された水は供給ポンプ6により例えば約0.5MPaの圧力で送水されて高圧ポンプ9に供給される。その際、薬剤注入装置4で注入した次亜塩素酸ナトリウムによりRO膜が化学劣化することを抑制するため、薬剤注入装置7から還元剤である重亜硫酸ナトリウムを例えば3ppm添加し、さらに難溶性塩類(スケール)の発生を抑制するために薬剤注入装置8からスケール防止剤(ナルコ社製 パーマトリートPC191)を例えば3ppm注入する。この時点で例えば20℃であった供給水は、高圧ポンプ9により例えば約5.5MPaに加圧されることにより、水温23℃の状態で膜分離装置10に導入されて、透過水103と濃縮水104に分離される。 The fluid treatment device 30 first takes raw seawater (raw water) 101 from the intake pump 1 and stores it in the UF membrane filtration water tank 5 via the sand filtration device 2 and the ultrafiltration membrane (UF membrane) pretreatment device 3. At this time, for example, about 1 ppm of sodium hypochlorite is added from the drug injection device 4 for the purpose of suppressing the growth of microorganisms and sterilization. Thereafter, the water stored in the UF membrane filtration water tank 5 is supplied by the supply pump 6 at a pressure of, for example, about 0.5 MPa and supplied to the high-pressure pump 9. At that time, in order to suppress the chemical degradation of the RO membrane by sodium hypochlorite injected by the drug injection device 4, for example, 3 ppm of sodium bisulfite as a reducing agent is added from the drug injection device 7, and further hardly soluble salts. In order to suppress the generation of (scale), for example, 3 ppm of a scale inhibitor (Permatreat PC191 manufactured by Nalco) is injected from the drug injection device 8. The supply water, which was 20 ° C. at this time, is introduced to the membrane separation device 10 at a water temperature of 23 ° C. by being pressurized to, for example, about 5.5 MPa by the high-pressure pump 9, and concentrated with the permeated water 103. Separated into water 104.
 濃縮水104からは、直後に圧力エネルギー回収装置21により圧力エネルギーが回収される。具体的に、圧力エネルギー回収装置21では、高圧ポンプ9の上流側から取水した供給水に圧力エネルギーが転移され、これにより高圧となった供給水が高圧ポンプ9から吐出されたRO膜供給水102と混合する。一方、圧力エネルギー回収装置21により減圧された濃縮水104は、黒色の屋外配管で構成された太陽熱加熱装置11で例えば30℃まで加熱された後にさらに電気ボイラ12で例えば50℃まで加熱される。なお、電気ボイラ12は加熱装置11の加温状態と連動して50℃まで昇温させるために設けられているが、温度差発電装置40における高温流体と低温流体の温度差によっては電気ボイラ12と太陽加熱装置11の一方または双方が設けられていなくてもよい。加熱された濃縮水は、温度差発電装置40で用いる高温流体105として後述する蒸発器13に直接流入する。 The pressure energy is recovered from the concentrated water 104 by the pressure energy recovery device 21 immediately after. Specifically, in the pressure energy recovery device 21, the pressure energy is transferred to the supply water taken from the upstream side of the high-pressure pump 9, and the supply water that has become high pressure thereby is discharged from the high-pressure pump 9. Mix with. On the other hand, the concentrated water 104 depressurized by the pressure energy recovery device 21 is heated to, for example, 30 ° C. by the solar heating device 11 configured with black outdoor piping, and further heated to, for example, 50 ° C. by the electric boiler 12. The electric boiler 12 is provided to raise the temperature to 50 ° C. in conjunction with the heating state of the heating device 11, but depending on the temperature difference between the high temperature fluid and the low temperature fluid in the temperature difference power generation device 40, the electric boiler 12 is provided. One or both of the solar heating device 11 and the solar heating device 11 may not be provided. The heated concentrated water directly flows into the evaporator 13 described later as the high-temperature fluid 105 used in the temperature difference power generation device 40.
