JP6028645B2 - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP6028645B2
JP6028645B2 JP2013061350A JP2013061350A JP6028645B2 JP 6028645 B2 JP6028645 B2 JP 6028645B2 JP 2013061350 A JP2013061350 A JP 2013061350A JP 2013061350 A JP2013061350 A JP 2013061350A JP 6028645 B2 JP6028645 B2 JP 6028645B2
Authority
JP
Japan
Prior art keywords
water
induction solution
solution
membrane
forward osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013061350A
Other languages
Japanese (ja)
Other versions
JP2014184403A (en
Inventor
亮 功刀
亮 功刀
渕上 浩司
浩司 渕上
規人 植竹
規人 植竹
剛志 水上
剛志 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2013061350A priority Critical patent/JP6028645B2/en
Publication of JP2014184403A publication Critical patent/JP2014184403A/en
Application granted granted Critical
Publication of JP6028645B2 publication Critical patent/JP6028645B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えば海水を半透膜を用い淡水を製造する装置に関するものである。   The present invention relates to an apparatus for producing fresh water, for example, seawater using a semipermeable membrane.

海水を半透膜を用いて淡水化する方法は種々知られているが、海水に浸透圧以上の圧力を加えて水を強制的に透過させる逆浸透法が主に開発されてきた。この方法は高圧に加圧する必要があるため、設備費および運転費にコストがかかるという問題点がある。一方、半透膜を介して海水より高濃度の塩溶液を存在させれば、加圧せずとも浸透圧で水をこの塩溶液に移動させることができる。そして、この塩溶液として揮発性ガスを溶解させた溶液を用いれば、この塩溶液を蒸留することにより揮発性ガスを蒸発、分離させて淡水を得ることができる。この正浸透法として、揮発性ガスとしてアンモニアと二酸化炭素の組合せを用いた方法が既に開発されている(特許文献1、2)。   Various methods for desalinating seawater using a semipermeable membrane are known, but a reverse osmosis method for forcibly permeating water by applying a pressure higher than the osmotic pressure to seawater has been mainly developed. Since this method requires pressurization to a high pressure, there is a problem that the equipment cost and operation cost are high. On the other hand, if a salt solution having a higher concentration than seawater is present through the semipermeable membrane, water can be transferred to the salt solution by osmotic pressure without applying pressure. If a solution in which a volatile gas is dissolved is used as the salt solution, fresh water can be obtained by evaporating and separating the volatile gas by distilling the salt solution. As this forward osmosis method, a method using a combination of ammonia and carbon dioxide as a volatile gas has already been developed (Patent Documents 1 and 2).

特許文献1の方法は、半透膜を介して海水と反対側にアンモニアと二酸化炭素を溶解して得られる塩溶液を流して、海水中の水を半透膜を通過させて該塩溶液に移動させ、得られた希釈塩溶液を蒸留塔に送って淡水を得るとともにアンモニアと二酸化炭素と水を含む混合ガスを分離し、この混合ガスを半透膜の元の部屋に返送する方法である。   In the method of Patent Document 1, a salt solution obtained by dissolving ammonia and carbon dioxide is passed through a semipermeable membrane on the side opposite to seawater, and water in the seawater is passed through the semipermeable membrane into the salt solution. This is a method in which the diluted salt solution obtained is transferred to a distillation tower to obtain fresh water, and a mixed gas containing ammonia, carbon dioxide and water is separated, and the mixed gas is returned to the original chamber of the semipermeable membrane. .

この方法に用いられる装置は、図2に示すように、第1室52、半透膜56、第2室58、第3室62および第4室64よりなる。海水等の原水50は第1室52に流入して半透膜56と接触し、原水50中の水が半透膜56を透過して第2室56に入る。水分が透過して塩濃度が高まった濃縮液54は第1室52から出る。一方、半透膜56の反対側に接している第2室58には、アンモニアと二酸化炭素を溶解して得られ、原水より塩濃度が高い塩溶液があり、この塩溶液が半透膜56を透過してきた水で希釈されて第3室62に入る。第3室では塩が沈殿し、沈殿分離された塩68は第2室58に返送される。第3室62で塩が沈降分離された液は蒸留塔である第4室64に入って加熱されて残っている塩がその構成成分に分解され、分解で生じたガス60は第2室58に返送される。塩の分解除去によって残った淡水66は第4室から取出される。   As shown in FIG. 2, the apparatus used in this method includes a first chamber 52, a semipermeable membrane 56, a second chamber 58, a third chamber 62, and a fourth chamber 64. Raw water 50 such as seawater flows into the first chamber 52 and comes into contact with the semipermeable membrane 56, and water in the raw water 50 passes through the semipermeable membrane 56 and enters the second chamber 56. Concentrated liquid 54 having increased salt concentration due to moisture permeation exits first chamber 52. On the other hand, in the second chamber 58 in contact with the opposite side of the semipermeable membrane 56, there is a salt solution obtained by dissolving ammonia and carbon dioxide and having a salt concentration higher than that of the raw water. The third chamber 62 is diluted with the water that has passed through the first chamber 62. Salt is precipitated in the third chamber, and the salt 68 separated by precipitation is returned to the second chamber 58. The liquid from which the salt has settled and separated in the third chamber 62 enters the fourth chamber 64, which is a distillation column, and is heated to decompose the remaining salt into its constituent components. Will be returned. Fresh water 66 left by the decomposition and removal of the salt is taken out from the fourth chamber.

