JP2016041411A - Water desalination processing method and apparatus - Google Patents

Water desalination processing method and apparatus Download PDF

Info

Publication number
JP2016041411A
JP2016041411A JP2014166505A JP2014166505A JP2016041411A JP 2016041411 A JP2016041411 A JP 2016041411A JP 2014166505 A JP2014166505 A JP 2014166505A JP 2014166505 A JP2014166505 A JP 2014166505A JP 2016041411 A JP2016041411 A JP 2016041411A
Authority
JP
Japan
Prior art keywords
solution
water
temperature
membrane
lower critical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014166505A
Other languages
Japanese (ja)
Other versions
JP6210033B2 (en
Inventor
渕上 浩司
Koji Fuchigami
浩司 渕上
戸村 啓二
Keiji Tomura
啓二 戸村
藤原 茂樹
Shigeki Fujiwara
茂樹 藤原
亮 功刀
Akira Kunugi
亮 功刀
洋平 冨田
Yohei Tomita
洋平 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2014166505A priority Critical patent/JP6210033B2/en
Publication of JP2016041411A publication Critical patent/JP2016041411A/en
Application granted granted Critical
Publication of JP6210033B2 publication Critical patent/JP6210033B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for treating water by forward osmosis method that can separate, in the gravity separation process, a layer that has a temperature-responsive chemical material as the main body, at a predetermined solute concentration or water concentration.SOLUTION: Provided is a water desalination processing method and apparatus comprising a forward osmosis process 10 for contacting a salts-containing to-be-processed water 1 and an inducing solution 4 in which a temperature-responsive chemical material having a lower critical temperature is dissolved into water, through a semi-permeable membrane 3; a warming process 14; a gravity separation process 11; a cooling and recirculation process for cooling a concentrated solution 7 separated in the gravity separation process 11 to a temperature below the lower critical temperature of the inducing solution 4 and then recirculating it to the forward osmosis process 10 to be reused as the inducing solution 4; and a membrane-treatment process 12 for membrane-treating a diluted solution 6 separated in the gravity separation process 11 to produce a membrane-filtered water 8, in which the lower critical temperature of a diluted inducing solution 5 is measured and when the measured value is higher than a set value a hydrophobic material is added to the diluted inducing solution 5, and when the measured value is lower than the set value a hydrophilic material is added to the diluted inducing solution 5.SELECTED DRAWING: Figure 1

Description

本発明は、海水、かん水などの被処理水から淡水を製造する水の脱塩処理方法および装置に関するものである。   The present invention relates to a water desalting method and apparatus for producing fresh water from water to be treated such as seawater and brine.

海水から半透膜を用いて淡水を製造する方法は種々知られているが、海水に浸透圧以上の圧力を加えて水を強制的に透過させる逆浸透法が主に開発されてきた。しかし、この方法は高圧に加圧する必要があるため、設備費および運転費にコストがかかるという問題点がある。そこで、半透膜を介して海水と海水より高濃度の溶液を接触させ、加圧せずとも浸透圧により海水中の水をこの溶液に移動させ、分離、回収することにより淡水を製造する方法が開発されている。(特許文献1−3)。   Various methods for producing fresh water from seawater using a semipermeable membrane are known, but a reverse osmosis method for forcibly permeating water by applying a pressure higher than the osmotic pressure to seawater has been mainly developed. However, since this method needs to be pressurized to a high pressure, there is a problem that the equipment cost and the operation cost are high. Therefore, a method of producing fresh water by contacting seawater and a solution having a higher concentration than seawater through a semipermeable membrane, transferring water in seawater to this solution by osmotic pressure without applying pressure, and separating and recovering the solution. Has been developed. (Patent Documents 1-3).

特許文献1の方法は、半透膜を介して海水と反対側にアンモニアと二酸化炭素を溶解して得られる塩溶液を流して、海水中の水を半透膜を通過させて該塩溶液に移動させ、得られた希釈塩溶液をイオン交換膜や蒸留塔等を用いてアンモニウムイオンと炭酸イオンを個別に分離して浄水を得るとともに、分離したアンモニウムイオンと炭酸イオンを該塩溶液に溶解して半透膜の元の部屋に戻す方法である。   In the method of Patent Document 1, a salt solution obtained by dissolving ammonia and carbon dioxide is passed through a semipermeable membrane on the side opposite to seawater, and water in the seawater is passed through the semipermeable membrane into the salt solution. The resulting diluted salt solution is separated into ammonium ions and carbonate ions individually using an ion exchange membrane or distillation tower to obtain purified water, and the separated ammonium ions and carbonate ions are dissolved in the salt solution. This is the method of returning to the original room of the semipermeable membrane.

特許文献2の方法は、下限臨界温度を有する物質を溶質とする誘引溶液を用いており、図4に示すように、海水21を正浸透システム30に送って、そこで半透膜を介して誘引溶液24と接触させて海水21中の水を浸透圧により半透膜を透過させて誘引溶液24へ移動させる。水が誘引溶液に移動して残った濃縮海水22は正浸透システム30から流出する。一方、海水中の水で希釈された希釈誘引溶液25は加熱器を備えた沈殿システム34に送られ、そこで相分離あるいは沈殿を生じた希釈誘引溶液はポンプ37で加圧されてろ過システム32に送られる。その際、溶質の下限臨界温度より低い温度の液29を添加することができる。ろ過システム32で濃縮された誘引溶液24は正浸透システム30に返送される。一方、ろ過された膜ろ過水28は後処理部33でさらに精製されて飲料水となる。下限臨界温度を有する溶質にはポリエチレングリコールやポリプロピレングリコールが使用され、ろ過システムのろ材にはナノろ過膜や逆浸透膜が使用されている。   The method of Patent Document 2 uses an attraction solution having a substance having a lower critical temperature as a solute. As shown in FIG. 4, seawater 21 is sent to a forward osmosis system 30 where it is attracted through a semipermeable membrane. The water in the seawater 21 is brought into contact with the solution 24 and permeated through the semipermeable membrane by osmotic pressure to move to the attracting solution 24. The concentrated seawater 22 remaining after the water has moved to the attracting solution flows out of the forward osmosis system 30. On the other hand, the diluted attraction solution 25 diluted with water in seawater is sent to a precipitation system 34 equipped with a heater, and the diluted attraction solution that has undergone phase separation or precipitation is pressurized by a pump 37 to the filtration system 32. Sent. At that time, a liquid 29 having a temperature lower than the lower critical temperature of the solute can be added. The attraction solution 24 concentrated in the filtration system 32 is returned to the forward osmosis system 30. On the other hand, the filtered membrane filtrate 28 is further purified by the post-processing unit 33 to become drinking water. Polyethylene glycol or polypropylene glycol is used as a solute having a lower critical temperature, and a nanofiltration membrane or a reverse osmosis membrane is used as a filter medium of a filtration system.

特許文献3には、特定の構造を有する正浸透用の誘導溶質が開示されている。この誘導溶質は、下限臨界温度(lower critical temperature)を有していて、その温度以上になると自己凝集して溶液から分離される。この性質を利用して半透膜を用いて淡水を製造する方法が開示されている。   Patent Document 3 discloses an induced solute for forward osmosis having a specific structure. This induced solute has a lower critical temperature and becomes self-aggregated and separated from the solution above that temperature. A method for producing fresh water using a semipermeable membrane using this property is disclosed.

特開2011−83663号公報JP 2011-83663 A 米国特許第8,021,553B2号明細書US Pat. No. 8,021,553B2 特開2012−170954号公報JP 2012-170954 A

特許文献1の方法では、誘引物質(例えば炭酸アンモニウム)の分離、回収を蒸発法で行うが、その際、アンモニアおよび同伴する水分の蒸発潜熱が多大で、膨大なエネルギーを要しコストも高い。さらに、蒸発設備サイズが極めて大きく、大量(例えば10万m/日)の飲料水製造には不向きである。また、投入エネルギーが大きいため熱交換器のサイズも大きくなり、大量処理には不向きである。さらに、炭酸アンモニウムを用いる場合には半透膜からのバックフローによって膜濃縮水を介して環境中に漏洩する誘引物質が窒素を含むため、富栄養化の原因となる。 In the method of Patent Document 1, the attracting substance (for example, ammonium carbonate) is separated and recovered by an evaporation method. At that time, the latent heat of vaporization of ammonia and accompanying water is great, enormous energy is required, and the cost is high. Furthermore, the size of the evaporation facility is extremely large, and is not suitable for producing a large amount (for example, 100,000 m 3 / day) of drinking water. Moreover, since the input energy is large, the size of the heat exchanger is also large, which is not suitable for mass processing. Furthermore, when ammonium carbonate is used, the attracting substance that leaks into the environment through the membrane concentrated water by backflow from the semipermeable membrane contains nitrogen, which causes eutrophication.

特許文献2、3の方法は、誘引溶液の温度感応性を利用して誘引物質の一部を凝集させることにより、膜ろ過エネルギーを低減させることができる。   In the methods of Patent Documents 2 and 3, membrane filtration energy can be reduced by aggregating a part of the attracting substance by utilizing the temperature sensitivity of the attracting solution.

しかしながら、誘引溶液を長期間にわたり繰り返し再生利用していると、水温・外気温の変動や半透膜をわずかに透過する塩類や有機物が蓄積して、正浸透工程で得られた希釈誘引溶液を重力分離する際の重力分離特性が変わって、温度感応性薬剤を主体とする濃厚溶液の溶質濃度が変化することを見出した。温度感応性薬剤の濃厚溶液を分離する際には、温度を下限臨界温度より高くする程、分離時の濃厚溶液と希薄溶液の濃度差が大きくなり、また、半透膜でろ過する際には、温度を下限臨界温度より低くする程浸透圧が上昇して高いろ過速度が得られる。従って、重力分離時や正浸透における加温や冷却の温度を一定値に制御する場合、下限臨界温度の上昇は重力分離工程における分離効率の低下を引き起こし、下限臨界温度の低下は正浸透工程におけるろ過効率の低下を引き起こす。   However, if the attractant solution is repeatedly recycled over a long period of time, salt and organic substances that slightly permeate through the semi-permeable membrane accumulate due to fluctuations in the water temperature and outside air temperature, and the diluted attractant solution obtained in the forward osmosis process is accumulated. It was found that the solute concentration of a concentrated solution mainly composed of a temperature-sensitive drug changes due to a change in the gravity separation characteristics at the time of gravity separation. When separating a concentrated solution of a temperature-sensitive drug, the higher the temperature is above the lower critical temperature, the greater the concentration difference between the concentrated solution and the diluted solution during separation, and when filtering through a semipermeable membrane. When the temperature is lower than the lower critical temperature, the osmotic pressure increases and a high filtration rate is obtained. Therefore, when controlling the temperature of heating and cooling during gravity separation or forward osmosis to a constant value, an increase in the lower critical temperature causes a decrease in separation efficiency in the gravity separation process, and a decrease in the lower critical temperature occurs in the forward osmosis process. Causes a decrease in filtration efficiency.

従って、重力分離される温度感応性薬剤を主体とする濃厚溶液の溶質濃度あるいは水分濃度を一定に保持することは、正浸透法の安定運転のために必須である。   Accordingly, it is essential for stable operation of the forward osmosis method to maintain a constant solute concentration or water concentration of a concentrated solution mainly composed of a temperature-sensitive drug separated by gravity.

本発明の目的は、正浸透法で水処理する方法において、誘引溶液中の塩類や有機物の蓄積にかかわりなく、重力分離工程で温度感応性薬剤を主体とする層を一定の溶質濃度あるいは水分濃度で分離できる方法と装置を提供することにある。   The object of the present invention is to treat a layer mainly composed of a temperature-sensitive drug in a gravity separation step in a method of water treatment by a forward osmosis method, regardless of the accumulation of salts and organic substances in the attracting solution. It is to provide a method and an apparatus that can be separated with each other.

本発明者は、上記課題を解決するべく鋭意検討の結果、重力分離工程で分離される希釈誘引溶液の下限臨界温度を測定し、測定値が予め設定しておいた設定値よりも高い場合は、該希釈誘引溶液に疎水性物質を添加し、また、測定値が予め設定しておいた設定値よりも低い場合は、該希釈誘引溶液に親水性物質を添加することによって、誘引溶液の下限臨界温度を一定に保って、正浸透法を安定に運転させることができることを見出した。   As a result of intensive studies to solve the above problems, the present inventor measured the lower critical temperature of the dilution-induced solution separated in the gravity separation step, and when the measured value is higher than a preset value, A hydrophobic substance is added to the diluted attracting solution, and if the measured value is lower than a preset value, a hydrophilic substance is added to the diluted attracting solution to lower the lower limit of the attracting solution. It was found that the forward osmosis method can be stably operated while keeping the critical temperature constant.

温度感応性薬剤の下限臨界温度は薬剤の親水基および疎水基のバランスによって決まり、親水基が多ければ高く、疎水基が多ければ低くなる。同様の傾向が混合物の水溶液でも見られ、下限臨界温度の低い物質に親水基を多く含む下限臨界温度の高い物質を混合すると下限臨界温度が上昇する現象が見られる。下限臨界温度変化の度合いは、親水基を多く含む下限臨界温度の高い物質の混合量および混合物質の親水基/疎水基の程度で変わる。一方、温度感応性薬剤の溶解している水が塩分を多く含むと下限臨界温度が低下し、アルコールのような親水性物質を多く含むと下限臨界温度が上昇する。このような現象は重力分離後に仕上げ処理として膜ろ過を行う正浸透法を長期間運転している場合に見られる。すなわち、塩やアルコールの阻止率が正浸透膜より仕上げ膜の方が高い場合に生ずる。   The lower critical temperature of a temperature-sensitive drug is determined by the balance between the hydrophilic group and the hydrophobic group of the drug, and is higher when there are more hydrophilic groups and lower when there are more hydrophobic groups. A similar tendency is observed in the aqueous solution of the mixture, and a phenomenon in which the lower critical temperature rises is observed when a substance having a high lower critical temperature containing many hydrophilic groups is mixed with a substance having a lower lower critical temperature. The degree of change in the lower critical temperature varies depending on the mixing amount of the substance having a high lower critical temperature containing many hydrophilic groups and the degree of hydrophilic group / hydrophobic group of the mixed substance. On the other hand, when the water in which the temperature-sensitive drug is dissolved contains a large amount of salt, the lower critical temperature decreases, and when the water contains a large amount of a hydrophilic substance such as alcohol, the lower critical temperature increases. Such a phenomenon is seen when the forward osmosis method which performs membrane filtration as a finishing treatment after gravity separation is operated for a long time. That is, this occurs when the rejection rate of salt or alcohol is higher in the finished membrane than in the forward osmosis membrane.

界面活性剤は疎水性物質と親水性物質で構成されており、下限臨界温度を変化させる効果は疎水性物質や親水性物質そのものよりも小さい。例えば、疎水性のブチレングリコールと親水性のエチレングリコールで構成される界面活性剤を添加しても下限臨界温度は変化するが、ブチレングリコールあるいはエチレングリコールそのものを添加する方が添加重量当たりの下限臨界温度変化の効果は大きい。   The surfactant is composed of a hydrophobic substance and a hydrophilic substance, and the effect of changing the lower critical temperature is smaller than that of the hydrophobic substance or the hydrophilic substance itself. For example, although the lower critical temperature changes even when a surfactant composed of hydrophobic butylene glycol and hydrophilic ethylene glycol is added, the lower critical temperature per weight added is more when butylene glycol or ethylene glycol itself is added. The effect of temperature change is great.

本発明は、これらの知見に基づいてなされたものであり、塩類を含有する被処理水と、下限臨界温度を有する温度感応性薬剤を水に溶解した誘引溶液とを半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘引溶液に移動させ、水で希釈された希釈誘引溶液と膜濃縮水を得る正浸透工程と、前記希釈誘引溶液を前記誘引溶液の下限臨界温度以上の温度まで加温する加温工程と、前記加温工程で相分離した温度感応性薬剤を主体とする濃厚溶液層と、水を主体とし少量の温度感応性薬剤を含有する希薄溶液層とに重力分離する重力分離工程と、前記重力分離工程で分離された濃厚溶液を前記誘引溶液の下限臨界温度以下の温度まで冷却した後、前記正浸透工程へ循環し、誘引溶液として再使用する冷却・循環工程と、前記重力分離工程で分離された希薄溶液を膜処理し、膜ろ過水を得る膜処理工程を有する水の脱塩処理方法であって、
前記希釈誘引溶液の下限臨界温度を測定し、測定値が予め設定された設定値よりも高い場合は、該希釈誘引溶液に疎水性物質を添加し、また、設定値が予め設定された設定値よりも低い場合は、該希釈誘引溶液に親水性物質を添加することを特徴とする脱塩処理方法と、それに係る装置を提供するものである。
The present invention has been made on the basis of these findings, contact water to be treated containing salts and an attraction solution in which a temperature-sensitive drug having a lower critical temperature is dissolved in water through a semipermeable membrane. A normal osmosis step of transferring water in the water to be treated to the attraction solution through the semipermeable membrane to obtain a diluted attraction solution diluted with water and membrane concentrated water, and the lower limit of the attraction solution. A heating step for heating to a temperature above the critical temperature, a concentrated solution layer mainly composed of the temperature-sensitive agent phase-separated in the heating step, and a dilute solution mainly containing water and containing a small amount of the temperature-sensitive agent. Gravity separation step that separates into layers, and after cooling the concentrated solution separated in the gravity separation step to a temperature below the lower critical temperature of the attracting solution, it is circulated to the forward osmosis step and reused as the attracting solution Cooling and circulation process, and The dilute solution that has been separated by the force separation process and membrane treatment, a desalination treatment method for water having a film processing step of obtaining a membrane filtration water,
When the lower critical temperature of the dilution attraction solution is measured and the measured value is higher than a preset set value, a hydrophobic substance is added to the dilution attraction solution, and the set value is set at a preset value. If lower than the above, the present invention provides a desalting treatment method characterized by adding a hydrophilic substance to the dilution-inducing solution, and an apparatus related thereto.

本発明により、下限臨界溶液温度を有する温度感応性薬剤を用いた正浸透法による水処理方法において、重力分離した温度感応性薬剤を主体とする層の溶質濃度あるいは水分濃度を安定させて水処理を長期にわたって安定して行うことができる。   According to the present invention, in a water treatment method by a forward osmosis method using a temperature sensitive agent having a lower critical solution temperature, water treatment is performed by stabilizing the solute concentration or water concentration of the layer mainly composed of the temperature sensitive agent separated by gravity. Can be carried out stably over a long period of time.

本発明の一実施態様を模式的に示すブロック図である。It is a block diagram which shows one embodiment of this invention typically. その半透膜による膜ろ過と重力分離槽における分離を模式的に示した図である。It is the figure which showed typically the membrane filtration by the semipermeable membrane, and the isolation | separation in a gravity separation tank. 下限臨界温度と薬剤濃度の関係を示した曲線である。3 is a curve showing the relationship between the lower critical temperature and the drug concentration. 公知の水処理方法の概略を示すブロック図である。It is a block diagram which shows the outline of a well-known water treatment method.

図1に本発明の一実施態様を模式的に示す。   FIG. 1 schematically shows an embodiment of the present invention.

本発明の方法で処理される被処理水は水を溶媒とする溶液であり、海水、かん水あるいは下水や工場排水などである。かん水は、シェールガス、オイルサンド、CBM(炭層メタン)、石油等を採掘する坑井からの随伴水も含まれる。   The water to be treated to be treated by the method of the present invention is a solution using water as a solvent, such as seawater, brine, sewage, industrial wastewater, or the like. Brine includes associated water from wells that mine shale gas, oil sand, CBM (coal bed methane), oil, and the like.

随伴水は、坑井からの採掘目的物に同伴して排出される水であり、塩分、有機物、懸濁物などを含んでいる。汚濁物質の濃度としては、例えば蒸発残留物(主にNa+、K+、Ca2+、Cl-、SO4 2-など)が1,000〜100,000mg/L、有機物(油分や添加した薬剤など)がTOCとして10〜1,000mg/L、懸濁物質が100〜10,000mg/Lといった範囲で含有される。 Accompanying water is water that is discharged along with the object to be mined from the well, and includes salt, organic matter, suspended matter, and the like. Concentrations of pollutants include, for example, evaporation residues (mainly Na + , K + , Ca 2+ , Cl , SO 4 2−, etc.) of 1,000 to 100,000 mg / L, organic substances (such as oil and added chemicals) Is contained in a range of 10 to 1,000 mg / L as TOC and suspended material in a range of 100 to 10,000 mg / L.

油分と随伴水の分離手段は問わないが、例えば沈降などで油水分離が行われている。   There is no limitation on the means for separating oil and associated water, but oil-water separation is performed, for example, by sedimentation.

図1に示していないが、被処理水を必要によりまずろ過処理する。このろ過処理は、例えば、精密ろ過膜を用いたろ過器で行い、ろ過膜は、精密ろ過膜として使用されている通常の膜を使用することができる。例えば、酢酸セルロース、ポリテトラフルオロエチレン、ポリスルホン、ポリ塩化ビニルなどの外、セラミック製の膜や多孔質ガラス製の膜なども利用できる。精密膜ろ過処理では、精密ろ過膜を通過した膜ろ過水と、膜を通過しないで残った膜濃縮水が得られる。
精密膜ろ過のほか、限外膜ろ過、砂ろ過等のろ過処理が用いることができる。限外膜ろ過の材質は精密膜ろ過と同様のものが用いられる。
Although not shown in FIG. 1, the water to be treated is first filtered if necessary. This filtration treatment is performed, for example, with a filter using a microfiltration membrane, and a normal membrane used as a microfiltration membrane can be used as the filtration membrane. For example, in addition to cellulose acetate, polytetrafluoroethylene, polysulfone, polyvinyl chloride, etc., ceramic membranes and porous glass membranes can also be used. In the micromembrane filtration treatment, membrane filtrate water that has passed through the microfiltration membrane and membrane concentrated water remaining without passing through the membrane are obtained.
In addition to precision membrane filtration, filtration treatment such as ultramembrane filtration and sand filtration can be used. The material for the ultrafiltration is the same as that for precision membrane filtration.

正浸透工程
正浸透工程は、ろ過処理した被処理水と、温度感応性薬剤を水に溶解した高浸透圧の誘引溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘引溶液に移動させ、水で希釈された希釈誘引溶液と膜濃縮水を得る工程である。
Forward osmosis process The forward osmosis process is a process in which filtered water to be treated is brought into contact with a high osmotic pressure attraction solution in which a temperature-sensitive drug is dissolved in water through a semipermeable membrane, and the water in the treated water is mixed with the semi-permeable water. It is a step of moving to the attraction solution through a permeable membrane to obtain a diluted attraction solution diluted with water and membrane concentrated water.

温度感応性薬剤は、低温では親水性で水によく溶けるが、ある温度以上になると疎水性化し溶解度が低下する物質であり、親水性〜疎水性に変化する温度が下限臨界温度あるいは曇点と呼ばれる。この温度に達すると疎水性化した温度感応性薬剤が析出して白濁あるいは相分離が起こる。徐々に加温する際に、薬剤によって白濁するが相分離しないもの、白濁した後更に加温すると相分離するもの、白濁状態を経ずに相分離するものがあるが、本発明に用いられる薬剤は相分離するものであって、ここでいう下限臨界温度とは相分離する温度を意味する。   Temperature-sensitive drugs are substances that are hydrophilic and well soluble in water at low temperatures, but become hydrophobic and their solubility decreases at a certain temperature or higher.The temperature at which they change from hydrophilic to hydrophobic is the lower critical temperature or cloud point. be called. When this temperature is reached, a hydrophobized temperature-sensitive drug is precipitated, resulting in white turbidity or phase separation. When gradually warming, there are those that become cloudy by the drug but not phase-separated, those that become cloudy and then further heated and phase-separated, and those that phase-separate without passing through the cloudy state, the drug used in the present invention Means that the phases are separated, and the lower critical temperature here means the temperature at which the phases are separated.