 (温度差発電装置)
 温度差発電装置40としては、流体処理装置30から直接的に供給される濃縮流体を高温流体105として用いるとともに、別に供給される低温流体106を用いて、これらの温度差を原理として発電する装置であれば限定されるものではないが、本実施形態では、作動流体107が封入された状態で気化と液化を繰り返すクローズドサイクルシステムが採用されている。
(Temperature difference power generator)
As the temperature difference power generation device 40, a concentrated fluid directly supplied from the fluid processing device 30 is used as the high temperature fluid 105, and a low temperature fluid 106 supplied separately is used to generate power based on these temperature differences. If it is, it will not be limited, but in this embodiment, the closed cycle system which repeats vaporization and liquefaction in the state which enclosed the working fluid 107 is employ | adopted.
 具体的に、温度差発電装置40は、作動流体を循環させる作動流体回路を有している。この作動流体回路は、蒸発器13、気液分離器15、発電機17に直結されたタービン16、凝縮器14、貯留タンク19およびポンプ20がパイプでこの順に接続されることにより構成されている。作動流体107は、蒸発器13において高温流体105と熱交換を行った後に、気液分離器15において作動流体蒸気と作動流体液体に分離される。作動流体蒸気はタービン16に送られ、発電機17を回転させて発電を行う。発電機17にて発電した電力は、例えば、高圧ポンプ9の動力として用いられる。その後、タービン16より排出された作動流体蒸気は凝縮器14に送られ、低温流体106と熱交換を行って液体となり、貯留タンク19に入る。 Specifically, the temperature difference power generation device 40 has a working fluid circuit for circulating the working fluid. This working fluid circuit is configured by connecting an evaporator 13, a gas-liquid separator 15, a turbine 16 directly connected to the generator 17, a condenser 14, a storage tank 19, and a pump 20 in this order by pipes. . The working fluid 107 exchanges heat with the high temperature fluid 105 in the evaporator 13, and then is separated into working fluid vapor and working fluid liquid in the gas-liquid separator 15. The working fluid vapor is sent to the turbine 16 to generate electricity by rotating the generator 17. The electric power generated by the generator 17 is used as power for the high-pressure pump 9, for example. Thereafter, the working fluid vapor discharged from the turbine 16 is sent to the condenser 14, exchanges heat with the low temperature fluid 106, becomes a liquid, and enters the storage tank 19.
 本実施形態では、流体処理装置30において供給ポンプ6から吐出される供給水の一部が低温流体106として温度差発電装置40に供給され、凝縮器14で低温流体106として使用された供給水が供給ポンプ6の上流側に配置されたUFろ過水槽5に戻される。より詳しくは、低温流体106として、供給ポンプ6よりも下流側であって薬剤注入装置7および8よりも上流側の水が用いられている。一方、気液分離器15で分離された作動流体液体は貯留タンク18に一旦貯められ、凝縮器14に送られた後、貯留タンク19に貯留される。貯留タンク19に貯留された作動流体は、ポンプ20により蒸発器13に送られる。この操作を繰り返すことで発電が行われる。 In the present embodiment, a part of the supply water discharged from the supply pump 6 in the fluid processing device 30 is supplied to the temperature difference power generation device 40 as the low temperature fluid 106, and the supply water used as the low temperature fluid 106 in the condenser 14 is supplied. It is returned to the UF filtration water tank 5 arranged on the upstream side of the supply pump 6. More specifically, as the low temperature fluid 106, water downstream from the supply pump 6 and upstream from the drug injection devices 7 and 8 is used. On the other hand, the working fluid liquid separated by the gas-liquid separator 15 is temporarily stored in the storage tank 18, sent to the condenser 14, and then stored in the storage tank 19. The working fluid stored in the storage tank 19 is sent to the evaporator 13 by the pump 20. Power generation is performed by repeating this operation.
