JP2015037771A - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP2015037771A
JP2015037771A JP2013169358A JP2013169358A JP2015037771A JP 2015037771 A JP2015037771 A JP 2015037771A JP 2013169358 A JP2013169358 A JP 2013169358A JP 2013169358 A JP2013169358 A JP 2013169358A JP 2015037771 A JP2015037771 A JP 2015037771A
Authority
JP
Japan
Prior art keywords
water
temperature
phase transition
transition temperature
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013169358A
Other languages
Japanese (ja)
Inventor
渕上 浩司
Koji Fuchigami
浩司 渕上
辻 猛志
Takeshi Tsuji
猛志 辻
藤原 茂樹
Shigeki Fujiwara
茂樹 藤原
亮 功刀
Akira Kunugi
亮 功刀
江梨 渡辺
Eri Watanabe
江梨 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2013169358A priority Critical patent/JP2015037771A/en
Publication of JP2015037771A publication Critical patent/JP2015037771A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method in which fresh water can easily be produced from seawater or the like with low energy and at a low cost.SOLUTION: The water treatment method comprises: a forward osmosis step of bringing the water to be treated into contact with an induction solution, which is prepared by dissolving a temperature-sensitive substance in water, which substance has phase transition temperature, is hydrophilized when heated to the temperature equal to or higher than the phase transition temperature and is hydrophobized when cooled to the temperature equal to or lower than the phase transition temperature, while interposing a semipermeable membrane therebetween to move the water in the water to be treated to the induction solution through the semipermeable membrane and obtain the dilute induction solution diluted with the water and membrane-concentrated water; a cooling step of cooling the dilute induction solution to the temperature equal to or lower than the phase transition temperature; a solid-liquid separation step of subjecting the cooled dilute induction solution, which is cooled at the cooling step and contains the hydrophobized temperature-sensitive substance, to solid-liquid separation to obtain fresh water and a temperature-sensitive substance-concentrated solution; and a warming step of warming the temperature-sensitive substance-concentrated solution, which is separated at the solid-liquid separation step, to the temperature equal to or higher than the phase transition temperature to regenerate the induction solution. A water treatment device is also provided.

Description

本発明は、海水、かん水などの被処理水から淡水を製造する水処理方法に関するものである。   The present invention relates to a water treatment method for producing fresh water from water to be treated such as seawater and brine.

海水から半透膜を用いて淡水を製造する方法は種々知られているが、海水に浸透圧以上の圧力を加えて水を強制的に透過させる逆浸透法が主に開発されてきた。しかし、この方法は高圧に加圧する必要があるため、設備費および運転費にコストがかかるという問題点がある。そこで、半透膜を介して海水と海水より高濃度の塩溶液を接触させ、加圧せずとも浸透圧により海水中の水をこの塩溶液に移動させ、分離、回収することにより淡水を製造する方法が開発されている(特許文献1、2)。   Various methods for producing fresh water from seawater using a semipermeable membrane are known, but a reverse osmosis method for forcibly permeating water by applying a pressure higher than the osmotic pressure to seawater has been mainly developed. However, since this method needs to be pressurized to a high pressure, there is a problem that the equipment cost and the operation cost are high. Therefore, seawater and salt solution with a higher concentration than seawater are brought into contact with each other through a semipermeable membrane, and water in seawater is transferred to this salt solution by osmotic pressure without being pressurized, and separated and recovered to produce fresh water. Have been developed (Patent Documents 1 and 2).

特許文献1の方法は、被処理水を第1半透膜の一方の面に接触させるとともに、溶解度が温度に依存する仲介溶液を相対的に高温の状態で第1半透膜の他方の面に接触させ、被処理水の水分を第1半透膜を介して仲介溶液に吸収させる水分吸収工程と、水分吸収工程後の仲介溶液を相対的に低温にし、前記仲介溶液の溶質(仲介物質)を析出させる析出工程と、析出工程後の仲介溶液を第2半透膜に、仲介溶液の水分が第2半透膜を介して放出可能な液圧にて接触させる水分放出工程とを備えた淡水製造方法である。   In the method of Patent Document 1, the water to be treated is brought into contact with one surface of the first semipermeable membrane, and the other surface of the first semipermeable membrane is kept at a relatively high temperature in an intermediate solution whose solubility depends on temperature. A moisture absorption step for allowing the intermediary solution to absorb the moisture of the water to be treated through the first semipermeable membrane, and the intermediary solution after the moisture absorption step to be at a relatively low temperature, And a moisture releasing step of bringing the mediator solution after the depositing step into contact with the second semipermeable membrane at a fluid pressure that allows the moisture of the mediator solution to be released through the second semipermeable membrane. Fresh water production method.

特許文献2の方法は、半透膜を介して海水と反対側にアンモニアと二酸化炭素を溶解して得られる塩溶液を流して、海水中の水を半透膜を通過させて該塩溶液に移動させ、得られた希釈塩溶液をイオン交換膜や蒸留塔等を用いてアンモニウムイオンと炭酸イオンを個別に分離して淡水を得るとともに、分離したアンモニウムイオンと炭酸イオンを該塩溶液に溶解して半透膜の元の部屋に戻す方法である。   In the method of Patent Document 2, a salt solution obtained by dissolving ammonia and carbon dioxide is passed through a semipermeable membrane on the side opposite to seawater, and water in the seawater is passed through the semipermeable membrane into the salt solution. The obtained diluted salt solution is separated into ammonium ions and carbonate ions individually using an ion exchange membrane or a distillation tower to obtain fresh water, and the separated ammonium ions and carbonate ions are dissolved in the salt solution. This is the method of returning to the original room of the semipermeable membrane.

この方法を図示すると図4のようになり、半透膜であるFO(Forward Osmosis)膜を介して海水と反対側にアンモニアと二酸化炭素を溶解して得られた塩溶液を流して、浸透圧の差で海水中の水をFO膜を通過させて該塩溶液に移動させ、その水によって希釈された希釈塩溶液を蒸留塔に送り込んで、60℃に加温してアンモニアと二酸化炭素を蒸発分離して淡水を取り出すとともに、分離されたアンモニアと二酸化炭素は30℃に冷却して塩溶液に再生し、FO膜モジュールに返送する。この方法で必要な再生エネルギーは360MJ/mであり、送水コストは1,300円/mになる。 This method is illustrated in FIG. 4, and a salt solution obtained by dissolving ammonia and carbon dioxide is flowed through the FO (Forward Osmosis) membrane, which is a semipermeable membrane, to the opposite side of the seawater. The water in seawater is moved to the salt solution through the FO membrane due to the difference between the two, and the diluted salt solution diluted with the water is sent to the distillation tower and heated to 60 ° C. to evaporate ammonia and carbon dioxide. The separated ammonia and carbon dioxide are separated and the separated ammonia and carbon dioxide are cooled to 30 ° C., regenerated into a salt solution, and returned to the FO membrane module. The regeneration energy required by this method is 360 MJ / m 3 , and the water supply cost is 1,300 yen / m 3 .

