WO2018150690A1 - Water treatment method and water treatment system - Google Patents

Water treatment method and water treatment system Download PDF

Info

Publication number
WO2018150690A1
WO2018150690A1 PCT/JP2017/043819 JP2017043819W WO2018150690A1 WO 2018150690 A1 WO2018150690 A1 WO 2018150690A1 JP 2017043819 W JP2017043819 W JP 2017043819W WO 2018150690 A1 WO2018150690 A1 WO 2018150690A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
temperature
forward osmosis
solution
draw
Prior art date
Application number
PCT/JP2017/043819
Other languages
French (fr)
Japanese (ja)
Inventor
秀人 松山
智輝 高橋
英治 神尾
政宏 安川
熊野 淳夫
Original Assignee
国立大学法人神戸大学
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学, 東洋紡株式会社 filed Critical 国立大学法人神戸大学
Priority to JP2018568008A priority Critical patent/JP7117718B2/en
Publication of WO2018150690A1 publication Critical patent/WO2018150690A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a water treatment method and a water treatment system.
  • the forward osmosis (FO) phenomenon is a phenomenon in which a solvent (such as water) on a low concentration side moves toward a solution on a high concentration side.
  • Patent Document 1 Japanese Patent Publication No. 2014-512951 discloses a water treatment method including a forward osmosis treatment using a draw solute whose solubility is reduced by heating (temperature increase).
  • a draw solute lower critical solution temperature (LCST) type draw solute
  • LCST lower critical solution temperature
  • the draw solution can be separated from the low concentration fraction (low concentration draw solution) by increasing the temperature.
  • concentration fraction high-concentration draw solution
  • the diluted draw solution is phase-separated into a low-concentration draw solution and a high-concentration draw solution in the separation tank 3 by heating or the like by forward osmosis treatment in the forward osmosis module 1.
  • the separation membrane module 2 performs membrane separation treatment on the low-concentration draw solution, thereby recovering water (separating the draw solute).
  • the thermal energy for raising the temperature of a draw solution is required, the influence on the cost side by consumption of a thermal energy is comparatively small by utilizing the waste heat of other facilities.
  • the low concentration draw solution often contains several to several tens of mass% draw solute.
  • membrane separation is required.
  • a high pressure needs to be applied, and a lot of energy for pressurization is required.
  • the energy efficiency of water treatment could not be sufficiently improved, and it was difficult to sufficiently reduce the cost of water treatment.
  • an object of the present invention is to provide a water treatment method and a water treatment system that can separate a draw solute from a draw solution with low energy and can further increase the energy efficiency of water treatment.
  • the present invention it is possible to provide a water treatment method and a water treatment system that can separate a draw solute from a draw solution with low energy and can further increase the energy efficiency of water treatment.
  • the water treatment method of the present invention is a method for separating water from a target solution (liquid containing water and components other than water).
  • a target solution liquid containing water and components other than water.
  • the target solution include seawater, river water, lake water, industrial wastewater, and the like.
  • the water treatment method of the present invention includes at least a forward osmosis step, a phase separation step, and a membrane separation step described below.
  • the forward osmosis membrane is not particularly limited, and various membranes that can be used for forward osmosis can be used.
  • the semipermeable membrane examples include a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane), a forward osmosis membrane (FO membrane: Forward Osmosis Membrane), a nanofiltration membrane (NF membrane: Nanofiltration Membrane), and an ultrafiltration membrane (UF membrane). : Semipermeable membrane called Ultrafiltration Membrane).
  • the semipermeable membrane is preferably a reverse osmosis membrane, a forward osmosis membrane, or a nanofiltration membrane.
  • the pressure of the target solution in the first chamber is preferably 0.01 to 10 MPa.
  • the pore size of the RO membrane and the FO membrane is about 2 nm or less, and the pore size of the UF membrane is about 2 to 100 nm.
  • the NF membrane has a relatively low blocking rate of ions and salts among the RO membrane, and the pore size of the NF membrane is usually about 1 to 2 nm.
  • the salt removal rate of the RO membrane, FO membrane, or NF membrane is preferably 90% or more.
  • the material constituting the semipermeable membrane is not particularly limited, and examples thereof include cellulose resins, polysulfone resins, and polyamide resins.
  • the semipermeable membrane is preferably composed of a material containing at least one of a cellulose resin and a polysulfone resin.
  • the cellulose resin is preferably a cellulose acetate resin.
  • Cellulose acetate resin is resistant to chlorine, which is a bactericidal agent, and has a feature that it can suppress the growth of microorganisms.
  • the cellulose acetate resin is preferably cellulose acetate, and more preferably cellulose triacetate from the viewpoint of durability.
  • Examples of the cellulose semipermeable membrane include CTA (manufactured by Toyobo Co., Ltd.).
  • the polysulfone resin is preferably a polyethersulfone resin.
  • the polyethersulfone resin is preferably a sulfonated polyethersulfone.
  • the shape of the semipermeable membrane is not particularly limited, and examples thereof include a flat membrane, a spiral membrane, and a hollow fiber membrane.
  • Hollow fiber membranes are smaller in thickness than spiral type semipermeable membranes, and can increase the membrane area per module and increase the penetration efficiency. It is advantageous.
  • the draw solute used in the present invention is not particularly limited as long as the solubility of the draw solute decreases with increasing temperature. Note that such a decrease in solubility is reversible, and conversely, if the temperature decreases, it is preferable that the solubility increase.
  • Examples of such draw solutes include LCST (lower critical solution temperature) type phase change materials.
  • LCST lower critical solution temperature
  • an aqueous solution containing an LCST type phase change substance causes dehydration of a solute as the solution temperature rises, and causes a temperature phase transition (liquid-liquid phase separation) due to aggregation of solute molecules.
  • the polymolecular association is formed even in the temperature range below the phase transition temperature (homogeneous phase range below the LCST curve)
  • the osmotic pressure of the solution decreases due to the temperature rise even in the temperature range below the phase transition temperature. It is done.
  • LCST type phase change material examples include LCST type temperature responsive polymers.
  • LCST type temperature-responsive polymer dissolves in water at a relatively low temperature, and when the temperature exceeds a predetermined temperature (specific lower critical solution temperature: LCST), a dilute phase (low concentration draw solution) and a concentrated phase Phase separation into (high concentration draw solution).
  • the LCST type temperature-responsive polymer preferably has at least one hydrophilic group in at least some or all of the structural units (monomer units). Moreover, the temperature-responsive polymer may have a hydrophobic group in some structural units while having a hydrophilic group. In addition, it is considered that the balance between the hydrophilic group and the hydrophobic group contained in the molecule is important for the temperature responsive polymer to have temperature responsiveness.
  • hydrophilic group examples include a hydroxyl group, a carboxyl group, an acetyl group, an aldehyde group, an ether bond, and an ester bond.
  • Specific temperature-responsive polymers include, for example, polyvinyl ether polymers, polyvinyl acetate polymers, (meth) acrylic acid polymers, and the like.
  • polyvinyl ether polymer examples include polymethyl vinyl ether, vinyl ether having an oxyethylene chain, and polyhydroxybutyl vinyl ether.
  • polyvinyl ether polymers include the polymers shown in Table 1.
  • phase transition temperature shown in Table 1 is a lower critical solution temperature (LCST) in aqueous solution.
  • References 1 to 4 listed in Table 1 are as follows. Reference 1: Journal of Japan Rubber Association, Vol. 63, No. 1, 29-39 (1990). Reference 2: Journal of Polymer Science Part A: polymer Chemistry Vol. 30, 2407-2413 (1992). Reference 3: Journal of Polymer Science Part A: polymer Chemistry Vol. 41, 3300-3312 (2003). Reference 4: Macromolecules, 36, 8312-8319 (2003).
  • polyvinyl acetate polymer examples include polyvinyl acetate part saponified products.
  • Examples of the (meth) acrylic acid polymer include poly (meth) acrylate having an oxyethylene chain, (meth) acrylic acid copolymer, and the like.
  • LCST type temperature-responsive polymers examples include polypropylene glycol (PPG), for example.
  • PPG polypropylene glycol
  • FIGS. 3 and 4 The phase separation characteristics and osmotic pressure characteristics of PPG (molecular weight 400, diol type) are shown in FIGS. 3 and 4, respectively.
  • FIG. 3 shows that PPG phase-separates into a low concentration phase of about 15% by mass and a high concentration phase of about 80% by mass in an aqueous solution at about 70 ° C., for example.
  • FIG. 4 shows that the osmotic pressure of PPG decreases as the temperature increases.
  • FIG. 9 shows a case where the temperature-responsive draw solution is a 20% by mass polypropylene glycol (molecular weight 400, PPG400) solution, and the values of the water permeability flux are different when reverse osmosis treatment is performed by applying pressure to the draw solution side.
  • the temperature is shown (25 ° C. and 60 ° C.).
  • the applied pressure at which the water permeation amount becomes 0 is 19 bar when the temperature is 25 ° C. and 11 bar when the temperature is 60 ° C., and the concentration of the draw solution is the same. Nevertheless, the pressure at which the amount of water permeation becomes zero decreases due to an increase in temperature.
  • the osmotic pressure of PPG 400 varies with temperature.
  • the permeability flux obtained at a pressure of 25 bar is about 2 L / (m 2 ⁇ H), which corresponds to the permeability flux obtained at a pressure of about 12 bar at 60 ° C. This shows that the applied pressure at which the same permeable flux can be obtained can be greatly reduced.
  • LCST type temperature-responsive polymer products examples include Pluronic (manufactured by BASF), which is a block copolymer of polyoxypropylene and polyoxyethylene.
  • LCST type phase transition materials other than LCST type temperature responsive polymers include LCST type ionic liquid, glycol ether type LCST type phase change material, acid amide type LCST type phase change material, and amine type LCST type. Examples include phase change substances.
  • LCST type ionic liquid for example, Tetrabutylammonium-2,4,6-trimethylbenzenesulfonate (N 4444 -TMBS), Tetrabutylammonium -trifluoroacetate (N 4444 -CF 3 COO), Tetrabutylphosphonium-2,4,6-trimethylbenzenesulfonate (P 4444 -TMBS), Tetrabutylphosphonium-trifluoroacetate (P 4444 -CF 3 COO) Etc.
  • N 4444 -TMBS Tetrabutylammonium-2,4,6-trimethylbenzenesulfonate
  • N 4444 -CF 3 COO Tetrabutylammonium -trifluoroacetate
  • P 4444 -TMBS Tetrabutylphosphonium-2,4,6-trimethylbenzenesulfonate
  • P 4444 -CF 3 COO Tetrabutylphosphonium-trifluoroacetate
  • glycol ether type LCST type phase transition materials include: Diethylene glycol hexyl ether, Propylene glycol butyl ether, Dipropylene glycol propyl ether, Ethylene glycol n-butyl ether, Ethylene glycol n-pentyl ether, Diethylene glycol n-pentyl ether, Ethylene glycol 2-methyl-1-butyl ether, Diethylene glycol 2-methyl-1-butyl ether, Ethylene glycol n-hexyl ether, Triethylene glycol n-hexyl ether, Ethylene glycol n-heptyl ether, Diethylene glycol n-heptyl ether, Triethylene glycol n-heptyl ether, Propylene glycol n-propyl ether, Tripropylene glycol n-propyl ether, Dipropylene glycol n-butyl ether, And tripropylene glycol n-but
  • acid amide LCST type phase transition materials include: N, N-bis (2-butyramidoethyl) butyramide (nBu-DETA) N- (2- (Diethylamino) ethyl) pentanamide (Val-DEEA) N- (2- (Diethylamino) ethyl) isobutyramide (iBu-DEEA) N, N ′-((Methylazanediyl) bis (propane-3,1-diyl)) dibutyramide (nBu-DAPMA) N, N ′-((Methylazanediyl) bis (propane-3,1-diyl)) dipentanamide (Val-DAPMA) N-Butylpropionamide (N-BPA) N- (2- (diisopropylamino) ethyl) butyramide (nBu-DIPA) N-Butylated polyethyleneimine (nBu-
  • amine-based LCST type phase change materials include: Triethylamine, N-ethylpiperidine, 2-methylpiperidine, N-methylpiperidine and the like.
  • N 4444 -TMBS ([N 4444 ] [TMBS]) is, for example, in an aqueous solution at about 70 ° C., a low concentration phase of about 12% by mass, a high concentration phase of about 65% by mass, Are shown to phase separate.
  • FIG. 6 shows that N 4444 -TMBS has a lower osmotic pressure as the temperature is higher.
  • the osmotic pressure of the low-concentration phase (about 12% by mass) phase-separated at 70 ° C. is about 4.6 bar at room temperature (25 ° C.) from FIG. is there.
  • the present inventors constructed a method for measuring the actual osmotic pressure of the above-mentioned draw solute (LCST type phase change material), and from the measurement result, the osmotic pressure of the aqueous solution (draw solution) decreased due to temperature rise. I found out. The reason why the osmotic pressure of the aqueous solution (draw solution) decreases due to the temperature rise is estimated as follows.
  • the draw solute (DS) used in the present invention is solvated (hydrated) in a solvent (water) at a low temperature.
  • a solvent water
  • the interaction between DS molecules works relatively strongly compared to the interaction between solvent molecules (water molecules) and DS molecules. Molecules are thought to form aggregates (aggregates).
  • the osmotic pressure ⁇ [bar] of the ideal solution is the solute molar concentration c [mol ⁇ L ⁇ 1 ] and the gas constant R [bar ⁇ L ⁇ K ⁇ 1]. -Proportional to mol -1 ] and absolute temperature T [K]. Since the solute molar concentration is the molar molar concentration of all solute particles, the calculated solute molar concentration decreases when an association of solute particles occurs. For this reason, it is thought that the osmotic pressure of a solution falls by formation of an aggregate.
  • the osmotic pressure of the draw solution (after raising the temperature) used for the membrane separation step is preferably 0.01 to 2 MPa, more preferably 0.01 to 1 MPa.
  • a target solution (FS: feed solution) is caused to flow into a first chamber 11 provided in contact with one surface of the forward osmosis membrane 10, and the target solution is supplied to one side of the forward osmosis membrane 10. Touch the surface.
  • a draw solution (DS) containing a draw solute is caused to flow into the second chamber 12 provided in contact with the other surface of the forward osmosis membrane 10, and the draw solution is introduced into the other surface of the forward osmosis membrane 10.
  • phase separation process In the phase separation step, after the forward osmosis step, the temperature of the draw solution is increased to separate the draw solution into a low concentration draw solution and a high concentration draw solution (phase separation).
  • the temperature after the rise of the draw solution in the phase separation step is preferably 40 ° C. or higher and 90 ° C. or lower, more preferably 40 ° C. or higher and 85 ° C. or lower, and further preferably 40 ° C. or higher and 80 ° C. or lower.
  • the draw solution containing water in the target solution is allowed to flow into the separation tank 3 where the temperature of the draw solution is raised to separate the dilute phase (low concentration draw solution) and the concentrated phase (high concentration draw solution).
  • the draw solute contains an LCST-type temperature-responsive polymer
  • the draw solution temperature is raised to LCST or higher to separate the dilute phase (low concentration draw solution) and the concentrated phase (high concentration draw solution).
  • the separation tank 3 has a heating mechanism.
  • the membrane separation step the low-concentration draw solution is separated into water and a concentrate containing a draw solute using a separation membrane as a driving force by a pressure difference due to pressurization, decompression, or the like.
  • a separation membrane for example, a UF membrane, NF membrane, RO membrane or the like can be used.
  • the temperature of the membrane separation process is preferably higher than the temperature of the forward osmosis process. Further, a temperature lower than the phase separation temperature is preferable.
  • the temperature in the membrane separation step is more preferably 40 ° C. or higher and 90 ° C. or lower, still more preferably 40 ° C. or higher and 85 ° C. or lower, and even more preferably 40 ° C. or higher and 80 ° C. or lower.
  • the water which is the target object of a water treatment method can be obtained by collect
  • the obtained water may be subjected to a treatment for further improving the quality of the water.
  • the draw solute separated in the membrane separation step and the concentrated liquid (high concentration draw solution) containing the draw solute obtained in the phase separation step are preferably reused as a draw solution in the forward osmosis step.
  • FIG. 1 is a schematic diagram showing an example of a water treatment system according to the present invention.
  • the water treatment system used for said water treatment method is as follows.
  • Forward osmosis module 1 comprising two chambers 12;
  • a separation tank 3 having a heating mechanism for separating the draw solution into a low-concentration draw solution and a high-concentration draw solution by increasing the temperature of the draw solution;
  • a separation membrane 20 separation membrane module 2 for separating the low-concentration draw solution into water and a draw solute.
  • the separation tank 3 has a heating mechanism. That is, warm water such as waste hot water is supplied around the separation tank 3 in order to raise the temperature of the dilution DS supplied to the separation tank 3 and cause phase separation. What is necessary is just to adjust the temperature of warm water according to the target value of the temperature after DS raises in a phase-separation process.
  • the draw solution (diluted DS) is phase-separated into a low concentration DS and a high concentration DS as the temperature rises.
  • the high-concentration DS separated in the separation tank 3 and the low-concentration DS concentrated in the separation membrane module 2 are sent to the tank 5 by the pump 44 and temporarily stored. Can be reused as DS.
  • the separation membrane examples include a semipermeable membrane called an ultrafiltration membrane (UF membrane: Ultrafiltration Membrane), a nanofiltration membrane (NF membrane: Nanofiltration Membrane), and a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane).
  • UF membrane Ultrafiltration Membrane
  • NF membrane Nanofiltration Membrane
  • RO membrane Reverse Osmosis Membrane
  • the separation membrane module preferably has heat resistance at high temperatures (for example, 40 ° C. or higher). This is because the membrane separation process can be performed on the high-temperature low-concentration DS discharged from the separation tank 3.
  • heat-resistant separation membrane examples include polyethersulfone (PES) resin, polyamide (PA) resin, polyvinyl alcohol (PVA) resin, and the like. Further, in the separation membrane module, parts other than the separation membrane also have heat resistance, and preferably have heat resistance as a whole.
  • heat-resistant separation membrane module products include Thermo Plus (manufactured by Nitto Denko Corporation), Durathermo (manufactured by GE Water Technologies), and Romenbra (registered trademark) TS series (manufactured by Toray Industries, Inc.). Can be mentioned.
  • heat-resistant separation membrane examples include ceramics such as alumina and silica.
  • examples of the silica for the heat resistant membrane include silica derived from bistryl ethoxysilyl ethane (Atsushi Tsuru, “Development of a Robust RO / NF Membrane That Can Correspond to Various Water Sources”, Journal of Water Environment Society, vol. 36 (A), No.1, pp.8-10, 2013).
  • FIG. 2 is a schematic view showing another example of the water treatment system according to the present invention.
  • the water treatment system shown in FIG. 2 includes heat exchangers 61 and 62 in addition to the water treatment system shown in FIG. This reduces the heat energy required for the phase separation process by heating the diluted DS using the low-concentration DS and high-concentration DS waste heat discharged from the separation tank 3, and the energy efficiency of the water treatment Can be increased.
  • the separation membrane module 2 used for normal water treatment is often used at room temperature, the heat resistance at high temperature (for example, 40 ° C. or more). Often does not have. For this reason, the separation membrane module 2 is provided downstream from the heat exchanger 61, and in the separation membrane module 2, the membrane separation step is performed on the low concentration DS after the temperature is lowered.
  • the separation membrane module 2 (separation membrane 20) is arranged on the upstream side of the heat exchanger 61. Thereby, the membrane separation process is performed on the high-temperature low-concentration DS discharged from the separation tank 3.
  • the present inventors reduce the energy required for the pump. It has been found that the energy efficiency of water treatment is improved.
  • 1 forward osmosis module 10 forward osmosis membrane, 11 first chamber, 12 second chamber, 2 separation membrane module, 20 separation membrane, 3 separation tank, 41-48 pump, 5 tanks, 61, 62 heat exchanger.

Abstract

A water treatment method characterized in: comprising a forward osmosis step for moving water contained in a solution to be treated that comprises water and components other than water through a forward osmosis membrane into a draw solution by bringing one surface of the forward osmosis membrane into contact with the solution to be treated and bringing the other surface of the forward osmosis membrane into contact with a draw solution comprising a draw solute, the solubility of which decreases with increasing temperature, a phase separation step after the forward osmosis step for separating the draw solution into a low concentration draw solution and a high concentration draw solution by raising the temperature of the draw solution, and a membrane separation step for separating the low concentration draw solution into water and a concentrated draw solute-containing solution using a separation membrane; wherein the temperature of the membrane separation step is higher than the temperature of the forward osmosis step.

Description

水処理方法および水処理システムWater treatment method and water treatment system
 本発明は、水処理方法および水処理システムに関する。 The present invention relates to a water treatment method and a water treatment system.
 従来、水処理分野においては、逆浸透(RO:reverse osmosis)工程による淡水化方法が広く知られている。一方、正浸透(FO:forward osmosis)現象は、低濃度側の溶媒(水など)が高濃度側の溶液に向かって移動する現象のことである。 Conventionally, in the field of water treatment, a desalination method using a reverse osmosis (RO) process is widely known. On the other hand, the forward osmosis (FO) phenomenon is a phenomenon in which a solvent (such as water) on a low concentration side moves toward a solution on a high concentration side.
 膜分離工程は、人為的に高い圧力を高濃度の対象溶液に加えることにより、正浸透とは逆に高濃度の対象溶液(海水など)から低濃度の溶液(水など)側に水を移動させる工程である。これにより、例えば、対象溶液から水を生産することができる。膜分離工程は高い圧力を必要とするため、エネルギー消費量が極めて多く、エネルギー効率が低い。そこで、近年、水処理のエネルギー効率を高めるために、人為的に圧力を加える必要のない正浸透工程による淡水化方法が検討されている。 In the membrane separation process, artificially applying high pressure to the high concentration target solution moves water from the high concentration target solution (seawater, etc.) to the low concentration solution (water, etc.) as opposed to forward osmosis. It is a process to make. Thereby, for example, water can be produced from the target solution. Since the membrane separation process requires high pressure, the energy consumption is extremely high and the energy efficiency is low. Therefore, in recent years, in order to increase the energy efficiency of water treatment, a desalination method using a forward osmosis process that does not require artificially applying pressure has been studied.
 ここで、正浸透用の高張液である誘導溶液(ドロー溶液)の溶質(ドロー溶質)として、近年、ドロー溶液からのドロー溶質の回収が容易であり、再利用可能な点で、温度変化によって水との相溶状態が可逆的に変化するドロー溶質(温度応答性ドロー溶質)が注目されている。 Here, as a solute (draw solute) of an induction solution (draw solution) which is a hypertonic solution for forward osmosis, in recent years, it is easy to recover the draw solute from the draw solution and it can be reused. Draw solutes (temperature-responsive draw solutes) that reversibly change their compatibility with water are drawing attention.
 特許文献1(特表2014-512951号公報)には、加熱(温度上昇)により溶解度が低下するドロー溶質を用いた正浸透処理を含む、水処理方法が開示されている。なお、温度上昇により溶解度が低下するドロー溶質(下限臨界共溶温度(LCST)型ドロー溶質)を用いる場合、温度を上昇させることにより、ドロー溶液を低濃度画分(低濃度ドロー溶液)と高濃度画分(高濃度ドロー溶液)とに相分離させることはできるが、多くの場合、温度上昇だけでは水とドロー溶質とを完全に分離することはできない。 Patent Document 1 (Japanese Patent Publication No. 2014-512951) discloses a water treatment method including a forward osmosis treatment using a draw solute whose solubility is reduced by heating (temperature increase). When using a draw solute (lower critical solution temperature (LCST) type draw solute) whose solubility decreases with increasing temperature, the draw solution can be separated from the low concentration fraction (low concentration draw solution) by increasing the temperature. Although it can be phase-separated into a concentration fraction (high-concentration draw solution), in many cases, it is not possible to completely separate water and the draw solute only by increasing the temperature.
 このため、図8を参照して、正浸透モジュール1での正浸透処理によって、希釈されたドロー溶液を加熱等によって、分離槽3で低濃度ドロー溶液と高濃度ドロー溶液とに相分離させた後、分離膜モジュール2で低濃度ドロー溶液を膜分離処理することにより、水を回収している(ドロー溶質を分離している)。なお、ドロー溶液の温度を上昇させるための熱エネルギーが必要であるが、他の設備等の廃熱を利用することで、熱エネルギーの消費によるコスト面への影響は比較的小さい。 For this reason, referring to FIG. 8, the diluted draw solution is phase-separated into a low-concentration draw solution and a high-concentration draw solution in the separation tank 3 by heating or the like by forward osmosis treatment in the forward osmosis module 1. Thereafter, the separation membrane module 2 performs membrane separation treatment on the low-concentration draw solution, thereby recovering water (separating the draw solute). In addition, although the thermal energy for raising the temperature of a draw solution is required, the influence on the cost side by consumption of a thermal energy is comparatively small by utilizing the waste heat of other facilities.
特表2014-512951号公報Special table 2014-512951 gazette
 しかしながら、低濃度ドロー溶液は数質量%~数十質量%程度のドロー溶質を含んでいる場合が多く、この低濃度ドロー溶液を膜分離によって水とドロー溶質とに分離するためには、膜分離において高い圧力を加える必要があり、加圧のための多くのエネルギーが必要になる。このため、水処理のエネルギー効率を十分に向上させることができず、水処理のコストを十分に低下させることが難しいという問題があった。 However, the low concentration draw solution often contains several to several tens of mass% draw solute. In order to separate this low concentration draw solution into water and draw solute by membrane separation, membrane separation is required. In this case, a high pressure needs to be applied, and a lot of energy for pressurization is required. For this reason, there was a problem that the energy efficiency of water treatment could not be sufficiently improved, and it was difficult to sufficiently reduce the cost of water treatment.
 上記課題に鑑み、本発明の目的は、ドロー溶質を低エネルギーでドロー溶液から分離でき、水処理のエネルギー効率をさらに高めることのできる、水処理方法および水処理システムを提供することである。 In view of the above problems, an object of the present invention is to provide a water treatment method and a water treatment system that can separate a draw solute from a draw solution with low energy and can further increase the energy efficiency of water treatment.
 [1]
 正浸透膜の一方の面を、水と水以外の成分を含む対象溶液に接触させると共に、
 正浸透膜の他方の面を、温度上昇により溶解度が低下するドロー溶質を含むドロー溶液に接触させることで、
 対象溶液中に含まれる水を、正浸透膜を通してドロー溶液に移動させる、正浸透工程と、
 正浸透工程の後に、ドロー溶液の温度を上昇させることで、ドロー溶液を低濃度ドロー溶液と高濃度ドロー溶液とに分離する、相分離工程と、
 分離膜を用いて、低濃度ドロー溶液を水とドロー溶質を含む濃縮液とに分離する、膜分離工程と、を含み、
 膜分離工程の温度は、正浸透工程の温度よりも高いことを特徴とする、水処理方法。
[1]
While bringing one surface of the forward osmosis membrane into contact with the target solution containing water and components other than water,
By bringing the other side of the forward osmosis membrane into contact with a draw solution containing a draw solute whose solubility decreases with increasing temperature,
Forward osmosis step of transferring water contained in the target solution to the draw solution through the forward osmosis membrane;
A phase separation step of separating the draw solution into a low concentration draw solution and a high concentration draw solution by increasing the temperature of the draw solution after the forward osmosis step;
Separating the low-concentration draw solution into a concentrated solution containing water and a draw solute using a separation membrane, and a membrane separation step,
The water treatment method is characterized in that the temperature of the membrane separation step is higher than the temperature of the forward osmosis step.
 [2]
 ドロー溶質は、温度上昇により浸透圧が低下する、[1]に記載の水処理方法。
[2]
The water treatment method according to [1], wherein the draw solute has a lower osmotic pressure due to a temperature rise.
 [3]
 膜分離工程の温度は40℃以上である、[1]または[2]に記載の水処理方法。
[3]
The water treatment method according to [1] or [2], wherein the temperature of the membrane separation step is 40 ° C. or higher.
 [4]
 正浸透工程の温度は40℃未満である、[1]~[3]のいずれかに記載の水処理方法。
[4]
The water treatment method according to any one of [1] to [3], wherein the temperature of the forward osmosis step is less than 40 ° C.
 [5]
 相分離工程において、ドロー溶液は40℃以上の温度に上昇する、[1]~[4]のいずれかに記載の水処理方法。
[5]
The water treatment method according to any one of [1] to [4], wherein in the phase separation step, the draw solution rises to a temperature of 40 ° C. or higher.
 [6]
 [1]~[5]のいずれか1項に記載の正浸透水処理方法に用いられる正浸透水処理システムであって、
 正浸透膜、正浸透膜の一方の面に対象溶液を接触させるために設けられた第1室、および、正浸透膜の他方の面にドロー溶液を接触させるために設けられた第2室を含む、正浸透モジュールと、
 ドロー溶液の温度を上昇させることで、ドロー溶液を低濃度ドロー溶液と高濃度ドロー溶液とに分離するための加熱機構を有する分離槽と、
 低濃度ドロー溶液を水とドロー溶質を含む濃縮液とに分離するための分離膜と、を備える、水処理システム。
[6]
A forward osmosis water treatment system used in the forward osmosis water treatment method according to any one of [1] to [5],
A first osmosis membrane, a first chamber provided for bringing the target solution into contact with one surface of the forward osmosis membrane, and a second chamber provided for bringing the draw solution into contact with the other surface of the forward osmosis membrane Including forward osmosis module;
A separation tank having a heating mechanism for separating the draw solution into a low concentration draw solution and a high concentration draw solution by raising the temperature of the draw solution;
A water treatment system comprising: a separation membrane for separating a low-concentration draw solution into water and a concentrate containing a draw solute.
 本発明によれば、ドロー溶質を低エネルギーでドロー溶液から分離でき、水処理のエネルギー効率をさらに高めることのできる、水処理方法および水処理システムを提供することができる。 According to the present invention, it is possible to provide a water treatment method and a water treatment system that can separate a draw solute from a draw solution with low energy and can further increase the energy efficiency of water treatment.
本発明に係る水処理システムの一例を示す模式図である。It is a schematic diagram which shows an example of the water treatment system which concerns on this invention. 本発明に係る水処理システムの別の例を示す模式図である。It is a schematic diagram which shows another example of the water treatment system which concerns on this invention. 本発明で用いられるドロー溶質の一例(PPG400)の相分離曲線を示す図である。It is a figure which shows the phase-separation curve of an example (PPG400) of the draw solute used by this invention. 本発明で用いられるドロー溶質の一例(PPG400)の浸透圧特性を示す図である。It is a figure which shows the osmotic pressure characteristic of an example (PPG400) of the draw solute used by this invention. 本発明で用いられるドロー溶質の別の一例([N4444][TMBS])の相分離曲線を示す図である。It is a figure which shows the phase-separation curve of another example ([ N4444 ] [TMBS]) of the draw solute used by this invention. 本発明で用いられるドロー溶質の別の一例([N4444][TMBS])の浸透圧特性を示す図である。It is a figure which shows the osmotic pressure characteristic of another example ([ N4444 ] [TMBS]) of the draw solute used by this invention. 本発明の水処理方法の各工程を示すフロー図である。It is a flowchart which shows each process of the water treatment method of this invention. 従来の水処理方法の一例を示す模式図である。It is a schematic diagram which shows an example of the conventional water treatment method. DSとしてPPG400を20質量%で用いた際、DS側に圧力を印加し、逆浸透処理した場合の印加圧力と透水フラックスとの関係を示すグラフである。When PPG400 is used by 20 mass% as DS, it is a graph which shows the relationship between the applied pressure at the time of applying a pressure to DS side and performing a reverse osmosis process, and a water-permeable flux.
 <水処理方法>
 本発明の水処理方法は、対象溶液(水と水以外の成分を含む液)から水を分離する方法である。対象溶液としては、例えば、海水、河川水、湖沼水、工業廃水などが挙げられる。
<Water treatment method>
The water treatment method of the present invention is a method for separating water from a target solution (liquid containing water and components other than water). Examples of the target solution include seawater, river water, lake water, industrial wastewater, and the like.
 図7を参照して、本発明の水処理方法は、以下に説明する正浸透工程と、相分離工程と、膜分離工程と、を少なくとも含む。 Referring to FIG. 7, the water treatment method of the present invention includes at least a forward osmosis step, a phase separation step, and a membrane separation step described below.
 [正浸透工程]
 正浸透工程では、正浸透膜の一方の面を、水と水以外の成分を含む対象溶液に接触させると共に、正浸透膜の他方の面を、温度上昇により溶解度が低下するドロー溶質を含むドロー溶液に接触させる。これにより、対象溶液中に含まれる水を、正浸透膜を通してドロー溶液に移動させる。
[Forward osmosis process]
In the forward osmosis process, one side of the forward osmosis membrane is brought into contact with water and a target solution containing components other than water, and the other side of the forward osmosis membrane is brought into contact with a draw solute containing a draw solute that decreases in solubility due to temperature rise Contact the solution. Thereby, the water contained in the target solution is moved to the draw solution through the forward osmosis membrane.
 正浸透膜(半透膜)としては、特に限定されず、正浸透に用いることのできる種々の膜を使用できる。 The forward osmosis membrane (semipermeable membrane) is not particularly limited, and various membranes that can be used for forward osmosis can be used.
 半透膜としては、例えば、逆浸透膜(RO膜:Reverse Osmosis Membrane)、正浸透膜(FO膜:Forward Osmosis Membrane)、ナノろ過膜(NF膜:Nanofiltration Membrane)、限外ろ過膜(UF膜:Ultrafiltration Membrane)と呼ばれる半透膜が挙げられる。半透膜は、好ましくは逆浸透膜または正浸透膜、ナノろ過膜である。なお、半透膜として逆浸透膜または正浸透膜、ナノろ過膜を用いる場合、第1室内の対象溶液の圧力は、好ましくは0.01~10MPaである。 Examples of the semipermeable membrane include a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane), a forward osmosis membrane (FO membrane: Forward Osmosis Membrane), a nanofiltration membrane (NF membrane: Nanofiltration Membrane), and an ultrafiltration membrane (UF membrane). : Semipermeable membrane called Ultrafiltration Membrane). The semipermeable membrane is preferably a reverse osmosis membrane, a forward osmosis membrane, or a nanofiltration membrane. When a reverse osmosis membrane, a forward osmosis membrane, or a nanofiltration membrane is used as the semipermeable membrane, the pressure of the target solution in the first chamber is preferably 0.01 to 10 MPa.
 通常、RO膜およびFO膜の孔径は約2nm以下であり、UF膜の孔径は約2~100nmである。NF膜は、RO膜のうちイオンや塩類の阻止率が比較的低いものであり、通常、NF膜の孔径は約1~2nmである。半透膜としてRO膜またはFO膜、NF膜を用いる場合、RO膜またはFO膜、NF膜の塩除去率は好ましくは90%以上である。 Usually, the pore size of the RO membrane and the FO membrane is about 2 nm or less, and the pore size of the UF membrane is about 2 to 100 nm. The NF membrane has a relatively low blocking rate of ions and salts among the RO membrane, and the pore size of the NF membrane is usually about 1 to 2 nm. When an RO membrane, FO membrane, or NF membrane is used as the semipermeable membrane, the salt removal rate of the RO membrane, FO membrane, or NF membrane is preferably 90% or more.
 半透膜を構成する材料としては、特に限定されないが、例えば、セルロース系樹脂、ポリスルホン系樹脂、ポリアミド系樹脂などが挙げられる。半透膜は、セルロース系樹脂およびポリスルホン系樹脂の少なくともいずれかを含む材料から構成されることが好ましい。 The material constituting the semipermeable membrane is not particularly limited, and examples thereof include cellulose resins, polysulfone resins, and polyamide resins. The semipermeable membrane is preferably composed of a material containing at least one of a cellulose resin and a polysulfone resin.
 セルロース系樹脂は、好ましくは酢酸セルロース系樹脂である。酢酸セルロース系樹脂は、殺菌剤である塩素に対する耐性があり、微生物の増殖を抑制できる特徴を有している。酢酸セルロース系樹脂は、好ましくは酢酸セルロースであり、耐久性の点から、より好ましくは三酢酸セルロースである。セルロース系の半透膜としては、例えば、CTA(東洋紡株式会社製)が挙げられる。 The cellulose resin is preferably a cellulose acetate resin. Cellulose acetate resin is resistant to chlorine, which is a bactericidal agent, and has a feature that it can suppress the growth of microorganisms. The cellulose acetate resin is preferably cellulose acetate, and more preferably cellulose triacetate from the viewpoint of durability. Examples of the cellulose semipermeable membrane include CTA (manufactured by Toyobo Co., Ltd.).
 ポリスルホン系樹脂は、好ましくはポリエーテルスルホン系樹脂である。ポリエーテルスルホン系樹脂は、好ましくはスルホン化ポリエーテルスルホンである。 The polysulfone resin is preferably a polyethersulfone resin. The polyethersulfone resin is preferably a sulfonated polyethersulfone.
 半透膜の形状としては、特に限定されないが、例えば、平膜、スパイラル膜または中空糸膜が挙げられる。中空糸膜(中空糸型半透膜)は、スパイラル型半透膜などに比べて、膜厚が小さく、さらにモジュール当たりの膜面積を大きくすることができ、浸透効率を高めることができる点で有利である。 The shape of the semipermeable membrane is not particularly limited, and examples thereof include a flat membrane, a spiral membrane, and a hollow fiber membrane. Hollow fiber membranes (hollow fiber type semipermeable membranes) are smaller in thickness than spiral type semipermeable membranes, and can increase the membrane area per module and increase the penetration efficiency. It is advantageous.
 (ドロー溶質)
 本発明に用いられるドロー溶質は、温度上昇により溶解度が低下する物質であれば、特に限定されない。なお、このような溶解度の低下は可逆的であり、逆に温度が低下すれば、溶解度が増加することが好ましい。
(Draw solute)
The draw solute used in the present invention is not particularly limited as long as the solubility of the draw solute decreases with increasing temperature. Note that such a decrease in solubility is reversible, and conversely, if the temperature decreases, it is preferable that the solubility increase.
 このようなドロー溶質としては、例えば、LCST(下限臨界共溶温度)型相転移物質が挙げられる。一般に、LCST型相転移物質を含む水溶液は、溶液温度の上昇に伴い溶質の脱水和が生じ、溶質分子の凝集により温度相転移(液-液相分離)を生じると考えられている。なお、相転移温度以下の温度域(LCST曲線以下の均一相領域)においても多分子会合を形成しているため、相転移温度以下の温度域でも、温度上昇により溶液の浸透圧が低下すると考えられる。 Examples of such draw solutes include LCST (lower critical solution temperature) type phase change materials. In general, it is considered that an aqueous solution containing an LCST type phase change substance causes dehydration of a solute as the solution temperature rises, and causes a temperature phase transition (liquid-liquid phase separation) due to aggregation of solute molecules. In addition, since the polymolecular association is formed even in the temperature range below the phase transition temperature (homogeneous phase range below the LCST curve), it is considered that the osmotic pressure of the solution decreases due to the temperature rise even in the temperature range below the phase transition temperature. It is done.
 LCST型相転移物質としては、例えば、LCST型の温度応答性高分子が挙げられる。LCST型の温度応答性高分子は、比較的低温では水に溶解し、温度が所定の温度(固有の下限臨界共溶温度:LCST)以上になると、希薄相(低濃度ドロー溶液)と濃厚相(高濃度ドロー溶液)とに相分離する。 Examples of the LCST type phase change material include LCST type temperature responsive polymers. LCST type temperature-responsive polymer dissolves in water at a relatively low temperature, and when the temperature exceeds a predetermined temperature (specific lower critical solution temperature: LCST), a dilute phase (low concentration draw solution) and a concentrated phase Phase separation into (high concentration draw solution).
 LCST型の温度応答性高分子は、少なくとも一部または全部の構造単位(モノマー単位)において少なくとも1つの親水性基を有することが好ましい。また、温度応答性高分子は、親水性基を有しつつ、一部の構造単位において疎水性基を有していてもよい。なお、温度応答性高分子が、温度応答性を有するためには、分子中に含まれる親水性基と疎水性基のバランスが重要であると考えられている。 The LCST type temperature-responsive polymer preferably has at least one hydrophilic group in at least some or all of the structural units (monomer units). Moreover, the temperature-responsive polymer may have a hydrophobic group in some structural units while having a hydrophilic group. In addition, it is considered that the balance between the hydrophilic group and the hydrophobic group contained in the molecule is important for the temperature responsive polymer to have temperature responsiveness.
 親水性基としては、例えば、水酸基、カルボキシル基、アセチル基、アルデヒド基、エーテル結合、エステル結合などが挙げられる。 Examples of the hydrophilic group include a hydroxyl group, a carboxyl group, an acetyl group, an aldehyde group, an ether bond, and an ester bond.
 具体的な温度応答性高分子としては、例えば、ポリビニルエーテル系ポリマー、ポリ酢酸ビニル系ポリマー、(メタ)アクリル酸系ポリマーなどが挙げられる。 Specific temperature-responsive polymers include, for example, polyvinyl ether polymers, polyvinyl acetate polymers, (meth) acrylic acid polymers, and the like.
 ポリビニルエーテル系ポリマーとしては、ポリメチルビニルエーテル、オキシエチレン鎖を有するビニルエーテル、ポリヒドロキシブチルビニルエーテルなどが挙げられる。 Examples of the polyvinyl ether polymer include polymethyl vinyl ether, vinyl ether having an oxyethylene chain, and polyhydroxybutyl vinyl ether.
 具体的なポリビニルエーテル系ポリマーとしては、例えば、表1に示すポリマーが挙げられる。なお、表1に示す相転移温度は、水溶液中での下限臨界共溶温度(LCST)である。 Specific examples of polyvinyl ether polymers include the polymers shown in Table 1. In addition, the phase transition temperature shown in Table 1 is a lower critical solution temperature (LCST) in aqueous solution.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中に記載の参考文献1~4は、次のとおりである。
参考文献1:日本ゴム協会誌、第63巻、第1号、29-39(1990)。
参考文献2:Journal of Polymer Science Part A:polymer Chemistry Vol.30,2407-2413(1992)。
参考文献3:Journal of Polymer Science Part A:polymer Chemistry Vol.41,3300-3312(2003)。
参考文献4:Macromolecules ,36,8312-8319(2003)。
References 1 to 4 listed in Table 1 are as follows.
Reference 1: Journal of Japan Rubber Association, Vol. 63, No. 1, 29-39 (1990).
Reference 2: Journal of Polymer Science Part A: polymer Chemistry Vol. 30, 2407-2413 (1992).
Reference 3: Journal of Polymer Science Part A: polymer Chemistry Vol. 41, 3300-3312 (2003).
Reference 4: Macromolecules, 36, 8312-8319 (2003).
 ポリ酢酸ビニル系ポリマーとしては、例えば、ポリ酢酸ビニル部分けん化物などが挙げられる。 Examples of the polyvinyl acetate polymer include polyvinyl acetate part saponified products.
 (メタ)アクリル酸系ポリマーとしては、例えば、オキシエチレン鎖を有するポリ(メタ)アクリレート、(メタ)アクリル酸系共重合体などが挙げられる。 Examples of the (meth) acrylic acid polymer include poly (meth) acrylate having an oxyethylene chain, (meth) acrylic acid copolymer, and the like.
 上記以外のLCST型の温度応答性高分子としては、例えば、ポリプロピレングリコール(PPG)が挙げられる。PPG(分子量400、ジオール型)の相分離特性および浸透圧特性を、それぞれ図3および図4に示す。図3においては、PPGが、例えば、約70℃の水溶液中で、約15質量%の低濃度相と、約80質量%の高濃度相と、に相分離することが示されている。また、図4から、PPGは、温度が高い程、浸透圧が低くなることが分かる。 Examples of LCST type temperature-responsive polymers other than the above include polypropylene glycol (PPG), for example. The phase separation characteristics and osmotic pressure characteristics of PPG (molecular weight 400, diol type) are shown in FIGS. 3 and 4, respectively. FIG. 3 shows that PPG phase-separates into a low concentration phase of about 15% by mass and a high concentration phase of about 80% by mass in an aqueous solution at about 70 ° C., for example. Moreover, it can be seen from FIG. 4 that the osmotic pressure of PPG decreases as the temperature increases.
 図9は、温度応答性のドロー溶液が20質量%のポリプロピレングリコール(分子量400、PPG400)溶液の場合で、ドロー溶液側に圧力を印加し、逆浸透処理した場合の透水フラックスの値を、異なる温度(25℃および60℃)について示している。図9において、透水量が0となる印加圧力(横軸の切片)は、温度が25℃の場合は19barであり、温度が60℃の場合は11barであり、ドロー溶液の濃度が同じであるにもかかわらず、温度の上昇により、透水量がゼロとなる圧力が低下している。これは、PPG400の浸透圧が温度により変化することを示している。例えば、25℃の場合、25barの圧力で得られる透水フラックスは約2L/(m・H)であるが、これは、60℃の場合の約12barの圧力で得られる透水フラックスに相当し、同じ透水フラックスが得られる印加圧力を大幅に下げることが出来ることを示している。 FIG. 9 shows a case where the temperature-responsive draw solution is a 20% by mass polypropylene glycol (molecular weight 400, PPG400) solution, and the values of the water permeability flux are different when reverse osmosis treatment is performed by applying pressure to the draw solution side. The temperature is shown (25 ° C. and 60 ° C.). In FIG. 9, the applied pressure at which the water permeation amount becomes 0 (intercept on the horizontal axis) is 19 bar when the temperature is 25 ° C. and 11 bar when the temperature is 60 ° C., and the concentration of the draw solution is the same. Nevertheless, the pressure at which the amount of water permeation becomes zero decreases due to an increase in temperature. This indicates that the osmotic pressure of PPG 400 varies with temperature. For example, at 25 ° C., the permeability flux obtained at a pressure of 25 bar is about 2 L / (m 2 · H), which corresponds to the permeability flux obtained at a pressure of about 12 bar at 60 ° C. This shows that the applied pressure at which the same permeable flux can be obtained can be greatly reduced.
 LCST型の温度応答性高分子の製品としては、例えば、ポリオキシプロピレンとポリオキシエチレンのブロック共重合体であるプルロニック(BASF社製)が挙げられる。 Examples of LCST type temperature-responsive polymer products include Pluronic (manufactured by BASF), which is a block copolymer of polyoxypropylene and polyoxyethylene.
 LCST型の温度応答性高分子以外のLCST型相転移物質としては、例えば、LCST型イオン液体、グリコールエーテル系のLCST型相転移物質、酸アミド系のLCST型相転移物質、アミン系のLCST型相転移物質などが挙げられる。 Examples of LCST type phase transition materials other than LCST type temperature responsive polymers include LCST type ionic liquid, glycol ether type LCST type phase change material, acid amide type LCST type phase change material, and amine type LCST type. Examples include phase change substances.
 LCST型イオン液体としては、例えば、
テトラブチルアンモニウム-2,4,6-トリメチルベンゼンスルフォネート(N4444-TMBS)、
テトラブチルアンモニウム-トリフルオロアセテート(N4444-CF3COO)、
テトラブチルホスホニウム-2,4,6-トリメチルベンゼンスルフォネート(P4444-TMBS)、
テトラブチルホスホニウム-トリフロロアセテート(P4444-CF3COO)
 などが挙げられる。
As the LCST type ionic liquid, for example,
Tetrabutylammonium-2,4,6-trimethylbenzenesulfonate (N 4444 -TMBS),
Tetrabutylammonium -trifluoroacetate (N 4444 -CF 3 COO),
Tetrabutylphosphonium-2,4,6-trimethylbenzenesulfonate (P 4444 -TMBS),
Tetrabutylphosphonium-trifluoroacetate (P 4444 -CF 3 COO)
Etc.
 グリコールエーテル系のLCST型相転移物質としては、例えば、
ジエチレングリコールヘキシルエーテル、
プロピレングリコールブチルエーテル、
ジプロピレングリコールプロピルエーテル、
エチレングリコールn-ブチルエーテル、
エチレングリコールn-ペンチルエーテル、
ジエチレングリコールn-ペンチルエーテル、
エチレングリコール2-メチル-1-ブチルエーテル、
ジエチレングリコール2-メチル-1-ブチルエーテル、
エチレングリコールn-ヘキシルエーテル、
トリエチレングリコールn-ヘキシルエーテル、
エチレングリコールn-ヘプチルエーテル、
ジエチレングリコールn-ヘプチルエーテル、
トリエチレングリコールn-ヘプチルエーテル、
プロピレングリコールn-プロピルエーテル、
トリプロピレングリコールn-プロピルエーテル、
ジプロピレングリコールn-ブチルエーテル、
トリプロピレングリコールn-ブチルエーテル
 などが挙げられる。
Examples of glycol ether type LCST type phase transition materials include:
Diethylene glycol hexyl ether,
Propylene glycol butyl ether,
Dipropylene glycol propyl ether,
Ethylene glycol n-butyl ether,
Ethylene glycol n-pentyl ether,
Diethylene glycol n-pentyl ether,
Ethylene glycol 2-methyl-1-butyl ether,
Diethylene glycol 2-methyl-1-butyl ether,
Ethylene glycol n-hexyl ether,
Triethylene glycol n-hexyl ether,
Ethylene glycol n-heptyl ether,
Diethylene glycol n-heptyl ether,
Triethylene glycol n-heptyl ether,
Propylene glycol n-propyl ether,
Tripropylene glycol n-propyl ether,
Dipropylene glycol n-butyl ether,
And tripropylene glycol n-butyl ether.
 酸アミド系のLCST型相転移物質としては、例えば、
N,N-ビス(2-ブチラミドエチル)ブチラミド(nBu-DETA)
N-(2-(ジエチルアミノ)エチル)ペンタナミド(Val-DEEA)
N-(2-(ジエチルアミノ)エチル)イソブチラミド(iBu-DEEA)
N,N’-((メチルアザンジイル)ビス(プロパン-3,1-ジイル))ジブチラミド(nBu-DAPMA)
N,N’-((メチルアザンジイル)ビス(プロパン-3,1-ジイル))ジペンタナミド(Val-DAPMA)
N-ブチルプロピオナミド(N-BPA)
N-(2-(ジイソプロピルアミノ)エチル)ブチラミド(nBu-DIPA)
N-ブチル化ポリエチレンイミン(nBu-PEI)
 などが挙げられる。
Examples of acid amide LCST type phase transition materials include:
N, N-bis (2-butyramidoethyl) butyramide (nBu-DETA)
N- (2- (Diethylamino) ethyl) pentanamide (Val-DEEA)
N- (2- (Diethylamino) ethyl) isobutyramide (iBu-DEEA)
N, N ′-((Methylazanediyl) bis (propane-3,1-diyl)) dibutyramide (nBu-DAPMA)
N, N ′-((Methylazanediyl) bis (propane-3,1-diyl)) dipentanamide (Val-DAPMA)
N-Butylpropionamide (N-BPA)
N- (2- (diisopropylamino) ethyl) butyramide (nBu-DIPA)
N-Butylated polyethyleneimine (nBu-PEI)
Etc.
 アミン系のLCST型相転移物質としては、例えば、
トリエチルアミン、
N-エチルピペリジン、
2-メチルピペリジン、
N-メチルピペリジン
 などが挙げられる。
Examples of amine-based LCST type phase change materials include:
Triethylamine,
N-ethylpiperidine,
2-methylpiperidine,
N-methylpiperidine and the like.
 N4444-TMBSの相分離特性および浸透圧特性を、それぞれ図5および図6に示す。図5においては、N4444-TMBS([N4444][TMBS])が、例えば、約70℃の水溶液中で、約12質量%の低濃度相と、約65質量%の高濃度相と、に相分離することが示されている。また、図6から、N4444-TMBSは、温度が高い程、浸透圧が低くなることが分かる。なお、図5において、70℃で相分離した低濃度相(約12質量%)の浸透圧は、図6から室温(25℃)において約4.6barであり、40℃において約3.1barである。 The phase separation characteristics and osmotic pressure characteristics of N 4444 -TMBS are shown in FIGS. 5 and 6, respectively. In FIG. 5, N 4444 -TMBS ([N 4444 ] [TMBS]) is, for example, in an aqueous solution at about 70 ° C., a low concentration phase of about 12% by mass, a high concentration phase of about 65% by mass, Are shown to phase separate. Further, FIG. 6 shows that N 4444 -TMBS has a lower osmotic pressure as the temperature is higher. In FIG. 5, the osmotic pressure of the low-concentration phase (about 12% by mass) phase-separated at 70 ° C. is about 4.6 bar at room temperature (25 ° C.) from FIG. is there.
 本発明者らは、上記のドロー溶質(LCST型相転移物質)について、実際の浸透圧を測定する方法を構築し、その測定結果から、温度上昇によりその水溶液(ドロー溶液)の浸透圧が低下することを見出した。なお、温度上昇によりその水溶液(ドロー溶液)の浸透圧が低下する理由は、以下のように推測される。 The present inventors constructed a method for measuring the actual osmotic pressure of the above-mentioned draw solute (LCST type phase change material), and from the measurement result, the osmotic pressure of the aqueous solution (draw solution) decreased due to temperature rise. I found out. The reason why the osmotic pressure of the aqueous solution (draw solution) decreases due to the temperature rise is estimated as follows.
 本発明で用いられるドロー溶質(DS)は、低温では、溶媒(水)中において、溶媒和(水和)している。ドロー溶液の温度上昇に伴い、DS分子の脱水和が生じる場合、溶媒分子(水分子)とDS分子の間の相互作用と比較して、DS分子同士の相互作用が相対的に強く働き、DS分子は会合体(凝集体)を形成すると考えられる。 The draw solute (DS) used in the present invention is solvated (hydrated) in a solvent (water) at a low temperature. When dehydration of DS molecules occurs as the temperature of the draw solution increases, the interaction between DS molecules works relatively strongly compared to the interaction between solvent molecules (water molecules) and DS molecules. Molecules are thought to form aggregates (aggregates).
 ファントホッフの式(π=cRT)で表されるように、理想溶液の浸透圧π[bar]は、溶質モル濃度c[mol・L-1]、気体定数R[bar・L・K-1・mol-1]、および絶対温度T[K]に比例する。溶質モル濃度は、全溶質粒子の質量モル濃度であるため、溶質粒子の会合体が生じると、計算上の溶質モル濃度は減少する。このため、会合体の形成によって、溶液の浸透圧が低下すると考えられる。 As represented by the Vanthoff equation (π = cRT), the osmotic pressure π [bar] of the ideal solution is the solute molar concentration c [mol·L −1 ] and the gas constant R [bar · L · K −1]. -Proportional to mol -1 ] and absolute temperature T [K]. Since the solute molar concentration is the molar molar concentration of all solute particles, the calculated solute molar concentration decreases when an association of solute particles occurs. For this reason, it is thought that the osmotic pressure of a solution falls by formation of an aggregate.
 膜分離工程に供されるドロー溶液(昇温後)の浸透圧は、好ましくは0.01~2MPaであり、より好ましくは0.01~1MPaである。 The osmotic pressure of the draw solution (after raising the temperature) used for the membrane separation step is preferably 0.01 to 2 MPa, more preferably 0.01 to 1 MPa.
 図1を参照して、正浸透膜10の一方の面に接して設けられた第1室11内に、対象溶液(FS:フィード溶液)を流入させて、対象溶液を正浸透膜10の一方の面に接触させる。これと共に、正浸透膜10の他方の面に接して設けられた第2室12内に、ドロー溶質を含むドロー溶液(DS)を流入させて、ドロー溶液を正浸透膜10の他方の面に接触させる。 Referring to FIG. 1, a target solution (FS: feed solution) is caused to flow into a first chamber 11 provided in contact with one surface of the forward osmosis membrane 10, and the target solution is supplied to one side of the forward osmosis membrane 10. Touch the surface. At the same time, a draw solution (DS) containing a draw solute is caused to flow into the second chamber 12 provided in contact with the other surface of the forward osmosis membrane 10, and the draw solution is introduced into the other surface of the forward osmosis membrane 10. Make contact.
 所定の時間、このような状態を維持することで、正浸透現象により、対象溶液中に含まれる水が、正浸透膜10を透過して第1室11から第2室12に移動する。 By maintaining such a state for a predetermined time, water contained in the target solution passes through the forward osmosis membrane 10 and moves from the first chamber 11 to the second chamber 12 due to the forward osmosis phenomenon.
 [相分離工程]
 相分離工程では、正浸透工程の後に、ドロー溶液の温度を上昇させることで、ドロー溶液を低濃度ドロー溶液と高濃度ドロー溶液とに分離(相分離)する。
[Phase separation process]
In the phase separation step, after the forward osmosis step, the temperature of the draw solution is increased to separate the draw solution into a low concentration draw solution and a high concentration draw solution (phase separation).
 相分離工程におけるドロー溶液の上昇後の温度は、好ましくは40℃以上90℃以下であり、より好ましくは40℃以上85℃以下であり、さらに好ましくは40℃以上80℃以下である。 The temperature after the rise of the draw solution in the phase separation step is preferably 40 ° C. or higher and 90 ° C. or lower, more preferably 40 ° C. or higher and 85 ° C. or lower, and further preferably 40 ° C. or higher and 80 ° C. or lower.
 対象溶液中の水を含むドロー溶液を、分離槽3内に流入させ、ここでドロー溶液の温度を上昇させることで、希薄相(低濃度ドロー溶液)と濃厚相(高濃度ドロー溶液)に分離させる。例えば、ドロー溶質がLCST型の温度応答性高分子を含む場合は、ドロー溶液の温度をLCST以上に上昇させることで、希薄相(低濃度ドロー溶液)と濃厚相(高濃度ドロー溶液)に分離させることができる。このように、ドロー溶液の温度を上昇させるために、分離槽3は加熱機構を有していることが好ましい。 The draw solution containing water in the target solution is allowed to flow into the separation tank 3 where the temperature of the draw solution is raised to separate the dilute phase (low concentration draw solution) and the concentrated phase (high concentration draw solution). Let For example, when the draw solute contains an LCST-type temperature-responsive polymer, the draw solution temperature is raised to LCST or higher to separate the dilute phase (low concentration draw solution) and the concentrated phase (high concentration draw solution). Can be made. Thus, in order to raise the temperature of a draw solution, it is preferable that the separation tank 3 has a heating mechanism.
 [膜分離工程]
 膜分離工程では、分離膜を用いて、加圧、減圧などによる圧力差を駆動力として低濃度ドロー溶液を水とドロー溶質を含む濃縮液とに分離する。分離膜としては、例えば、UF膜、NF膜、RO膜などを用いることができる。
[Membrane separation process]
In the membrane separation step, the low-concentration draw solution is separated into water and a concentrate containing a draw solute using a separation membrane as a driving force by a pressure difference due to pressurization, decompression, or the like. As the separation membrane, for example, a UF membrane, NF membrane, RO membrane or the like can be used.
 膜分離工程の温度は、正浸透工程の温度よりも高い温度が好ましい。また、相分離温度より低い温度が好ましい。膜分離工程の温度は、より好ましくは40℃以上90℃以下であり、さらに好ましくは40℃以上85℃以下であり、さらにより好ましくは40℃以上80℃以下である。 The temperature of the membrane separation process is preferably higher than the temperature of the forward osmosis process. Further, a temperature lower than the phase separation temperature is preferable. The temperature in the membrane separation step is more preferably 40 ° C. or higher and 90 ° C. or lower, still more preferably 40 ° C. or higher and 85 ° C. or lower, and even more preferably 40 ° C. or higher and 80 ° C. or lower.
 なお、この膜分離工程によって分離された水を回収することで、水処理方法の目的物である水を得ることができる。得られた水には、さらに水の品質を高めるための処理が行われてもよい。 In addition, the water which is the target object of a water treatment method can be obtained by collect | recovering the water isolate | separated by this membrane separation process. The obtained water may be subjected to a treatment for further improving the quality of the water.
 膜分離工程で分離されたドロー溶質、および、相分離工程で得られるドロー溶質を含む濃縮液(高濃度ドロー溶液)は、正浸透工程においてドロー溶液として再利用されることが好ましい。 The draw solute separated in the membrane separation step and the concentrated liquid (high concentration draw solution) containing the draw solute obtained in the phase separation step are preferably reused as a draw solution in the forward osmosis step.
 <水処理システム>
 図1は、本発明に係る水処理システムの一例を示す模式図である。
<Water treatment system>
FIG. 1 is a schematic diagram showing an example of a water treatment system according to the present invention.
 図1を参照して、上記の水処理方法に用いられる水処理システムは、
 正浸透膜10、正浸透膜10の一方の面に対象溶液を接触させるために設けられた第1室11、および、正浸透膜の他方の面にドロー溶液を接触させるために設けられた第2室12を含む、正浸透モジュール1と、
 ドロー溶液の温度を上昇させることで、ドロー溶液を低濃度ドロー溶液と高濃度ドロー溶液とに分離するための加熱機構を有する分離槽3と、
 低濃度ドロー溶液を水とドロー溶質とに分離するための分離膜20(分離膜モジュール2)と、を備える。
With reference to FIG. 1, the water treatment system used for said water treatment method is as follows.
The forward osmosis membrane 10, the first chamber 11 provided for contacting the target solution with one surface of the forward osmosis membrane 10, and the first chamber 11 provided for contacting the draw solution with the other surface of the forward osmosis membrane Forward osmosis module 1 comprising two chambers 12;
A separation tank 3 having a heating mechanism for separating the draw solution into a low-concentration draw solution and a high-concentration draw solution by increasing the temperature of the draw solution;
A separation membrane 20 (separation membrane module 2) for separating the low-concentration draw solution into water and a draw solute.
 図1に示されるように、ポンプ41~46によって、矢印の方向にFS、DSなどが流される。分離槽3は加熱機構を有している。すなわち、分離槽3の周囲には、分離槽3に供給された希釈DSの温度を上昇させて、相分離させるために、廃熱水などの温水が供給される。温水の温度は、相分離工程におけるDSの上昇後の温度の目標値に合わせて調整すればよい。 As shown in FIG. 1, FS, DS, etc. are flowed in the direction of the arrow by the pumps 41-46. The separation tank 3 has a heating mechanism. That is, warm water such as waste hot water is supplied around the separation tank 3 in order to raise the temperature of the dilution DS supplied to the separation tank 3 and cause phase separation. What is necessary is just to adjust the temperature of warm water according to the target value of the temperature after DS raises in a phase-separation process.
 分離槽3においては、ドロー溶液(希釈DS)は、温度上昇により、低濃度DSと高濃度DSに相分離する。なお、分離槽3で分離された高濃度DSと、分離膜モジュール2で濃縮された低濃度DSは、ポンプ44によって、タンク5に送られて、一時的に貯留された後に、正浸透工程のDSとして再利用され得る。 In the separation tank 3, the draw solution (diluted DS) is phase-separated into a low concentration DS and a high concentration DS as the temperature rises. The high-concentration DS separated in the separation tank 3 and the low-concentration DS concentrated in the separation membrane module 2 are sent to the tank 5 by the pump 44 and temporarily stored. Can be reused as DS.
 分離膜としては、例えば、限外ろ過膜(UF膜:Ultrafiltration Membrane)、ナノろ過膜(NF膜:Nanofiltration Membrane)、逆浸透膜(RO膜:Reverse Osmosis Membrane)と呼ばれる半透膜が挙げられる。 Examples of the separation membrane include a semipermeable membrane called an ultrafiltration membrane (UF membrane: Ultrafiltration Membrane), a nanofiltration membrane (NF membrane: Nanofiltration Membrane), and a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane).
 分離膜モジュールは、高温(例えば、40℃以上)での耐熱性を有していることが好ましい。分離槽3から排出された高温の低濃度DSに対して、膜分離工程を実施できるようにするためである。 The separation membrane module preferably has heat resistance at high temperatures (for example, 40 ° C. or higher). This is because the membrane separation process can be performed on the high-temperature low-concentration DS discharged from the separation tank 3.
 耐熱性を有する分離膜の材質としては、例えば、ポリエーテルスルホン(PES)系樹脂、ポリアミド(PA)系樹脂、ポリビニルアルコール(PVA)系樹脂などが挙げられる。また、分離膜モジュールは、分離膜以外の部品も耐熱性を有しており、全体として耐熱性を有していることが好ましい。耐熱性を有する分離膜モジュールの製品としては、例えば、サーモプラス(日東電工株式会社製)、デュラサーモ(GEウォーター・テクノロジーズ社製)、ロメンブラ(登録商標)のTSシリーズ(東レ株式会社製)などが挙げられる。 Examples of the material for the heat-resistant separation membrane include polyethersulfone (PES) resin, polyamide (PA) resin, polyvinyl alcohol (PVA) resin, and the like. Further, in the separation membrane module, parts other than the separation membrane also have heat resistance, and preferably have heat resistance as a whole. Examples of heat-resistant separation membrane module products include Thermo Plus (manufactured by Nitto Denko Corporation), Durathermo (manufactured by GE Water Technologies), and Romenbra (registered trademark) TS series (manufactured by Toray Industries, Inc.). Can be mentioned.
 また、耐熱性を有する分離膜の他の材質としては、例えば、アルミナ、シリカ等のセラミックが挙げられる。耐熱性膜用のシリカとしては、例えば、ビストリルエトキシシリルエタン由来のシリカが挙げられる(都留稔了、「多様な水源に対応できるロバストRO/NF膜の開発」、水環境学会誌、vol.36(A)、No.1、pp.8-10、2013参照)。 Also, other materials for the heat-resistant separation membrane include ceramics such as alumina and silica. Examples of the silica for the heat resistant membrane include silica derived from bistryl ethoxysilyl ethane (Atsushi Tsuru, “Development of a Robust RO / NF Membrane That Can Correspond to Various Water Sources”, Journal of Water Environment Society, vol. 36 (A), No.1, pp.8-10, 2013).
 図2は、本発明に係る水処理システムの別の例を示す模式図である。
 図2に示される水処理システムは、図1に示される水処理システムに加えて、熱交換器61,62を備えている。これにより、分離槽3から排出される低濃度DSおよび高濃度DSの廃熱を利用して、希釈DSを加熱することで、相分離工程に必要な熱エネルギーを低減し、水処理のエネルギー効率を高めることができる。
FIG. 2 is a schematic view showing another example of the water treatment system according to the present invention.
The water treatment system shown in FIG. 2 includes heat exchangers 61 and 62 in addition to the water treatment system shown in FIG. This reduces the heat energy required for the phase separation process by heating the diluted DS using the low-concentration DS and high-concentration DS waste heat discharged from the separation tank 3, and the energy efficiency of the water treatment Can be increased.
 ここで、図8に示される従来の水処理システムでは、通常の水処理に用いられる分離膜モジュール2は、常温で使用されることが多いため、高温(例えば、40℃以上)での耐熱性を有していない場合が多い。このため、分離膜モジュール2は、熱交換器61より下流に設けられ、分離膜モジュール2では、温度が下降した後の低濃度DSに対して膜分離工程が行われていた。 Here, in the conventional water treatment system shown in FIG. 8, since the separation membrane module 2 used for normal water treatment is often used at room temperature, the heat resistance at high temperature (for example, 40 ° C. or more). Often does not have. For this reason, the separation membrane module 2 is provided downstream from the heat exchanger 61, and in the separation membrane module 2, the membrane separation step is performed on the low concentration DS after the temperature is lowered.
 これに対して、図2では、分離膜モジュール2(分離膜20)は、熱交換器61よりも上流側に配置されている。これにより、分離槽3から排出された高温の低濃度DSに対して、膜分離工程が行われる。本発明者らは、このようにして、浸透圧が低い高温のDSに対して膜分離工程を実施することで、膜分離工程に必要なポンプの圧力が低くなるため、ポンプに必要なエネルギーが低減され、水処理のエネルギー効率が向上することを見出した。 On the other hand, in FIG. 2, the separation membrane module 2 (separation membrane 20) is arranged on the upstream side of the heat exchanger 61. Thereby, the membrane separation process is performed on the high-temperature low-concentration DS discharged from the separation tank 3. In this way, since the pressure of the pump required for the membrane separation process is reduced by performing the membrane separation process on the high-temperature DS having a low osmotic pressure, the present inventors reduce the energy required for the pump. It has been found that the energy efficiency of water treatment is improved.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 正浸透モジュール、10 正浸透膜、11 第1室、12 第2室、2 分離膜モジュール、20 分離膜、3 分離槽、41~48 ポンプ、5 タンク、61,62 熱交換器。 1 forward osmosis module, 10 forward osmosis membrane, 11 first chamber, 12 second chamber, 2 separation membrane module, 20 separation membrane, 3 separation tank, 41-48 pump, 5 tanks, 61, 62 heat exchanger.

Claims (6)

  1.  正浸透膜の一方の面を、水と水以外の成分を含む対象溶液に接触させると共に、
     前記正浸透膜の他方の面を、温度上昇により溶解度が低下するドロー溶質を含むドロー溶液に接触させることで、
     前記対象溶液中に含まれる水を、前記正浸透膜を通して前記ドロー溶液に移動させる、正浸透工程と、
     前記正浸透工程の後に、前記ドロー溶液の温度を上昇させることで、前記ドロー溶液を低濃度ドロー溶液と高濃度ドロー溶液とに分離する、相分離工程と、
     分離膜を用いて、前記低濃度ドロー溶液を水と前記ドロー溶質を含む濃縮液とに分離する、膜分離工程と、を含み、
     前記膜分離工程の温度は、前記正浸透工程の温度よりも高いことを特徴とする、水処理方法。
    While bringing one surface of the forward osmosis membrane into contact with the target solution containing water and components other than water,
    By bringing the other surface of the forward osmosis membrane into contact with a draw solution containing a draw solute whose solubility decreases with increasing temperature,
    Forward osmosis step of transferring water contained in the target solution to the draw solution through the forward osmosis membrane;
    A phase separation step of separating the draw solution into a low concentration draw solution and a high concentration draw solution by increasing the temperature of the draw solution after the forward osmosis step;
    Using a separation membrane, separating the low-concentration draw solution into water and a concentrate containing the draw solute, and a membrane separation step,
    The water treatment method is characterized in that the temperature of the membrane separation step is higher than the temperature of the forward osmosis step.
  2.  前記ドロー溶質は、温度上昇により浸透圧が低下する、請求項1に記載の水処理方法。 The water treatment method according to claim 1, wherein the draw solute has a lower osmotic pressure as the temperature rises.
  3.  前記膜分離工程の温度は40℃以上である、請求項1または2に記載の水処理方法。 The water treatment method according to claim 1 or 2, wherein the temperature of the membrane separation step is 40 ° C or higher.
  4.  前記正浸透工程の温度は40℃未満である、請求項1~3のいずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 3, wherein the temperature of the forward osmosis step is less than 40 ° C.
  5.  前記相分離工程において、前記ドロー溶液は40℃以上の温度に上昇する、請求項1~4のいずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 4, wherein, in the phase separation step, the draw solution rises to a temperature of 40 ° C or higher.
  6.  請求項1~5のいずれか1項に記載の正浸透水処理方法に用いられる正浸透水処理システムであって、
     正浸透膜、前記正浸透膜の一方の面に前記対象溶液を接触させるために設けられた第1室、および、前記正浸透膜の他方の面に前記ドロー溶液を接触させるために設けられた第2室を含む、正浸透モジュールと、
     前記ドロー溶液の温度を上昇させることで、前記ドロー溶液を前記低濃度ドロー溶液と前記高濃度ドロー溶液とに分離するための加熱機構を有する分離槽と、
     前記低濃度ドロー溶液を水と前記ドロー溶質を含む濃縮液とに分離するための分離膜と、を備える、水処理システム。
    A forward osmosis water treatment system used in the forward osmosis water treatment method according to any one of claims 1 to 5,
    A forward osmosis membrane, a first chamber provided for bringing the target solution into contact with one surface of the forward osmosis membrane, and a contact between the draw solution and the other surface of the forward osmosis membrane A forward osmosis module including a second chamber;
    A separation tank having a heating mechanism for separating the draw solution into the low-concentration draw solution and the high-concentration draw solution by increasing the temperature of the draw solution;
    A water treatment system comprising: a separation membrane for separating the low-concentration draw solution into water and a concentrated liquid containing the draw solute.
PCT/JP2017/043819 2017-02-17 2017-12-06 Water treatment method and water treatment system WO2018150690A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018568008A JP7117718B2 (en) 2017-02-17 2017-12-06 Water treatment method and water treatment system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017027941 2017-02-17
JP2017-027941 2017-02-17
JP2017170403 2017-09-05
JP2017-170403 2017-09-05

Publications (1)

Publication Number Publication Date
WO2018150690A1 true WO2018150690A1 (en) 2018-08-23

Family

ID=63169324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043819 WO2018150690A1 (en) 2017-02-17 2017-12-06 Water treatment method and water treatment system

Country Status (2)

Country Link
JP (1) JP7117718B2 (en)
WO (1) WO2018150690A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045525A1 (en) * 2018-08-31 2020-03-05 株式会社日本触媒 Draw solute and water treatment equipment
WO2020044965A1 (en) * 2018-08-29 2020-03-05 Jfeエンジニアリング株式会社 Temperature-sensitive water absorbent, water treatment method, and water treatment device
WO2020049579A1 (en) * 2018-09-07 2020-03-12 Jani Jigar Combinatorial membrane-based systems and methods for dewatering and concentrating applications
WO2023058592A1 (en) * 2021-10-07 2023-04-13 東洋紡株式会社 Water treatment method and water treatment system
US20230258378A1 (en) * 2021-11-29 2023-08-17 Via Separations, Inc. Heat exchanger integration with membrane system for evaporator pre-concentration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512951A (en) * 2011-04-25 2014-05-29 トレヴィ システムズ インコーポレイテッド Recovery of retrograde solubility solutes for forward osmosis water treatment
JP2014100692A (en) * 2012-11-22 2014-06-05 Jfe Engineering Corp Water treatment method
JP2016041411A (en) * 2014-08-19 2016-03-31 Jfeエンジニアリング株式会社 Water desalination processing method and apparatus
JP2016041412A (en) * 2014-08-19 2016-03-31 Jfeエンジニアリング株式会社 Water desalination processing method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512951A (en) * 2011-04-25 2014-05-29 トレヴィ システムズ インコーポレイテッド Recovery of retrograde solubility solutes for forward osmosis water treatment
JP2014100692A (en) * 2012-11-22 2014-06-05 Jfe Engineering Corp Water treatment method
JP2016041411A (en) * 2014-08-19 2016-03-31 Jfeエンジニアリング株式会社 Water desalination processing method and apparatus
JP2016041412A (en) * 2014-08-19 2016-03-31 Jfeエンジニアリング株式会社 Water desalination processing method and apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044965A1 (en) * 2018-08-29 2020-03-05 Jfeエンジニアリング株式会社 Temperature-sensitive water absorbent, water treatment method, and water treatment device
CN112638507A (en) * 2018-08-29 2021-04-09 杰富意工程技术株式会社 Temperature-sensitive water absorbing agent, water treatment method, and water treatment apparatus
JPWO2020044965A1 (en) * 2018-08-29 2021-09-02 Jfeエンジニアリング株式会社 Temperature sensitive water absorbers, water treatment methods, and water treatment equipment
WO2020045525A1 (en) * 2018-08-31 2020-03-05 株式会社日本触媒 Draw solute and water treatment equipment
JPWO2020045525A1 (en) * 2018-08-31 2021-06-03 株式会社日本触媒 Draw solute and water treatment equipment
JP7162308B2 (en) 2018-08-31 2022-10-28 株式会社日本触媒 Draw solute and water treatment equipment
US11639299B2 (en) 2018-08-31 2023-05-02 Nippon Shokubai Co., Ltd. Draw solute and water treatment equipment
WO2020049579A1 (en) * 2018-09-07 2020-03-12 Jani Jigar Combinatorial membrane-based systems and methods for dewatering and concentrating applications
WO2023058592A1 (en) * 2021-10-07 2023-04-13 東洋紡株式会社 Water treatment method and water treatment system
US20230258378A1 (en) * 2021-11-29 2023-08-17 Via Separations, Inc. Heat exchanger integration with membrane system for evaporator pre-concentration
US11913692B2 (en) * 2021-11-29 2024-02-27 Via Separations, Inc. Heat exchanger integration with membrane system for evaporator pre-concentration

Also Published As

Publication number Publication date
JPWO2018150690A1 (en) 2019-12-12
JP7117718B2 (en) 2022-08-15

Similar Documents

Publication Publication Date Title
WO2018150690A1 (en) Water treatment method and water treatment system
US8528746B2 (en) Method of manufacturing hydrophilic membrane having improved antifouling property and hydrophilic membrane manufactured by the method
Sagle et al. Fundamentals of membranes for water treatment
Han et al. Robust and high performance pressure retarded osmosis hollow fiber membranes for osmotic power generation
Singh et al. Introduction to membrane processes for water treatment
EP2813280A1 (en) Hollow fiber semipermeable membrane, method for manufacturing same, module, and water treatment method
US11612860B2 (en) Osmotic fluid purification and draw compounds thereof
WO2015156404A1 (en) Temperature-sensitive absorbent, water treatment method, and water treatment apparatus
US20130313185A1 (en) Forward osmosis membrane and method of manufacture
US20160074810A1 (en) A draw solute for forward osmosis
US9868834B2 (en) Polymer blend for membranes
JP2016522849A5 (en)
JP2009056406A (en) Method of improving rejection rate of permeable membrane, permeable membrane having improved rejection rate, and permeable membrane apparatus
CN105268325B (en) The progressively interfacial polymerization techniques of doughnut nanofiltration membrane complex are prepared with different reagent solution designs
WO2020044965A1 (en) Temperature-sensitive water absorbent, water treatment method, and water treatment device
JP6816292B2 (en) Water treatment method and water treatment equipment
JP2019141812A (en) Water treatment equipment and water treatment method
JP2009172531A (en) Method of improving rejection ratio of permeable membrane, permeable membrane improved in rejection ratio, and permeable membrane treatment method and device
SG192271A1 (en) Forward osmosis membrane and method of manufacture
JP5018306B2 (en) Method for improving rejection rate of permeable membrane, permeable membrane processing method and apparatus
CN107158974B (en) High-strength hydrophilic nanofiltration membrane, preparation method thereof and application thereof in protein solution desalination process
WO2023058592A1 (en) Water treatment method and water treatment system
JP2024005365A (en) Water treatment method and water treatment system
Vainrot et al. Membranes in desalination and water treatment
JP2023091950A (en) Water treatment method and water treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568008

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896827

Country of ref document: EP

Kind code of ref document: A1