 蒸発器13および凝縮器14としては、高温流体および低温流体と作動流体が混合せず、熱交換が適切に行なうことができ、さらに前記流体により腐食しないものであれば特に限定されるものではなく用いることができる。なお、蒸発器13内においては、気化しやすくするために、大気圧よりも減圧することが好ましい。また、蒸発器13および凝縮器14の大きさおよび形状については熱交換効率を考慮して適宜設計することが好ましい。タービン16および発電機17としても、作動流体蒸気により腐食しないものであれば、適宜市販のものを用いることができる。 The evaporator 13 and the condenser 14 are not particularly limited as long as the high-temperature fluid, the low-temperature fluid, and the working fluid are not mixed, heat exchange can be appropriately performed, and further, no corrosion is caused by the fluid. Can be used. In the evaporator 13, it is preferable to reduce the pressure from the atmospheric pressure in order to facilitate vaporization. In addition, the size and shape of the evaporator 13 and the condenser 14 are preferably designed appropriately in consideration of heat exchange efficiency. As the turbine 16 and the generator 17, commercially available ones can be used as long as they are not corroded by the working fluid vapor.
 作動流体としては、アンモニア、フロン化合物、炭化水素化合物、水や、これらの混合物が挙げられるが、動作効率の観点から、アンモニアと水の混合物であり、アンモニアを70~95重量%用いた物質を特に好ましく用いることができる。例えば、作動流体107として、アンモニア90重量%と純水10重量%の混合物を用いてもよい。 Examples of the working fluid include ammonia, a chlorofluorocarbon compound, a hydrocarbon compound, water, and a mixture thereof. From the viewpoint of operation efficiency, a working fluid is a mixture of ammonia and water, and a substance using 70 to 95% by weight of ammonia. It can be particularly preferably used. For example, a mixture of 90% by weight of ammonia and 10% by weight of pure water may be used as the working fluid 107.
 構成機器を連結するパイプとしては、特に限定されるものではなく、金属や樹脂パイプなどを用いることができるが、特に断熱効果が高いものを好ましく用いることができる。必要に応じて、適宜断熱材を用いることが効率を高める上で好ましい。 The pipe for connecting the constituent devices is not particularly limited, and a metal or resin pipe can be used, but a pipe having a particularly high heat insulating effect can be preferably used. If necessary, it is preferable to use an appropriate heat insulating material in order to increase efficiency.
 (変形例)
 なお、本発明の流体膜分離発電システムは、上述した構成を有するものに限られず、種々の変形が可能である。例えば、図3に示すように、流体処理装置30と温度差発電装置40の間に濃縮水104を一旦貯留する断熱構造のタンク24が設けられていてもよい。そして、タンク24に貯留された濃縮水が高温流体105として循環ポンプ23により温度差発電装置40の蒸発器13を経由して循環させられてもよい。この場合、タンク24から蒸発器13に濃縮水を導く流路上に濃縮水を加熱する加熱装置が設けられていてもよい。
(Modification)
The fluid membrane separation power generation system of the present invention is not limited to the one having the above-described configuration, and various modifications are possible. For example, as shown in FIG. 3, a tank 24 having a heat insulating structure that temporarily stores the concentrated water 104 may be provided between the fluid treatment device 30 and the temperature difference power generation device 40. Then, the concentrated water stored in the tank 24 may be circulated as the high-temperature fluid 105 by the circulation pump 23 via the evaporator 13 of the temperature difference power generator 40. In this case, a heating device that heats the concentrated water may be provided on the flow path that guides the concentrated water from the tank 24 to the evaporator 13.
 また、温度差供給装置40の凝縮器14には、流体処理装置30が処理する原水と同じ原海水101が低温流体106として取水ポンプ25から供給されてもよい。タンク24内の温度を調整するために、凝縮器14から流出した低温流体が開閉弁29付の流路によってタンク24に導かれるような構成が採用されていてもよい。 Also, the same raw seawater 101 as the raw water processed by the fluid processing device 30 may be supplied from the intake pump 25 to the condenser 14 of the temperature difference supply device 40 as the low temperature fluid 106. In order to adjust the temperature in the tank 24, a configuration in which the low-temperature fluid that has flowed out of the condenser 14 is guided to the tank 24 by a flow path with the on-off valve 29 may be employed.