特開2010−162527号公報JP 2010-162527 A 特開2011−83663号公報JP 2011-83663 A

特許文献1の方法では、仲介物質、すなわち高浸透圧溶液としてミョウバン水溶液が用いられるが、ミョウバンは温度上昇に対する溶解度の上昇が緩いため、ミョウバン水溶液を水分吸収工程では60℃に加温し、析出工程では30℃に冷却するというように、液温の調整幅が大きく、設備運転コストが高いという問題がある。また、例えば、カリミョウバンの場合、pHが3に近く、装置の腐食が生じやすいという問題もある。   In the method of Patent Document 1, an aqueous solution of alum is used as a mediator, that is, a hyperosmotic solution. In the process, there is a problem that the liquid temperature adjustment range is large and the equipment operation cost is high, such as cooling to 30 ° C. Further, for example, in the case of potash alum, there is a problem that the pH is close to 3 and the apparatus is easily corroded.

また、特許文献2の方法では、誘導物質(例えば炭酸アンモニウム)の分離、回収を蒸発法で行うが、その際、アンモニアおよび同伴する水分の蒸発潜熱が多大で、膨大なエネルギーを要しコストも高い。さらに、蒸発設備サイズが極めて大きく、大量(例えば10万m/日)の飲料水製造には不向きである。また、投入エネルギーが大きいため熱交換器のサイズも大きくなり、大量処理には不向きである。さらに、炭酸アンモニウムを用いる場合にはFO膜からのバックフローによって膜濃縮水を介して環境中に漏洩する誘導物質が窒素を含むため、富栄養化の原因となる。 In the method of Patent Document 2, the induction substance (for example, ammonium carbonate) is separated and recovered by an evaporation method. At that time, the latent heat of vaporization of ammonia and accompanying water is enormous, requiring enormous energy and cost. high. Furthermore, the size of the evaporation facility is extremely large, and is not suitable for producing a large amount (for example, 100,000 m 3 / day) of drinking water. Moreover, since the input energy is large, the size of the heat exchanger is also large, which is not suitable for mass processing. Further, when ammonium carbonate is used, an inducer that leaks into the environment through the membrane concentrated water due to backflow from the FO membrane contains nitrogen, which causes eutrophication.

本発明は、これらの問題点を解決するべくなされたものであり、海水等から少ないエネルギーで安価で容易に淡水を製造することのできる水処理方法を提供することを目的としている。   The present invention has been made to solve these problems, and an object of the present invention is to provide a water treatment method that can easily produce fresh water from seawater or the like with less energy and at low cost.

本発明は、上記課題を解決するべくなされたものであり、相転移温度を有し、この相転移温度以上に加温すると親水性化し、相転移温度以下に冷却すると疎水性化する感温性物質を水に溶解して調製した高浸透圧の誘導溶液を用いて順浸透膜処理を行い、得られた希釈誘導溶液を前記相転移温度以下に冷却して感温性物質を疎水性化して析出させ、これを分離することで、海水等から少ないエネルギーで安価で容易に淡水を得ることができることを見出し、本発明を完成するに至った。   The present invention has been made in order to solve the above-mentioned problems, and has a phase transition temperature, and becomes hydrophilic when heated to a temperature higher than this phase transition temperature and becomes hydrophobic when cooled to a temperature lower than the phase transition temperature. A forward osmosis membrane treatment is carried out using a high osmotic pressure induction solution prepared by dissolving the substance in water, and the resulting dilution induction solution is cooled below the phase transition temperature to make the thermosensitive substance hydrophobic. It was discovered that by separating and separating this, fresh water can be obtained easily and inexpensively from seawater and the like, and the present invention has been completed.

すなわち、本発明は被処理水と、相転移温度を有し、前記相転移温度以上に加温すると親水性化し、前記相転移温度以下に冷却すると疎水性化する感温性物質を水に溶解した誘導溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘導溶液に移動させ、水で希釈された希釈誘導溶液と膜濃縮水を得る順浸透工程と、前記希釈誘導溶液を前記相転移温度以下に冷却する冷却工程と、前記冷却工程で冷却され、疎水性化した感温性物質を希釈誘導溶液から固液分離し、淡水と感温性物質濃縮液を得る固液分離工程と、前記固液分離工程で分離された感温性物質濃縮液を前記相転移温度以上に加温し、誘導溶液を再生する加温工程とを有することを特徴とする水処理方法を提供するものである。   That is, the present invention dissolves in water water to be treated and a temperature-sensitive substance that has a phase transition temperature, becomes hydrophilic when heated above the phase transition temperature, and becomes hydrophobic when cooled below the phase transition temperature. Forward osmosis step of contacting the induced solution through a semipermeable membrane, transferring the water in the treated water to the induced solution through the semipermeable membrane, and obtaining a diluted induced solution and membrane concentrated water diluted with water; A cooling step for cooling the dilution-inducing solution below the phase transition temperature; and a temperature-sensitive material that has been cooled and hydrophobized in the cooling step is separated from the dilution-inducing solution by solid-liquid separation to concentrate fresh water and the temperature-sensitive material. A solid-liquid separation step for obtaining a liquid; and a heating step for regenerating the induction solution by heating the temperature-sensitive substance concentrated liquid separated in the solid-liquid separation step above the phase transition temperature. A water treatment method is provided.

本発明の方法は以下の態様を含んでいる。
(1)前記固液分離工程における固液分離手段が、粒径100nm以上の粒子を分離可能なろ過膜、遠心分離、比重分離のいずれかによる手段であることを特徴とする上記の水処理方法。
(2)感温性物質の相転移温度が、30℃〜80℃の範囲にあることを特徴とする上記の水処理方法。
(3)固液分離工程において分離された感温性物質濃縮液を冷却工程における冷熱源として使用することを特徴とする上記の水処理方法。
(4)順浸透工程において得られた希釈誘導溶液を加温工程における熱源として使用することを特徴とする上記の水処理方法。
(5)前記感温性物質が、アルコールおよび脂肪酸グリセリンエステルの混合物であることを特徴とする上記の水処理方法。
The method of the present invention includes the following aspects.
(1) The water treatment method as described above, wherein the solid-liquid separation means in the solid-liquid separation step is any one of a filtration membrane capable of separating particles having a particle size of 100 nm or more, centrifugal separation, and specific gravity separation. .
(2) The water treatment method as described above, wherein the phase transition temperature of the thermosensitive substance is in the range of 30 ° C to 80 ° C.
(3) The water treatment method described above, wherein the temperature-sensitive substance concentrate separated in the solid-liquid separation step is used as a cold heat source in the cooling step.
(4) The water treatment method described above, wherein the dilution induction solution obtained in the forward osmosis step is used as a heat source in the heating step.
(5) The water treatment method as described above, wherein the thermosensitive substance is a mixture of alcohol and fatty acid glycerin ester.

本発明は、また、被処理水と、相転移温度を有し、前記相転移温度以上に加温すると親水性化し、前記相転移温度以下に冷却すると疎水性化する感温性物質を水に溶解した誘導溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘導溶液に移動させ、水で希釈された希釈誘導溶液と膜濃縮水を得る順浸透膜処理装置と、前記希釈誘導溶液を前記相転移温度以下に冷却する冷却手段と、前記冷却手段で冷却され、疎水性化した感温性物質を希釈誘導溶液から固液分離し、淡水と感温性物質濃縮液を得る固液分離装置と、前記固液分離装置で分離された感温性物質濃縮液を前記相転移温度以上に加温し、誘導溶液を再生する加温手段とを有することを特徴とする水処理装置を提供するものである。   The present invention also provides water to be treated and a temperature-sensitive substance that has a phase transition temperature, becomes hydrophilic when heated to the phase transition temperature or higher, and becomes hydrophobic when cooled to the phase transition temperature or lower. A forward osmosis membrane in which a dissolved induction solution is contacted through a semipermeable membrane, and water in the water to be treated is transferred to the induction solution through the semipermeable membrane to obtain a diluted induction solution and membrane concentrated water diluted with water. A treatment device, a cooling means for cooling the dilution-inducing solution below the phase transition temperature, and a thermosensitive substance that has been cooled and hydrophobized by the cooling means is separated from the dilution-inducing solution by solid-liquid separation, and fresh water and temperature sensitive A solid-liquid separation device for obtaining a concentrated concentrate, and a heating means for regenerating the induction solution by heating the temperature-sensitive substance concentrate separated by the solid-liquid separation device to a temperature higher than the phase transition temperature. The water treatment apparatus characterized by this is provided.

本発明の装置は以下の態様を含んでいる。
(1)前記固液分離装置が、粒径100nm以上の粒子を分離可能なろ過膜、遠心分離、比重分離のいずれかによる装置であることを特徴とする上記の水処理装置。
(2)前記感温性物質が、アルコールおよび脂肪酸グリセリンエステルの混合物であることを特徴とする上記の水処理装置。
(3)感温性物質の相転移温度が、30℃〜80℃の範囲にあることを特徴とする上記の水処理装置。
The apparatus of the present invention includes the following aspects.
(1) The water treatment apparatus described above, wherein the solid-liquid separation apparatus is an apparatus based on any one of a filtration membrane, centrifugal separation, and specific gravity separation capable of separating particles having a particle size of 100 nm or more.
(2) The water treatment apparatus as described above, wherein the thermosensitive substance is a mixture of alcohol and fatty acid glycerin ester.
(3) The water treatment apparatus as described above, wherein the phase transition temperature of the thermosensitive substance is in the range of 30 ° C to 80 ° C.

例えば、本発明の感温性物質であるアルコールと脂肪酸グリセリンエステルの混合物(ドロー)は高温で溶解し、冷却すると析出して白濁する。この白濁状態では分子が互いに集まり見かけ上の分子数が大幅に減少するため、浸透圧が劇的に低下する。凝集状態でUF膜ろ過すると、ドローは膜で排除され、ろ液として純水が得られる。濃縮液は凝集したドローである。これを加温すると再溶解して再生ドローが得られる。再溶解した再生ドローにおいてはドローが分散しているため、所定の高い浸透圧が得られる。再生ドローを半透膜装置に導入し、フィード溶液を膜を介して接触することにより、フィード溶液から純水を得る。この方式では蒸発法と異なり相変化のための潜熱を用いる必要が無いため、投入熱量はきわめて小さい。また、固液分離膜においては凝集してドローが粗大化するため、UFやMFのようなRO・NFに比べて目の粗い膜を用いても高い透過流速でろ過することができる。この際の浸透圧が低いため、ろ過動力は極めて小さい。   For example, a mixture (draw) of alcohol and fatty acid glycerin ester, which is a temperature-sensitive substance of the present invention, dissolves at a high temperature and precipitates and becomes cloudy when cooled. In this cloudy state, the molecules gather together and the apparent number of molecules is greatly reduced, so the osmotic pressure is dramatically reduced. When the UF membrane is filtered in the aggregated state, the draw is removed by the membrane, and pure water is obtained as the filtrate. The concentrate is an agglomerated draw. When this is heated, it is re-dissolved and a regenerated draw is obtained. In the redrawn regenerated draw, since the draw is dispersed, a predetermined high osmotic pressure can be obtained. Pure water is obtained from the feed solution by introducing the regenerative draw into the semipermeable membrane device and contacting the feed solution through the membrane. Unlike the evaporation method, this method does not require the use of latent heat for phase change, so the input heat amount is extremely small. In addition, since the solid-liquid separation membrane aggregates and the draw becomes coarse, it can be filtered at a high permeation flow rate even if a membrane having a coarser mesh is used than RO / NF such as UF and MF. Since the osmotic pressure at this time is low, the filtration power is extremely small.

本発明では、感温性物質を溶解した誘導溶液を用いることにより、順浸透膜処理における淡水分離と誘導溶液の再生の際の温度調整幅を小さくし、海水などから安価な設備、少ないエネルギーで効率よく淡水を取得できる。   In the present invention, by using the induction solution in which the thermosensitive substance is dissolved, the temperature adjustment range during the separation of the fresh water and the regeneration of the induction solution in the forward osmosis membrane treatment is reduced. Fresh water can be obtained efficiently.

本発明の一実施態様を模式的に示した図である。It is the figure which showed one embodiment of this invention typically. t−ブタノールと脂肪酸グリセリンエステルの混合物濃度と相転移温度の関係を示すグラフである。It is a graph which shows the relationship between the mixture density | concentration of t-butanol and fatty-acid glycerol ester, and a phase transition temperature. 誘導溶液の液温と光透過率の関係を示すグラフである。It is a graph which shows the relationship between the liquid temperature of an induction | guidance | derivation solution, and light transmittance. 従来の順浸透法により脱塩する方法を模式的に示した図である。It is the figure which showed typically the method of desalting by the conventional forward osmosis method.

図1に本発明の一実施態様を模式的に示す。 FIG. 1 schematically shows an embodiment of the present invention.

本発明の方法で処理される被処理水は水を溶媒とする溶液であり、海水、かん水などである。かん水は、
シェールガス、オイルサンド、CBM(炭層メタン)、石油等を採掘する坑井からの随伴水も含まれる。
The water to be treated to be treated by the method of the present invention is a solution using water as a solvent, such as seawater or brine. Brine is
Also included are associated water from wells that mine shale gas, oil sands, CBM (coal bed methane), oil and the like.

随伴水は、坑井からの採掘目的物に同伴して排出される水であり、塩分、有機物、懸濁物などを含んでいる。汚濁物質の濃度としては、例えば蒸発残留物(主にNa、K、Ca2+、Cl、SO 2−など)が1,000〜100,000mg/L、有機物(油分や添加した薬剤など)がTOCとして10〜1,000mg/L、懸濁物質が100〜10,000mg/Lといった範囲で含有される。 Accompanying water is water that is discharged along with the object to be mined from the well, and includes salt, organic matter, suspended matter, and the like. Concentrations of pollutants include, for example, evaporation residues (mainly Na + , K + , Ca 2+ , Cl , SO 4 2−, etc.) of 1,000 to 100,000 mg / L, organic substances (oil or added chemicals) Etc.) in the range of 10 to 1,000 mg / L as the TOC and the suspended substance in the range of 100 to 10,000 mg / L.

油分と随伴水の分離手段は問わないが、例えば沈降などで油水分離が行われている。   There is no limitation on the means for separating oil and associated water, but oil-water separation is performed, for example, by sedimentation.

ろ過工程
図1に示していないが、被処理水を通常はまずろ過処理する。このろ過処理は精密膜ろ過膜を用いた濾過器で行い、ろ過膜は、精密ろ過膜として使用されている通常の膜を使用することができる。例えば、酢酸セルロース、ポリテトラフルオロエチレン、ポリスルホン、ポリ塩化ビニルなどの外、セラミック製の膜や多孔質ガラス製の膜なども利用できる。精密膜ろ過処理では、精密ろ過膜を通過した膜ろ過水と、膜を通過しないで残った膜濃縮水が得られる。
精密膜ろ過のほか、限外膜ろ過、砂ろ過等のろ過処理が用いられる。限外膜ろ過の材質は精密膜ろ過と同様のものが用いられる。
Filtration step Although not shown in FIG. 1, the water to be treated is usually first filtered. This filtration treatment is performed with a filter using a microfiltration membrane, and a normal membrane used as a microfiltration membrane can be used as the filtration membrane. For example, in addition to cellulose acetate, polytetrafluoroethylene, polysulfone, polyvinyl chloride, etc., ceramic membranes and porous glass membranes can also be used. In the micromembrane filtration treatment, membrane filtrate water that has passed through the microfiltration membrane and membrane concentrated water remaining without passing through the membrane are obtained.
In addition to precision membrane filtration, filtration treatment such as ultramembrane filtration and sand filtration is used. The material for the ultrafiltration is the same as that for precision membrane filtration.

順浸透工程
順浸透工程は、ろ過処理した被処理水と、相転移温度を有し、この相転移温度以上に加温すると親水性化し、相転移温度以下に冷却すると疎水性化する感温性物質を水に溶解した高浸透圧の誘導溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘導溶液に移動させ、水で希釈された希釈誘導溶液と膜濃縮水を得る工程である。
The forward osmosis process The forward osmosis process has the water to be treated and the phase transition temperature. It becomes hydrophilic when heated above this phase transition temperature and becomes hydrophobic when cooled below the phase transition temperature. A high osmotic pressure induction solution in which a substance is dissolved in water is contacted through a semipermeable membrane, and water in the water to be treated is transferred to the induction solution through the semipermeable membrane, and a diluted induction solution diluted with water and This is a step of obtaining membrane concentrated water.

感温性物質は、加温すると親水性化して水によく溶けるが、冷却すると疎水性化し溶解度が低下する物質であり、水溶性〜水不溶性に変化する温度が相転移温度と呼ばれる。この温度に達すると疎水性化した感温性物質が析出して白濁が起こる。   A temperature-sensitive substance is a substance that becomes hydrophilic and dissolves well in water when heated, but becomes hydrophobic and decreases in solubility when cooled, and the temperature at which it changes from water-soluble to water-insoluble is called the phase transition temperature. When this temperature is reached, the temperature-sensitive material that has become hydrophobic is deposited, resulting in white turbidity.

この感温性物質の例として、脂肪酸グリセリンエステルとアルコールの混合物がある。   An example of this temperature sensitive substance is a mixture of fatty acid glycerin ester and alcohol.

脂肪酸グリセリンエステルは、単独では、曇点が常温(10℃)以下の疎水性のものであり、脂肪酸は炭素数が8〜18程度のものが天然由来の組成と同じであるため好ましい。例示すれば、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸などである。そして、脂肪酸グリセリンエステルは、これらの脂肪酸のモノ、ジ、トリのいずれのエステルでもよい。具体例としてはモノグリセリンカプリル酸エステルや脂肪酸の鎖長の長いジグリセリンラウリル酸エステル、モノグリセリンステアリン酸エステル、ジグリセリンオレイン酸エステルなどがある。また、グリセリン数は脂肪酸グリセリンエステルの疎水性が保たれれば特に制約はないが、工業生産されているのはデカグリセリンまでの物質が多い。   The fatty acid glycerin ester alone is a hydrophobic one having a cloud point of room temperature (10 ° C.) or less, and a fatty acid having about 8 to 18 carbon atoms is preferable because it has the same natural composition. Examples include caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid and the like. The fatty acid glycerin ester may be any of mono-, di-, and tri-esters of these fatty acids. Specific examples include monoglycerin caprylic acid ester, diglycerin lauric acid ester having a long fatty acid chain length, monoglycerin stearic acid ester, and diglycerin oleic acid ester. The number of glycerin is not particularly limited as long as the hydrophobicity of the fatty acid glycerin ester is maintained, but many substances up to decaglycerin are industrially produced.

アルコールは、ポリエチレングリコールを用いる場合に冷却時の相転移反応が生じる。ポリエチレングリコールの分子量としては、200〜10000の範囲であれば良いが、あまり分子量が大きいと粘度が高くなり流動性が減少するため、低圧損で装置を運転するためには分子量6000以下、更に好ましくは3000以下が適当である。   Alcohol undergoes a phase transition reaction during cooling when polyethylene glycol is used. The molecular weight of polyethylene glycol may be in the range of 200 to 10,000, but if the molecular weight is too large, the viscosity increases and the fluidity decreases, so that the molecular weight is 6000 or less, more preferably for operating the apparatus with low pressure loss. Is suitably 3000 or less.

脂肪酸グリセリンエステルとアルコールの混合割合は、この混合物のHLB加重平均値が12〜15程度になるように定められ、これは用いる脂肪酸グリセリンエステルのHLB値が公知のものについてはアルコールのHLB値を20として計算で求めることができる。   The mixing ratio of the fatty acid glycerin ester and the alcohol is determined so that the HLB weighted average value of this mixture is about 12 to 15, and this means that the HLB value of the fatty acid glycerin ester to be used is 20 for the alcohol having a known HLB value. Can be obtained by calculation.

感温性物質の他の例として、ソルビタン脂肪酸エステルエチレンオキサイド付加物とソルビタン脂肪酸エステルの混合物の例が挙げられる。ソルビタン脂肪酸エステルエチレンオキサイド付加物のエチレンオキサイド付加モル数は5〜200であれば良く、過大であれば粘度が高くなるため100以下、更に好ましくは5〜30が適当である。脂肪酸は炭素数が8〜18程度のものが天然由来の組成と同じであるため好ましい。例示すれば、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸などである。   Another example of the temperature-sensitive substance is a mixture of a sorbitan fatty acid ester ethylene oxide adduct and a sorbitan fatty acid ester. The ethylene oxide addition mole number of the sorbitan fatty acid ester ethylene oxide adduct may be 5 to 200, and if it is excessive, the viscosity becomes high, and is 100 or less, more preferably 5 to 30. Fatty acids having about 8 to 18 carbon atoms are preferred because they have the same natural composition. Examples include caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid and the like.

ソルビタン脂肪酸エステルにおける脂肪酸はソルビタン脂肪酸エステルエチレンオキサイド付加物と同様である。   The fatty acid in the sorbitan fatty acid ester is the same as that of the sorbitan fatty acid ester ethylene oxide adduct.

ソルビタン脂肪酸エステルエチレンオキサイド付加物とソルビタン脂肪酸エステルの混合割合は、この混合物のHLB加重平均値が12〜15程度になるように定められ、
感温性物質は、相転移温度が30℃〜80℃、好ましくは35℃〜45℃の範囲のものが好ましい。
The mixing ratio of the sorbitan fatty acid ester ethylene oxide adduct and the sorbitan fatty acid ester is determined so that the HLB weighted average value of this mixture is about 12 to 15,
The temperature-sensitive substance preferably has a phase transition temperature in the range of 30 ° C to 80 ° C, preferably 35 ° C to 45 ° C.

感温性物質濃度は被処理水より浸透圧が高くなるように定められているが、高浸透圧が得られるようなるべく高濃度にするのがよく、1〜100%程度、特に10〜95%程度が好ましい。   The temperature-sensitive substance concentration is determined so that the osmotic pressure is higher than that of the water to be treated. However, the concentration should be as high as possible so that a high osmotic pressure can be obtained, and about 1 to 100%, particularly 10 to 95%. The degree is preferred.

本発明においては、相転移温度は、感温性物質の種類や濃度等によって変わるが、次の冷却工程において30〜80℃、好ましくは35〜45℃になるように調製するのがよい。この温度領域であれば、常温の環境水によって容易に冷却可能であり、再溶解させる際の加温についても冷却排水等の温排水を利用可能である。   In the present invention, the phase transition temperature varies depending on the type and concentration of the temperature-sensitive substance, but is preferably adjusted to 30 to 80 ° C., preferably 35 to 45 ° C. in the next cooling step. If it is this temperature range, it can be easily cooled with ambient water at room temperature, and warm wastewater such as cooling wastewater can be used for heating when re-dissolving.

ポリエチレングリコール(分子量400)とモノグリセリンカプリル酸エステルを重量比で50:50で混合した混合物(感温性物質)を水に加え、その混合物濃度を変えて相転移温度の変化を測定した結果を図2に示す。同図に示すように相転移は感温性物質の濃度が20〜50重量%の範囲で起っており、その間で相転移温度は100℃から0℃まで直線的に変化している。   The result of measuring the change in phase transition temperature by adding a mixture (temperature-sensitive substance) of polyethylene glycol (molecular weight 400) and monoglycerin caprylate ester in a weight ratio of 50:50 to water and changing the concentration of the mixture. As shown in FIG. As shown in the figure, the phase transition occurs when the concentration of the temperature-sensitive substance is in the range of 20 to 50% by weight, and the phase transition temperature changes linearly from 100 ° C. to 0 ° C. during that time.

半透膜は水を選択的に透過できるものがよく、順浸透(Forward Osmosis)膜が好ましいが、逆浸透膜も使用できる。材質は特に制限されないが、例示すれば、酢酸セルロース系、ポリアミド系、ポリエチレンイミン系、ポリスルホン系、ポリベンゾイミダゾール系のものなどを挙げることができる。半透膜の形態も特に制限されず、平膜、管状膜、中空糸などいずれであってもよい。   The semipermeable membrane is preferably one that can selectively permeate water, and is preferably a forward osmosis membrane, but a reverse osmosis membrane can also be used. The material is not particularly limited, and examples thereof include cellulose acetate-based, polyamide-based, polyethyleneimine-based, polysulfone-based, and polybenzimidazole-based materials. The form of the semipermeable membrane is not particularly limited and may be any of a flat membrane, a tubular membrane, a hollow fiber, and the like.

この半透膜を装着する装置は通常は円筒形の容器内に袋状の半透膜をのり巻き状に設置したもので(スパイラルタイプ)、この半透膜で仕切られた一方の室に膜ろ過水を流し、他方の室に誘導溶液を流せるものであり、公知の半透膜装置を用いることができ、市販品を用いることができる。またもう一つの形状は、ストロー状の膜を円筒形の容器内に設置したもので(中空糸タイプ)、同様に公知の半透膜装置を用いることができ、市販品を用いることができる。   This semipermeable membrane mounting device is usually a bag-shaped semipermeable membrane installed in a cylindrical container (spiral type), and the membrane is placed in one chamber partitioned by this semipermeable membrane. The filtered water is allowed to flow, and the induction solution can be allowed to flow into the other chamber. A known semipermeable membrane device can be used, and a commercially available product can be used. Another shape is a straw-shaped membrane installed in a cylindrical container (hollow fiber type). Similarly, a known semipermeable membrane device can be used, and a commercially available product can be used.

順浸透工程で被処理水を半透膜を介して誘導溶液と接触させると浸透圧の差によって被処理水中の水が半透膜を通って誘導溶液に移動する。   When the water to be treated is brought into contact with the induction solution through the semipermeable membrane in the forward osmosis step, the water in the water to be treated moves to the induction solution through the semipermeable membrane due to the difference in osmotic pressure.

冷却工程
順浸透工程で被処理水から水が移動して希釈された希釈誘導溶液を前記相転移温度以下に冷却して、感温性物質の少なくとも一部を疎水性化して析出させる。この析出物は、感温性物質の濃厚溶液が相分離したものである。冷却する温度は、前記相転移温度以下であるが、相転移温度未満、好ましくは相転移温度より1℃〜20℃低い、より好ましくは2℃〜5℃低い温度まで冷却するのがよい。冷却によって、アルコールと脂肪酸グリセリンエステルの混合物が析出して凝集する。凝集物の粒径は2,000〜20,000nm程度である。
Cooling step The dilution-inducing solution diluted by moving water from the water to be treated in the forward osmosis step is cooled to the phase transition temperature or lower, and at least a part of the temperature-sensitive substance is hydrophobized and precipitated. This deposit is a phase separation of a concentrated solution of a temperature sensitive substance. The cooling temperature is not higher than the phase transition temperature, but is preferably lower than the phase transition temperature, preferably 1 ° C. to 20 ° C., more preferably 2 ° C. to 5 ° C. lower than the phase transition temperature. By cooling, a mixture of alcohol and fatty acid glycerin ester precipitates and aggregates. The particle size of the aggregate is about 2,000 to 20,000 nm.

この冷却工程の冷熱源には、常温の被処理液を使用することが好ましい。   It is preferable to use a liquid to be treated at room temperature for the cooling heat source in this cooling step.

固液分離工程
冷却工程で冷却されて感温性物質が析出している希釈誘導溶液を固液分離して析出した感温性物質を分離する。この固液分離手段は、粒径2,000nm以上の粒径を分離できる逆浸透ろ過膜、限外ろ過膜、精密ろ過膜、砂ろ過、ろ布ろ過、遠心分離、沈降分離などを利用することができる。好ましいものは、限外ろ過膜、精密ろ過膜および遠心分離が比較的低動力で良好な分離効率が得られるため好ましい。また、未凝集物を含めて高度に分離する場合は、逆浸透ろ過膜が最も高い分離効率が得られるため好ましい。
Solid-Liquid Separation Step The diluted temperature-sensitive material is separated by solid-liquid separation of the diluted induction solution that has been cooled in the cooling step and the temperature-sensitive material is precipitated. This solid-liquid separation means should use reverse osmosis filtration membranes, ultrafiltration membranes, microfiltration membranes, sand filtration, filter cloth filtration, centrifugal separation, sedimentation separation, etc. that can separate particle sizes of 2,000 nm or more Can do. Preferred are ultrafiltration membranes, microfiltration membranes, and centrifugal separations because relatively low power and good separation efficiency can be obtained. In the case of high separation including unaggregated matter, a reverse osmosis filtration membrane is preferable because the highest separation efficiency can be obtained.

固液分離手段で分離された水は、通常はそのまま淡水として利用できるが、必要によりさらに精製して使用する。   The water separated by the solid-liquid separation means can usually be used as fresh water as it is, but it is further purified and used if necessary.

加温工程
一方、分離された感温性物質の濃縮液は前記相転移温度以上、具体的には白濁が消える温度まで加温して誘導溶液に再生する。この熱源としては、順浸透工程において得られた希釈誘導溶液を用いることがエネルギーの効率利用の点で好ましい。また、発電後の低温蒸気や冷却後の温排水なども、50〜100℃の未利用低温排熱の適用が可能なため、エネルギーの効率利用の点で好ましい。
On the other hand, the concentrated solution of the temperature-sensitive substance separated is heated to the phase transition temperature or higher, specifically, to a temperature at which the white turbidity disappears, and regenerated into an induction solution. As the heat source, it is preferable to use the dilution induction solution obtained in the forward osmosis step from the viewpoint of efficient use of energy. In addition, low-temperature steam after power generation, warm waste water after cooling, and the like can be applied to unused low-temperature exhaust heat of 50 to 100 ° C., which is preferable in terms of efficient use of energy.

再生した誘導溶液はそのまま循環使用できる。   The regenerated induction solution can be recycled as it is.

一方、順浸透工程で得られた膜濃縮水は塩分を高濃度で含んでいるので、これを濃縮して塩分を析出させて分離し、有効利用することができる。   On the other hand, since the membrane concentrated water obtained in the forward osmosis step contains a high concentration of salt, it can be concentrated and precipitated to separate and be effectively used.

この本発明の方法を図1に模式化して示す。処理はバッチ方式でもよいが、原則として連続方式、すなわち、被処理水と誘導溶液は連続して流し、淡水は連続的にとり出す。この方法で使用される熱量は60MJ/mであり、造水コストは1,000円/mになる。 This method of the present invention is shown schematically in FIG. The treatment may be a batch method, but in principle, the treatment is continuous, that is, the water to be treated and the induction solution are continuously flowed, and fresh water is continuously taken out. The amount of heat used in this method is 60 MJ / m 3 , and the water production cost is 1,000 yen / m 3 .

(実施例1)
順浸透膜として酢酸セルロース製FO膜のモジュールを使用し、誘導溶液には、モノグリセリンカプリル酸エステルとポリエチレングリコール(分子量400)の重量比50:50の混合物を400g/Lの濃度で水に溶解したものを用いた。誘導溶液の浸透圧は、所定濃度の塩水からFO膜で淡水を吸引できるかどうかで測定することが可能であり、本溶液では約3.0MPaであった。また、相転移温度は吸光度を測定し、透過率が10%以下になる温度によって特定することが可能で、誘導溶液の相転移温度は39℃であった。この際の透過率は、図3に示すように温度によって鋭敏に変化した。
Example 1
A cellulose acetate FO membrane module is used as the forward osmosis membrane, and a mixture of monoglycerin caprylate and polyethylene glycol (molecular weight 400) in a weight ratio of 50:50 is dissolved in water at a concentration of 400 g / L in the induction solution. What was done was used. The osmotic pressure of the induction solution can be measured based on whether or not fresh water can be sucked from a predetermined concentration of salt water with an FO membrane, and was about 3.0 MPa in this solution. The phase transition temperature can be specified by measuring the absorbance and the transmittance becomes 10% or less, and the phase transition temperature of the induction solution was 39 ° C. The transmittance at this time changed sharply with temperature as shown in FIG.

順浸透膜装置の誘導溶液温度は45℃に調整し、入口の流入量は8.0L/minとした。被処理液には、濃度温度を30℃に調整した2.5%の塩化ナトリウム水溶液を用い3.3L/minの流量で順浸透膜装置に流入させた。膜ろ過装置を通過して誘導溶液に移動した水の量は0.9L/minであり、出口から流出する希釈誘導溶液の量は8.9L/minであり、温度は43℃であった。   The induction solution temperature of the forward osmosis membrane device was adjusted to 45 ° C., and the inflow rate at the inlet was 8.0 L / min. As the liquid to be treated, a 2.5% sodium chloride aqueous solution whose concentration temperature was adjusted to 30 ° C. was used and allowed to flow into the forward osmosis membrane device at a flow rate of 3.3 L / min. The amount of water that passed through the membrane filtration device and moved to the induction solution was 0.9 L / min, the amount of the diluted induction solution flowing out from the outlet was 8.9 L / min, and the temperature was 43 ° C.

装置を定常状態で10分間運転して得られた希釈誘導溶液を35℃に冷却し、1分間静置すると、溶解していたモノグリセリンカプリル酸エステルとポリエチレングリコールの混合物が凝集して重力により固液分離され上部の水層20Lと下部の油層69Lが得られた。水層の浸透圧は0.2MPaまで低下した。   When the diluted induction solution obtained by operating the apparatus for 10 minutes in a steady state was cooled to 35 ° C. and allowed to stand for 1 minute, the dissolved mixture of monoglycerin caprylate and polyethylene glycol aggregated and solidified by gravity. The liquid was separated, and an upper aqueous layer 20L and a lower oil layer 69L were obtained. The osmotic pressure of the water layer decreased to 0.2 MPa.

この水層を限外膜ろ過して得られた膜濃縮水と上述の重力分離で得られた油層を合わせて、モノグリセリンカプリル酸エステルとポリエチレングリコールの混合物を400g/Lの濃度で含む再生誘導溶液を80Lを得た。また、限外ろ過膜透過液として淡水9Lを得た。   Regeneration induction containing a mixture of monoglycerin caprylate and polyethylene glycol at a concentration of 400 g / L by combining the membrane concentrated water obtained by ultrafiltration of the aqueous layer and the oil layer obtained by gravity separation as described above. 80 L of the solution was obtained. Moreover, 9L of fresh water was obtained as an ultrafiltration membrane permeate.

この淡水に含まれるモノグリセリンカプリル酸エステルとポリエチレングリコールの混合物の濃度は100mg/L以下であった。   The concentration of the mixture of monoglycerin caprylate and polyethylene glycol contained in the fresh water was 100 mg / L or less.

モノグリセリンカプリル酸エステルとポリエチレングリコールの混合物を400g/Lの濃度で含む膜濃縮水は、45℃まで加温することにより、元の透明な誘導溶液に戻すことができた。   Membrane concentrated water containing a mixture of monoglycerin caprylate and polyethylene glycol at a concentration of 400 g / L could be returned to the original transparent induction solution by heating to 45 ° C.

本発明の方法は、海水から淡水の製造や、坑井からの随伴水の処理などに広く利用できる。   The method of the present invention can be widely used for production of fresh water from seawater, treatment of associated water from a well, and the like.

Claims (10)

被処理水と、相転移温度を有し、前記相転移温度以上に加温すると親水性化し、前記相転移温度以下に冷却すると疎水性化する感温性物質を水に溶解した誘導溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘導溶液に移動させ、水で希釈された希釈誘導溶液と膜濃縮水を得る順浸透工程と、前記希釈誘導溶液を前記相転移温度以下に冷却する冷却工程と、前記冷却工程で冷却され、疎水性化した感温性物質を希釈誘導溶液から固液分離し、淡水と感温性物質濃縮液を得る固液分離工程と、前記固液分離工程で分離された感温性物質濃縮液を前記相転移温度以上に加温し、誘導溶液を再生する加温工程とを有することを特徴とする水処理方法。   Water to be treated and a derivative solution in which a temperature-sensitive substance that has a phase transition temperature, becomes hydrophilic when heated to a temperature higher than the phase transition temperature, and becomes hydrophobic when cooled below the phase transition temperature is dissolved in water. A forward osmosis step of contacting the water through the permeable membrane, transferring the water in the treated water to the induction solution through the semipermeable membrane to obtain a dilution induction solution diluted with water and membrane concentrated water, and the dilution induction solution Cooling to a temperature below the phase transition temperature, and solid-liquid separation of the thermosensitive substance cooled and hydrophobized in the cooling process from the dilution-inducing solution to obtain fresh water and a thermosensitive substance concentrate A water treatment method comprising: a separation step; and a heating step of regenerating the induction solution by heating the temperature-sensitive substance concentrate separated in the solid-liquid separation step to the phase transition temperature or higher. 前記固液分離工程における固液分離手段が、粒径100nm以上の粒子を分離可能なろ過膜、遠心分離、比重分離のいずれかによる手段であることを特徴とする請求項1に記載の水処理方法。   2. The water treatment according to claim 1, wherein the solid-liquid separation means in the solid-liquid separation step is one of a filtration membrane capable of separating particles having a particle size of 100 nm or more, centrifugal separation, and specific gravity separation. Method. 前記感温性物質が、アルコールおよび脂肪酸グリセリンエステルの混合物であることを特徴とする請求項1又は請求項2に記載の水処理方法。   The water treatment method according to claim 1 or 2, wherein the thermosensitive substance is a mixture of alcohol and fatty acid glycerin ester. 感温性物質の相転移温度が、30℃〜80℃の範囲にあることを特徴とする請求項1乃至請求項3のいずれか1項に記載の水処理方法。   The water treatment method according to any one of claims 1 to 3, wherein a phase transition temperature of the temperature-sensitive substance is in a range of 30 ° C to 80 ° C. 固液分離工程において分離された感温性物質濃縮液を冷却工程における冷熱源として使用することを特徴とする請求項1乃至請求項4のいずれか1項に記載の水処理方法。   The water treatment method according to any one of claims 1 to 4, wherein the temperature-sensitive substance concentrate separated in the solid-liquid separation step is used as a cold heat source in the cooling step. 順浸透工程において得られた希釈誘導溶液を加温工程における熱源として使用することを特徴とする請求項1乃至請求項5のいずれか1項に記載の水処理方法。   The water treatment method according to any one of claims 1 to 5, wherein the dilution induction solution obtained in the forward osmosis step is used as a heat source in the heating step. 被処理水と、相転移温度を有し、前記相転移温度以上に加温すると親水性化し、前記相転移温度以下に冷却すると疎水性化する感温性物質を水に溶解した誘導溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘導溶液に移動させ、水で希釈された希釈誘導溶液と膜濃縮水を得る順浸透膜処理装置と、前記希釈誘導溶液を前記相転移温度以下に冷却する冷却手段と、前記冷却手段で冷却され、疎水性化した感温性物質を希釈誘導溶液から固液分離し、淡水と感温性物質濃縮液を得る固液分離装置と、前記固液分離装置で分離された感温性物質濃縮液を前記相転移温度以上に加温し、誘導溶液を再生する加温手段とを有することを特徴とする水処理装置。   Water to be treated and a derivative solution in which a temperature-sensitive substance that has a phase transition temperature, becomes hydrophilic when heated to a temperature higher than the phase transition temperature, and becomes hydrophobic when cooled below the phase transition temperature is dissolved in water. A forward osmosis membrane treatment apparatus for contacting the membrane through the permeable membrane, transferring the water in the treated water to the induction solution through the semipermeable membrane, and obtaining a diluted induction solution and membrane concentrated water diluted with water; and the dilution A cooling means for cooling the induction solution below the phase transition temperature, and a thermosensitive substance that has been cooled and hydrophobized by the cooling means is separated from the diluted induction solution by solid-liquid separation to obtain fresh water and a thermosensitive substance concentrate. A water treatment comprising: a solid-liquid separation device; and a heating means for regenerating the induction solution by heating the temperature-sensitive substance concentrated liquid separated by the solid-liquid separation device to a temperature higher than the phase transition temperature. apparatus. 前記固液分離装置が、粒径100nm以上の粒子を分離可能なろ過膜、遠心分離、比重分離のいずれかによる装置であることを特徴とする請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, wherein the solid-liquid separation apparatus is an apparatus based on any one of a filtration membrane, centrifugal separation, and specific gravity separation capable of separating particles having a particle size of 100 nm or more. 前記感温性物質が、アルコールおよび脂肪酸グリセリンエステルの混合物であることを特徴とする請求項1又は請求項2に記載の水処理装置。   The water treatment apparatus according to claim 1 or 2, wherein the temperature-sensitive substance is a mixture of alcohol and fatty acid glycerin ester. 感温性物質の相転移温度が、30℃〜80℃の範囲にあることを特徴とする請求項1乃至請求項3のいずれか1項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 3, wherein a phase transition temperature of the temperature-sensitive substance is in a range of 30 ° C to 80 ° C.
JP2013169358A 2013-08-19 2013-08-19 Water treatment method Pending JP2015037771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013169358A JP2015037771A (en) 2013-08-19 2013-08-19 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013169358A JP2015037771A (en) 2013-08-19 2013-08-19 Water treatment method

Publications (1)

Publication Number Publication Date
JP2015037771A true JP2015037771A (en) 2015-02-26

Family

ID=52631237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013169358A Pending JP2015037771A (en) 2013-08-19 2013-08-19 Water treatment method

Country Status (1)

Country Link
JP (1) JP2015037771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067989A (en) * 2014-09-29 2016-05-09 大阪瓦斯株式会社 Forward osmosis membrane separation method, water treatment equipment, and power generation facility
JP2017039108A (en) * 2015-08-21 2017-02-23 株式会社神鋼環境ソリューション Wastewater treatment method and waste water treatment equipment
KR101903771B1 (en) * 2017-05-16 2018-11-13 롯데케미칼 주식회사 Energy-efficient method of desalination and desalination apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067989A (en) * 2014-09-29 2016-05-09 大阪瓦斯株式会社 Forward osmosis membrane separation method, water treatment equipment, and power generation facility
JP2017039108A (en) * 2015-08-21 2017-02-23 株式会社神鋼環境ソリューション Wastewater treatment method and waste water treatment equipment
KR101903771B1 (en) * 2017-05-16 2018-11-13 롯데케미칼 주식회사 Energy-efficient method of desalination and desalination apparatus

Similar Documents

Publication Publication Date Title
JP6149627B2 (en) Water treatment method with semipermeable membrane
CN104843927B (en) Desulfurization wastewater technique of zero discharge and system
JP5913113B2 (en) Forward osmosis separation method
KR101987870B1 (en) Thermo-sensitive water absorbent, method of water treatment, and water treatment apparatus
WO2013065293A1 (en) Method and device for preparing fresh water
AU2009217223B2 (en) Method for desalinating water
JP5900743B2 (en) Method and apparatus for treatment of associated water from a well
JP6149626B2 (en) Water treatment method with semipermeable membrane
JPWO2013153587A1 (en) Method and apparatus for treatment of associated water from a well
JP6210033B2 (en) Water desalination method and apparatus
JP2015192979A (en) Water treatment apparatus using semipermeable membrane
JP2014097483A (en) Water treatment method and apparatus
JP2014100692A (en) Water treatment method
WO2013134710A1 (en) Methods for osmotic concentration of hyper saline streams
JP2015037771A (en) Water treatment method
JP6028645B2 (en) Water treatment equipment
JP6210008B2 (en) Water treatment equipment
JP6463620B2 (en) Desalination system and desalination method
JP6210034B2 (en) Water desalination method and apparatus
JP6465301B2 (en) Water desalination equipment
JP6414528B2 (en) Water desalination method and apparatus
JP6210011B2 (en) Water treatment method and apparatus
US20160176721A1 (en) Methods of producing alkali metal carbonates, and systems for practicing the same
JP2019155289A (en) Water treatment method and apparatus
JP2016010767A (en) Water treatment apparatus