この温度感応性薬剤は、各種界面活性剤、分散剤、乳化剤などとして利用されており、例示すれば、アルコール、アルキル基、グリコール類、または脂肪酸とエチレングリコールの化合物(水溶性ポリアルキレングリコール誘導体、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシテトラメチレンポリオキシエチレングリコール、ポリオキシエチレンポリオキシプロピレントリメチロールプロパン,ポリオキシエチレンポリオキシプロピレングリセリルエーテル,ポリオキシエチレンポリオキシプロピレンペンタエリスリトールエーテルなど)アルキル基または脂肪酸とプロピレンオキサイドの化合物、アクリルアミドとアルキル基の化合物、エチレングリコール脂肪酸エステル、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステルエチレンオキサイド付加物、アミノ酸およびその誘導体、ブチルグリコールやヘキシルグリコールなどのグリコールなどであり、好ましくは、ポリエチレングリコールとポリプロピレン/ポリブチレングリコールのブロック共重合体、グリセロールエトキシレートブトキシレート、トリメチロールプロパンエトキシブトキシレート等である。本発明において使用する温度感応性薬剤としては、下限臨界温度が30℃〜80℃の範囲、特に40℃〜60℃の範囲のものが好ましい。そのために、HLB値が10以上の非イオン性界面活性剤とそれよりHLB値が低い非イオン性界面活性剤、脂肪酸あるいはアルコールを組み合わせて下限臨界温度を上記の範囲に調節するといった方法を取ることもできる。   This temperature-sensitive agent is used as various surfactants, dispersants, emulsifiers, and the like. For example, alcohols, alkyl groups, glycols, or fatty acid and ethylene glycol compounds (water-soluble polyalkylene glycol derivatives, Polyoxyethylene polyoxypropylene alkyl ether, polyoxytetramethylene polyoxyethylene glycol, polyoxyethylene polyoxypropylene trimethylolpropane, polyoxyethylene polyoxypropylene glyceryl ether, polyoxyethylene polyoxypropylene pentaerythritol ether, etc.) alkyl group Or fatty acid and propylene oxide compound, acrylamide and alkyl group compound, ethylene glycol fatty acid ester, glycerin fatty acid ester, sorbi Fatty acid ester ethylene oxide adducts, amino acids and derivatives thereof, glycols such as butyl glycol and hexyl glycol, preferably block copolymers of polyethylene glycol and polypropylene / polybutylene glycol, glycerol ethoxylate butoxylate, trimethylol Propane ethoxybutoxylate and the like. As the temperature-sensitive drug used in the present invention, those having a lower critical temperature in the range of 30 ° C to 80 ° C, particularly in the range of 40 ° C to 60 ° C are preferable. Therefore, a method is adopted in which the lower critical temperature is adjusted to the above range by combining a nonionic surfactant having an HLB value of 10 or more and a nonionic surfactant having a lower HLB value, a fatty acid or an alcohol. You can also.

誘引溶液の濃度は、誘引溶液の浸透圧が、被処理液の浸透圧より十分高くなるように調整しなければならない。   The concentration of the attracting solution must be adjusted so that the osmotic pressure of the attracting solution is sufficiently higher than the osmotic pressure of the liquid to be treated.

この誘引溶液には、凝集用固体粒子を添加することもできる。凝集用固体粒子としては、ベントナイト、カオリン、活性炭粉末等が使用でき、無機吸着剤がより望ましい。粒径としては、平均粒径で0.1〜10μm程度のものが望ましい。固体粒子の添加量は、温度感応性薬剤に対する重量比で0.1〜10%程度が適当である。ただし、これらは温度感応性薬剤と固体粒子との親和性を勘案して決定することが望ましい。   Aggregating solid particles may be added to the attracting solution. As the solid particles for aggregation, bentonite, kaolin, activated carbon powder and the like can be used, and an inorganic adsorbent is more desirable. The average particle size is preferably about 0.1 to 10 μm. The amount of solid particles added is suitably about 0.1 to 10% by weight with respect to the temperature sensitive drug. However, these are preferably determined in consideration of the affinity between the temperature sensitive drug and the solid particles.

半透膜は水を選択的に透過できるものがよく、正浸透(Forward Osmosis)膜が好ましいが、逆浸透膜も使用できる。材質は特に制限されないが、例示すれば、酢酸セルロース系、ポリアミド系、ポリエチレンイミン系、ポリスルホン系、ポリベンゾイミダゾール系のものなどを挙げることができる。半透膜の形態も特に制限されず、平膜、管状膜、中空糸などいずれであってもよい。   The semipermeable membrane is preferably one that can selectively permeate water, and a forward osmosis membrane is preferable, but a reverse osmosis membrane can also be used. The material is not particularly limited, and examples thereof include cellulose acetate-based, polyamide-based, polyethyleneimine-based, polysulfone-based, and polybenzimidazole-based materials. The form of the semipermeable membrane is not particularly limited and may be any of a flat membrane, a tubular membrane, a hollow fiber, and the like.

この半透膜を装着する装置は通常は円筒形あるいは箱形の容器内に半透膜を設置して、この半透膜で仕切られた一方の室に被処理水を流し、他方の室に誘引溶液を流せるものであり、公知の半透膜装置を用いることができ、市販品を用いることもできる。   A device for mounting this semipermeable membrane is usually a semi-permeable membrane installed in a cylindrical or box-shaped container, and water to be treated flows into one chamber partitioned by this semipermeable membrane, and the other chamber is filled with water. An attracting solution can be flowed, and a known semipermeable membrane device can be used, and a commercially available product can also be used.

正浸透工程で被処理水を半透膜を介して誘引溶液と接触させると浸透圧の差によって被処理水中の水が半透膜を通って誘引溶液に移動し、被処理水が流入した室からは膜濃縮水が、そして誘引溶液が流入した室からは希釈誘引溶液が流出する。   A chamber where treated water flows into the attracting solution through the semipermeable membrane due to the difference in osmotic pressure when the treated water is brought into contact with the attracting solution through the semipermeable membrane in the forward osmosis process. From the membrane concentrate and from the chamber into which the attraction solution flows, the dilute attraction solution flows out.

本発明は、この希釈誘引溶液の下限臨界温度を測定し、その測定値が予め設定された設定値よりも高い場合は、該希釈誘引溶液に疎水性物質を添加し、また、測定値が予め設定された設定値よりも低い場合は、該希釈誘引溶液に親水性物質を添加するところに特徴がある。   The present invention measures the lower critical temperature of the dilution attraction solution, and when the measured value is higher than a preset set value, a hydrophobic substance is added to the dilution attraction solution, and the measured value is If it is lower than the set value, there is a feature in that a hydrophilic substance is added to the dilution attraction solution.

希釈誘引溶液の下限臨界温度は、原則として、半透膜装置の出口から重力分離槽までの間のどこかで希釈誘引溶液の下限臨界温度を測定すればよい。下限臨界温度は、希釈誘引溶液を採取し、徐々に加温して相分離し始める温度を目視観察することで測定できる。薬剤によっては相分離温度よりやや低い温度で曇点が発現するものもあり、この場合の曇点は目視観察でも良いが可視光の吸光度が急激に上昇する温度としても測定することが可能である。   In principle, the lower critical temperature of the dilution attraction solution may be measured somewhere between the outlet of the semipermeable membrane device and the gravity separation tank. The lower critical temperature can be measured by collecting the dilution-inducing solution, visually warming it and gradually observing the temperature at which phase separation begins. Some drugs may have a cloud point at a temperature slightly lower than the phase separation temperature. In this case, the cloud point may be observed visually, but it can also be measured as a temperature at which the absorbance of visible light rapidly increases. .

下限臨界温度そのものではなく、下限臨界温度を別の指標から求めてもよい。例えば、下限臨界温度が上昇すると重力分離槽における温度感応性薬剤の水分濃度が高くなり、結果として界面が上昇する。   Instead of the lower critical temperature itself, the lower critical temperature may be obtained from another index. For example, when the lower critical temperature increases, the moisture concentration of the temperature sensitive drug in the gravity separation tank increases, and as a result, the interface increases.

すなわち、重力分離した温度感応性薬剤を主体とする濃厚溶液層の水分濃度は、図3に示すように、重力分離の際の温度が下限臨界温度より高いほど低く、下限臨界温度に近いほど高くなる。従って、重力分離槽における界面高さを測定することによって、下限臨界温度を測定することができる。   That is, as shown in FIG. 3, the water concentration of the concentrated solution layer mainly composed of the temperature-sensitive drug separated by gravity is lower as the temperature at the time of gravity separation is higher than the lower critical temperature and higher as it is closer to the lower critical temperature. Become. Therefore, the lower critical temperature can be measured by measuring the interface height in the gravity separation tank.

この測定値を比較する設定値は許容範囲で設定し、その範囲内にあるか否かを比較する。下限臨界温度の許容範囲は、下限臨界温度変動に伴う感温性薬剤の性能(正浸透ろ過速度や重力分離後の濃縮濃度)の変化の許容範囲によってプラント毎に設定されるべきものである。例えば、運転当初の値に対して、±2℃を許容範囲に設定することができる。   The set value for comparing the measured values is set within an allowable range, and whether or not it is within the range is compared. The allowable range of the lower critical temperature should be set for each plant according to the allowable range of changes in the performance of the thermosensitive drug (forward osmosis filtration rate and concentrated concentration after gravity separation) accompanying the fluctuation of the lower critical temperature. For example, ± 2 ° C. can be set within the allowable range with respect to the initial value of operation.

そして、測定値が設定値の許容範囲の上限を越えたときは、希釈誘引溶液に疎水性物質を添加する。疎水性物質には、炭素数3以上、好ましくは6〜60程度のグリコール化合物、脂肪酸(塩)、ソルビタン化合物などを使用することができる。グリコール化合物の例としては、ポリプロピレングリコール、脂肪酸(塩)の例としては、オレイン酸やラウリル酸、カプリル酸のアルカリ金属塩、ソルビタン化合物の例としては、ソルビタンやソルビタンの脂肪酸エステル(ソルビタンモノカプリレート等)などを挙げることができる。これらの疎水性物質の添加形態は、通常は水溶液で添加するが、分散性が良好な場合はそのまま添加しても良い。疎水性物質の添加は、一度に行ってもよく、あるいは連続的あるいは断続的に添加してもよい。添加は、希釈誘引溶液の下限臨界温度が前記の設定値の範囲内になるまでであり、前記範囲の中心付近まで添加することが好ましい。   Then, when the measured value exceeds the upper limit of the allowable range of the set value, a hydrophobic substance is added to the dilution attraction solution. As the hydrophobic substance, a glycol compound having 3 or more carbon atoms, preferably about 6 to 60, a fatty acid (salt), a sorbitan compound, or the like can be used. Examples of glycol compounds include polypropylene glycol, examples of fatty acids (salts) include oleic acid, lauric acid, alkali metal salts of caprylic acid, and examples of sorbitan compounds include sorbitan and sorbitan fatty acid esters (sorbitan monocaprylate). Etc.). The addition form of these hydrophobic substances is usually added as an aqueous solution, but may be added as it is when the dispersibility is good. The hydrophobic substance may be added all at once, or may be added continuously or intermittently. The addition is performed until the lower critical temperature of the dilution-inducing solution falls within the range of the set value, and it is preferable to add to the vicinity of the center of the range.

一方、測定値が設定値の許容範囲の下限を下廻ったときは、希釈誘引溶液に親水性物質を添加する。親水性物質には、アルコール、エチレングリコール含有化合物、グリセリン化合物などを使用することができる。アルコールの例としてはブタノールやプロパノール等、エチレングリコール含有化合物の例としてはポリエチレングリコールやそのポリブチレングリコールやポリプロピレングリコールとの重合物、グリセリン化合物の例としてはグリセリンやその重合物(トリグリセリン,デカグリセリンなど)、などを挙げることができる。これらの親水性物質の添加形態も、そのまままたは水溶液で添加する。親水性物質の添加は、一度に行ってもよく、あるいは連続的あるいは断続的に添加してもよい。添加は、希釈誘引溶液の下限臨界温度が前記の設定値の範囲内になるまでであり、前記範囲の中心付近まで添加することが好ましい。   On the other hand, when the measured value falls below the lower limit of the allowable range of the set value, a hydrophilic substance is added to the dilution attraction solution. As the hydrophilic substance, alcohol, an ethylene glycol-containing compound, a glycerin compound, or the like can be used. Examples of alcohol include butanol and propanol, examples of ethylene glycol-containing compounds include polyethylene glycol and polymers thereof with polybutylene glycol and polypropylene glycol, and examples of glycerol compounds include glycerol and polymers thereof (triglycerol, decaglycerol) Etc.). The addition form of these hydrophilic substances is also added as it is or in an aqueous solution. The hydrophilic substance may be added all at once, or may be added continuously or intermittently. The addition is performed until the lower critical temperature of the dilution-inducing solution falls within the range of the set value, and it is preferable to add to the vicinity of the center of the range.

加温工程
正浸透工程で被処理水から水が移動して希釈された希釈誘引溶液を下限臨界温度以上の温度まで加温して、温度感応性薬剤の少なくとも一部を凝集させる。この凝集は、温度感応性薬剤の濃厚溶液が相分離したものである。
Heating step The dilution attraction solution diluted by moving water from the water to be treated in the forward osmosis step is heated to a temperature equal to or higher than the lower critical temperature to aggregate at least a part of the temperature-sensitive drug. This agglomeration is a phase separation of a concentrated solution of a temperature sensitive drug.

加温工程における加温温度は、例えば熱交換器へ導入する熱媒体の流量の調整で制御できる。   The heating temperature in the heating step can be controlled, for example, by adjusting the flow rate of the heat medium introduced into the heat exchanger.

この加温工程の熱源には、次の重力分離工程で分離された濃厚溶液の顕熱を使用することが好ましい。   It is preferable to use the sensible heat of the concentrated solution separated in the next gravity separation step as the heat source for this heating step.

重力分離工程
前記加温工程で相分離した温度感応性薬剤を主体とする濃厚溶液層と水を主体とし少量の温度感応性薬剤を含有する希薄溶液層に重力分離する。この重力分離は下限臨界温度以上の液温で重力分離槽内で静置することによって行うことができる。その際、前記加温工程で凝集した温度感応性薬剤の濃厚溶液は、凝集用固体粒子があるとそれを核とした微細な液滴の状態になる。そして、この状態で重力分離槽に投入されると、温度感応性薬剤の比重が水より重い場合は、濃厚溶液の微細液滴は速やかに沈降し、液滴同士が合一して下に濃厚溶液層が形成される。凝集用固体粒子のほとんどは濃厚溶液層に集まるか、極く一部は上の希薄溶液層に残る。この凝集用固体粒子は温度感応性薬剤の凝集を促進させる作用があり、上層の薬剤濃度の低減(例えば2〜6%⇒0.5〜1.5%)や下層の薬剤濃度の増加(例えば60〜70%⇒80〜85%)といった効果が得られる。さらに分離時間の短縮(例えば30分⇒15分)の効果も得られる。一方、温度感応性薬剤の比重が水より軽い場合、例えば、ブチルグリコールやヘキシルグリコールを温度感応性薬剤に用いた場合は、濃厚溶液層が上層になり希薄溶液層が下層になる。
Gravity separation step Gravity-separated into a concentrated solution layer mainly composed of the temperature-sensitive drug phase-separated in the heating step and a dilute solution layer mainly composed of water and containing a small amount of the temperature-sensitive drug. This gravitational separation can be performed by standing in a gravity separation tank at a liquid temperature equal to or higher than the lower critical temperature. At this time, the concentrated solution of the temperature-sensitive drug aggregated in the heating step is in the form of fine droplets having the aggregation solid particles as a core. And when it is put into the gravity separation tank in this state, if the specific gravity of the temperature sensitive drug is heavier than water, the fine droplets of the concentrated solution will settle quickly, and the droplets will coalesce and concentrate underneath. A solution layer is formed. Most of the agglomerating solid particles collect in the concentrated solution layer or only a small part remains in the upper diluted solution layer. The solid particles for agglomeration have the effect of promoting the aggregation of the temperature-sensitive drug. The concentration of the upper layer drug (for example, 2 to 6% ⇒ 0.5 to 1.5%) and the lower layer drug concentration (for example, 60 to 70%) are increased. ⇒ 80-85%). Furthermore, the effect of shortening the separation time (for example, 30 minutes to 15 minutes) can be obtained. On the other hand, when the specific gravity of the temperature sensitive drug is lighter than water, for example, when butyl glycol or hexyl glycol is used as the temperature sensitive drug, the concentrated solution layer becomes the upper layer and the diluted solution layer becomes the lower layer.

冷却・循環工程
前記重力分離工程で分離された濃厚溶液は、これを前記誘引溶液の下限臨界温度より低い温度に冷却することで水に溶解させて誘引溶液に再生する。この温度は広い範囲で採用可能であるが、経済性を考慮すると常温かそれより高い温度が好ましい。この冷却熱源としては、被処理水あるいは正浸透工程において得られた希釈誘引溶液を用いることがエネルギーの効率利用の点で好ましい。この冷却が不充分な場合には、正浸透工程で被処理水から移動してくる水によって濃度が下がるので下限臨界温度を発現して相分離し、浸透圧が失われてしまう。
Cooling / circulation step The concentrated solution separated in the gravity separation step is cooled to a temperature lower than the lower critical temperature of the attracting solution to be dissolved in water and regenerated into the attracting solution. Although this temperature can be employed in a wide range, considering the economy, a temperature of room temperature or higher is preferable. As this cooling heat source, it is preferable from the viewpoint of efficient use of energy to use the water to be treated or the dilution attraction solution obtained in the forward osmosis step. If this cooling is insufficient, the concentration is lowered by the water moving from the water to be treated in the forward osmosis process, so that the lower critical temperature is developed and phase separation occurs, and the osmotic pressure is lost.

再生した誘引溶液はそのまま循環して再利用できる。   The regenerated attractant solution can be circulated and reused as it is.

膜処理工程
一方、前記重力分離工程で分離された希薄溶液は、ナノろ過膜や逆浸透膜などで膜ろ過して、そこに残存している温度感応性薬剤や凝集用固体粒子を除去する。膜ろ過水は淡水であり、飲料水などに利用できる。膜ろ過されないで残った膜濃縮水は、温度感応性薬剤や凝集用固体粒子が含まれているので、重力分離工程に循環するのがよい。あるいは、濃縮して誘引溶液として正浸透工程に直接返送することもできる。
Membrane treatment step On the other hand, the dilute solution separated in the gravity separation step is subjected to membrane filtration with a nanofiltration membrane, a reverse osmosis membrane or the like to remove the temperature-sensitive drug and solid particles for aggregation remaining therein. Membrane filtrate is fresh water and can be used for drinking water and the like. The membrane concentrated water remaining without being membrane filtered contains a temperature sensitive drug and solid particles for aggregation, and therefore should be circulated in the gravity separation step. Alternatively, it can be concentrated and returned directly to the forward osmosis process as an attractant solution.

一方、正浸透工程で得られた膜濃縮水は塩分を高濃度で含んでいるので、これを濃縮して塩分を析出させて分離し、有効利用することができる。   On the other hand, since the membrane concentrated water obtained in the forward osmosis step contains a high concentration of salt, it can be concentrated to precipitate and separate the salt for effective use.

この本発明の方法を図1に模式化して示す。同図に示すように、海水等の被処理水1は正浸透膜装置10に送入され、半透膜3を通して水が反対側の室に透過されて残った膜濃縮水2が排出される。正浸透膜装置10の反対側の室には誘引溶液4が流入しており、そこで半透膜3を介して被処理水1と向流接触して被処理水1から移行した水で希釈されて正浸透膜装置10を出る。正浸透膜装置10を出た希釈誘引溶液5は、下限臨界温度測定手段17(定期的にサンプルを採取して実験室で測定)で下限臨界温度が測定されて、コンピュータ18に予め入力しておいた測定値と比較される。そして、その測定値が設定値の上限を越えていた場合には疎水性物質タンク19から希釈誘引溶液に疎水性物質が添加され、設定値の下限を下廻っていた場合には親水性物質タンク20から希釈誘引溶液に親水性物質が添加される。それから、熱交換器16を通って、重力分離された濃厚溶液7と熱交換して加温され、加熱器14でさらに加温されて重力分離槽11に入る。   This method of the present invention is shown schematically in FIG. As shown in the figure, the treated water 1 such as seawater is fed into the forward osmosis membrane device 10, and the remaining membrane concentrated water 2 is discharged through the semipermeable membrane 3 by passing water through the opposite chamber. . The attracting solution 4 flows into the chamber on the opposite side of the forward osmosis membrane device 10, where it is diluted with the water transferred from the treated water 1 in countercurrent contact with the treated water 1 through the semipermeable membrane 3. And exit the forward osmosis membrane device 10. The dilution attraction solution 5 exiting the forward osmosis membrane device 10 has its lower critical temperature measured by the lower critical temperature measuring means 17 (takes a sample periodically and measured in the laboratory), and is input to the computer 18 in advance. Compared with the measured value. When the measured value exceeds the upper limit of the set value, the hydrophobic substance is added from the hydrophobic substance tank 19 to the dilution attraction solution. When the measured value is lower than the lower limit of the set value, the hydrophilic substance tank 20 is added. The hydrophilic substance is added to the dilution attraction solution. Then, the heat is exchanged with the concentrated solution 7 separated by gravity through the heat exchanger 16 and heated, and further heated by the heater 14 and enters the gravity separation tank 11.

重力分離槽11には、下層と上層の界面を測定する界面計111が取り付けられていて、界面高さが常時計測されており、その値もコンピュータ18に送られ、設定値の範囲を逸脱すると疎水性物質タンク19あるいは親水性物質タンク20に信号を送ってこれらが投入される。   An interface meter 111 for measuring the interface between the lower layer and the upper layer is attached to the gravity separation tank 11, and the interface height is constantly measured. The value is also sent to the computer 18, and deviates from the set value range. A signal is sent to the hydrophobic substance tank 19 or the hydrophilic substance tank 20 to input them.

重力分離槽11で分離された希薄溶液6は膜ろ過装置12でろ過され、得られた膜ろ過水8は活性炭等の後処理装置13でさらに精製されて精製水を得る。膜ろ過装置12でろ過されなかった膜濃縮水9は重力離装槽11に返送されて希釈誘引溶液とともに相分離される。   The dilute solution 6 separated in the gravity separation tank 11 is filtered by a membrane filtration device 12, and the obtained membrane filtrate 8 is further purified by a post-treatment device 13 such as activated carbon to obtain purified water. Membrane concentrated water 9 that has not been filtered by the membrane filtration device 12 is returned to the gravity separation tank 11 and phase-separated together with the dilution attraction solution.

一方、重力分離槽11で分離された濃厚溶液7は、熱交換器16を経て冷却器15で冷却されて、誘引溶液4として正浸透装置10に返送される。   On the other hand, the concentrated solution 7 separated in the gravity separation tank 11 is cooled by the cooler 15 via the heat exchanger 16 and returned to the forward osmosis device 10 as the attracting solution 4.

図1に示す装置を用いた。正浸透膜装置10の半透膜には酢酸セルロース製FO膜を、膜ろ過装置13にはナノろ過膜をそれぞれ使用した。   The apparatus shown in FIG. 1 was used. A cellulose acetate FO membrane was used as the semipermeable membrane of the forward osmosis membrane device 10, and a nanofiltration membrane was used as the membrane filtration device 13.

誘引溶液には、グリセロールエトキシプロポキシレートに、水を加えて80重量%の溶液とした。この溶液の下限臨界温度は55℃であった。この下限臨界温度は薬剤濃度によって変わる。上記薬剤濃度と下限臨界温度の関係を調べた結果を図3に示す。   As the attracting solution, water was added to glycerol ethoxypropoxylate to make an 80% by weight solution. The lower critical temperature of this solution was 55 ° C. This lower critical temperature varies depending on the drug concentration. The results of examining the relationship between the drug concentration and the lower critical temperature are shown in FIG.

UF膜により前処理した海水を被処理水1として正浸透膜装置10に3L/分の流速で流入させた。膜透過水の量は1.5L/分であり、正浸透膜装置10から流出する希釈誘引溶液5の量は3.8L/分であった。膜透過水の流量は主に濃縮誘引溶液の浸透圧によって変化するため,流量を上昇させる場合には重力分離槽の分離温度を上昇させて濃縮誘引溶液の濃度を上昇させる。また、濃縮誘引溶液の流量を上昇させてその濃度低下を抑制することによっても膜透過水流量を上昇させることが可能である。膜透過水流量を低下させる場合には、逆の操作を行えばよい。この希釈誘引溶液5は熱交換器16を経て加熱器14で60℃に加温し、重力分離槽11に流入させた。重力分離槽11では温度感応性薬剤が凝集し、濃度80重量%の濃厚溶液7と1%の希薄溶液6に重力分離した。下層である濃厚溶液7は熱交換器16を経て冷却器15で40℃に冷却し、再び正浸透膜装置10に流入させた。上層である希薄溶液6は膜ろ過装置12に導入し、膜ろ過水8と膜濃縮水9に分離した。膜濃縮水9は再び重力分離槽11へ流入させた。膜ろ過水8は後処理装置13を経て1.5L/分の淡水を獲た。この淡水は飲料水として使用可能であった。   Seawater pretreated with a UF membrane was flowed into the forward osmosis membrane device 10 as a treated water 1 at a flow rate of 3 L / min. The amount of the membrane permeated water was 1.5 L / min, and the amount of the dilution attraction solution 5 flowing out from the forward osmosis membrane device 10 was 3.8 L / min. Since the flow rate of the membrane permeated water mainly changes depending on the osmotic pressure of the concentrated attracting solution, when the flow rate is increased, the concentration temperature of the concentrated attracting solution is increased by increasing the separation temperature of the gravity separation tank. It is also possible to increase the membrane permeate flow rate by increasing the flow rate of the concentrated attracting solution to suppress the concentration drop. In order to reduce the membrane permeate flow rate, the reverse operation may be performed. The dilution attraction solution 5 was heated to 60 ° C. by the heater 14 through the heat exchanger 16 and flowed into the gravity separation tank 11. In the gravity separation tank 11, the temperature-sensitive drug was aggregated and separated into a concentrated solution 7 having a concentration of 80% by weight and a diluted solution 6 having a concentration of 1%. The concentrated solution 7 as the lower layer was cooled to 40 ° C. by the cooler 15 through the heat exchanger 16 and again flowed into the forward osmosis membrane device 10. The upper diluted solution 6 was introduced into the membrane filtration device 12 and separated into membrane filtrate 8 and membrane concentrate 9. The membrane concentrated water 9 was again flowed into the gravity separation tank 11. Membrane filtrate 8 obtained fresh water of 1.5 L / min via post-treatment device 13. This fresh water could be used as drinking water.

本発明の方法は、海水から淡水の製造や、坑井からの随伴水の処理さらには下水や工場排水の処理などに広く利用できる。   The method of the present invention can be widely used for the production of fresh water from seawater, the treatment of associated water from wells, and the treatment of sewage and industrial wastewater.

1 被処理水
2 膜濃縮水
3 半透膜
4 誘引溶液
5 希釈誘引溶液
6 希薄溶液
7 濃厚溶液
8 膜ろ過水
9 膜濃縮水
10 正浸透膜装置
11 重力分離槽
111 界面計
12 膜ろ過装置
13 後処理装置
14 加熱器
15 冷却器
16 熱交換器
17 下限臨界温度測定手段
18 コンピュータ
19 疎水性物質タンク
20 親水性物質タンク
DESCRIPTION OF SYMBOLS 1 Water to be treated 2 Membrane concentrated water 3 Semipermeable membrane 4 Attraction solution 5 Dilution attraction solution 6 Dilute solution 7 Concentrated solution 8 Membrane filtrate 9 Membrane concentrate 10 Forward osmosis membrane device 11 Gravity separation tank 111 Interface meter 12 Membrane filtration device 13 Post-processing device 14 Heater 15 Cooler 16 Heat exchanger 17 Lower critical temperature measuring means 18 Computer 19 Hydrophobic substance tank 20 Hydrophilic substance tank

Claims (8)

塩類を含有する被処理水と、下限臨界温度を有する温度感応性薬剤を水に溶解した誘引溶液とを半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘引溶液に移動させ、水で希釈された希釈誘引溶液と膜濃縮水を得る正浸透工程と、前記希釈誘引溶液を前記誘引溶液の下限臨界温度以上の温度まで加温する加温工程と、前記加温工程で相分離した温度感応性薬剤を主体とする濃厚溶液層と、水を主体とし少量の温度感応性薬剤を含有する希薄溶液層とに重力分離する重力分離工程と、前記重力分離工程で分離された濃厚溶液を前記誘引溶液の下限臨界温度以下の温度まで冷却した後、前記正浸透工程へ循環し、誘引溶液として再使用する冷却・循環工程と、前記重力分離工程で分離された希薄溶液を膜処理し、膜ろ過水を得る膜処理工程を有する水の脱塩処理方法であって、
前記希釈誘引溶液の下限臨界温度を測定し、測定値が予め設定された設定値よりも高い場合は、該希釈誘引溶液に疎水性物質を添加し、また、設定値が予め設定された設定値よりも低い場合は、該希釈誘引溶液に親水性物質を添加することを特徴とする脱塩処理方法。
Water to be treated containing salts is brought into contact with an attraction solution in which a temperature-sensitive drug having a lower critical temperature is dissolved in water through a semipermeable membrane, and the water in the water to be treated is attracted through the semipermeable membrane. A normal osmosis step of transferring the solution to the solution to obtain a diluted attraction solution and membrane concentrated water diluted with water, a heating step for heating the diluted attraction solution to a temperature equal to or higher than a lower critical temperature of the attraction solution, and the addition A gravity separation step of gravity separating into a concentrated solution layer mainly composed of a temperature-sensitive drug phase-separated in a temperature step and a dilute solution layer mainly containing water and containing a small amount of the temperature-sensitive drug; The separated concentrated solution is cooled to a temperature below the lower critical temperature of the attracting solution, then circulated to the forward osmosis step, and reused as the attracting solution, and the diluted solution separated in the gravity separation step Membrane treatment of the solution, membrane filtered water A desalination treatment method for water having obtained film processing step,
When the lower critical temperature of the dilution attraction solution is measured and the measured value is higher than a preset set value, a hydrophobic substance is added to the dilution attraction solution, and the set value is set at a preset value. If lower than that, a hydrophilic substance is added to the dilution attraction solution.
親水性物質がアルコール、エチレングリコール含有化合物、グリセリン化合物のうちから選択される物質を含む物質であることを特徴とする請求項1に記載の水の脱塩処理方法。   The method for desalinating water according to claim 1, wherein the hydrophilic substance is a substance containing a substance selected from alcohol, an ethylene glycol-containing compound, and a glycerin compound. 疎水性物質が炭素数3以上のグリコール化合物、脂肪酸(塩)、ソルビタン化合物のうちから選択される物質を含む物質であることを特徴とする請求項1に記載の水の脱塩処理方法。   The water desalting method according to claim 1, wherein the hydrophobic substance is a substance containing a substance selected from a glycol compound having 3 or more carbon atoms, a fatty acid (salt), and a sorbitan compound. 下限臨界温度を重力分離槽の界面高さにもとづき測定することを特徴とする請求項1に記載の水の脱塩処理方法。   The method for desalinating water according to claim 1, wherein the lower critical temperature is measured based on the interface height of the gravity separation tank. 塩類を含有する被処理水と、下限臨界温度を有する温度感応性薬剤を水に溶解した誘引溶液とを半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘引溶液に移動させ、水で希釈された希釈誘引溶液と膜濃縮水を得る正浸透膜処理装置と、前記希釈誘引溶液を前記誘引溶液の下限臨界温度以上の温度まで加温する加温手段と、前記加温手段で加温され相分離した温度感応性薬剤を主体とする濃厚溶液層と、水を主体とし少量の温度感応性薬剤を含有する希薄溶液層とに重力分離する重力分離槽と、前記重力分離槽で分離された濃厚溶液を前記誘引溶液の下限臨界温度以下の温度まで冷却した後、前記正浸透工程へ循環し、誘引溶液として再使用する冷却・循環手段と、前記重力分離工程で分離された希薄溶液を膜処理し、膜ろ過水を得る膜処理装置を有する水の脱塩処理装置であって、
前記希釈誘引溶液の下限臨界温度測定手段と、該希釈誘引溶液への疎水性物質添加手段及び/又は、親水性物質添加手段を有することを特徴とする水の脱塩処理装置。
Water to be treated containing salts is brought into contact with an attraction solution in which a temperature-sensitive drug having a lower critical temperature is dissolved in water through a semipermeable membrane, and the water in the water to be treated is attracted through the semipermeable membrane. A forward osmosis membrane treatment device that moves to the solution and obtains a diluted attraction solution diluted with water and membrane concentrated water, and a heating means for heating the diluted attraction solution to a temperature equal to or higher than a lower critical temperature of the attraction solution; A gravity separation tank that gravity-separates into a concentrated solution layer mainly composed of a temperature-sensitive drug heated and phase-separated by the heating means, and a dilute solution layer mainly composed of water and containing a small amount of the temperature-sensitive drug; Cooling / circulation means for cooling the concentrated solution separated in the gravity separation tank to a temperature equal to or lower than the lower critical temperature of the attracting solution, circulating to the forward osmosis step, and reusing as the attracting solution, and the gravity separating step Membrane treatment of the diluted solution separated by A desalination apparatus of water having a film processing apparatus for obtaining a membrane filtration water,
An apparatus for desalinating water, comprising: a lower critical temperature measuring means for the dilution-inducing solution; and a hydrophobic substance adding means and / or a hydrophilic substance-adding means to the dilution-inducing solution.
親水性物質が、アルコール、エチレングリコール含有化合物、グリセリン化合物のうちから選択される物質を含む物質であることを特徴とする請求項5に記載の水の脱塩処理装置。   The water desalting apparatus according to claim 5, wherein the hydrophilic substance is a substance containing a substance selected from alcohol, an ethylene glycol-containing compound, and a glycerin compound. 疎水性物質が、炭素数3以上のグリコール化合物、脂肪酸(塩)、ソルビタン化合物のうちから選択される物質を含む物質であることを特徴とする請求項5に記載の水の脱塩処理装置。   The water desalting apparatus according to claim 5, wherein the hydrophobic substance is a substance containing a substance selected from a glycol compound having 3 or more carbon atoms, a fatty acid (salt), and a sorbitan compound. 前記下限臨界温度測定手段が、重力分離槽の界面高さを設定し、その設定値に基づき下限臨界温度を測定する手段であることを特徴とする請求項5に記載の水の脱塩処理装置。   6. The water desalination apparatus according to claim 5, wherein the lower critical temperature measuring means is means for setting an interface height of a gravity separation tank and measuring the lower critical temperature based on the set value. .
JP2014166505A 2014-08-19 2014-08-19 Water desalination method and apparatus Expired - Fee Related JP6210033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014166505A JP6210033B2 (en) 2014-08-19 2014-08-19 Water desalination method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014166505A JP6210033B2 (en) 2014-08-19 2014-08-19 Water desalination method and apparatus

Publications (2)

Publication Number Publication Date
JP2016041411A true JP2016041411A (en) 2016-03-31
JP6210033B2 JP6210033B2 (en) 2017-10-11

Family

ID=55591521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014166505A Expired - Fee Related JP6210033B2 (en) 2014-08-19 2014-08-19 Water desalination method and apparatus

Country Status (1)

Country Link
JP (1) JP6210033B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067989A (en) * 2014-09-29 2016-05-09 大阪瓦斯株式会社 Forward osmosis membrane separation method, water treatment equipment, and power generation facility
JP2018016667A (en) * 2016-07-25 2018-02-01 株式会社Kri Temperature-sensitive phase separation fluid
JP2018108538A (en) * 2016-12-28 2018-07-12 大阪瓦斯株式会社 Forward osmosis membrane separation method and water treatment facility and power generation facility for performing the same
WO2018150690A1 (en) * 2017-02-17 2018-08-23 国立大学法人神戸大学 Water treatment method and water treatment system
WO2023058592A1 (en) * 2021-10-07 2023-04-13 東洋紡株式会社 Water treatment method and water treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110272355A1 (en) * 2009-01-29 2011-11-10 Nandakishore Rajagopalan Solvent removal and recovery from inorganic and organic solutions
US20120267308A1 (en) * 2011-04-25 2012-10-25 Trevi Systems Inc. Recovery of retrograde soluble solute for forward osmosis water treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110272355A1 (en) * 2009-01-29 2011-11-10 Nandakishore Rajagopalan Solvent removal and recovery from inorganic and organic solutions
US20120267308A1 (en) * 2011-04-25 2012-10-25 Trevi Systems Inc. Recovery of retrograde soluble solute for forward osmosis water treatment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067989A (en) * 2014-09-29 2016-05-09 大阪瓦斯株式会社 Forward osmosis membrane separation method, water treatment equipment, and power generation facility
JP2018016667A (en) * 2016-07-25 2018-02-01 株式会社Kri Temperature-sensitive phase separation fluid
JP2018108538A (en) * 2016-12-28 2018-07-12 大阪瓦斯株式会社 Forward osmosis membrane separation method and water treatment facility and power generation facility for performing the same
WO2018150690A1 (en) * 2017-02-17 2018-08-23 国立大学法人神戸大学 Water treatment method and water treatment system
JPWO2018150690A1 (en) * 2017-02-17 2019-12-12 国立大学法人神戸大学 Water treatment method and water treatment system
JP7117718B2 (en) 2017-02-17 2022-08-15 国立大学法人神戸大学 Water treatment method and water treatment system
WO2023058592A1 (en) * 2021-10-07 2023-04-13 東洋紡株式会社 Water treatment method and water treatment system

Also Published As

Publication number Publication date
JP6210033B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP6149627B2 (en) Water treatment method with semipermeable membrane
KR101987870B1 (en) Thermo-sensitive water absorbent, method of water treatment, and water treatment apparatus
JP6495207B2 (en) Recovery of retrograde solubility solutes for forward osmosis water treatment
JP6210033B2 (en) Water desalination method and apparatus
JP6149626B2 (en) Water treatment method with semipermeable membrane
JP2015192979A (en) Water treatment apparatus using semipermeable membrane
JP5900743B2 (en) Method and apparatus for treatment of associated water from a well
Sherhan et al. Produced water treatment using ultrafiltration and nanofiltration membranes
JP2014100692A (en) Water treatment method
JP2014097483A (en) Water treatment method and apparatus
KR102042043B1 (en) A Draw Solution for forward osmosis using salt of organic acid and use thereof
JP6210008B2 (en) Water treatment equipment
JP6210034B2 (en) Water desalination method and apparatus
JP2015037771A (en) Water treatment method
Karakulski et al. Production of process water using integrated membrane processes
JP6414528B2 (en) Water desalination method and apparatus
JP6210011B2 (en) Water treatment method and apparatus
JP6974797B2 (en) Forward osmosis water treatment method and equipment
JP2019155289A (en) Water treatment method and apparatus
JP2016010767A (en) Water treatment apparatus
JP2022129707A (en) Purification method and device of temperature sensitive agent aqueous solution used in forward osmosis water treatment
JP2020142162A (en) Forward osmosis water treatment method and apparatus
JP2022129709A (en) Forward osmosis desalination method and apparatus thereof
JP2020175312A (en) Normal osmosis water treatment method and device
JP6447477B2 (en) Water desalination equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6210033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees