JP2014100692A - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP2014100692A
JP2014100692A JP2012255826A JP2012255826A JP2014100692A JP 2014100692 A JP2014100692 A JP 2014100692A JP 2012255826 A JP2012255826 A JP 2012255826A JP 2012255826 A JP2012255826 A JP 2012255826A JP 2014100692 A JP2014100692 A JP 2014100692A
Authority
JP
Japan
Prior art keywords
water
temperature
treatment method
membrane
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012255826A
Other languages
Japanese (ja)
Inventor
Koji Fuchigami
浩司 渕上
Akira Kunugi
亮 功刀
Takeshi Uchiyama
武 内山
Takeshi Tsuji
猛志 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2012255826A priority Critical patent/JP2014100692A/en
Publication of JP2014100692A publication Critical patent/JP2014100692A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method by which salt content can be inexpensively and easily removed from sea water or the like with small energy.SOLUTION: The water treatment method includes: a forward osmosis step in which water to be treated is brought into contact with draw solution obtained by dissolving thermosensitive substance having lower limit critical temperature in water through a semipermeable membrane, water in the water to be treated is made to move to the draw solution through the semipermeable membrane, the diluted draw solution diluted by water and membrane concentrated water are thereby obtained; a heating step in which the diluted draw solution is heated to temperature that is less than the lower limit critical temperature and allows the thermosensitive substance to be made hydrophobic; a solid liquid separation step in which the thermosensitive substance that is heated and made hydrophobic in the heating step is subjected to solid liquid separation to be thereby separated from the diluted draw solution as a thermosensitive substance concentrated liquid; and a cooling step in which the thermosensitive substance concentrated liquid that is separated in the solid liquid separation step is cooled to temperature at which the thermosensitive substance is made hydrophilic to regenerate the draw solution.

Description

本発明は、海水、かん水などの被処理水から淡水を製造する水処理方法に関するものである。   The present invention relates to a water treatment method for producing fresh water from water to be treated such as seawater and brine.

海水から半透膜を用いて淡水を製造する方法は種々知られているが、海水に浸透圧以上の圧力を加えて水を強制的に透過させる逆浸透法が主に開発されてきた。しかし、この方法は高圧に加圧する必要があるため、設備費および運転費にコストがかかるという問題点がある。そこで、半透膜を介して海水と海水より高濃度の塩溶液を接触させ、加圧せずとも浸透圧により海水中の水をこの塩溶液に移動させ、分離、回収することにより淡水を製造する方法が開発されている。(特許文献1、2)。   Various methods for producing fresh water from seawater using a semipermeable membrane are known, but a reverse osmosis method for forcibly permeating water by applying a pressure higher than the osmotic pressure to seawater has been mainly developed. However, since this method needs to be pressurized to a high pressure, there is a problem that the equipment cost and the operation cost are high. Therefore, seawater and salt solution with a higher concentration than seawater are brought into contact with each other through a semipermeable membrane, and water in seawater is transferred to this salt solution by osmotic pressure without being pressurized, and separated and recovered to produce fresh water. A method has been developed. (Patent Documents 1 and 2).

特許文献1の方法は、被処理水を第1半透膜の一方の面に接触させるとともに、溶解度が温度に依存する仲介溶液を相対的に高温の状態で第1半透膜の他方の面に接触させ、被処理水の水分を第1半透膜を介して仲介溶液に吸収させる水分吸収工程と、水分吸収工程後の仲介溶液を相対的に低温にし、前記仲介溶液の溶質(仲介物質)を析出させる析出工程と、析出工程後の仲介溶液を第2半透膜に、仲介溶液の水分が第2半透膜を介して放出可能な液圧にて接触させる水分放出工程とを備えた淡水製造方法である。   In the method of Patent Document 1, the water to be treated is brought into contact with one surface of the first semipermeable membrane, and the other surface of the first semipermeable membrane is kept at a relatively high temperature in an intermediate solution whose solubility depends on temperature. A moisture absorption step for allowing the intermediary solution to absorb the moisture of the water to be treated through the first semipermeable membrane, and the intermediary solution after the moisture absorption step to be at a relatively low temperature, And a moisture releasing step of bringing the mediator solution after the depositing step into contact with the second semipermeable membrane at a fluid pressure that allows the moisture of the mediator solution to be released through the second semipermeable membrane. Fresh water production method.

特許文献2の方法は、半透膜を介して海水と反対側にアンモニアと二酸化炭素を溶解して得られる塩溶液を流して、海水中の水を半透膜を通過させて該塩溶液に移動させ、得られた希釈塩溶液をイオン交換膜や蒸留塔等を用いてアンモニウムイオンと炭酸イオンを個別に分離して浄水を得るとともに、分離したアンモニウムイオンと炭酸イオンを該塩溶液に溶解して半透膜の元の部屋に戻す方法である。   In the method of Patent Document 2, a salt solution obtained by dissolving ammonia and carbon dioxide is passed through a semipermeable membrane on the side opposite to seawater, and water in the seawater is passed through the semipermeable membrane into the salt solution. The resulting diluted salt solution is separated into ammonium ions and carbonate ions individually using an ion exchange membrane or distillation tower to obtain purified water, and the separated ammonium ions and carbonate ions are dissolved in the salt solution. This is the method of returning to the original room of the semipermeable membrane.

特開2010−162527号公報JP 2010-162527 A 特開2011−83663号公報JP 2011-83663 A

特許文献1の方法では、仲介物質、すなわち高浸透圧溶液としてミョウバン水溶液が用いられるが、ミョウバンは温度上昇に対する溶解度の上昇が緩いため、ミョウバン水溶液を水分吸収工程では60℃に加温し、析出工程では30℃に冷却するというように、液温の調整幅が大きく、設備運転コストが高いという問題がある。また、例えば、カリミョウバンの場合、pHが3に近く、装置の腐食が生じやすいという問題もある。   In the method of Patent Document 1, an alum aqueous solution is used as a mediator, that is, a hyperosmotic solution. However, since alum has a moderate increase in solubility with respect to a temperature rise, the alum aqueous solution is heated to 60 ° C. in the moisture absorption step and precipitated. In the process, there is a problem that the liquid temperature adjustment range is large and the equipment operation cost is high, such as cooling to 30 ° C. Further, for example, in the case of potash alum, there is a problem that the pH is close to 3 and the apparatus is easily corroded.

また、特許文献2の方法では、誘導物質(例えば炭酸アンモニウム)の分離、回収を蒸発法で行うが、その際、アンモニアおよび同伴する水分の蒸発潜熱が多大で、膨大なエネルギーを要しコストも高い。さらに、蒸発設備サイズが極めて大きく、大量(例えば10万m/日)の飲料水製造には不向きである。また、投入エネルギーが大きいため熱交換器のサイズも大きくなり、大量処理には不向きである。さらに、炭酸アンモニウムを用いる場合にはFO膜からのバックフローによって膜濃縮水を介して環境中に漏洩する誘導物質が窒素を含むため、富栄養化の原因となる。 In the method of Patent Document 2, the induction substance (for example, ammonium carbonate) is separated and recovered by an evaporation method. At that time, the latent heat of vaporization of ammonia and accompanying water is enormous, requiring enormous energy and cost. high. Furthermore, the size of the evaporation facility is extremely large, and is not suitable for producing a large amount (for example, 100,000 m 3 / day) of drinking water. Moreover, since the input energy is large, the size of the heat exchanger is also large, which is not suitable for mass processing. Further, when ammonium carbonate is used, an inducer that leaks into the environment through the membrane concentrated water due to backflow from the FO membrane contains nitrogen, which causes eutrophication.

本発明は、これらの問題点を解決するべくなされたものであり、海水等から少ないエネルギーで安価で容易に淡水を製造することのできる水処理方法を提供することを目的としている。   The present invention has been made to solve these problems, and an object of the present invention is to provide a water treatment method that can easily produce fresh water from seawater or the like with less energy and at low cost.

本発明は、上記課題を解決するべくなされたものであり、下限臨界温度を有する感温性物質を水に溶解して調製した高浸透圧の誘導溶液を用いて順浸透膜処理を行い、得られた希釈誘導溶液を下限臨界温度付近まで加温して感温性物質を一部疎水性化して析出させ、これを分離することで、海水等から少ないエネルギーで安価で容易に淡水を得ることができることを見出し、本発明を完成するに至った。   The present invention has been made in order to solve the above-mentioned problems, and performs forward osmosis membrane treatment using a high osmotic pressure induction solution prepared by dissolving a thermosensitive substance having a lower critical temperature in water. The resulting dilution-inducing solution is heated to near the lower critical temperature, and part of the temperature-sensitive substance is hydrophobized and precipitated, and separated from this, so that fresh water can be easily obtained at low cost from seawater. As a result, the present invention has been completed.

すなわち、本発明は、被処理水と、下限臨界温度を有する感温性物質を水に溶解した誘導溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘導溶液に移動させ、水で希釈された希釈誘導溶液と膜濃縮水を得る順浸透工程と、前記希釈誘導溶液を前記下限臨界温度未満の温度で前記感温性物質の一部が疎水性化する温度まで加温する加温工程と、前記加温工程で加温され、疎水性化した感温性物質を希釈誘導溶液から感温性物質濃縮液として固液分離する固液分離工程と、前記固液分離工程で分離された感温性物質濃縮液を感温性物質が親水性化する温度まで冷却し、誘導溶液を再生する冷却工程とを有することを特徴とする水処理方法を提供するものである。   That is, the present invention is to contact the water to be treated with a derivative solution in which a temperature-sensitive substance having a lower critical temperature is dissolved in water through a semipermeable membrane, and the water in the treated water passes through the semipermeable membrane. A forward osmosis step of transferring to the induction solution to obtain a diluted induction solution and membrane concentrated water diluted with water, and a part of the thermosensitive substance is made hydrophobic at a temperature below the lower critical temperature. A heating step for heating to a temperature to be heated, a solid-liquid separation step for solid-liquid separation of the thermosensitive material that has been heated in the heating step and made hydrophobic, as a temperature-sensitive substance concentrated liquid from the dilution-inducing solution, And a cooling step of regenerating the induction solution by cooling the temperature-sensitive substance concentrate separated in the solid-liquid separation step to a temperature at which the temperature-sensitive substance becomes hydrophilic. To do.

例えば、下限界臨界温度40℃のポリオキシエチレンアルキルエーテルを誘導物質として用いる場合、常温(5〜25℃)の希釈誘導溶液中で、感温性物質は、親水性を示し液中に溶解している。これを40℃まで加温すると感温性物質は疎水化して凝集する。この際に溶液が白濁することから、一般に曇点現象として知られている。曇点は、溶液が白濁する温度として目視で判断される。しかし、曇点をやや下回る温度において凝集粒子が白濁として目視確認できないサイズであっても、凝集反応は進行し、分子が互いに集まり見かけ上の分子数が大幅に減少するため、浸透圧が劇的に低下する。感温性物質が凝集した状態の溶液をUF膜ろ過すると、感温性物質は容易に膜で排除され、ろ液として純水が得られる。膜濃縮液は、疎水化した感温性物質が凝集した誘導溶液である。これを30℃に冷却すると、感温性物質が再溶解して誘導溶液が再生される。感温性物質が再溶解した再生誘導溶液においては誘導物質濃度が高まり、所定の高い浸透圧が得られる。再生された誘導溶液を半透膜装置に導入し、被処理水と膜を介して接触させることにより、繰り返し被処理水から純水を得ることができる。この方式では蒸発法とは異なり相変化のための潜熱が必要無いため、投入熱量はきわめて小さい。また、固液分離膜においては凝集して誘導物質が粗大化しているため、UFやMFのようなRO、NFに比べて目の粗い膜を用いても高い透過流束でろ過することができる。この際、浸透圧が低下しているため、ろ過動力は極めて小さい。   For example, when polyoxyethylene alkyl ether having a lower critical temperature of 40 ° C. is used as an inducer, the thermosensitive substance exhibits hydrophilicity and dissolves in the solution in a normal temperature (5 to 25 ° C.) dilution induction solution. ing. When this is heated to 40 ° C., the thermosensitive substance becomes hydrophobic and aggregates. Since the solution becomes cloudy at this time, it is generally known as a cloud point phenomenon. The cloud point is determined visually as the temperature at which the solution becomes cloudy. However, even if the size of the agglomerated particles cannot be visually confirmed as cloudiness at a temperature slightly below the cloud point, the agglomeration reaction proceeds and the number of molecules apparently decreases due to the aggregation of molecules together. To drop. When the solution in which the temperature sensitive substance is aggregated is subjected to UF membrane filtration, the temperature sensitive substance is easily removed by the membrane, and pure water is obtained as a filtrate. The membrane concentrate is an induction solution in which the hydrophobized thermosensitive substance is aggregated. When this is cooled to 30 ° C., the temperature sensitive material is redissolved and the induction solution is regenerated. In the regeneration-inducing solution in which the temperature-sensitive substance is redissolved, the concentration of the inducing substance is increased and a predetermined high osmotic pressure is obtained. By introducing the regenerated induction solution into the semipermeable membrane device and bringing it into contact with the water to be treated through the membrane, pure water can be repeatedly obtained from the water to be treated. Unlike the evaporation method, this method does not require latent heat for phase change, so the input heat amount is extremely small. In addition, since the inducer is agglomerated in the solid-liquid separation membrane, it can be filtered with a high permeation flux even when using a membrane having a coarser eye than RO and NF such as UF and MF. . At this time, since the osmotic pressure is reduced, the filtration power is extremely small.

本発明では、感温性物質を溶解した誘導溶液を用いることにより、順浸透膜処理における淡水分離と誘導溶液の再生の際の温度調整幅を小さくし、海水などから安価な設備、少ないエネルギーで効率よく淡水を取得できる。   In the present invention, by using the induction solution in which the thermosensitive substance is dissolved, the temperature adjustment range during the separation of the fresh water and the regeneration of the induction solution in the forward osmosis membrane treatment is reduced. Fresh water can be obtained efficiently.

本発明の一実施態様を模式的に示した図である。It is the figure which showed one embodiment of this invention typically. 従来の順浸透法により脱塩する方法を模式的に示した図である。It is the figure which showed typically the method of desalting by the conventional forward osmosis method.

図1に本発明の一実施態様を模式的に示す。 FIG. 1 schematically shows an embodiment of the present invention.

本発明の方法で処理される被処理水は水を溶媒とする溶液であり、海水、かん水などである。かん水は、
シェールガス、オイルサンド、CBM(炭層メタン)、石油等を採掘する坑井からの随伴水も含まれる。
The water to be treated to be treated by the method of the present invention is a solution using water as a solvent, such as seawater or brine. Brine is
Also included are associated water from wells that mine shale gas, oil sands, CBM (coal bed methane), oil and the like.

随伴水は、坑井からの採掘目的物に同伴して排出される水であり、塩分、有機物、懸濁物などを含んでいる。汚濁物質の濃度としては、例えば蒸発残留物(主にNa+、K+、Ca2+、Cl-、SO4 2-など)が1,000〜100,000mg/L、有機物(油分や添加した薬剤など)がTOCとして10〜1,000mg/L、懸濁物質が100〜10,000mg/Lといった範囲で含有される。 Accompanying water is water that is discharged along with the object to be mined from the well, and includes salt, organic matter, suspended matter, and the like. Concentrations of pollutants include, for example, evaporation residues (mainly Na + , K + , Ca 2+ , Cl , SO 4 2−, etc.) of 1,000 to 100,000 mg / L, organic substances (such as oil and added chemicals) Is contained in a range of 10 to 1,000 mg / L as TOC and suspended material in a range of 100 to 10,000 mg / L.

油分と随伴水の分離手段は問わないが、例えば沈降などで油水分離が行われている。   There is no limitation on the means for separating oil and associated water, but oil-water separation is performed, for example, by sedimentation.

ろ過工程
図1に示していないが、被処理水をまずろ過処理する。このろ過処理は精密膜ろ過膜を用いた濾過器で行い、ろ過膜は、精密ろ過膜として使用されている通常の膜を使用することができる。例えば、酢酸セルロース、ポリテトラフルオロエチレン、ポリスルホン、ポリ塩化ビニルなどの外、セラミック製の膜や多孔質ガラス製の膜なども利用できる。精密膜ろ過処理では、精密ろ過膜を通過した膜ろ過水と、膜を通過しないで残った膜濃縮水が得られる。
精密膜ろ過のほか、限外膜ろ過、砂ろ過等のろ過処理が用いられる。限外膜ろ過の材質は精密膜ろ過と同様のものが用いられる。
Filtration step Although not shown in FIG. 1, the water to be treated is first filtered. This filtration treatment is performed with a filter using a microfiltration membrane, and a normal membrane used as a microfiltration membrane can be used as the filtration membrane. For example, in addition to cellulose acetate, polytetrafluoroethylene, polysulfone, polyvinyl chloride, etc., ceramic membranes and porous glass membranes can also be used. In the micromembrane filtration treatment, membrane filtrate water that has passed through the microfiltration membrane and membrane concentrated water remaining without passing through the membrane are obtained.
In addition to precision membrane filtration, filtration treatment such as ultramembrane filtration and sand filtration is used. The material for the ultrafiltration is the same as that for precision membrane filtration.

順浸透工程
順浸透工程は、ろ過処理した被処理水と、下限臨界温度を有する感温性物質を水に溶解した高浸透圧の誘導溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘導溶液に移動させ、水で希釈された希釈誘導溶液と膜濃縮水を得る工程である。
Forward osmosis step The forward osmosis step is a step of bringing the treated water to be filtered into contact with a high osmotic pressure induction solution obtained by dissolving a thermosensitive substance having a lower critical temperature in water through a semipermeable membrane. Is transferred to the induction solution through the semipermeable membrane to obtain a diluted induction solution and membrane concentrated water diluted with water.

感温性物質は、低温では親水性で水によく溶けるが、ある温度以上になると疎水性化し溶解度が低下する物質であり、水溶性〜水不溶性に変化する温度が下限臨界温度あるいは曇点と呼ばれる。この温度に達すると疎水性化した感温性物質が析出して白濁が起こる。   A thermosensitive substance is a substance that is hydrophilic and well soluble in water at low temperatures, but becomes hydrophobic and decreases in solubility at a temperature above a certain temperature, and the temperature at which it changes from water-soluble to water-insoluble is the lower critical temperature or cloud point. be called. When this temperature is reached, the temperature-sensitive material that has become hydrophobic is deposited, resulting in white turbidity.

この感温性物質は、各種界面活性剤、分散剤、乳化剤などとして利用されており、例示すれば、アルコールまたは脂肪酸とエチレンオキサイドの化合物、アルコールまたは脂肪酸とプロピレンオキサイドの化合物、アクリルアミドとアルキル基の化合物、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステルエチレンオキサイド付加物、アミノ酸およびその誘導体などである。本発明において使用する感温性物質としては、下限臨界温度が30℃〜80℃の範囲、特に40℃から60℃の範囲のものが好ましい。誘導溶液に含まれる感温性物質の濃度は、高浸透圧が得られるようなるべく高濃度にするのがよく、0.1〜10mol/L程度、特に2〜5mol/L程度の濃度が好ましい。   This thermosensitive substance is used as various surfactants, dispersants, emulsifiers, and the like. For example, alcohol or fatty acid and ethylene oxide compound, alcohol or fatty acid and propylene oxide compound, acrylamide and alkyl group Compounds, glycerin fatty acid esters, sorbitan fatty acid ester ethylene oxide adducts, amino acids and derivatives thereof. As the temperature-sensitive substance used in the present invention, those having a lower critical temperature in the range of 30 ° C. to 80 ° C., particularly in the range of 40 ° C. to 60 ° C. are preferable. The concentration of the temperature-sensitive substance contained in the induction solution is preferably as high as possible so that a high osmotic pressure can be obtained, and a concentration of about 0.1 to 10 mol / L, particularly about 2 to 5 mol / L is preferable.

半透膜は水を選択的に透過できるものがよく、順浸透(Forward Osmosis)膜が好ましいが、逆浸透膜も使用できる。材質は特に制限されないが、例示すれば、酢酸セルロース系、ポリアミド系、ポリエチレンイミン系、ポリスルホン系、ポリベンゾイミダゾール系のものなどを挙げることができる。半透膜の形態も特に制限されず、平膜、管状膜、中空糸などいずれであってもよい。   The semipermeable membrane is preferably one that can selectively permeate water, and is preferably a forward osmosis membrane, but a reverse osmosis membrane can also be used. The material is not particularly limited, and examples thereof include cellulose acetate-based, polyamide-based, polyethyleneimine-based, polysulfone-based, and polybenzimidazole-based materials. The form of the semipermeable membrane is not particularly limited and may be any of a flat membrane, a tubular membrane, a hollow fiber, and the like.

この半透膜を装着する装置は通常は円筒形あるいは箱形の容器内に半透膜を設置して、この半透膜で仕切られた一方の室に膜ろ過水を流し、他方の室に誘導溶液を流せるものであり、公知の半透膜装置を用いることができ、市販品を用いることができる。   A device for mounting this semipermeable membrane is usually a semi-permeable membrane installed in a cylindrical or box-shaped container, and membrane filtered water flows into one chamber partitioned by this semipermeable membrane, and the other chamber is filled with water. The induction solution can be flowed, and a known semipermeable membrane device can be used, and a commercially available product can be used.

順浸透工程で被処理水を半透膜を介して誘導溶液と接触させると浸透圧の差によって被処理水中の水が半透膜を通って誘導溶液に移動する。   When the water to be treated is brought into contact with the induction solution through the semipermeable membrane in the forward osmosis step, the water in the water to be treated moves to the induction solution through the semipermeable membrane due to the difference in osmotic pressure.

加温工程
順浸透工程で被処理水から水が移動して希釈された希釈誘導溶液を加温して、感温性物質の少なくとも一部を疎水性化して析出させる。この析出は、感温性物質の濃厚溶液が相分離したものである。加温する温度は、感温性物質の下限臨界温度未満で感温性物質の一部が疎水性化する温度が好ましく、具体的には、下限臨界温度より1
〜10℃低い温度までの範囲、特に2〜5℃低い温度までがよい。しかしながら、加温温度は下限臨界温度あるいはそれを越えてもよく、下限臨界温度より10℃程度まで高く加温してもよい。
Heating step In the forward osmosis step, the dilution-inducing solution diluted by moving water from the water to be treated is heated to hydrophobize and deposit at least a part of the temperature-sensitive substance. This precipitation is a phase separation of a concentrated solution of the temperature sensitive substance. The temperature to be heated is preferably a temperature at which a part of the temperature-sensitive substance becomes hydrophobic because it is less than the lower critical temperature of the temperature-sensitive substance.
A range up to a temperature lower by -10 ° C, particularly a temperature lower by 2-5 ° C is preferable. However, the heating temperature may be the lower critical temperature or higher, and may be heated to about 10 ° C. higher than the lower critical temperature.

この加温工程の熱源には、次の固液分離工程で分離された分離液の顕熱を使用することが好ましい。   It is preferable to use the sensible heat of the separated liquid separated in the next solid-liquid separation process as the heat source for this heating process.

固液分離工程
加温工程で加熱されて感温性物質が析出している希釈誘導溶液は固液分離して析出した感温性物質を分離する。この固液分離手段は、目の粗いものがよく、分画分子量3,000以上の限外ろ過膜、精密ろ過膜、砂ろ過、ろ布ろ過、遠心分離、沈降分離などを利用することができる。好ましいものは、限外ろ過膜、精密ろ過膜および遠心分離が比較的低動力で良好な分離効率が得られるため好ましい。
Solid-Liquid Separation Step The dilution-inducing solution heated in the heating step and depositing the thermosensitive substance separates the deposited thermosensitive substance by solid-liquid separation. The solid-liquid separation means is preferably a coarse one, and an ultrafiltration membrane having a molecular weight cut off of 3,000 or more, a microfiltration membrane, sand filtration, filter cloth filtration, centrifugation, sedimentation separation, etc. can be used. . Preferred are ultrafiltration membranes, microfiltration membranes, and centrifugal separations because relatively low power and good separation efficiency can be obtained.

固液分離手段で分離された水は、通常はそのまま淡水として利用できるが、必要によりさらに精製して使用する。   The water separated by the solid-liquid separation means can usually be used as fresh water as it is, but it is further purified and used if necessary.

冷却工程
一方、分離された感温性物質の濃縮液は感温性物質が親水性化する温度、具体的には白濁が消える温度まで冷却して誘導溶液に再生する。この温度は広い範囲で採用可能であるが、経済性を考慮すると下限臨界温度より10〜20℃低い温度が適当であり、また、常温かそれより高い温度が好ましい。この冷却熱源としては、処理対象水あるいは順浸透工程において得られた希釈誘導溶液を用いることがエネルギーの効率利用の点で好ましい。
Cooling step On the other hand, the separated concentrated solution of the temperature sensitive substance is cooled to a temperature at which the temperature sensitive substance becomes hydrophilic, specifically, a temperature at which the white turbidity disappears, and is regenerated into an induction solution. This temperature can be used in a wide range, but considering the economical efficiency, a temperature lower by 10 to 20 ° C. than the lower critical temperature is suitable, and a temperature of room temperature or higher is preferable. As this cooling heat source, it is preferable to use the water to be treated or the dilution induction solution obtained in the forward osmosis step from the viewpoint of efficient use of energy.

再生した誘導溶液はそのまま循環使用できる。   The regenerated induction solution can be recycled as it is.

一方、順浸透工程で得られた膜濃縮水は塩分を高濃度で含んでいるので、これを濃縮して塩分を析出させて分離し、有効利用することができる。   On the other hand, since the membrane concentrated water obtained in the forward osmosis step contains a high concentration of salt, it can be concentrated and precipitated to separate and be effectively used.

この本発明の方法を図1に模式化して示す。処理はバッチ方式でもよいが、原則として連続方式、すなわち、被処理水と誘導溶液は連続して流し、淡水は連続的にとり出す。   This method of the present invention is shown schematically in FIG. The treatment may be a batch method, but in principle, the treatment is continuous, that is, the water to be treated and the induction solution are continuously flowed, and fresh water is continuously taken out.

(実施例1)
順浸透膜として酢酸セルロース製FO膜を使用し、誘導溶液には、ポリオキシエチレンアルキルエーテルを400g/Lの濃度で水に溶解したものを用いた。誘導溶液の浸透圧は、所定濃度の塩水からFO膜で淡水を吸引できるかどうかで測定することが可能であり、本溶液では5MPaであった。また、曇点は目視で白濁状況を確認することによって特定することが可能で、誘導溶液の曇点は38℃であった。
Example 1
A cellulose acetate FO membrane was used as the forward osmosis membrane, and a polyoxyethylene alkyl ether dissolved in water at a concentration of 400 g / L was used as the induction solution. The osmotic pressure of the induction solution can be measured based on whether fresh water can be sucked from a predetermined concentration of salt water using an FO membrane, and was 5 MPa in this solution. The cloud point can be specified by visually confirming the cloudiness state, and the cloud point of the induction solution was 38 ° C.

順浸透膜装置の誘導溶液入口の流入量は5L/minとした。被処理液には、海水を模擬した濃度3.5%の塩化ナトリウム水溶液を用いた。膜ろ過装置を通過して誘導溶液に移動した水の量は0.3L/minであり、誘導溶液で出口から流出する希釈誘導溶液の量は5.3L/minであり、温度は25℃であった。   The inflow amount of the induction solution inlet of the forward osmosis membrane device was 5 L / min. As the liquid to be treated, a 3.5% sodium chloride aqueous solution simulating seawater was used. The amount of water transferred to the induction solution through the membrane filtration device was 0.3 L / min, the amount of diluted induction solution flowing out from the outlet with the induction solution was 5.3 L / min, and the temperature was 25 ° C. .

この希釈誘導溶液を35℃に加温し、1分間保持すると、溶解していたポリオキシエチレンアルキルエーテルが凝集し浸透圧が0.1MPaまで低下した。
この溶液を精密膜ろ過し、ポリオキシエチレンアルキルエーテルを400g/Lの濃度で含む膜濃縮水を溶液1kgあたり0.94kgと、淡水0.06kgを得た。
When this dilution induction solution was heated to 35 ° C. and held for 1 minute, the dissolved polyoxyethylene alkyl ether aggregated and the osmotic pressure decreased to 0.1 MPa.
This solution was subjected to precision membrane filtration to obtain 0.94 kg of membrane concentrated water containing polyoxyethylene alkyl ether at a concentration of 400 g / L, and 0.06 kg of fresh water per kg of the solution.

この淡水に含まれるポリオキシエチレンアルキルエーテルの濃度は100ppm以下であった。
ポリオキシエチレンアルキルエーテルを400g/Lの濃度で含む膜濃縮水は、30℃まで冷却することにより、元の透明な誘導溶液に戻すことができた。
The concentration of polyoxyethylene alkyl ether contained in the fresh water was 100 ppm or less.
The membrane concentrated water containing polyoxyethylene alkyl ether at a concentration of 400 g / L could be returned to the original transparent induction solution by cooling to 30 ° C.

本発明の方法は、海水から淡水の製造や、坑井からの随伴水の処理などに広く利用できる。   The method of the present invention can be widely used for production of fresh water from seawater, treatment of associated water from a well, and the like.

Claims (6)

被処理水と、下限臨界温度を有する感温性物質を水に溶解した誘導溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘導溶液に移動させ、水で希釈された希釈誘導溶液と膜濃縮水を得る順浸透工程と、前記希釈誘導溶液を前記下限臨界温度未満の温度で前記感温性物質が疎水性化する温度まで加温する加温工程と、前記加温工程で加温され、疎水性化した感温性物質を希釈誘導溶液から感温性物質濃縮液として固液分離する固液分離工程と、前記固液分離工程で分離された感温性物質濃縮液を感温性物質が親水性化する温度まで冷却し、誘導溶液を再生する冷却工程とを有することを特徴とする水処理方法。   The water to be treated and the induction solution in which the thermosensitive substance having the lower critical temperature is dissolved in water are brought into contact with each other through the semipermeable membrane, and the water in the water to be treated is moved to the induction solution through the semipermeable membrane, A forward osmosis step for obtaining a dilution-inducing solution diluted with water and membrane concentrated water, and a heating step for heating the dilution-inducing solution at a temperature below the lower critical temperature to a temperature at which the thermosensitive substance becomes hydrophobic. And the solid-liquid separation step of separating the temperature-sensitive material heated and hydrophobized in the heating step as a temperature-sensitive material concentrate from the dilution-inducing solution, and the solid-liquid separation step. A water treatment method comprising: cooling a temperature-sensitive substance concentrate to a temperature at which the temperature-sensitive substance becomes hydrophilic, and regenerating the induction solution. 前記固液分離工程における固液分離手段が、分画分子量3,000以上の限外ろ過膜、精密ろ過膜、砂ろ過、ろ布ろ過、遠心分離、沈降分離のいずれかによる手段であることを特徴とする請求項1に記載の水処理方法。   The solid-liquid separation means in the solid-liquid separation step is a means by any of an ultrafiltration membrane having a fractional molecular weight of 3,000 or more, a microfiltration membrane, sand filtration, filter cloth filtration, centrifugation, and sedimentation separation. The water treatment method according to claim 1, wherein the water treatment method is characterized. 前記感温性物質が、アルコールまたは脂肪酸とエチレンオキサイドの化合物、アルコールまたは脂肪酸とプロピレンオキサイドの化合物、アクリルアミドとアルキル基の化合物、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステルエチレンオキサイド付加物、アミノ酸およびその誘導体から選択される化合物で構成されていることを特徴とする請求項1又は請求項2に記載の水処理方法。   The temperature-sensitive substance is selected from alcohol or fatty acid and ethylene oxide compounds, alcohol or fatty acid and propylene oxide compounds, acrylamide and alkyl group compounds, glycerin fatty acid esters, sorbitan fatty acid ester ethylene oxide adducts, amino acids and derivatives thereof. The water treatment method according to claim 1, wherein the water treatment method comprises: 下限臨界温度が30℃〜80℃の範囲にあることを特徴とする請求項1乃至請求項3のいずれか1項に記載の水処理方法。   The water treatment method according to any one of claims 1 to 3, wherein the lower critical temperature is in the range of 30C to 80C. 固液分離工程において分離された分離液の顕熱を加温工程における熱源として使用することを特徴とする請求項1乃至請求項4のいずれか1項に記載の水処理方法。   The water treatment method according to any one of claims 1 to 4, wherein the sensible heat of the separated liquid separated in the solid-liquid separation step is used as a heat source in the heating step. 順浸透工程において得られた希釈誘導溶液を冷却工程における冷熱源として使用することを特徴とする請求項1乃至請求項5のいずれか1項に記載の水処理方法。   The water treatment method according to any one of claims 1 to 5, wherein the dilution induction solution obtained in the forward osmosis step is used as a cold heat source in the cooling step.
JP2012255826A 2012-11-22 2012-11-22 Water treatment method Pending JP2014100692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255826A JP2014100692A (en) 2012-11-22 2012-11-22 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255826A JP2014100692A (en) 2012-11-22 2012-11-22 Water treatment method

Publications (1)

Publication Number Publication Date
JP2014100692A true JP2014100692A (en) 2014-06-05

Family

ID=51023726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255826A Pending JP2014100692A (en) 2012-11-22 2012-11-22 Water treatment method

Country Status (1)

Country Link
JP (1) JP2014100692A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067989A (en) * 2014-09-29 2016-05-09 大阪瓦斯株式会社 Forward osmosis membrane separation method, water treatment equipment, and power generation facility
JP5998254B1 (en) * 2015-06-19 2016-09-28 株式会社神鋼環境ソリューション Digestion processing apparatus and digestion processing method
JP2017006844A (en) * 2015-06-19 2017-01-12 株式会社神鋼環境ソリューション Digestion treatment device and digestion treatment method
WO2018150690A1 (en) * 2017-02-17 2018-08-23 国立大学法人神戸大学 Water treatment method and water treatment system
WO2020045525A1 (en) * 2018-08-31 2020-03-05 株式会社日本触媒 Draw solute and water treatment equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067989A (en) * 2014-09-29 2016-05-09 大阪瓦斯株式会社 Forward osmosis membrane separation method, water treatment equipment, and power generation facility
JP5998254B1 (en) * 2015-06-19 2016-09-28 株式会社神鋼環境ソリューション Digestion processing apparatus and digestion processing method
JP2017006844A (en) * 2015-06-19 2017-01-12 株式会社神鋼環境ソリューション Digestion treatment device and digestion treatment method
WO2018150690A1 (en) * 2017-02-17 2018-08-23 国立大学法人神戸大学 Water treatment method and water treatment system
JPWO2018150690A1 (en) * 2017-02-17 2019-12-12 国立大学法人神戸大学 Water treatment method and water treatment system
JP7117718B2 (en) 2017-02-17 2022-08-15 国立大学法人神戸大学 Water treatment method and water treatment system
WO2020045525A1 (en) * 2018-08-31 2020-03-05 株式会社日本触媒 Draw solute and water treatment equipment
JPWO2020045525A1 (en) * 2018-08-31 2021-06-03 株式会社日本触媒 Draw solute and water treatment equipment
JP7162308B2 (en) 2018-08-31 2022-10-28 株式会社日本触媒 Draw solute and water treatment equipment
US11639299B2 (en) 2018-08-31 2023-05-02 Nippon Shokubai Co., Ltd. Draw solute and water treatment equipment

Similar Documents

Publication Publication Date Title
JP6149627B2 (en) Water treatment method with semipermeable membrane
KR101987870B1 (en) Thermo-sensitive water absorbent, method of water treatment, and water treatment apparatus
JP5900743B2 (en) Method and apparatus for treatment of associated water from a well
JP6149626B2 (en) Water treatment method with semipermeable membrane
JP2018503514A (en) Brine concentration
JP2014100692A (en) Water treatment method
JP6210033B2 (en) Water desalination method and apparatus
JP2015192979A (en) Water treatment apparatus using semipermeable membrane
WO2013134710A1 (en) Methods for osmotic concentration of hyper saline streams
JP2014097483A (en) Water treatment method and apparatus
US8357300B2 (en) Methods and materials for selective boron adsorption from aqueous solution
KR102006120B1 (en) Apparatus for treating brine discharged from desalination process of sea water
JP6028645B2 (en) Water treatment equipment
JP6463620B2 (en) Desalination system and desalination method
KR20150070895A (en) A Draw Solution for forward osmosis using salt of organic acid and use thereof
KR101892075B1 (en) Apparatus for treating brine discharged from desalination process of sea water
JP2015037771A (en) Water treatment method
JP6210034B2 (en) Water desalination method and apparatus
JP6210008B2 (en) Water treatment equipment
JP6465301B2 (en) Water desalination equipment
Karakulski et al. Production of process water using integrated membrane processes
JP6210011B2 (en) Water treatment method and apparatus
KR101913466B1 (en) Forward osmosis water treatment device using thermosensitive draw solute for treating high-temperature underground water
KR20180096560A (en) Apparatus for treating brine discharged from desalination process of sea water
JP2019155289A (en) Water treatment method and apparatus