特許文献2の方法は、半透膜を介して海水と反対側にアンモニアと二酸化炭素を溶解して得られる塩溶液を流して、海水中の水を半透膜を通過させて該塩溶液に移動させ、得られた希釈塩溶液をイオン交換膜や蒸留塔等を用いてアンモニウムイオンと炭酸イオンを個別に分離して淡水を得、分離したアンモニウムイオンと炭酸イオンを溶解して半透膜の元の部屋に戻す方法である。   In the method of Patent Document 2, a salt solution obtained by dissolving ammonia and carbon dioxide is passed through a semipermeable membrane on the side opposite to seawater, and water in the seawater is passed through the semipermeable membrane into the salt solution. The obtained diluted salt solution is separated into ammonium ion and carbonate ion separately using an ion exchange membrane or distillation tower to obtain fresh water, and the separated ammonium ion and carbonate ion are dissolved to dissolve the semipermeable membrane. It is a method to return to the original room.

米国特許出願公開第2005/0145568A1号明細書US Patent Application Publication No. 2005 / 0145568A1 特開2011−83663号公報JP 2011-83663 A

正浸透法(FO法)によって海水淡水化や廃水処理を行う技術では、逆浸透法(RO法)のように処理前の原水の浸透圧に打ち勝つ水理的な圧力を加えるエネルギーが必要ない代わりに、原水がFO膜を介して反対側にある高浸透圧の誘導溶液内に透過した透過水を塩から分離する工程が必要である。   Technology that performs seawater desalination and wastewater treatment by the forward osmosis method (FO method) does not require energy to apply hydraulic pressure that overcomes the osmotic pressure of raw water before treatment, such as the reverse osmosis method (RO method). In addition, it is necessary to separate the permeated water, which has been permeated into the high osmotic pressure induction solution on the opposite side of the raw water through the FO membrane, from the salt.

誘導溶液と透過水の分離工程には、蒸留法やろ過法が用いられるのが一般的であるが、膜ろ過装置を小型化するためには、高濃度の誘導溶液を用いて処理量を大きくする必要があり、誘導溶液分離工程のエネルギーが増大して、処理コスト(透過水量に対するコスト)が増大する問題がある。   Distillation and filtration methods are generally used for the separation process of the induction solution and the permeated water, but in order to reduce the size of the membrane filtration device, the throughput is increased by using a high concentration induction solution. Therefore, there is a problem that the energy of the induction solution separation process increases and the processing cost (cost for the amount of permeated water) increases.

本発明の目的は、誘導溶液を高濃度化しなくても、浸透を効率化して正浸透装置の能力を高める手段を提供することにある。   An object of the present invention is to provide means for increasing the ability of a forward osmosis device by increasing the efficiency of osmosis without increasing the concentration of the induction solution.

FO膜による水処理方法では、原水が膜を透過する際に原水中の塩分の膜内濃縮、もしくは透過水による誘導溶液の膜内希釈が起こり、浸透圧差の数%しかろ過駆動力として利用できない。そこで、液濃度(浸透圧)と無関係に働く水理的な正圧力または負圧力を微少量(一般的なRO法の1/10以下)付加して透過水量を増加させる方法が考えられるが、一定時間が経過すると前記の原水の膜内濃縮と誘導溶液の膜内希釈がより顕著となることによってブレーキが掛かり、透過水量増加の効果が小さくなる。そこで、付加圧力を一定時間解除することによりブレーキが解消されることを見出し、圧力付加と解除を繰り返すことにより、高透過水量を得ることを可能とした。   In the water treatment method using an FO membrane, when raw water permeates the membrane, the salt concentration in the raw water is concentrated in the membrane or the induced solution is diluted in the membrane with the permeated water, and only a few percent of the osmotic pressure difference can be used as the driving force for filtration. . Therefore, a method of increasing the amount of permeated water by adding a small amount of hydraulic positive pressure or negative pressure that works independently of the liquid concentration (osmotic pressure) (1/10 or less of the general RO method) can be considered. After a certain period of time, the concentration of the raw water in the membrane and the dilution of the induction solution in the membrane become more prominent, so that the brake is applied and the effect of increasing the amount of permeate is reduced. Therefore, it has been found that the brake is eliminated by releasing the applied pressure for a certain period of time, and it is possible to obtain a high permeated water amount by repeating the pressure application and release.

本発明は、これらの知見に基いてなされたものであり、FO膜が装填された装置(膜モジュール)の原水側に水理的正圧力を加えるか、透過水側に負圧力を与える装置を具備し、その圧力を変化させることを特徴とする。   The present invention has been made based on these findings. An apparatus that applies a hydraulic positive pressure to the raw water side of a device (membrane module) loaded with an FO membrane or applies a negative pressure to the permeate side is provided. It is characterized by changing the pressure.

すなわち、本発明は、溶媒が水である液体と、前記液体よりも浸透圧の高い誘導溶液とを半透膜を介して接触させ、前記液体中の水を前記半透膜を通して前記誘導溶液に移動させる正浸透手段と、前記正浸透手段で得られる、水で希釈された希釈誘導溶液から淡水を分離する淡水分離手段と、前記淡水分離手段により淡水を分離された前記希釈誘導溶液から前記誘導溶液を再生する誘導溶液再生手段を有する水処理装置において、前記正浸透手段に供給する前記液体を間欠的に加圧する加圧手段および/または前記正浸透手段から流出する前記希釈誘導溶液を間欠的に減圧する減圧手段を設置するとともに、前記誘導溶液は、下限臨界温度を有する感温性物質を水に溶解して調製した誘導溶液であり、前記淡水分離手段は、前記希釈誘導溶液を加温して、前記感温性物質の少なくとも一部を疎水性化して析出させる加温槽を含むことを特徴とする水処理装置を提供するものである。 That is, in the present invention, a liquid whose solvent is water is brought into contact with an induction solution having a higher osmotic pressure than the liquid through a semipermeable membrane, and water in the liquid is passed through the semipermeable membrane to the induction solution. Forward osmosis means for movement, fresh water separation means for separating fresh water from a dilution induction solution diluted with water obtained by the forward osmosis means, and the induction from the dilution induction solution from which fresh water has been separated by the fresh water separation means In a water treatment apparatus having an induction solution regeneration means for regenerating a solution, intermittently pressurizing means for intermittently pressurizing the liquid supplied to the forward osmosis means and / or the diluted induction solution flowing out from the forward osmosis means as well as a pressure reduction means for reducing the pressure in the induction solution is induced solution temperature-sensitive material was prepared by dissolving in water having a lower critical temperature, the fresh water separating means, the dilute draw solution Warming, there is provided a water treatment apparatus which comprises a heating tank for precipitating and hydrophobized at least part of the temperature sensitive material.

本発明により、正浸透膜装置を効率よく運転させて、透過水量を増加させることができる。   According to the present invention, the forward osmosis membrane device can be operated efficiently and the amount of permeated water can be increased.

本発明の装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the apparatus of this invention. 従来の装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the conventional apparatus.

本発明で淡水を得るのに使用される液体(原水)は溶媒が水であればよいが、例示すれば、海水、湖沼水、河川水、工場廃水などである。   The liquid (raw water) used for obtaining fresh water in the present invention may be water as long as the solvent is used. Examples thereof include seawater, lake water, river water, and factory waste water.

正浸透手段
正浸透手段は、前記液体である原水をそれよりも浸透圧の高い誘導溶液と半透膜を介して接触させ、前記液体中の水を前記半透膜を通して前記誘導溶液に移動させる手段であり、半透膜装置を用いる。
Forward osmosis means The forward osmosis means brings the raw water, which is the liquid, into contact with the induction solution having a higher osmotic pressure through the semipermeable membrane, and moves the water in the liquid to the induction solution through the semipermeable membrane. A semipermeable membrane device is used.

誘導溶液は、原水よりも浸透圧が高いものであればよいが、水が移動して希釈された希釈誘導溶液からの淡水の分離性を考慮すると溶質が揮発性のものが好ましく、例えば、所定量のアンモニアと二酸化炭素を水に溶解して生成する炭酸アンモニウム水溶液が好ましい。所定量とは、浄化対象液中の水を半透膜を通過させて誘導溶液まで移動させることができる濃度にする量であり、原水の塩濃度より高い濃度である。濃度の上限は、アンモニアと二酸化炭素の塩、すなわち、炭酸アンモニウム、炭酸水素アンモニウム、アンモニウムカルバメート等が半透膜面や、蒸留塔内で析出しないように定められ、これは実験で求めることができる。半透膜面や蒸留塔内に析出物が生じたか否かの確認方法の一つとして長時間運転をして安定稼動可能かどうかで判断する方法がある。アンモニアと二酸化炭素のモル比は1.5〜3程度である。このモル比も半透膜面や蒸留塔内でアンモニアと二酸化炭素の塩が析出しないよう配慮する。揮発性溶質としては、アンモニアと二酸化炭素の塩の外、tert−ブタノール等のアルコール類やケトン類も使用することができる。   The induction solution only needs to have an osmotic pressure higher than that of the raw water, but the solute is preferably volatile in view of the separability of fresh water from the diluted induction solution diluted by the movement of water. An aqueous ammonium carbonate solution produced by dissolving a fixed amount of ammonia and carbon dioxide in water is preferred. The predetermined amount is an amount that makes the concentration of the water to be purified to a concentration that allows the water to pass through the semipermeable membrane to the induction solution and is higher than the salt concentration of the raw water. The upper limit of the concentration is determined so that a salt of ammonia and carbon dioxide, that is, ammonium carbonate, ammonium hydrogen carbonate, ammonium carbamate, etc. does not precipitate on the semipermeable membrane surface or in the distillation tower, and this can be obtained by experiment. . One of the methods for confirming whether or not precipitates are generated on the semipermeable membrane surface or in the distillation column is a method of judging whether stable operation is possible by operating for a long time. The molar ratio of ammonia to carbon dioxide is about 1.5-3. This molar ratio is also taken into consideration so that the salt of ammonia and carbon dioxide does not precipitate on the semipermeable membrane surface or in the distillation column. As the volatile solute, in addition to a salt of ammonia and carbon dioxide, alcohols such as tert-butanol and ketones can be used.

その外、下限臨界温度を有する感温性物質も溶質として用いることができる。すなわち、下限臨界温度を有する感温性物質を水に溶解して調製した高浸透圧の誘導溶液を用いて順浸透膜処理を行い、得られた希釈誘導溶液を下限臨界温度以上まで加温して感温性物質を一部疎水性化して析出させ、これを分離することで、海水等から少ないエネルギーで安価で容易に淡水を得ることができる。   In addition, a temperature-sensitive substance having a lower critical temperature can also be used as a solute. That is, forward osmosis membrane treatment is performed using a high osmotic pressure induction solution prepared by dissolving a thermosensitive substance having a lower critical temperature in water, and the obtained dilution induction solution is heated to the lower critical temperature or higher. Then, by partially hydrophobizing and precipitating the temperature-sensitive substance and separating it, fresh water can be obtained easily and inexpensively from seawater or the like with less energy.

例えば、下限界臨界温度40℃のポリオキシエチレンアルキルエーテルを誘導物質として用いる場合、常温(5〜25℃)の希釈誘導溶液中で、感温性物質は、親水性を示し液中に溶解している。これを40℃まで加温すると感温性物質は疎水化して凝集する。この際に溶液が白濁することから、一般に曇点現象として知られている。曇点は、溶液が白濁する温度として目視で判断される。白濁した感温性物質はやがて比重差により濃厚層と希薄層に分離する。この性質を利用して、最初に重力分離を行うことが望ましい。しかし、曇点をやや下回る温度において凝集粒子が白濁として目視確認できないサイズであっても、凝集反応は進行し、分子が互いに集まり見かけ上の分子数が大幅に減少するため、浸透圧が劇的に低下する。感温性物質が凝集した状態の溶液をUF膜またはNF膜ろ過すると、感温性物質は容易に膜で排除され、ろ液として純水が得られる。膜濃縮液は、疎水化した感温性物質が凝集した誘導溶液である。これを30℃に冷却すると、感温性物質が再溶解して誘導溶液が再生される。感温性物質が再溶解した再生誘導溶液においては誘導物質濃度が高まり、所定の高い浸透圧が得られる。再生された誘導溶液を半透膜装置に導入し、被処理水と膜を介して接触させることにより、繰り返し被処理水から純水を得ることができる。   For example, when polyoxyethylene alkyl ether having a lower critical temperature of 40 ° C. is used as an inducer, the thermosensitive substance exhibits hydrophilicity and dissolves in the solution in a normal temperature (5 to 25 ° C.) dilution induction solution. ing. When this is heated to 40 ° C., the thermosensitive substance becomes hydrophobic and aggregates. Since the solution becomes cloudy at this time, it is generally known as a cloud point phenomenon. The cloud point is determined visually as the temperature at which the solution becomes cloudy. The cloudy temperature-sensitive substance is eventually separated into a thick layer and a dilute layer due to the difference in specific gravity. Using this property, it is desirable to perform gravity separation first. However, even if the size of the agglomerated particles cannot be visually confirmed as cloudiness at a temperature slightly below the cloud point, the agglomeration reaction proceeds and the number of molecules apparently decreases due to the aggregation of molecules together. To drop. When the solution in which the temperature sensitive substance is aggregated is filtered through a UF membrane or NF membrane, the temperature sensitive substance is easily removed by the membrane, and pure water is obtained as a filtrate. The membrane concentrate is an induction solution in which the hydrophobized thermosensitive substance is aggregated. When this is cooled to 30 ° C., the temperature sensitive material is redissolved and the induction solution is regenerated. In the regeneration-inducing solution in which the temperature-sensitive substance is redissolved, the concentration of the inducing substance is increased and a predetermined high osmotic pressure is obtained. By introducing the regenerated induction solution into the semipermeable membrane device and bringing it into contact with the water to be treated through the membrane, pure water can be repeatedly obtained from the water to be treated.

この感温性物質は、各種界面活性剤、分散剤、乳化剤などとして利用されており、例示すれば、アルコールまたは脂肪酸とエチレンオキサイドの化合物、アルコールまたは脂肪酸とプロピレンオキサイドの化合物、アクリルアミドとアルキル基の化合物、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステルエチレンオキサイド付加物、アミノ酸およびその誘導体などである。本発明において使用する感温性物質としては、下限臨界温度が30℃〜80℃の範囲、特に40℃から60℃の範囲のものが好ましい。誘導溶液に含まれる感温性物質の濃度は、高浸透圧が得られるようなるべく高濃度にするのがよく、0.1〜10mol/L程度、特に2〜5mol/L程度の濃度が好ましい。   This thermosensitive substance is used as various surfactants, dispersants, emulsifiers, and the like. For example, alcohol or fatty acid and ethylene oxide compound, alcohol or fatty acid and propylene oxide compound, acrylamide and alkyl group Compounds, glycerin fatty acid esters, sorbitan fatty acid ester ethylene oxide adducts, amino acids and derivatives thereof. As the temperature-sensitive substance used in the present invention, those having a lower critical temperature in the range of 30 ° C. to 80 ° C., particularly in the range of 40 ° C. to 60 ° C. are preferable. The concentration of the temperature-sensitive substance contained in the induction solution is preferably as high as possible so as to obtain a high osmotic pressure, and is preferably about 0.1 to 10 mol / L, particularly about 2 to 5 mol / L.

半透膜装置に用いる半透膜は水を選択的に透過できるものがよく、市販のもの、特に正浸透膜を好ましく使用できる。材質は特に制限されないが、例示すれば、酢酸セルロース系、ポリアミド系、ポリエチレンイミン系、ポリスルホン系、ポリベンゾイミダゾール系のものなどを挙げることができる。半透膜の形態も特に制限されず、平膜、管状膜、中空糸などいずれであってもよい。   The semipermeable membrane used in the semipermeable membrane device is preferably one that can selectively permeate water, and a commercially available one, particularly a forward osmosis membrane, can be preferably used. The material is not particularly limited, and examples thereof include cellulose acetate-based, polyamide-based, polyethyleneimine-based, polysulfone-based, and polybenzimidazole-based materials. The form of the semipermeable membrane is not particularly limited and may be any of a flat membrane, a tubular membrane, a hollow fiber, and the like.

この半透膜を装着する装置は通常は円筒形あるいは箱形の容器内に半透膜を設置して、この半透膜で仕切られた一方の室に原水を流し、他方の室に誘導溶液を流せるものであり、公知の半透膜装置を用いることができ、市販品を用いることができる。   A device for mounting this semipermeable membrane is usually a semi-permeable membrane installed in a cylindrical or box-shaped container, and raw water is allowed to flow in one chamber partitioned by this semipermeable membrane, and an induction solution is introduced into the other chamber. A known semipermeable membrane device can be used, and a commercially available product can be used.

原水を流す室の入口は原水溜(これは海や河川そのものであってもよく、タンク等であってもよい。)に配管接続される。出口側は通常は濃縮液溜に配管接続される。両配管を結ぶ循環ラインを設けて、循環させることもできる。   The entrance of the chamber through which the raw water flows is connected to a raw water reservoir (this may be the sea or river itself, or a tank or the like). The outlet side is usually connected to a concentrate reservoir. A circulation line connecting both pipes can be provided for circulation.

誘導溶液を流す室の入口は誘導溶液再生手段に配管接続され、出口は淡水分離手段に配管接続され、これによって誘導溶液の循環ラインが形成される。   The inlet of the chamber through which the induction solution flows is connected to the induction solution regenerating unit, and the outlet is connected to the fresh water separation unit, thereby forming a circulation line for the induction solution.

淡水分離手段
淡水分離手段は、前記正浸透手段で得られる、水で希釈された希釈誘導溶液から淡水を分離する手段であり、溶質が、揮発性溶質である場合は通常蒸留塔か、加温によって疎水化する感温性物質である場合は加温槽または熱交換器、沈殿槽、固液分離装置が用いられる。
Fresh water separation means The fresh water separation means is a means for separating fresh water from the dilution-inducing solution diluted with water obtained by the forward osmosis means. When the solute is a volatile solute, it is usually a distillation column or heated. In the case of a thermosensitive substance that is hydrophobized by the above, a heating tank or a heat exchanger, a precipitation tank, and a solid-liquid separation device are used.

蒸留塔は公知のものを用いればよく、棚段方式、充填方式等いずれのものであってもよい。蒸留塔下部には加熱器を設け、下部の浄水を熱することにより発生する蒸気を上部から落下してくる希釈誘導溶液と接触させて熱交換させる。加熱器にはリボイラーや熱交換等を用いることができる。加熱器の熱源は問わないが、発電所のタービンから出てくる復水前の蒸気や、排熱から回収される熱水などを用いることができる。熱源の温度が100℃以上の場合には常圧で蒸留を行えるが、それより低い場合は減圧する必要がある。   A known distillation column may be used, and any type such as a shelf system and a packing system may be used. A heater is provided at the lower part of the distillation tower, and the steam generated by heating the purified water at the lower part is brought into contact with the diluted induction solution falling from the upper part to exchange heat. A reboiler, heat exchange, etc. can be used for a heater. Although the heat source of a heater is not ask | required, the steam before the condensate which comes out of the turbine of a power plant, the hot water collect | recovered from waste heat, etc. can be used. When the temperature of the heat source is 100 ° C. or higher, distillation can be performed at normal pressure, but when it is lower than that, it is necessary to reduce the pressure.

一方、感温性物質の場合の加温槽は箱型や円筒形のものでよく、加熱器と攪拌機が付設される。加熱器は槽内外のいずれに設けてもよい。   On the other hand, the heating tank in the case of a temperature sensitive substance may be a box type or a cylindrical one, and a heater and a stirrer are attached. The heater may be provided either inside or outside the tank.

加温槽では原水から水が移動して希釈された希釈誘導溶液を加温して、感温性物質の少なくとも一部を疎水性化して析出させる。この析出は、感温性物質の濃厚溶液が相分離したものである。加温する温度は、感温性物質の下限臨界温度以上で感温性物質の一部が疎水性化する温度が好ましく、具体的には、下限臨界温度より1〜10℃高い温度までの範囲、特に2〜5℃高い温度までがよい。従って、加温温度は下限臨界温度あるいはそれを越えて、下限臨界温度より10℃程度まで高く加温するのがよい。尚、臨界温度曇点であると、下臨界温度未満では分離が困難である。
この加温槽の熱源には、次の固液分離工程で分離された分離液の顕熱を使用することが好ましい。
In the heating tank, the diluted induction solution diluted by the movement of water from the raw water is heated to hydrophobize and deposit at least a part of the thermosensitive substance. This precipitation is a phase separation of a concentrated solution of the temperature sensitive substance. The temperature to be heated is preferably a temperature at which a part of the temperature-sensitive substance becomes hydrophobic above the lower critical temperature of the temperature-sensitive substance, and specifically, a range from 1 to 10 ° C. higher than the lower critical temperature. Especially up to 2-5 ° C higher temperatures. Accordingly, heating temperature exceeds the lower critical temperature or it, it is preferable to increase warmed to about 10 ° C. than the lower critical temperature. Incidentally, when the lower limit critical temperature is the cloud point, it is difficult to separate the less than the lower limit critical temperature.
It is preferable to use the sensible heat of the separated liquid separated in the next solid-liquid separation step as the heat source of the heating tank.

加温槽で加熱されて感温性物質が析出している希釈誘導溶液は固液分離して析出した感温性物質を分離する。この固液分離手段は、ナノろ過(NF)膜や限外ろ過膜、精密ろ過膜を用いるろ過装置、砂ろ過装置、ろ布ろ過装置、遠心分離機、沈降分離槽などを利用することができる。好ましいものは、限外ろ過膜、精密ろ過膜および遠心分離が比較的低動力で良好な分離効率が得られるため好ましい。   The dilution induction solution heated in the heating tank and depositing the thermosensitive substance separates the deposited thermosensitive substance by solid-liquid separation. This solid-liquid separation means can utilize a nanofiltration (NF) membrane, an ultrafiltration membrane, a filtration device using a microfiltration membrane, a sand filtration device, a filter cloth filtration device, a centrifuge, a sedimentation separation tank, or the like. . Preferred are ultrafiltration membranes, microfiltration membranes, and centrifugal separations because relatively low power and good separation efficiency can be obtained.

固液分離装置で分離された水は、通常はそのまま淡水として利用できるが、必要によりさらに精製して使用する。   The water separated by the solid-liquid separator can usually be used as it is as fresh water, but is further purified if necessary.

誘導溶液再生手段
誘導溶液再生手段は、前記淡水分離手段により淡水を分離された前記希釈誘導溶液から前記誘導溶液を再生する手段であり、冷却器が用いられる。
Induction solution regeneration means The induction solution regeneration means is a means for regenerating the induction solution from the diluted induction solution from which fresh water has been separated by the fresh water separation means, and uses a cooler.

溶質が二酸化炭素とアンモニアの塩である場合には、蒸留塔の塔頂から、希釈誘導溶液温度調節手段を経由して塔頂ガス冷却再生手段に配管接続し、塔頂部から得られる二酸化炭素、アンモニア、水蒸気からなるガスを冷却して水溶液状態にする。冷却手段は問わないが、熱交換器を用いることができる。冷却する熱源としては、特に限定されないが、河川水、海水、空気などを用いることができる。他の揮発性溶質を用いている場合も同様である。   When the solute is a salt of carbon dioxide and ammonia, carbon dioxide obtained from the top of the distillation tower is connected to the top gas cooling and regeneration means via the dilution induction solution temperature control means from the top of the distillation tower, A gas composed of ammonia and water vapor is cooled to form an aqueous solution. Although a cooling means is not ask | required, a heat exchanger can be used. Although it does not specifically limit as a heat source to cool, River water, seawater, air, etc. can be used. The same applies when other volatile solutes are used.

溶質が感温性物質の場合には、分離された感温性物質の濃縮液は感温性物質が親水性化する温度、具体的には白濁が消える温度まで冷却して誘導溶液に再生する。この温度は広い範囲で採用可能であるが、経済性を考慮すると下限臨界温度より5〜10℃低い温度が適当であり、また、常温かそれより高い温度が好ましい。この冷却熱源としては、処理対象水あるいは順浸透工程において得られた希釈誘導溶液を用いることがエネルギーの効率利用の点で好ましい。   When the solute is a temperature-sensitive substance, the concentrated solution of the temperature-sensitive substance is cooled to a temperature at which the temperature-sensitive substance becomes hydrophilic, specifically, a temperature at which the white turbidity disappears, and is regenerated into an induction solution. . This temperature can be used in a wide range, but considering the economy, a temperature 5 to 10 ° C. lower than the lower critical temperature is appropriate, and a temperature of room temperature or higher is preferable. As this cooling heat source, it is preferable to use the water to be treated or the dilution induction solution obtained in the forward osmosis step from the viewpoint of efficient use of energy.

再生した誘導溶液はそのまま循環使用できる。   The regenerated induction solution can be recycled as it is.

加圧、減圧手段
本発明では、このような装置において、前記正浸透手段に供給する前記液体を間欠的に加圧手段および/または前記正浸透手段から流出する前記希釈誘導溶液を間欠的に減圧する減圧手段を設置するところに特徴がある。
Pressurizing and Depressurizing Means In the present invention, in such an apparatus, the liquid supplied to the forward osmosis means is intermittently depressurized in the dilution induction solution flowing out from the pressurizing means and / or the forward osmosis means. It is characterized in that a decompression means is installed.

負荷する加圧あるいは減圧の程度は、0.01〜0.5MPa程度、通常0.05〜0.2MPa程度であり、1回の加圧あるいは減圧を負荷する時間は0.5〜10分間程度、加圧あるいは減圧を負荷する間隔(加圧または減圧の終了から再び加圧または減圧を開始するまで)は0.5〜10分間程度が適当である。この加圧または減圧は一方を行えばよいが、併用することもできる。加圧は液体を加圧するブースターポンプ、減圧には真空ポンプなどを用い、加圧あるいは減圧を間欠的に行う方法は、弁の開閉などで行うことができる。   The degree of pressurization or depressurization to be applied is about 0.01 to 0.5 MPa, usually about 0.05 to 0.2 MPa, and the time for applying one pressurization or depressurization is about 0.5 to 10 minutes. The interval for applying pressurization or depressurization (from the end of pressurization or depressurization to the start of pressurization or depressurization again) is suitably about 0.5 to 10 minutes. This pressurization or depressurization may be performed in one direction, but may be used in combination. A method of performing pressurization or depressurization intermittently using a booster pump for pressurizing a liquid, a vacuum pump or the like for depressurization, and intermittently performing pressurization or depressurization can be performed by opening and closing a valve.

本発明の一実施例である装置の構成を図1に示す。   A configuration of an apparatus according to an embodiment of the present invention is shown in FIG.

この装置は、正浸透膜2が装着された膜モジュール1と、塩溶液貯留槽4と、塩分離装置3からなっている。   This apparatus comprises a membrane module 1 equipped with a forward osmosis membrane 2, a salt solution storage tank 4, and a salt separation device 3.

膜モジュール1の原水11の入口側には原水供給ポンプ21と原水を加圧する加圧装置23が設けられている。この加圧装置23にはブースターポンプが用いられている。膜モジュール1内で水が正浸透膜2を通って誘導溶液側に移動することによって濃縮された濃縮水12の出口側には圧力回収装置24が取付けられている。この圧力回収装置には、RO膜装置等に一般的に用いられている、ぺルトン水車型、シリンダーピストン型などの圧力エネルギー回収装置などが用いられる。   A raw water supply pump 21 and a pressurizing device 23 for pressurizing the raw water are provided on the inlet side of the raw water 11 of the membrane module 1. A booster pump is used for the pressurizing device 23. A pressure recovery device 24 is attached to the outlet side of the concentrated water 12 concentrated by moving water through the forward osmosis membrane 2 to the induction solution side in the membrane module 1. As this pressure recovery device, a pressure energy recovery device such as a Pelton turbine type or a cylinder piston type, which is generally used for an RO membrane device or the like, is used.

膜モジュール1内の正浸透膜2で仕切られた反対側の室には誘導溶液14が流入しており、正浸透膜2の原水11の流通側には水理的な正圧力31が、誘導溶液14の流通側には水理的は負圧力32がかかっている。   The induction solution 14 flows into the opposite chamber partitioned by the forward osmosis membrane 2 in the membrane module 1, and a hydraulic positive pressure 31 is induced on the flow side of the raw water 11 of the forward osmosis membrane 2. Hydraulically, negative pressure 32 is applied to the flow side of the solution 14.

膜モジュール1内で原水からの水の移動で希釈された希釈誘導溶液は負圧装置25を通って塩溶液貯留槽4に入る。この負圧装置25には真空ポンプが用いられている。   The dilution induction solution diluted by the movement of water from the raw water in the membrane module 1 enters the salt solution storage tank 4 through the negative pressure device 25. A vacuum pump is used for the negative pressure device 25.

塩溶液貯留槽4からは希釈誘導溶液15が塩分離装置3に送られ、そこで淡水13が分離されて取出される。一方、淡水が分離されて濃縮された誘導溶液16は塩溶液貯留槽4に返送され、塩溶液供給ポンプ22により膜モジュール1の誘導溶液室へ送られる。   The dilution induction solution 15 is sent from the salt solution storage tank 4 to the salt separation device 3 where the fresh water 13 is separated and taken out. On the other hand, the induction solution 16 separated and concentrated from fresh water is returned to the salt solution storage tank 4 and sent to the induction solution chamber of the membrane module 1 by the salt solution supply pump 22.

加圧しない場合のろ過速度を100%としたときの、加圧パターンとろ過速度を次表に示す。   The pressurization pattern and filtration rate when the filtration rate when not pressurized is 100% are shown in the following table.

Figure 0006028645
Figure 0006028645

本発明により、海水等から淡水を効率よく製造できるので本発明は、海水等から淡水を製造する装置に広く利用できる。   According to the present invention, since fresh water can be efficiently produced from seawater or the like, the present invention can be widely used in an apparatus for producing fresh water from seawater or the like.

1:膜モジュール
2:正浸透膜
3:塩分離装置
4:塩溶液貯留槽
11:原水
12:濃縮水
13:処理水(淡水)
14:誘導溶液
15:希釈誘導溶液
16:誘導溶液
21:原水供給ポンプ
22:塩溶液供給ポンプ
23:加圧装置
24:圧力回収装置
25:負圧装置
31:水理的な正圧力
32:水理的な負圧力
1: membrane module 2: forward osmosis membrane 3: salt separation device 4: salt solution storage tank 11: raw water 12: concentrated water 13: treated water (fresh water)
14: induction solution 15: dilution induction solution 16: induction solution 21: raw water supply pump 22: salt solution supply pump 23: pressurization device 24: pressure recovery device 25: negative pressure device 31: hydraulic positive pressure 32: water Negative pressure

Claims (1)

溶媒が水である液体と、前記液体よりも浸透圧の高い誘導溶液とを半透膜を介して接触させ、前記液体中の水を前記半透膜を通して前記誘導溶液に移動させる正浸透手段と、前記正浸透手段で得られる、水で希釈された希釈誘導溶液から淡水を分離する淡水分離手段と、前記淡水分離手段により淡水を分離された前記希釈誘導溶液から前記誘導溶液を再生する誘導溶液再生手段を有する水処理装置において、
前記正浸透手段に供給する前記液体を間欠的に加圧する加圧手段および/または前記正浸透手段から流出する前記希釈誘導溶液を間欠的に減圧する減圧手段を設置するとともに、
前記誘導溶液は、下限臨界温度を有する感温性物質を水に溶解して調製した誘導溶液であり、
前記淡水分離手段は、前記希釈誘導溶液を加温して、前記感温性物質の少なくとも一部を疎水性化して析出させる加温槽を含むことを特徴とする水処理装置。
Forward osmosis means for bringing a liquid whose solvent is water into contact with an induction solution having a higher osmotic pressure than the liquid through a semipermeable membrane, and moving water in the liquid to the induction solution through the semipermeable membrane; A fresh water separation means for separating fresh water from a diluted induction solution diluted with water, obtained by the forward osmosis means, and an induction solution for regenerating the induction solution from the diluted induction solution from which fresh water has been separated by the fresh water separation means In a water treatment apparatus having a regeneration means,
A pressurizing means for intermittently pressurizing the liquid supplied to the forward osmosis means and / or a decompression means for intermittently reducing the dilution induction solution flowing out from the forward osmosis means ;
The induction solution is an induction solution prepared by dissolving a thermosensitive substance having a lower critical temperature in water,
The water treatment apparatus , wherein the fresh water separation unit includes a heating tank that warms the dilution induction solution to hydrophobize and deposit at least a part of the thermosensitive substance .
JP2013061350A 2013-03-25 2013-03-25 Water treatment equipment Expired - Fee Related JP6028645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013061350A JP6028645B2 (en) 2013-03-25 2013-03-25 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013061350A JP6028645B2 (en) 2013-03-25 2013-03-25 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2014184403A JP2014184403A (en) 2014-10-02
JP6028645B2 true JP6028645B2 (en) 2016-11-16

Family

ID=51832499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013061350A Expired - Fee Related JP6028645B2 (en) 2013-03-25 2013-03-25 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP6028645B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7094674B2 (en) * 2017-09-08 2022-07-04 水ing株式会社 Organic wastewater treatment method and treatment equipment
WO2019189548A1 (en) * 2018-03-29 2019-10-03 三井化学株式会社 Method for producing solution having reduced solute concentration
JP7428127B2 (en) * 2018-08-03 2024-02-06 東洋紡エムシー株式会社 Membrane separation equipment, water production system, membrane separation method and water production method
JP7080493B2 (en) * 2019-02-27 2022-06-06 株式会社ササクラ Liquid processing equipment and liquid processing method
JP7341719B2 (en) * 2019-05-13 2023-09-11 国立大学法人高知大学 Wastewater treatment equipment and method for manufacturing wastewater treatment equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746399B2 (en) * 1975-02-07 1982-10-02
JPH038488A (en) * 1989-06-07 1991-01-16 Material Eng Tech Lab Inc Water purifier
US8632681B2 (en) * 2008-08-21 2014-01-21 Grundfos Management A/S Forward osmosis device
SG10201406901QA (en) * 2009-10-28 2014-11-27 Oasys Water Inc Forward osmosis separation processes
AU2010325544B2 (en) * 2009-11-25 2014-12-18 Ide Water Technologies Ltd. Reciprocal enhancement of reverse osmosis and forward osmosis
JP2011255312A (en) * 2010-06-09 2011-12-22 Fujifilm Corp Forward osmosis device and forward osmosis method

Also Published As

Publication number Publication date
JP2014184403A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
Chung et al. Forward osmosis processes: Yesterday, today and tomorrow
CN107206320B (en) Concentration of brine
JP5913113B2 (en) Forward osmosis separation method
JP6028645B2 (en) Water treatment equipment
US20130112603A1 (en) Forward osmotic desalination device using membrane distillation method
JP5900743B2 (en) Method and apparatus for treatment of associated water from a well
US20170369337A1 (en) Enhanced brine concentration with osmotically driven membrane systems and processes
JP5988032B2 (en) Fresh water production apparatus and operation method thereof
JP2015192979A (en) Water treatment apparatus using semipermeable membrane
KR101344784B1 (en) Seawater desalination method and apparatus combining forward osmosis, precipitation and reverse osmosis
JP6463620B2 (en) Desalination system and desalination method
JP2014100692A (en) Water treatment method
JP6465301B2 (en) Water desalination equipment
JP6210034B2 (en) Water desalination method and apparatus
US20090120877A1 (en) Method for desalination
KR101298724B1 (en) Forward osmotic desalination device using membrane distillation method in which a part of draw solution is directly fed to a forward osmotic type separator
JP6210008B2 (en) Water treatment equipment
JP6414528B2 (en) Water desalination method and apparatus
KR20170089230A (en) Desalination method of sea water using hybrid process of nanofiltration and draw solution assisted reverse osmosis
JP6974797B2 (en) Forward osmosis water treatment method and equipment
JP2022129707A (en) Purification method and device of temperature sensitive agent aqueous solution used in forward osmosis water treatment
AU2006251862B2 (en) Improved method for desalination
JP2002282855A (en) Method and equipment for producing water
JP2022129709A (en) Forward osmosis desalination method and apparatus thereof
JP2021035656A (en) Forward osmosis water treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6028645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees