JP2014097483A - Water treatment method and apparatus - Google Patents

Water treatment method and apparatus Download PDF

Info

Publication number
JP2014097483A
JP2014097483A JP2013004572A JP2013004572A JP2014097483A JP 2014097483 A JP2014097483 A JP 2014097483A JP 2013004572 A JP2013004572 A JP 2013004572A JP 2013004572 A JP2013004572 A JP 2013004572A JP 2014097483 A JP2014097483 A JP 2014097483A
Authority
JP
Japan
Prior art keywords
water
induction solution
butanol
tert
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013004572A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Mizukami
剛志 水上
Koji Fuchigami
浩司 渕上
Akira Kunugi
亮 功刀
Takeshi Uchiyama
武 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2013004572A priority Critical patent/JP2014097483A/en
Publication of JP2014097483A publication Critical patent/JP2014097483A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method and an apparatus capable of desalinating sea water, etc. inexpensively and easily with tenuous energy consumption.SOLUTION: The provided problem-solving method comprises: a forward osmosis step of contacting, via a semi-permeable membrane, a body of treatment target water and a leading solution obtained by dissolving a specified quantity of tert-butanol into water so as to mobilize water within the treatment target water into the leading solution via the semi-permeable membrane and obtain not only a diluted leading solution diluted with water but also membrane-concentrated water; a distillation step of feeding the diluted leading solution into a distillation column so as to obtain a tert-butanol vapor and obtain purified water; and a cooling regeneration step of regenerating the leading solution by cooling and condensing the vapor. An apparatus used for the same is also provided.

Description

本発明は、海水、かん水などを脱塩して処理する水処理方法および装置に関するものである。   The present invention relates to a water treatment method and apparatus for desalinating and treating seawater, brine, and the like.

海水を半透膜を用いて脱塩する方法は種々知られているが、海水に浸透圧以上の圧力を加えて水を強制的に透過させる逆浸透法が主に開発されてきた。この方法は高圧に加圧する必要があるため、設備費および運転費にコストがかかるという問題点がある。一方、半透膜を介して海水より高濃度の塩溶液を存在させれば、加圧せずとも浸透圧で水をこの塩溶液に移動させることができる。そして、この塩溶液として揮発性ガスを溶解させた溶液を用いれば、水が移動し希釈された塩溶液を蒸留することにより揮発性ガスを蒸発、分離させて浄水を得ることができる。この揮発性ガスとしてアンモニアと二酸化炭素の組合せを用いた方法が既に開発されている(特許文献1、2)。   Various methods for desalinating seawater using a semipermeable membrane are known, but a reverse osmosis method for forcibly permeating water by applying a pressure higher than the osmotic pressure to seawater has been mainly developed. Since this method requires pressurization to a high pressure, there is a problem that the equipment cost and operation cost are high. On the other hand, if a salt solution having a higher concentration than seawater is present through the semipermeable membrane, water can be transferred to the salt solution by osmotic pressure without applying pressure. If a solution in which a volatile gas is dissolved is used as the salt solution, purified water can be obtained by evaporating and separating the volatile gas by distilling the diluted salt solution by moving water. A method using a combination of ammonia and carbon dioxide as the volatile gas has already been developed (Patent Documents 1 and 2).

特許文献1の方法は、図4に模式的に示すように、半透膜(FO膜)を介して海水(被処理水)と反対側にアンモニアと二酸化炭素を溶解して得られる塩溶液(炭安液)を流して、海水中の水を半透膜を通過させて該塩溶液に移動させ、得られた希釈塩溶液を蒸留塔に送って水を得るとともにアンモニアと二酸化炭素と水を含む混合ガスを分離し、この混合ガスを半透膜の元の部屋に返送する方法である。   As schematically shown in FIG. 4, the method of Patent Document 1 is a salt solution obtained by dissolving ammonia and carbon dioxide on the opposite side of seawater (treated water) through a semipermeable membrane (FO membrane) ( And water in seawater is moved to the salt solution through the semipermeable membrane, and the obtained diluted salt solution is sent to a distillation tower to obtain water, and ammonia, carbon dioxide and water are In this method, the mixed gas is separated and the mixed gas is returned to the original chamber of the semipermeable membrane.

特許文献2の方法は、半透膜を介して海水と反対側にアンモニアと二酸化炭素を溶解して得られる塩溶液を流して、海水中の水を半透膜を通過させて該塩溶液に移動させ、得られた希釈塩溶液をイオン交換膜や蒸留塔等を用いてアンモニウムイオンと炭酸イオンを個別に分離して浄水を得、分離したアンモニウムイオンと炭酸イオンを溶解して半透膜の元の部屋に戻す方法である。   In the method of Patent Document 2, a salt solution obtained by dissolving ammonia and carbon dioxide is passed through a semipermeable membrane on the side opposite to seawater, and water in the seawater is passed through the semipermeable membrane into the salt solution. The obtained diluted salt solution is separated into ammonium ions and carbonate ions individually using an ion exchange membrane or distillation tower to obtain purified water, and the separated ammonium ions and carbonate ions are dissolved to dissolve the semipermeable membrane. It is a method to return to the original room.

米国特許出願公開第2005/0145568A1号明細書US Patent Application Publication No. 2005 / 0145568A1 特開2011−83663号公報JP 2011-83663 A

特許文献1、2の方法では、誘導物質(例えば炭酸アンモニウム)の再生を蒸発で行うが、アンモニアおよび同伴する水分の蒸発潜熱が膨大となり、エネルギーを要する。また、コストも高い。さらに、蒸発設備サイズが極めて大きく、大量(例えば10万m/日)の飲料水製造には不向きである。また、投入エネルギーが大きいため熱交換器のサイズも大きくなり、大量処理には不向きである。蒸発法を用いる場合は炭酸アンモニウム等の揮発性物質を使用せざるを得ないが、炭酸アンモニウムを用いる場合にはFO膜からのバックフローによって環境中に漏洩する誘導物質が窒素を含むため、富栄養化の原因となる。 In the methods of Patent Documents 1 and 2, regeneration of the inducer (for example, ammonium carbonate) is performed by evaporation. However, the latent heat of vaporization of ammonia and accompanying water is enormous and energy is required. In addition, the cost is high. Furthermore, the size of the evaporation facility is extremely large, and is not suitable for producing a large amount (for example, 100,000 m 3 / day) of drinking water. Moreover, since the input energy is large, the size of the heat exchanger is also large, which is not suitable for mass processing. When using the evaporation method, volatile substances such as ammonium carbonate must be used. However, when ammonium carbonate is used, the inducer that leaks into the environment due to backflow from the FO film contains nitrogen. Causes nutrition.

本発明は、これらの問題点を解決するべくなされたものであり、海水等から少ないエネルギーで安価で容易に脱塩できる水処理方法および装置を提供することを目的としている。   The present invention has been made to solve these problems, and an object of the present invention is to provide a water treatment method and apparatus that can be easily desalted with low energy from seawater or the like at low cost.

本発明は、上記課題を解決するべくなされたものであり、誘導物質としてtert−ブタノールが容易に高浸透圧が得られて被処理水から水を効率よく誘導溶液側に移動させることができるばかりでなく、水が移動して得られた希釈誘導溶液を蒸留することによって、少ないエネルギーで容易に水と誘導物質を分離しうることを見出して、本発明を完成するに至った。   The present invention has been made to solve the above-mentioned problems, and tert-butanol as an inducer can easily obtain a high osmotic pressure and can efficiently move water from the water to be treated to the induction solution side. In addition, the present inventors completed the present invention by finding that water and the inducer can be easily separated with less energy by distilling the diluted induction solution obtained by moving water.

すなわち、本発明は、被処理水と、所定量のtert−ブタノールを水に溶解した誘導溶液とを半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘導溶液に移動させ、水で希釈された希釈誘導溶液と膜濃縮水を得る順浸透工程と、前記希釈誘導溶液を蒸留塔に送入し、tert−ブタノール蒸気を得るとともに、浄水を得る蒸留工程と、前記蒸気を冷却、凝縮することにより前記誘導溶液を再生する冷却再生工程とを有する水処理方法と、その装置を提供するものである。   That is, in the present invention, the water to be treated and an induction solution in which a predetermined amount of tert-butanol is dissolved in water are brought into contact with each other through a semipermeable membrane, and the water in the water to be treated passes through the semipermeable membrane and the induction solution And a forward osmosis step for obtaining a dilution induction solution diluted with water and membrane concentrated water, a distillation step for feeding the dilution induction solution to a distillation tower to obtain tert-butanol vapor and obtaining purified water, The present invention provides a water treatment method having a cooling regeneration step of regenerating the induction solution by cooling and condensing the steam, and an apparatus therefor.

本発明では、tert−ブタノールを水に溶解した誘導溶液を用いることにより、被処理水との間に高い浸透圧差を得て、被処理水中の水分を誘導溶液側に効率よく移動させ、また、それによって得られた希釈誘導溶液を蒸留することによって効率よく水とtert−ブタノールを分離でき、浄水を安価に効率よく製造できる。また、tert−ブタノールは分子量が74とNHの17より大きいため、FO膜の透過速度が小さく、濃縮水への漏洩が小さいことからドロー成分の補充量が少なくてすみ、窒素を含まないため環境を汚染しない。 In the present invention, by using an induction solution in which tert-butanol is dissolved in water, a high osmotic pressure difference is obtained between the water to be treated and water in the water to be treated is efficiently moved to the induction solution side. By distilling the diluted induction solution thus obtained, water and tert-butanol can be efficiently separated, and purified water can be efficiently produced at low cost. In addition, tert-butanol has a molecular weight of 74, which is larger than 17 of NH 3 , and therefore, the permeation rate of the FO membrane is small and the leakage to the concentrated water is small. Does not pollute the environment.

本発明の一実施態様を模式的に示した図である。It is the figure which showed one embodiment of this invention typically. 本発明の他の実施態様を模式的に示した図である。It is the figure which showed the other embodiment of this invention typically. 誘導物質の分子量とそのFO膜を通過する逆流量の関係を示したグラフである。It is the graph which showed the relationship between the molecular weight of an inducer, and the reverse flow rate which passes through the FO membrane. 従来の順浸透法により脱塩する方法を模式的に示した図である。It is the figure which showed typically the method of desalting by the conventional forward osmosis method.

本発明の方法で処理される被処理水は塩分を含む水であり、海水、排水などである。排水は、シェールガス、オイルサンド、CBM(炭層メタン)、石油等を採掘する坑井からの随伴水も含まれる。   The treated water to be treated by the method of the present invention is water containing salt, such as seawater and waste water. The drainage water includes shale gas, oil sand, CBM (coal bed methane), accompanying water from a well for mining oil and the like.

随伴水は、坑井からの採掘目的物に同伴して排出される水であり、塩分、有機物、懸濁物などを含んでいる。汚濁物質の濃度としては、例えば蒸発残留物(主にNa+、K+、Ca2+、Cl-、SO4 2-など)が1,000〜100,000mg/L、有機物(油分や添加した薬剤など)がTOCとして10〜1,000mg/L、懸濁物質が100〜10,000mg/Lといった範囲で含有される。 Accompanying water is water that is discharged along with the object to be mined from the well, and includes salt, organic matter, suspended matter, and the like. Concentrations of pollutants include, for example, evaporation residues (mainly Na + , K + , Ca 2+ , Cl , SO 4 2−, etc.) of 1,000 to 100,000 mg / L, organic substances (such as oil and added chemicals) Is contained in a range of 10 to 1,000 mg / L as TOC and suspended material in a range of 100 to 10,000 mg / L.

随伴水の分離手段は問わないが、例えば沈降などで油水分離が行われている。   Although the accompanying water separation means is not limited, for example, oil-water separation is performed by sedimentation or the like.

随伴水を被処理水とする場合には、随伴水をまずろ過処理する。このろ過処理は精密膜ろ過膜を用いた濾過器で行い、ろ過膜は、精密ろ過膜として使用されている通常の膜を使用することができる。例えば、酢酸セルロース、ポリテトラフルオロエチレン、ポリスルホン、ポリ塩化ビニルなどの外、セラミック製の膜や多孔質ガラス製の膜なども利用できる。精密膜ろ過処理では、精密ろ過膜を通過した膜ろ過水と、膜を通過しないで残った膜濃縮水が得られる。
精密膜ろ過のほか、限外膜ろ過、砂ろ過等のろ過処理が用いられる。限外ろ過膜の材質は精密ろ過膜と同様のものが用いられる。
When the accompanying water is treated water, the accompanying water is first filtered. This filtration treatment is performed with a filter using a microfiltration membrane, and a normal membrane used as a microfiltration membrane can be used as the filtration membrane. For example, in addition to cellulose acetate, polytetrafluoroethylene, polysulfone, polyvinyl chloride, etc., ceramic membranes and porous glass membranes can also be used. In the micromembrane filtration treatment, membrane filtrate water that has passed through the microfiltration membrane and membrane concentrated water remaining without passing through the membrane are obtained.
In addition to precision membrane filtration, filtration treatment such as ultramembrane filtration and sand filtration is used. The material of the ultrafiltration membrane is the same as that of the microfiltration membrane.

順浸透工程
順浸透工程は、被処理水と、tert−ブタノールを水に溶解した誘導溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘導溶液に移動させ、水で希釈された希釈誘導溶液と膜濃縮水を得る工程である。
Forward osmosis process The forward osmosis process is a process in which water to be treated is brought into contact with an induction solution in which tert-butanol is dissolved in water through a semipermeable membrane, and water in the treated water is transferred to the induction solution through the semipermeable membrane. And a dilution induction solution diluted with water and membrane concentrated water.

誘導溶液には、tert−ブタノールを水に溶解した液を用いる。tert−ブタノールは消毒に用いられており人体への安全性も高い。また、ポリアクリルアミドやポリスルホン等の膜材質への影響も小さい点でも優れている。   As the induction solution, a solution obtained by dissolving tert-butanol in water is used. Tert-butanol is used for disinfection and has high safety to the human body. It is also excellent in that it has a small influence on membrane materials such as polyacrylamide and polysulfone.

図3は、誘導溶液の分子量と、半透膜を介して被処理水側へ移動する誘導溶液の質量流束を示したものである。分子量が大きいほど半透膜を透過しにくくなり、分子量74のtert−ブタノールの透過質量流束は、分子量17のNHの5%程度と非常に小さい。 FIG. 3 shows the molecular weight of the induction solution and the mass flux of the induction solution that moves to the treated water side through the semipermeable membrane. The larger the molecular weight, the more difficult it is to permeate the semipermeable membrane. The permeation mass flux of tert-butanol having a molecular weight of 74 is as small as about 5% of NH 3 having a molecular weight of 17.

誘導溶液に含まれるtert−ブタノールの濃度は、高浸透圧が得られるようなるべく高濃度にするのがよく、例えば塩濃度35,000mg/Lの被処理水の体積をFO膜装置で1/2に濃縮する場合、誘導溶液のtert−ブタノール濃度は2.6〜10mol/L、特に4.5〜10mol/Lの濃度が好ましい。蒸留温度が低いほど水蒸気の同伴が抑制されるためにtert−ブタノール濃度は高くなるが、tert−ブタノールの沸点である82℃における蒸気圧の比から10mol/Lが上限となる。   The concentration of tert-butanol contained in the induction solution is preferably as high as possible so that a high osmotic pressure can be obtained. For example, the volume of water to be treated with a salt concentration of 35,000 mg / L is ½ with the FO membrane device. In the case of concentrating in the solution, the tert-butanol concentration of the induction solution is preferably 2.6 to 10 mol / L, particularly preferably 4.5 to 10 mol / L. The lower the distillation temperature, the higher the tert-butanol concentration because the entrainment of water vapor is suppressed, but the upper limit is 10 mol / L from the ratio of the vapor pressure at 82 ° C., which is the boiling point of tert-butanol.

半透膜は水を選択的に透過できるものがよく、順浸透(Forward Osmosis)膜が好ましいが、逆浸透膜も使用できる。材質は特に制限されないが、例示すれば、酢酸セルロース系、ポリアミド系、ポリエチレンイミン系、ポリスルホン系、ポリベンゾイミダゾール系のものなどを挙げることができる。半透膜の形態も特に制限されず、平膜、管状膜、中空糸などいずれであってもよい。   The semipermeable membrane is preferably one that can selectively permeate water, and is preferably a forward osmosis membrane, but a reverse osmosis membrane can also be used. The material is not particularly limited, and examples thereof include cellulose acetate-based, polyamide-based, polyethyleneimine-based, polysulfone-based, and polybenzimidazole-based materials. The form of the semipermeable membrane is not particularly limited and may be any of a flat membrane, a tubular membrane, a hollow fiber, and the like.

この半透膜を装着する装置は通常は円筒形あるいは箱形の容器内に半透膜を設置して、この半透膜で仕切られた一方の室に膜ろ過水を流し、他方の室に誘導溶液を流せるものであり、公知の半透膜装置を用いることができ、市販品を用いることができる。   A device for mounting this semipermeable membrane is usually a semi-permeable membrane installed in a cylindrical or box-shaped container, and membrane filtered water flows into one chamber partitioned by this semipermeable membrane, and the other chamber is filled with water. The induction solution can be flowed, and a known semipermeable membrane device can be used, and a commercially available product can be used.

順浸透工程で被処理水を半透膜を介して誘導溶液と接触させると浸透圧の差によって被処理水中の水が半透膜を通って誘導溶液に移動する。   When the water to be treated is brought into contact with the induction solution through the semipermeable membrane in the forward osmosis step, the water in the water to be treated moves to the induction solution through the semipermeable membrane due to the difference in osmotic pressure.

順浸透を行う温度は5〜40℃程度が好ましい。   The temperature for forward osmosis is preferably about 5 to 40 ° C.

蒸留工程
蒸留工程は、前記浸透工程で水の移動によって希釈された希釈誘導溶液を所定の温度に調整した後、蒸留塔に送入し、塔頂部からtert−ブタノールと水蒸気からなるガスを得るとともに、塔底部からは浄水を得る工程である。
Distillation step In the distillation step, the dilution induction solution diluted by the movement of water in the permeation step is adjusted to a predetermined temperature, and then sent to the distillation column to obtain a gas composed of tert-butanol and water vapor from the top of the column. This is a process for obtaining purified water from the bottom of the tower.

本発明では、誘導物質として、従来のアンモニアに代えて、tert−ブタノールを用いているが、蒸発潜熱はNH:1,300J/g、tert−ブタノール:500J/gであり、ブタノールの方がはるかに小さい。 In the present invention, tert-butanol is used as the inducer in place of conventional ammonia, but the latent heat of vaporization is NH 3 : 1,300 J / g, tert-butanol: 500 J / g. Much smaller.

また、炭酸アンモニウム系では析出を防止するため蒸発ガス中の炭酸アンモニウム濃度が4.5mol/L以上とすることができなかったが、ブタノールではこの制約が無いため10mol/Lと高濃度化が可能である。蒸発時の同伴水蒸気が減るため加温エネルギーの削減も可能である。システムとして見ると加温エネルギーはNH:450MJ/m、ブタノール:250MJ/mと大幅な低減が可能である。これは、随伴水処理適用での試算である。 In addition, in the case of ammonium carbonate, the concentration of ammonium carbonate in the evaporation gas could not be 4.5 mol / L or more in order to prevent precipitation, but in the case of butanol there is no such restriction, so that the concentration can be increased to 10 mol / L. It is. Heating energy can be reduced because entrained water vapor during evaporation is reduced. When viewed as a system, the heating energy can be greatly reduced to NH 3 : 450 MJ / m 3 and butanol: 250 MJ / m 3 . This is a trial calculation in the application of the accompanying water treatment.

希釈誘導溶液は、蒸留塔に入れて蒸留を行い、tert−ブタノールを水から分離する。   The dilution induction solution is distilled in a distillation column to separate tert-butanol from water.

蒸留によって、蒸留塔の塔頂部からはtert−ブタノールと水蒸気からなるガスを得、塔底部からは浄水を得る。塔底部から取り出される浄水は、tert−ブタノールの含有量は10ppm程度以下で、蒸留条件等によって、1ppm以下にした水も得られる。   By distillation, a gas composed of tert-butanol and water vapor is obtained from the top of the distillation tower, and purified water is obtained from the bottom of the tower. The purified water taken out from the bottom of the tower has a tert-butanol content of about 10 ppm or less, and water with a content of 1 ppm or less can be obtained depending on the distillation conditions.

蒸留によって発生したtert−ブタノールと水蒸気の混合ガスを被処理水あるいは蒸留塔に送入する希釈誘導溶液と熱交換することにより、これらの加熱源として利用できる。   The mixed gas of tert-butanol and water vapor generated by distillation can be used as a heating source by exchanging heat with the water to be treated or the dilution induction solution fed into the distillation column.

冷却再生工程
冷却再生工程は、蒸留塔の塔頂部から取り出されるtert−ブタノールと水蒸気からなるガスを冷却し、誘導溶液を再生する工程である。
再生した誘導溶液は半透膜へ送って循環使用する。
Cooling regeneration step The cooling regeneration step is a step of regenerating the induction solution by cooling a gas composed of tert-butanol and water vapor taken from the top of the distillation column.
The regenerated induction solution is sent to the semipermeable membrane for circulation.

膜濃縮水蒸発工程
膜濃縮水蒸発工程は、膜濃縮水を蒸発濃縮し、該蒸発濃縮水に含有される塩類を析出させる工程であり、濃縮には、公知の蒸発器を用いることができる。ここで発生する水蒸気は凝縮水として利用できる。ところで、順浸透工程では半透膜からブタノールが濃縮随伴水へ若干逆流するが、これは、ここで発生する水蒸気をブタノールの蒸留塔へ導入することによって環境への漏出を防ぐことができる。蒸発濃縮した液は晶析する。晶析装置には、密閉型の通常の晶析缶を利用できる。晶析装置から取出されるスラリーは固液分離して、結晶および有機物を含んでいる母液は産廃処分されるか、あるいは重金属や有機物等の環境汚染成分をほとんど含まない場合には融雪剤等に利用することもできる。
Membrane concentrated water evaporation step The membrane concentrated water evaporation step is a step of evaporating and concentrating the membrane concentrated water to precipitate salts contained in the evaporated concentrated water, and a known evaporator can be used for concentration. The steam generated here can be used as condensed water. By the way, in the forward osmosis process, butanol slightly reversely flows from the semipermeable membrane to the concentrated accompanying water. This can prevent leakage to the environment by introducing the water vapor generated here into the distillation column of butanol. The evaporated liquid crystallizes out. For the crystallizer, a sealed normal crystallizer can be used. The slurry taken out from the crystallizer is separated into solid and liquid, and the mother liquor containing crystals and organic substances is disposed of as industrial waste or used as a snow melting agent when it contains almost no environmental contaminants such as heavy metals and organic substances. It can also be used.

上記の水処理方法は、被処理水と、所定量のtert−ブタノールを水に溶解した誘導溶液とを半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘導溶液に移動させ、水で希釈された希釈誘導溶液と膜濃縮水を得る順浸透手段と、前記希釈誘導溶液を蒸留し、tert−ブタノール蒸気と浄水を得る蒸留塔と、前記tert−ブタノール蒸気を冷却、凝縮することにより前記誘導溶液を再生する冷却再生手段とを有する水処理装置と、膜濃縮水を蒸発する蒸発器を用いて実施される。   In the above water treatment method, the water to be treated and an induction solution obtained by dissolving a predetermined amount of tert-butanol in water are brought into contact with each other through a semipermeable membrane, and the water in the water to be treated is guided through the semipermeable membrane. A forward osmosis means for obtaining a diluted induction solution diluted with water and membrane concentrated water; a distillation column for distilling the diluted induction solution to obtain tert-butanol vapor and purified water; and the tert-butanol vapor. This is carried out using a water treatment device having a cooling and regenerating means for regenerating the induction solution by cooling and condensing, and an evaporator for evaporating the membrane concentrated water.

順浸透手段
順浸透手段は、被処理水と誘導溶液とを半透膜を介して接触させ、被処理水中の水をこの半透膜を通して誘導溶液に移動させる手段であり、半透膜装置を用いる。
Forward osmosis means The forward osmosis means is a means for bringing the water to be treated and the induction solution into contact with each other through the semipermeable membrane and moving the water in the water to be treated to the induction solution through the semipermeable membrane. Use.

半透膜装置に用いる半透膜は前述したとおりである。この半透膜を装着する装置は通常は円筒形あるいは箱形の容器内に半透膜を設置して、この半透膜で仕切られた一方の室に被処理水を流し、他方の室に誘導溶液を流せるものであり、公知の半透膜装置を用いることができ、市販品を用いることができる。   The semipermeable membrane used in the semipermeable membrane device is as described above. A device for mounting this semipermeable membrane is usually a semi-permeable membrane installed in a cylindrical or box-shaped container, and water to be treated flows into one chamber partitioned by this semipermeable membrane, and the other chamber is filled with water. The induction solution can be flowed, and a known semipermeable membrane device can be used, and a commercially available product can be used.

被処理水を流す室の入口は被処理水タンク(これは海や坑井そのものであってもよい。)に配管接続される。出口側は通常は膜濃縮水タンクに配管接続される。両配管を結ぶ循環ラインを設けて、被処理水を循環させることもできる。   The entrance of the chamber through which the water to be treated flows is connected to a water tank to be treated (this may be the sea or the well itself). The outlet side is usually connected to a membrane concentrated water tank by piping. A circulation line connecting both the pipes can be provided to circulate the water to be treated.

誘導溶液を流す室の入口は冷却再生手段に配管接続され、出口は蒸留塔に配管接続され、これによって誘導溶液の循環ラインが形成される。   The inlet of the chamber through which the induction solution flows is piped to the cooling regeneration means, and the outlet is piped to the distillation column, thereby forming a circulation line for the induction solution.

蒸留塔
蒸留塔は公知のものを用いればよく、棚段方式、充填方式等いずれのものであってもよい。蒸留塔下部には加熱器を設け、下部の浄水を熱することにより発生する蒸気を上部から落下してくる希釈誘導溶液と接触させて熱交換させる。加熱器にはリボイラーや熱交換器等を用いることができる。加熱器の熱源は問わないが、発電所のタービンから出てくる復水前の蒸気や、排熱から回収される熱水などを用いることができる。熱源の温度が100℃以上の場合には常圧で蒸留を行えるが、それより低い場合は減圧する必要がある。
Distillation Tower A known distillation column may be used, and any of a shelf system, a packing system, and the like may be used. A heater is provided at the lower part of the distillation tower, and the steam generated by heating the purified water at the lower part is brought into contact with the diluted induction solution falling from the upper part to exchange heat. A reboiler, a heat exchanger, etc. can be used for a heater. Although the heat source of a heater is not ask | required, the steam before the condensate which comes out of the turbine of a power plant, the hot water collect | recovered from waste heat, etc. can be used. When the temperature of the heat source is 100 ° C. or higher, distillation can be performed at normal pressure, but when it is lower than that, it is necessary to reduce the pressure.

冷却再生手段
蒸留塔の塔頂から、塔頂ガス冷却再生手段に配管接続し、塔頂部から得られるtert−ブタノールと水蒸気からなるガスを冷却して水溶液状態にする。冷却手段は問わないが、熱交換器を用いることができる。冷却する熱源としては、特に限定されないが、河川水、海水、空気などを用いることができる。
Cooling regeneration means Pipe connection is made from the top of the distillation tower to the tower top gas cooling regeneration means, and the gas comprising tert-butanol and water vapor obtained from the tower top is cooled to form an aqueous solution. Although a cooling means is not ask | required, a heat exchanger can be used. Although it does not specifically limit as a heat source to cool, River water, seawater, air, etc. can be used.

蒸発手段
蒸発手段は、順浸透手段で得られた膜濃縮水を加熱蒸発する手段であり、通常の蒸発器や蒸発缶を使用することができる。
Evaporating means The evaporating means is means for heating and evaporating the membrane concentrated water obtained by the forward osmosis means, and a normal evaporator or evaporator can be used.

図1に示す装置を使用した。   The apparatus shown in FIG. 1 was used.

被処理水には坑井随伴水を用い、67mのポリアミド系複合平膜のFO膜を装着した半透膜装置に、30℃の随伴水を2.5L/分の流量で流入させた。半透膜装置の反対側の室には、誘導溶液として30℃の50v/v%のtert−ブタノール水溶液を0.5L/分の流量で流入させた。装置内で随伴水の水がFO膜を通って誘導溶液を希釈させ、tert−ブタノール濃度が10v/v%になった希釈誘導溶液が2.5L/分の流量で半透膜装置から流出した。 The well-accompanying water was used as the water to be treated, and the accompanying water at 30 ° C. was introduced at a flow rate of 2.5 L / min into a semipermeable membrane device equipped with a 67 m 2 polyamide composite flat membrane FO membrane. A 50 v / v% aqueous tert-butanol solution at 30 ° C. was introduced as an induction solution into the chamber on the opposite side of the semipermeable membrane device at a flow rate of 0.5 L / min. In the apparatus, the accompanying water dilutes the induction solution through the FO membrane, and the diluted induction solution having a tert-butanol concentration of 10 v / v% flows out of the semipermeable membrane apparatus at a flow rate of 2.5 L / min. .

希釈誘導溶液は蒸留塔に送入し、82℃、大気圧で蒸留した。この蒸留塔には、濃縮随伴水を蒸発器で蒸発させたtert−ブタノールを水溶液として0.6v/v%含む水蒸気を送入した。蒸留塔の塔頂部からはtert−ブタノールを水溶液として50v/v%で含む蒸気が排出され、これを凝集器で30℃に冷却凝縮して半透膜装置に戻した。tert−ブタノールはほぼ全量が循環された。   The dilution induction solution was sent to a distillation tower and distilled at 82 ° C. and atmospheric pressure. The distillation tower was fed with water vapor containing 0.6 v / v% of tert-butanol obtained by evaporating the accompanying water with an evaporator as an aqueous solution. Vapor containing tert-butanol as an aqueous solution at 50 v / v% was discharged from the top of the distillation column, and this was cooled and condensed to 30 ° C. by a coagulator and returned to the semipermeable membrane device. Nearly all of tert-butanol was circulated.

蒸留塔の塔底部からは浄水が2.0L/分の流量で流出した。この水のtert−ブタノール濃度は1mg/Lであった。   Purified water flowed out from the bottom of the distillation column at a flow rate of 2.0 L / min. The tert-butanol concentration in this water was 1 mg / L.

一方、蒸発器でさらに濃縮された濃縮随伴水は図示しない晶析缶に投入して冷却晶析し、析出した塩結晶を分離した。   On the other hand, the concentrated accompanying water further concentrated by the evaporator was put into a crystallization can (not shown), cooled and crystallized, and the deposited salt crystals were separated.

図2には、蒸発器で発生した蒸気を凝縮した後、希釈誘導溶液とともに蒸留塔へ供給する場合の装置フローを示す。
このフローでは、tert−ブタノール濃度が13v/v%になった希釈誘導溶液が凝縮水と合流して蒸留塔に送られる。
塔頂部からの蒸気のtert−ブタノールは蒸留の特長であるブタノールと水の蒸気圧の違いによる分離のために70v/v%に上昇している。すなわち、同じ温度で比べると蒸気圧の大きなブタノールがよりガス化して上に上がる。一方で、蒸気圧の小さな水は下に落ちていき、塔内で分離される。そのため、塔頂部からの蒸気のブタノールの濃度が上昇している。
FIG. 2 shows an apparatus flow when the vapor generated in the evaporator is condensed and then supplied to the distillation tower together with the dilution induction solution.
In this flow, the diluted induction solution having a tert-butanol concentration of 13 v / v% is combined with condensed water and sent to the distillation column.
Vapor tert-butanol from the top of the column rises to 70 v / v% due to the difference in the vapor pressure of butanol and water, which is a feature of distillation. That is, when compared at the same temperature, butanol having a high vapor pressure is gasified and rises upward. On the other hand, water with low vapor pressure falls down and is separated in the tower. Therefore, the concentration of butanol in the vapor from the top of the tower is increasing.

その結果、坑井随伴水から安価に効率よく浄水を製造することができ、さらに半透膜から濃縮随伴水へ漏出するわずかな誘導溶液も、蒸発器で水と共に蒸発させた蒸気または、その凝縮水を蒸留塔で再度蒸留することにより回収することが可能であった。   As a result, it is possible to efficiently produce purified water from well-associated water at low cost, and even a slight induction solution that leaks from the semipermeable membrane to the concentrated water can be evaporated with water evaporated by the evaporator or its condensation. It was possible to recover the water by distilling again in the distillation column.

本発明の方法は、海水から淡水の製造や、坑井からの随伴水の処理などに広く利用できる。   The method of the present invention can be widely used for production of fresh water from seawater, treatment of associated water from a well, and the like.

Claims (6)

被処理水と、所定量のtert−ブタノールを水に溶解した誘導溶液とを半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘導溶液に移動させ、水で希釈された希釈誘導溶液と膜濃縮水を得る順浸透工程と、前記希釈誘導溶液を蒸留塔に送入し、tert−ブタノール蒸気を得るとともに、浄水を得る蒸留工程と、前記蒸気を冷却、凝縮することにより前記誘導溶液を再生する冷却再生工程とを有する水処理方法。   The water to be treated is brought into contact with the induction solution in which a predetermined amount of tert-butanol is dissolved in water through a semipermeable membrane, and the water in the water to be treated is transferred to the induction solution through the semipermeable membrane, A forward osmosis step for obtaining a diluted dilution induction solution and membrane concentrated water, a distillation step for feeding the dilution induction solution to a distillation column to obtain tert-butanol vapor and obtaining purified water, and cooling and condensing the vapor. A water treatment method comprising: a cooling regeneration step for regenerating the induction solution. 前記膜濃縮水を加熱、蒸発させ、前記被処理水中の塩類を回収するとともに、発生した蒸気またはその凝縮水を前記蒸留塔に供給することを特徴とする請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the membrane concentrated water is heated and evaporated to recover salts in the water to be treated, and the generated steam or condensed water thereof is supplied to the distillation tower. 前記被処理水および/または蒸留塔に送入する前記希釈誘導溶液の温度を、前記tert−ブタノール蒸気と熱交換することにより調整することを特徴とする請求項1または請求項2に記載の水処理方法。   The water according to claim 1 or 2, wherein the temperature of the dilution induction solution fed to the water to be treated and / or the distillation column is adjusted by heat exchange with the tert-butanol vapor. Processing method. 被処理水と、所定量のtert−ブタノールを水に溶解した誘導溶液とを半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘導溶液に移動させ、水で希釈された希釈誘導溶液と膜濃縮水を得る順浸透手段と、前記希釈誘導溶液を蒸留し、tert−ブタノール蒸気と浄水を得る蒸留塔と、前記tert−ブタノール蒸気を冷却、凝縮することにより前記誘導溶液を再生する冷却再生手段とを有する水処理装置。   The water to be treated is brought into contact with the induction solution in which a predetermined amount of tert-butanol is dissolved in water through a semipermeable membrane, and the water in the water to be treated is transferred to the induction solution through the semipermeable membrane, Forward osmosis means for obtaining a diluted dilution induction solution and membrane concentrated water, a distillation column for distilling the dilution induction solution to obtain tert-butanol vapor and purified water, and cooling and condensing the tert-butanol vapor. A water treatment device having cooling and regeneration means for regenerating the induction solution. 前記順浸透手段で得られた膜濃縮水を加熱、蒸発する蒸発手段と、前記蒸発手段で発生した蒸気またはその凝縮水を前記蒸留塔に供給する手段を有することを特徴とする請求項4に記載の水処理装置。   5. The apparatus according to claim 4, further comprising: an evaporation unit that heats and evaporates the membrane concentrated water obtained by the forward osmosis unit; and a unit that supplies the vapor generated by the evaporation unit or condensed water thereof to the distillation column. The water treatment apparatus as described. 前記被処理水および/または前記希釈誘導溶液と前記tert−ブタノール蒸気との熱交換手段を有することを特徴とする請求項4または請求項5に記載の水処理装置。   6. The water treatment apparatus according to claim 4, further comprising a heat exchange means for the water to be treated and / or the dilution induction solution and the tert-butanol vapor.
JP2013004572A 2012-10-17 2013-01-15 Water treatment method and apparatus Pending JP2014097483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013004572A JP2014097483A (en) 2012-10-17 2013-01-15 Water treatment method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012229498 2012-10-17
JP2012229498 2012-10-17
JP2013004572A JP2014097483A (en) 2012-10-17 2013-01-15 Water treatment method and apparatus

Publications (1)

Publication Number Publication Date
JP2014097483A true JP2014097483A (en) 2014-05-29

Family

ID=50939978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004572A Pending JP2014097483A (en) 2012-10-17 2013-01-15 Water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2014097483A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104402160A (en) * 2014-11-28 2015-03-11 山东省环科院环境工程有限公司 Energy-saving coal chemical engineering wastewater deep treatment system and treatment method thereof
CN105399184A (en) * 2015-12-23 2016-03-16 哈尔滨锅炉厂有限责任公司 Forward-osmosis seawater desalination and multiple-effect evaporation crystallization combined salt production device and salt production method
JP2016049500A (en) * 2014-09-01 2016-04-11 株式会社Kri Draw solution and forward osmosis water treatment method
JP2016087504A (en) * 2014-10-30 2016-05-23 株式会社日立製作所 Desalination system and desalination method
JP2016087494A (en) * 2014-10-30 2016-05-23 株式会社日立製作所 Desalination system and desalination method
JP2016155078A (en) * 2015-02-24 2016-09-01 旭化成株式会社 Forward osmosis treatment system
CN111056678A (en) * 2019-11-26 2020-04-24 山西云海川环保科技有限公司 Sewage treatment and saline-alkali soil improvement system and process based on forward osmosis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016049500A (en) * 2014-09-01 2016-04-11 株式会社Kri Draw solution and forward osmosis water treatment method
JP2016087504A (en) * 2014-10-30 2016-05-23 株式会社日立製作所 Desalination system and desalination method
JP2016087494A (en) * 2014-10-30 2016-05-23 株式会社日立製作所 Desalination system and desalination method
CN104402160A (en) * 2014-11-28 2015-03-11 山东省环科院环境工程有限公司 Energy-saving coal chemical engineering wastewater deep treatment system and treatment method thereof
CN104402160B (en) * 2014-11-28 2016-07-06 山东省环科院环境工程有限公司 A kind of energy-saving coal wastewater from chemical industry advanced treatment system and processing method thereof
JP2016155078A (en) * 2015-02-24 2016-09-01 旭化成株式会社 Forward osmosis treatment system
CN105399184A (en) * 2015-12-23 2016-03-16 哈尔滨锅炉厂有限责任公司 Forward-osmosis seawater desalination and multiple-effect evaporation crystallization combined salt production device and salt production method
CN111056678A (en) * 2019-11-26 2020-04-24 山西云海川环保科技有限公司 Sewage treatment and saline-alkali soil improvement system and process based on forward osmosis

Similar Documents

Publication Publication Date Title
US10315936B2 (en) Forward osmosis separation processes
JP2014097483A (en) Water treatment method and apparatus
Kim A review of desalting process techniques and economic analysis of the recovery of salts from retentates
AU2009259824B2 (en) Forward osmosis separation processes
US8187464B2 (en) Apparatus and process for desalination of brackish water using pressure retarded osmosis
US9822021B2 (en) Forward osmosis separation processes
El-Zanati et al. Integrated membrane–based desalination system
US20050145568A1 (en) Osmotic desalination process
JP5900743B2 (en) Method and apparatus for treatment of associated water from a well
US20180370816A1 (en) Systems and methods for recovery of purified water and concentrated brine
US20170369337A1 (en) Enhanced brine concentration with osmotically driven membrane systems and processes
US20130233797A1 (en) Methods for osmotic concentration of hyper saline streams
KR102006120B1 (en) Apparatus for treating brine discharged from desalination process of sea water
Wan Osman et al. A review on recent progress in membrane distillation crystallization
Mutlu-Salmanli et al. Boron removal and recovery via vacuum assisted air gap membrane distillation-crystallization (VAGMD-C): A pilot-scale study
JP2014100692A (en) Water treatment method
JP5910466B2 (en) Water purification manufacturing method and apparatus
EP2310325B1 (en) Method and system for supercritical removal of an inorganic compound
EP3517508A1 (en) Zero liquid discharge treatment process for recovering water from a contaminated liquid effluent for its subsequent reuse
KR20130017933A (en) Forward osmotic desalination device using membrane distillation method in which a part of draw solution is directly fed to a forward osmotic type separator
JP2015037771A (en) Water treatment method
JP5900745B2 (en) Fresh water production method and fresh water production apparatus
US20240123400A1 (en) Systems and methods for integrated direct air carbon dioxide capture and desalination mineral recovery
JP2022129707A (en) Purification method and device of temperature sensitive agent aqueous solution used in forward osmosis water treatment
JP2013094714A (en) Method and device for preparing purified water