 さらに、タンク24から濃縮水が排出されるルート上に濃度差発電装置50を設け、濃縮水が有する正浸透圧エネルギーを利用して発電を行うことも可能である。濃度差発電装置50では、タンク24から排出された濃縮水と凝縮器14を通過した原海水とが正浸透膜を含む膜分離装置26に導かれる。濃縮水は、蒸発して発電機28と直結されたタービン27を回転させた後に、膜分離装置26を通過した原海水と混合する。 Furthermore, it is also possible to provide a concentration difference power generation device 50 on the route through which the concentrated water is discharged from the tank 24, and to generate power using the forward osmotic pressure energy of the concentrated water. In the concentration difference power generation device 50, the concentrated water discharged from the tank 24 and the raw seawater that has passed through the condenser 14 are guided to the membrane separation device 26 including a forward osmosis membrane. The concentrated water evaporates and rotates the turbine 27 directly connected to the generator 28 and then mixes with the raw seawater that has passed through the membrane separation device 26.
 上記のとおり本発明は、流体処理装置と温度差発電装置を用いた流体膜分離発電方法および流体膜分離発電システムを提供する。この方法およびシステムでは膜分離における流体分離の性能に影響を与えることなく、これまで無駄に消費されてきた流体膜分離の流体にかかる圧力および熱エネルギーを無駄なく消費することができる。例えば、膜分離のための加圧により流体に加えられた2~3℃のエネルギーは、温度差発電装置を高効率に駆動することができる20~30℃の温度差に対して約10%のエネルギーであるため、少なくとも同程度の省エネルギーを実現することができる。また、流体膜分離に不可欠な流体の流動圧力を用いることで、温度差発電装置の駆動に不可欠な、高温流体および低温流体を流動させるポンプを用いることなく発電機能を動作させることができる。 As described above, the present invention provides a fluid membrane separation power generation method and a fluid membrane separation power generation system using a fluid treatment device and a temperature difference power generation device. In this method and system, the pressure and thermal energy applied to the fluid of the fluid membrane separation that has been wasted until now can be consumed without wasting without affecting the performance of the fluid separation in the membrane separation. For example, the energy of 2 to 3 ° C. applied to the fluid by pressurization for membrane separation is about 10% with respect to the temperature difference of 20 to 30 ° C. which can drive the temperature difference power generation device with high efficiency. Since it is energy, at least the same level of energy saving can be realized. Further, by using the fluid flow pressure indispensable for fluid membrane separation, the power generation function can be operated without using a pump for flowing the high temperature fluid and the low temperature fluid, which is indispensable for driving the temperature difference power generation device.
 1   取水ポンプ
 2   砂濾過装置
 3   限外濾過膜(UF膜)前処理装置
 4,7,8 薬剤注入装置
 5   UF膜ろ過水槽(貯留槽)
 6   供給ポンプ
 9   高圧ポンプ(加圧ポンプ)
 10  膜分離装置
 11  太陽熱加熱装置
 12  電気ボイラ(第2の加熱装置)
 13  蒸発器
 14  凝縮器
 15  気液分離器
 16  タービン
 17  発電機
 18,19 貯留タンク
 20  作動流体ポンプ
 21  圧力エネルギー回収装置
 30  流体処理装置
 40  温度差発電装置
 50  濃度差発電装置
 101  原水
 102  RO膜供給水
 103  透過水
 104  濃縮水
 105  高温流体
 106  低温流体
 107  作動流体
DESCRIPTION OF SYMBOLS 1 Intake pump 2 Sand filtration device 3 Ultrafiltration membrane (UF membrane) pretreatment device 4, 7, 8 Drug injection device 5 UF membrane filtration water tank (storage tank)
6 Supply pump 9 High-pressure pump (pressure pump)
DESCRIPTION OF SYMBOLS 10 Membrane separator 11 Solar heating device 12 Electric boiler (2nd heating device)
DESCRIPTION OF SYMBOLS 13 Evaporator 14 Condenser 15 Gas-liquid separator 16 Turbine 17 Generator 18, 19 Reservoir tank 20 Working fluid pump 21 Pressure energy recovery device 30 Fluid processing device 40 Temperature difference power generation device 50 Concentration difference power generation device 101 Raw water 102 RO membrane supply Water 103 Permeated water 104 Concentrated water 105 High temperature fluid 106 Low temperature fluid 107 Working fluid

Claims (13)

  1.  加圧した供給流体を、クロスフロー方式の膜分離装置を用いて透過流体と濃縮流体に分離した後、高温流体と低温流体を使用する温度差発電装置において前記濃縮流体を高温流体として用いて発電する、流体膜分離発電方法。 After the pressurized supply fluid is separated into a permeation fluid and a concentrated fluid using a cross-flow type membrane separation device, power generation is performed using the concentrated fluid as a high temperature fluid in a temperature difference power generation device using a high temperature fluid and a low temperature fluid. A fluid membrane separation power generation method.
  2.  低温流体として、前記膜分離装置に供給する前の供給流体を用いる、請求項1に記載の流体膜分離発電方法。 The fluid membrane separation power generation method according to claim 1, wherein a supply fluid before being supplied to the membrane separation device is used as a low temperature fluid.
  3.  高温流体と低温流体の温度差が20℃以上になるように前記濃縮流体を加熱する、請求項1または2に記載の流体膜分離発電方法。 The fluid membrane separation power generation method according to claim 1 or 2, wherein the concentrated fluid is heated so that a temperature difference between the high temperature fluid and the low temperature fluid becomes 20 ° C or more.
  4.  太陽エネルギーを用いて前記濃縮流体を加熱する、請求項3に記載の流体膜分離発電方法。 4. The fluid membrane separation power generation method according to claim 3, wherein the concentrated fluid is heated using solar energy.
  5.  供給流体が海水または海水を分離処理した水である、請求項1~4のいずれか一項に記載の流体膜分離発電方法。 The fluid membrane separation power generation method according to any one of claims 1 to 4, wherein the supply fluid is seawater or water obtained by separating seawater.
  6.  供給流体を1MPa以上10MPa以下の圧力で加圧する、請求項1~5のいずれか一項に記載の流体膜分離発電方法。 6. The fluid membrane separation power generation method according to claim 1, wherein the supply fluid is pressurized at a pressure of 1 MPa to 10 MPa.
  7.  濃縮流体が前記膜分離装置から排出されるときの圧力を利用して、濃縮流体を前記温度差発電装置に供給する、請求項1~6のいずれか一項に記載の流体膜分離発電方法。 The fluid membrane separation power generation method according to any one of claims 1 to 6, wherein the concentrated fluid is supplied to the temperature difference power generation device using a pressure when the concentrated fluid is discharged from the membrane separation device.
  8.  供給流体を加圧する加圧ポンプ、および前記加圧ポンプで加圧された供給流体を透過流体と濃縮流体に分離するクロスフロー方式の膜分離装置、を含む流体処理装置と、
     高温流体と低温流体の温度差を利用して発電を行う温度差発電装置であって前記流体処理装置から前記濃縮流体が高温流体として直接的に供給される温度差発電装置と、
    を備えた、流体膜分離発電システム。
    A fluid processing apparatus comprising: a pressurizing pump that pressurizes the supply fluid; and a cross-flow type membrane separation device that separates the supply fluid pressurized by the pressurization pump into a permeating fluid and a concentrated fluid;
    A temperature difference power generation device that generates power using a temperature difference between a high temperature fluid and a low temperature fluid, wherein the concentrated fluid is directly supplied as a high temperature fluid from the fluid processing device; and
    A fluid membrane separation power generation system.
  9.  前記流体処理装置は、前記加圧ポンプに供給流体を供給する供給ポンプをさらに含み、
     前記供給ポンプから吐出される供給流体の一部が低温流体として前記温度差発電装置に供給される、請求項8に記載の流体膜分離発電システム。
    The fluid processing apparatus further includes a supply pump that supplies a supply fluid to the pressurizing pump,
    The fluid membrane separation power generation system according to claim 8, wherein a part of the supply fluid discharged from the supply pump is supplied to the temperature difference power generation device as a low temperature fluid.
  10.  前記流体処理装置は、前記供給ポンプの上流側で供給流体を貯留する貯留槽をさらに含み、前記温度差発電装置で低温流体として使用された供給流体が前記貯留槽に戻される、請求項9に記載の流体膜分離発電システム。 The fluid processing apparatus further includes a storage tank that stores a supply fluid upstream of the supply pump, and the supply fluid used as a low-temperature fluid in the temperature difference power generation apparatus is returned to the storage tank. The fluid membrane separation power generation system described.
  11.  前記流体処理装置は、前記膜分離装置で分離された濃縮流体を加熱する加熱装置をさらに含む、請求項8~10のいずれか一項に記載の流体膜分離発電システム。 The fluid membrane separation power generation system according to any one of claims 8 to 10, wherein the fluid treatment device further includes a heating device that heats the concentrated fluid separated by the membrane separation device.
  12.  前記加熱装置は、太陽エネルギーを用いて濃縮流体を加熱する太陽熱加熱装置である、請求項10に記載の流体膜分離発電システム。 The fluid membrane separation power generation system according to claim 10, wherein the heating device is a solar heating device that heats the concentrated fluid using solar energy.
  13.  前記温度差発電装置で発電された電力は、前記加圧ポンプの動力として用いられる、請求項8~12のいずれか一項に記載の流体膜分離発電システム。 The fluid membrane separation power generation system according to any one of claims 8 to 12, wherein the electric power generated by the temperature difference power generation device is used as power for the pressure pump.
PCT/JP2011/002335 2010-04-21 2011-04-21 Method for fluid membrane-separation power generation and system for fluid membrane-separation power generation WO2011132427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-098265 2010-04-21
JP2010098265A JP2013146642A (en) 2010-04-21 2010-04-21 Fluid membrane-separation power generation system

Publications (1)

Publication Number Publication Date
WO2011132427A1 true WO2011132427A1 (en) 2011-10-27

Family

ID=44833968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002335 WO2011132427A1 (en) 2010-04-21 2011-04-21 Method for fluid membrane-separation power generation and system for fluid membrane-separation power generation

Country Status (2)

Country Link
JP (1) JP2013146642A (en)
WO (1) WO2011132427A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193012A (en) * 2012-03-19 2013-09-30 Toshiba Corp Seawater desalination device
KR20170052622A (en) * 2014-09-08 2017-05-12 어플라이드 바이오미메틱 에이/에스 Electricity generation process
US11231020B2 (en) 2017-07-12 2022-01-25 Saltkraft Aps Power generation process
US11231021B2 (en) 2017-07-12 2022-01-25 Saltkraft Aps Power generation process
WO2024052721A1 (en) * 2022-09-05 2024-03-14 Blue Planet Technologies WLL Saline water treatment pre-treatment or treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634808A (en) * 1986-06-24 1988-01-09 Takuma Co Ltd Reverse-osmosis membrane device system
JPH10159709A (en) * 1996-11-27 1998-06-16 Agency Of Ind Science & Technol Fresh water manufacturing device for open cycle ocean thermal energy conversion and method therefor
JP2000087579A (en) * 1998-09-11 2000-03-28 Toshiba Corp Multi-purpose use plant for deep layer water in ocean
JP2003176775A (en) * 2001-12-10 2003-06-27 Tokyo Inst Of Technol Osmotic pressure power generation system with seawater desalting apparatus
JP2007309295A (en) * 2006-05-22 2007-11-29 Toshiba Corp Desalination power generation plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634808A (en) * 1986-06-24 1988-01-09 Takuma Co Ltd Reverse-osmosis membrane device system
JPH10159709A (en) * 1996-11-27 1998-06-16 Agency Of Ind Science & Technol Fresh water manufacturing device for open cycle ocean thermal energy conversion and method therefor
JP2000087579A (en) * 1998-09-11 2000-03-28 Toshiba Corp Multi-purpose use plant for deep layer water in ocean
JP2003176775A (en) * 2001-12-10 2003-06-27 Tokyo Inst Of Technol Osmotic pressure power generation system with seawater desalting apparatus
JP2007309295A (en) * 2006-05-22 2007-11-29 Toshiba Corp Desalination power generation plant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193012A (en) * 2012-03-19 2013-09-30 Toshiba Corp Seawater desalination device
KR20170052622A (en) * 2014-09-08 2017-05-12 어플라이드 바이오미메틱 에이/에스 Electricity generation process
JP2017529491A (en) * 2014-09-08 2017-10-05 アプライド・バイオミメティック・エイ/エス Power generation method
KR102389991B1 (en) * 2014-09-08 2022-04-22 어플라이드 바이오미메틱 에이/에스 Electricity generation process
US11231020B2 (en) 2017-07-12 2022-01-25 Saltkraft Aps Power generation process
US11231021B2 (en) 2017-07-12 2022-01-25 Saltkraft Aps Power generation process
WO2024052721A1 (en) * 2022-09-05 2024-03-14 Blue Planet Technologies WLL Saline water treatment pre-treatment or treatment system

Also Published As

Publication number Publication date
JP2013146642A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
Gonzales et al. Salinity gradient energy generation by pressure retarded osmosis: A review
US8568588B2 (en) Apparatus for osmotic power generation and desalination using salinity difference
JP5913113B2 (en) Forward osmosis separation method
Han et al. Hybrid pressure retarded osmosis–membrane distillation (PRO–MD) process for osmotic power and clean water generation
US20100192575A1 (en) Process and systems
JP2004518531A (en) Water treatment equipment
JP6333573B2 (en) Fresh water generator and fresh water generation method
WO2011132427A1 (en) Method for fluid membrane-separation power generation and system for fluid membrane-separation power generation
JP6400726B2 (en) Water treatment method, water treatment system and water treatment apparatus
US20150027937A1 (en) Seawater desalination system
JP5943924B2 (en) Osmotic pressure driven membrane process and system, and extraction solute recovery method
JPWO2016006666A1 (en) Vacuum membrane distillation fresh water generator for ships
JP2012041849A (en) Concentration difference power generation system
Wang et al. Energy generation from osmotic pressure difference between the low and high salinity water by pressure retarded osmosis
TW201309597A (en) Desalinization system and desalinization method
Goh et al. Energy efficient seawater desalination: strategies and opportunities
US9023211B2 (en) Vacuum membrane distillation (VMD) using aspirator to generate vacuum pressure
Low et al. Industrial scale thin-film composite membrane modules for salinity-gradient energy harvesting through pressure retarded osmosis
WO2011148649A1 (en) Fluid membrane separation power generation method and fluid membrane separation power generation system
KR101421103B1 (en) Device for water treatment and electricity generation using pressure retarded membrane distillation
JP2014034022A (en) Fresh water generator
US10143970B2 (en) Power generation from low-temperature heat by hydro-osmotic processes
Saad et al. Performance analysis of a vacuum desalination system
JP2019147078A (en) Water treatment apparatus and water treatment method
FR3029907B1 (en) PROCESS FOR PURIFYING WATER BY REVERSE OSMOSIS AND INSTALLATION USING SUCH A METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP