JP2019155289A - Water treatment method and apparatus - Google Patents

Water treatment method and apparatus Download PDF

Info

Publication number
JP2019155289A
JP2019155289A JP2018046274A JP2018046274A JP2019155289A JP 2019155289 A JP2019155289 A JP 2019155289A JP 2018046274 A JP2018046274 A JP 2018046274A JP 2018046274 A JP2018046274 A JP 2018046274A JP 2019155289 A JP2019155289 A JP 2019155289A
Authority
JP
Japan
Prior art keywords
solution
water
membrane
temperature
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018046274A
Other languages
Japanese (ja)
Inventor
亮 功刀
Akira Kunugi
亮 功刀
辻 猛志
Takeshi Tsuji
猛志 辻
渕上 浩司
Koji Fuchigami
浩司 渕上
戸村 啓二
Keiji Tomura
啓二 戸村
佐藤 祐也
Yuya Sato
祐也 佐藤
江梨 渡辺
Eri Watanabe
江梨 渡辺
彩 大里
Aya Osato
彩 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2018046274A priority Critical patent/JP2019155289A/en
Publication of JP2019155289A publication Critical patent/JP2019155289A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To make it possible to quickly separate layers, in a process in which water to be treated and an attracting solution in which a temperature-sensitive drug is dissolved are brought into contact with each other through a semipermeable membrane, and a diluted attractant solution is heated to separate a concentrated and dilute phase solutions of temperature-sensitive drugs into two layers, the diluted attracting solution being generated by transferring water in the treated water to the attracting solution.SOLUTION: A water treatment method includes: a gravity separation step of gravity-separating a concentrated phase solution 7 mainly composed of temperature-sensitive drug phase-separated in a heating step and a dilute phase solution 6 mainly composed of water and containing a small amount of temperature-sensitive drug; and a cooling and circulating step of circulating the concentrated phase solution separated by the gravity separation step to a forward osmosis step after cooling to a temperature below a lower critical temperature of the attracting solution 4, to reuse as the attracting solution. pH is adjusted by adding alkali to the diluted attraction solution 5.SELECTED DRAWING: Figure 1

Description

本発明は、海水、かん水などの被処理水から淡水を製造する水処理方法および装置に関するものである。   The present invention relates to a water treatment method and apparatus for producing fresh water from water to be treated such as seawater and brine.

海水から半透膜を用いて淡水を製造する方法は種々知られているが、海水に浸透圧以上の圧力を加えて水を強制的に透過させる逆浸透法が主に開発されてきた。しかし、この方法は高圧に加圧する必要があるため、設備費および運転費にコストがかかるという問題点がある。そこで、半透膜を介して海水と海水より高濃度の塩溶液を接触させ、加圧せずとも浸透圧により海水中の水をこの塩溶液に移動させ、分離、回収することにより淡水を製造する方法が開発されている。(特許文献1〜3)。   Various methods for producing fresh water from seawater using a semipermeable membrane are known, but a reverse osmosis method for forcibly permeating water by applying a pressure higher than the osmotic pressure to seawater has been mainly developed. However, since this method needs to be pressurized to a high pressure, there is a problem that the equipment cost and the operation cost are high. Therefore, seawater and salt solution with a higher concentration than seawater are brought into contact with each other through a semipermeable membrane, and water in seawater is transferred to this salt solution by osmotic pressure without being pressurized, and separated and recovered to produce fresh water. A method has been developed. (Patent Documents 1 to 3).

特許文献1の方法は、半透膜を介して海水と反対側にアンモニアと二酸化炭素を溶解して得られる塩溶液を流し、海水中の水について半透膜を介して該塩溶液に移動させ、得られた希釈塩溶液をイオン交換膜や蒸留塔等を用いてアンモニウムイオンと炭酸イオンを個別に分離して浄水を得るとともに、分離したアンモニウムイオンと炭酸イオンを該塩溶液に溶解して半透膜の元の部屋に戻す方法である。   In the method of Patent Document 1, a salt solution obtained by dissolving ammonia and carbon dioxide is passed through a semipermeable membrane on the side opposite to seawater, and the water in the seawater is moved to the salt solution through the semipermeable membrane. The obtained diluted salt solution is separated into ammonium ions and carbonate ions individually using an ion exchange membrane, a distillation tower, etc. to obtain purified water, and the separated ammonium ions and carbonate ions are dissolved in the salt solution. It is a method of returning to the original room of the permeable membrane.

特許文献2の方法は、曇点を有する物質(温度感応性薬剤)を溶質とした誘引溶液を用いており、図2に示すように、海水21を正浸透(FO)膜システム30に送って、そこから半透膜を介して誘引溶液24と接触させ、海水21中の水について浸透圧により半透膜を透過させて誘引溶液24へ移動させる。水が誘引溶液24に移動して残った濃縮海水22はFO膜システム30から流出する。一方、海水中の水で希釈された希釈誘引溶液25は加熱器を備えた沈殿システム34に送られ、そこで相分離あるいは沈殿を生じた希釈誘引溶液25はポンプ37で加圧されてろ過システム32に送られる。その際、溶質の曇点より低い温度の液29を添加することができる。ろ過システム32で濃縮された誘引溶液24はFO膜システム30に返送される。一方、ろ過された膜ろ過水28は後処理部33でさらに精製されて飲料水となる。曇点を有する溶質には主にポリエチレングリコールやポリプロピレングリコールからなる両親媒性高分子が使用され、ろ過システムのろ材にはナノろ過膜や逆浸透膜が使用されている。   The method of Patent Document 2 uses an attraction solution in which a substance having a cloud point (temperature-sensitive drug) is used as a solute, and sends seawater 21 to a forward osmosis (FO) membrane system 30 as shown in FIG. From there, it is brought into contact with the attracting solution 24 through the semipermeable membrane, and the water in the seawater 21 is allowed to permeate the semipermeable membrane by osmotic pressure and move to the attracting solution 24. The concentrated seawater 22 remaining after the water has moved to the attracting solution 24 flows out of the FO membrane system 30. On the other hand, the diluted attraction solution 25 diluted with water in seawater is sent to a precipitation system 34 equipped with a heater, where the diluted attraction solution 25 that has undergone phase separation or precipitation is pressurized by a pump 37 and filtered. Sent to. At that time, a liquid 29 having a temperature lower than the cloud point of the solute can be added. The attraction solution 24 concentrated in the filtration system 32 is returned to the FO membrane system 30. On the other hand, the filtered membrane filtrate 28 is further purified by the post-processing unit 33 to become drinking water. An amphiphilic polymer mainly composed of polyethylene glycol or polypropylene glycol is used for a solute having a cloud point, and a nanofiltration membrane or a reverse osmosis membrane is used for a filter medium of a filtration system.

しかしながら、特許文献1の方法では、誘引物質(例えば炭酸アンモニウム)の分離、回収を蒸発法で行うが、その際、アンモニアおよび同伴する水分の蒸発潜熱が多大で、膨大なエネルギーを要しコストも高い。さらに、炭酸アンモニウムを用いる場合にはFO膜から漏洩しやすく、膜濃縮水を介して環境中に排出されるため、富栄養化の原因となる。   However, in the method of Patent Document 1, the attracting substance (for example, ammonium carbonate) is separated and recovered by an evaporation method. At that time, the latent heat of vaporization of ammonia and accompanying water is enormous, requiring enormous energy and cost. high. Furthermore, when ammonium carbonate is used, it easily leaks from the FO membrane and is discharged into the environment through membrane concentrated water, which causes eutrophication.

特許文献2の方法は、誘引溶液の温度感応性を利用して誘引物質の一部を凝集させることにより、膜ろ過エネルギーを低減させることができる。この方法においては、誘引物質を凝集させた希釈誘引溶液はそのままろ過システムに送って凝集物をろ過分離していた。ところが、曇点温度以上となって凝集した粒子を高濃度のままろ過すると、膜面への蓄積による閉塞を引き起こし、ろ過分離に多大な時間とエネルギーを要していた。   The method of patent document 2 can reduce membrane filtration energy by aggregating a part of attractant using the temperature sensitivity of an attractant solution. In this method, the diluted attracting solution in which the attracting substance is aggregated is sent to the filtration system as it is to separate the aggregate by filtration. However, if the aggregated particles having a temperature higher than the cloud point temperature are filtered at a high concentration, clogging due to accumulation on the membrane surface is caused, and much time and energy are required for filtration and separation.

本発明者は、この問題を解決する手段として、誘引物質を凝集させた希釈誘引溶液を、そのままろ過システムに送るのではなく、一旦、相分離槽において温度感応性薬剤である誘引物質を主体とする下層液と水を主体とする上層液に分離して、下層液は曇点以下に冷却して誘引溶液として正浸透工程へ循環し、上層液のみをナノろ過膜等でろ過する方法を既に開示している。   As a means for solving this problem, the present inventor does not directly send the diluted attraction solution in which the attracting substance is aggregated to the filtration system as it is, but once mainly uses the attracting substance that is a temperature-sensitive drug in the phase separation tank. The lower layer liquid is separated into an upper layer liquid mainly composed of water, and the lower layer liquid is cooled below the cloud point and circulated to the forward osmosis step as an attracting solution, and only the upper layer liquid is filtered through a nanofiltration membrane or the like. Disclosure.

特開2011−83663号公報JP 2011-83663 A 米国特許第8,021,553B2号明細書US Pat. No. 8,021,553B2

このように、相分離槽では、希釈誘引溶液を、連続的に、温度感応性薬剤の濃度が高い濃厚相溶液と濃度が低い希薄相溶液に重力で分離させてそれぞれを回収しているが、濃厚相溶液の温度感応性薬剤の濃度が低いと誘引溶液の浸透圧が低下し、FO膜において被処理水から淡水を透過させる速度が低下するため、所定時間に所定量の淡水を得るためのFO膜の数が増大するという問題があった。   In this way, in the phase separation tank, the dilution attraction solution is continuously separated by gravity into a concentrated phase solution having a high concentration of the temperature-sensitive drug and a dilute phase solution having a low concentration, and each is recovered. When the concentration of the temperature-sensitive drug in the concentrated phase solution is low, the osmotic pressure of the attracting solution is lowered, and the speed of permeating fresh water from the treated water in the FO membrane is lowered. There is a problem that the number of FO films increases.

本発明の目的は、被処理水と温度感応性薬剤を水に溶解した誘引溶液とを半透膜を介して接触させ、被処理水中の水についてこの半透膜を介して誘引溶液に移動させ、それによって生じた希釈誘引溶液を加温して生じた、温度感応性薬剤の濃厚相溶液と希薄相溶液を二層に分層させる重力分離工程において、濃厚相溶液の温度感応性薬剤の濃度を高めることができる手段を提供することにある。   The object of the present invention is to bring the water to be treated and an attracting solution in which the temperature sensitive drug is dissolved in water through a semipermeable membrane, and move the water in the treated water to the attracting solution through the semipermeable membrane. The concentration of the temperature-sensitive drug in the concentrated phase solution in the gravity separation step, in which the concentrated solution and the diluted phase solution of the temperature-sensitive drug are separated into two layers. It is to provide a means capable of enhancing the above.

本発明者は、上記課題を解決するべく鋭意検討の結果、相分離槽に供給される希釈誘引溶液のpHを調整することにより、濃厚相溶液の温度感応性薬剤の濃度を高めることができることを見出した。   As a result of intensive studies to solve the above problems, the present inventor can increase the concentration of the temperature-sensitive drug in the concentrated phase solution by adjusting the pH of the dilution attraction solution supplied to the phase separation tank. I found it.

従って本発明は、被処理水と、疎水性化した温度感応性薬剤が析出して白濁が起こる温度である下限臨界温度を有する温度感応性薬剤を水に溶解した誘引溶液とを半透膜を介して接触させ、前記被処理水中の水について前記半透膜を介して前記誘引溶液に移動させ、水で希釈された希釈誘引溶液と膜濃縮水を得る正浸透工程と、前記希釈誘引溶液を前記誘引溶液の前記下限臨界温度以上の温度まで加温する加温工程と、前記加温工程で相分離した温度感応性薬剤を主体とする濃厚相溶液と、水を主体とし少量の温度感応性薬剤を含有する希薄相溶液とに重力分離する重力分離工程と、前記重力分離工程で分離された濃厚相溶液を前記誘引溶液の前記下限臨界温度以下の温度まで冷却した後、前記正浸透工程へ循環し、誘引溶液として再使用する冷却・循環工程とを有する水処理工程において、前記希釈誘引溶液にアルカリを加えてpHを調整することを特徴とする水処理方法を提供するものである。   Therefore, the present invention provides a semipermeable membrane comprising water to be treated and an attracting solution in which a temperature-sensitive drug having a lower critical temperature, which is a temperature at which the hydrophobized temperature-sensitive drug precipitates and causes clouding, is dissolved in water. A forward osmosis step of obtaining a diluted attraction solution diluted with water and membrane concentrated water, and transferring the diluted attraction solution to the attraction solution through the semipermeable membrane with respect to the water in the water to be treated. A heating step of heating the attracting solution to a temperature equal to or higher than the lower critical temperature, a concentrated phase solution mainly composed of a temperature-sensitive drug phase-separated in the heating step, and a small amount of temperature sensitivity mainly composed of water. Gravity separation step of gravity separation into a dilute phase solution containing a drug, and after cooling the concentrated phase solution separated in the gravity separation step to a temperature below the lower critical temperature of the attracting solution, to the forward osmosis step Circulate and reuse as an attractant solution In the water treatment process and a cooling and circulation process, by adding an alkali to the diluted attractant solution is to provide a water treatment method characterized by adjusting the pH.

また、本発明は、上記の水処理方法において、重力分離工程で分離された希薄相溶液を膜処理し、膜ろ過水と膜濃縮水を得る膜処理工程をさらに有し、該膜処理工程で得られた膜濃縮水を希釈誘引溶液へ添加するとともに、該膜濃縮水を添加した後の希釈誘引溶液のpHを調整して、相分離槽から得られる濃厚相溶液の温度感応性薬剤の濃度を高めることができる方法を提供するものである。   The present invention further includes a membrane treatment step in which the diluted phase solution separated in the gravity separation step is subjected to membrane treatment to obtain membrane filtrate water and membrane concentrated water in the above water treatment method, The concentration of the temperature-sensitive drug in the concentrated phase solution obtained from the phase separation tank by adding the obtained membrane concentrated water to the dilution attraction solution and adjusting the pH of the dilution attraction solution after the addition of the membrane concentration water It is intended to provide a method that can enhance the above.

本発明により、下限臨界温度を有する温度感応性薬剤の水溶液を誘引溶液として用いた正浸透法による水処理方法において、水で希釈された希釈誘引溶液を加温して生じた、温度感応性薬剤を主体とする濃厚相溶液の濃度を高めることができ、FO膜の数を削減することができる。   According to the present invention, in a water treatment method by a forward osmosis method using an aqueous solution of a temperature-sensitive drug having a lower critical temperature as an attractant solution, the temperature-sensitive drug produced by heating the diluted attractant solution diluted with water The concentration of the concentrated phase solution mainly composed of can be increased, and the number of FO films can be reduced.

本発明の一実施態様を模式的に示すブロック図である。It is a block diagram which shows one embodiment of this invention typically. 公知の水処理方法の概略を示すブロック図である。It is a block diagram which shows the outline of a well-known water treatment method.

本発明の方法で処理される被処理水は水を溶媒とする溶液であり、海水、かん水などである。かん水は、シェールガス、オイルサンド、CBM(炭層メタン)、石油等を採掘する坑井からの随伴水も含まれる。海水のpHは通常8程度である。   The water to be treated to be treated by the method of the present invention is a solution using water as a solvent, such as seawater or brine. Brine includes associated water from wells that mine shale gas, oil sand, CBM (coal bed methane), oil, and the like. The pH of seawater is usually about 8.

随伴水は、坑井からの採掘目的物に同伴して排出される水であり、塩分、有機物、懸濁物などを含んでいる。汚濁物質の濃度としては、例えば蒸発残留物(主にNa、K、Ca2+、Cl、SO 2−など)が1,000〜100,000mg/L、有機物(油分や添加した薬剤など)がTOCとして10〜1,000mg/L、懸濁物質が100〜10,000mg/Lといった範囲で含有される。pHは一例として5〜7である。 Accompanying water is water that is discharged along with the object to be mined from the well, and includes salt, organic matter, suspended matter, and the like. Concentrations of pollutants include, for example, evaporation residues (mainly Na + , K + , Ca 2+ , Cl , SO 4 2−, etc.) of 1,000 to 100,000 mg / L, organic substances (oil or added chemicals) Etc.) in the range of 10 to 1,000 mg / L as the TOC and the suspended substance in the range of 100 to 10,000 mg / L. The pH is 5 to 7 as an example.

油分と随伴水の分離手段は問わないが、例えば沈降などで油水分離が行われている。   There is no limitation on the means for separating oil and associated water, but oil-water separation is performed, for example, by sedimentation.

図1に示していないが、前処理として、被処理水を必要によりまずろ過処理する。このろ過処理は、例えば、精密ろ過膜を用いたろ過器で行い、ろ過膜は、精密ろ過膜として使用されている通常の膜を使用することができる。例えば、酢酸セルロース、ポリテトラフルオロエチレン、ポリスルホン、ポリ塩化ビニルなどの外、セラミック製の膜や多孔質ガラス製の膜なども利用できる。精密膜ろ過処理では、精密ろ過膜を通過した膜ろ過水と、膜を通過しないで残った膜濃縮水が得られる。   Although not shown in FIG. 1, as a pretreatment, the water to be treated is first subjected to a filtration treatment if necessary. This filtration treatment is performed, for example, with a filter using a microfiltration membrane, and a normal membrane used as a microfiltration membrane can be used as the filtration membrane. For example, in addition to cellulose acetate, polytetrafluoroethylene, polysulfone, polyvinyl chloride, etc., ceramic membranes and porous glass membranes can also be used. In the micromembrane filtration treatment, membrane filtrate water that has passed through the microfiltration membrane and membrane concentrated water remaining without passing through the membrane are obtained.

精密膜ろ過のほか、限外膜ろ過、砂ろ過等のろ過処理を用いることができる。限外膜ろ過の材質は精密膜ろ過と同様のものが用いられる。   In addition to precision membrane filtration, filtration treatment such as ultramembrane filtration and sand filtration can be used. The material for the ultrafiltration is the same as that for precision membrane filtration.

ろ過の外、必要によりpH調整も行われる。これは、次の正浸透工程において被処理水のスケーリングを防止するためである。また使用する正浸透膜の材質によっては劣化を防止する目的もある。例えば、海水の場合には酸を加えてpH5.5〜6.5程度に調整する。酸の種類は問わないが、通常塩酸や硫酸などが用いられる。   In addition to filtration, pH adjustment is performed as necessary. This is to prevent scaling of the water to be treated in the next forward osmosis step. Another purpose is to prevent deterioration depending on the material of the forward osmosis membrane used. For example, in the case of seawater, an acid is added to adjust the pH to about 5.5 to 6.5. Although the kind of acid is not ask | required, hydrochloric acid, a sulfuric acid, etc. are used normally.

<正浸透工程>
正浸透工程は、前処理した被処理水と、温度感応性薬剤を水に溶解した高浸透圧の誘引溶液について半透膜を介して接触させ、前記被処理水中の水について前記半透膜を介して前記誘引溶液に移動させ、水で希釈された希釈誘引溶液と膜濃縮水を得る工程である。
<Normal osmosis process>
In the forward osmosis step, the pretreated water is brought into contact with a high osmotic pressure attraction solution obtained by dissolving a temperature-sensitive drug in water through a semipermeable membrane, and the semipermeable membrane is made of water in the treated water. To the attraction solution, and a diluted attraction solution diluted with water and membrane concentrated water are obtained.

温度感応性薬剤は、低温では親水性で水によく溶けるが、ある温度以上になると疎水性化し溶解度が低下する物質であり、水溶性〜水不溶性に変化する温度が曇点と呼ばれる。この温度に達すると疎水性化した温度感応性薬剤が析出して白濁が起こる。   A temperature-sensitive drug is a substance that is hydrophilic and well soluble in water at low temperatures, but becomes hydrophobic and decreases in solubility at a certain temperature or higher, and the temperature at which it changes from water-soluble to water-insoluble is called a cloud point. When this temperature is reached, the hydrophobized temperature-sensitive drug precipitates and white turbidity occurs.

この温度感応性薬剤は、各種非イオン性界面活性剤、分散剤、乳化剤などとして利用されており、例示すれば、アルコールまたは脂肪酸とエチレンオキサイドの化合物、アルコールまたは脂肪酸とプロピレンオキサイドの化合物、アクリルアミドとアルキル基の化合物、エチレングリコール脂肪酸エステル、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステルエチレンオキサイド付加物、アミノ酸およびその誘導体などであり、好ましくは、ポリエチレングリコールとポリプロピレン/ポリブチレングリコールのブロック共重合体、グリセロールエトキシブチレート、トリメチロールプロパンエトキシブトキシレート等である。特に好ましいのは、アルキル鎖もしくはグリセリンにエチレンオキサイド(分子量1,000〜10,000程度)である。   This temperature-sensitive drug is used as various nonionic surfactants, dispersants, emulsifiers and the like. For example, alcohol or fatty acid and ethylene oxide compound, alcohol or fatty acid and propylene oxide compound, acrylamide and A compound of an alkyl group, ethylene glycol fatty acid ester, glycerin fatty acid ester, sorbitan fatty acid ester ethylene oxide adduct, amino acid and derivatives thereof, preferably a block copolymer of polyethylene glycol and polypropylene / polybutylene glycol, glycerol ethoxy butyrate Rate, trimethylolpropane ethoxybutoxylate and the like. Particularly preferred is ethylene oxide (molecular weight of about 1,000 to 10,000) for an alkyl chain or glycerin.

本発明において使用する温度感応性薬剤としては、下限臨界温度が30℃〜80℃の範囲、特に40℃から75℃の範囲のものが好ましい。   As the temperature-sensitive drug used in the present invention, those having a lower critical temperature in the range of 30 ° C to 80 ° C, particularly in the range of 40 ° C to 75 ° C are preferable.

誘引溶液の濃度は、誘引溶液の浸透圧が、被処理液の浸透圧より十分高くなるように調整しなければならない。具体的には80〜200atm程度が適当である。   The concentration of the attracting solution must be adjusted so that the osmotic pressure of the attracting solution is sufficiently higher than the osmotic pressure of the liquid to be treated. Specifically, about 80 to 200 atm is appropriate.

半透膜は水を選択的に透過できるものがよく、正浸透(Forward Osmosis)膜が好ましいが、逆浸透膜も使用できる。材質は特に制限されないが、例示すれば、酢酸セルロース系、ポリアミド系、ポリエチレンイミン系、ポリスルホン系、ポリベンゾイミダゾール系のものなどを挙げることができる。半透膜の形態も特に制限されず、平膜、管状膜、中空糸などいずれであってもよい。   The semipermeable membrane is preferably one that can selectively permeate water, and a forward osmosis membrane is preferable, but a reverse osmosis membrane can also be used. The material is not particularly limited, and examples thereof include cellulose acetate-based, polyamide-based, polyethyleneimine-based, polysulfone-based, and polybenzimidazole-based materials. The form of the semipermeable membrane is not particularly limited and may be any of a flat membrane, a tubular membrane, a hollow fiber, and the like.

この半透膜を装着する装置は、通常は円筒形あるいは箱形の容器内に半透膜を設置して、この半透膜で仕切られた一方の室に被処理水を流し、他方の室に誘引溶液を流せるものであり、公知の半透膜装置を用いることができ、市販品を用いることができる。   The apparatus to which this semipermeable membrane is attached usually has a semipermeable membrane installed in a cylindrical or box-shaped container, and water to be treated flows into one chamber partitioned by this semipermeable membrane, and the other chamber A known semipermeable membrane device can be used, and a commercially available product can be used.

正浸透工程で、被処理水について半透膜を介して誘引溶液と接触させると浸透圧の差によって被処理水中の水が半透膜を介して誘引溶液に移動して希釈誘引溶液となり、被処理水はそれによって濃縮されて膜濃縮水として排出される。   In the forward osmosis step, when the water to be treated is brought into contact with the attracting solution through the semipermeable membrane, the water in the treated water moves to the attracting solution through the semipermeable membrane due to the difference in osmotic pressure, and becomes a diluted attracting solution. The treated water is thereby concentrated and discharged as membrane concentrated water.

<加温工程>
正浸透工程で被処理水から水が移動して希釈された希釈誘引溶液を下限臨界温度以上の温度まで加温して、温度感応性薬剤の少なくとも一部を凝集させる。この凝集は、温度感応性薬剤の濃厚相溶液が相分離したものである。
<Warming process>
In the forward osmosis step, the dilution attraction solution diluted by moving water from the water to be treated is heated to a temperature equal to or higher than the lower critical temperature to aggregate at least a part of the temperature sensitive drug. This agglomeration is a phase separation of a concentrated phase solution of a temperature sensitive drug.

加温工程における加温器には、電気ヒーター、熱交換器などを使用することができ、加温温度は、例えば熱交換器へ導入する熱媒体の流量の調整で制御できる。   An electric heater, a heat exchanger, or the like can be used as the heater in the heating step, and the heating temperature can be controlled by adjusting the flow rate of the heat medium introduced into the heat exchanger, for example.

この加温工程の熱源には、次の重力分離工程で分離された濃厚相溶液の顕熱を使用することが好ましい。   It is preferable to use the sensible heat of the concentrated phase solution separated in the next gravity separation step as the heat source for the heating step.

<重力分離工程>
前記加温工程で相分離した温度感応性薬剤を主体とする濃厚相溶液と水を主体とし少量の温度感応性薬剤を含有する希薄相溶液に重力分離する。この重力分離は、下限臨界温度以上の液温状態で、相分離槽内において静置又は連続的に流通させながら行うことができる。その際、前記加温工程で凝集した温度感応性薬剤の濃厚相溶液は、微細な液滴の状態になる。そして、この状態で相分離槽に投入されると、比重が水より重い温度感応性薬剤、濃厚相溶液の微細液滴は速やかに沈降し、液滴同士が合一して下に濃厚相溶液の層が形成される。一方で、加温された希釈誘引溶液から生じた水を主体とし少量の温度感温性薬剤を含有する希薄相溶液部分は上昇して、相分離槽内で上に希薄相溶液の層が形成される。最終的に、上下に分離したそれぞれの溶液は、相分離槽内の上下から引き抜かれることによって次工程に送られる。
<Gravity separation process>
Gravity-separated into a concentrated phase solution mainly composed of the temperature-sensitive drug phase-separated in the heating step and a dilute phase solution mainly composed of water and containing a small amount of the temperature-sensitive drug. This gravitational separation can be performed in a liquid temperature state equal to or higher than the lower critical temperature, while standing or continuously flowing in a phase separation tank. At that time, the concentrated phase solution of the temperature-sensitive drug aggregated in the heating step is in the form of fine droplets. And if it puts into a phase separation tank in this state, the specific droplet whose gravity is heavier than water, the fine droplet of a concentrated phase solution settles quickly, the droplets unite, and the concentrated phase solution below Layers are formed. On the other hand, the portion of the dilute phase solution containing mainly a small amount of temperature-sensitive drug, which is mainly composed of water generated from the heated dilution attraction solution, rises, and a layer of the dilute phase solution is formed on the inside of the phase separation tank. Is done. Finally, each solution separated into the upper and lower parts is pulled out from the upper and lower parts in the phase separation tank and sent to the next step.

<冷却・循環工程>
前記重力分離工程で分離された濃厚相溶液は、これを前記誘引溶液の下限臨界温度より低い温度に冷却することで水に溶解させて誘引溶液に再生する。この温度は広い範囲で採用可能であるが、経済性を考慮すると常温かそれより高い温度が好ましい。この冷却熱源としては、被処理水あるいは正浸透工程において得られた希釈誘引溶液を用いることがエネルギーの効率利用の点で好ましい。この冷却が不充分な場合には、正浸透工程で被処理水から移動してくる水によって濃度が下がるので、下限臨界温度を発現して相分離し、浸透圧が失われてしまう。
<Cooling and circulation process>
The concentrated phase solution separated in the gravity separation step is cooled to a temperature lower than the lower critical temperature of the attracting solution to be dissolved in water and regenerated into the attracting solution. Although this temperature can be employed in a wide range, considering the economy, a temperature of room temperature or higher is preferable. As this cooling heat source, it is preferable from the viewpoint of efficient use of energy to use the water to be treated or the dilution attraction solution obtained in the forward osmosis step. If this cooling is insufficient, the concentration is lowered by the water moving from the water to be treated in the forward osmosis process, so that the lower critical temperature is developed and the phases are separated and the osmotic pressure is lost.

再生した誘引溶液は、そのまま循環して再利用できる。   The regenerated attractant solution can be circulated and reused as it is.

<膜処理工程>
一方、前記重力分離工程で分離された希薄相溶液は、ナノろ過膜や逆浸透膜などで膜ろ過して、そこに残存している温度感応性薬剤を除去することが好ましい。膜ろ過水は淡水であり、飲料水などに利用できる。膜ろ過されないで残った膜濃縮水は、温度感応性薬剤が含まれているので、重力分離工程に循環するのがよい。あるいは、濃縮して誘引溶液として正浸透工程に直接返送することもできる。
<Membrane treatment process>
On the other hand, the diluted phase solution separated in the gravity separation step is preferably subjected to membrane filtration with a nanofiltration membrane, a reverse osmosis membrane or the like to remove the temperature sensitive drug remaining therein. Membrane filtrate is fresh water and can be used for drinking water and the like. Since the membrane-concentrated water remaining without being membrane-filtered contains a temperature-sensitive drug, it should be circulated in the gravity separation step. Alternatively, it can be concentrated and returned directly to the forward osmosis process as an attractant solution.

本発明は、このような方法において、相分離槽における沈降分離によって得られる濃厚相溶液の濃度が、相分離槽に供給される液のpHに依存することを見出したことによる。従って、本発明は、相分離槽に供給される液にアルカリを加えることでpHを調整することを特徴としている。添加するアルカリの種類は、入手の容易さとコスト面からNaOHが好ましい。調整するpHは、一例としてpH6.0以上が好ましく、より好ましくは6.5以上である。一定以上にpHを上げても沈降分離に必要な時間は短くならず、薬品コストが増大するため、実用上9以下、好ましくは8以下である。このpHは温度感応性薬剤に固有の値であり、ビーカー試験等で事前に求めることが望ましい。アルカリの添加は、加温工程前が好ましい。   The present invention is based on the finding that in such a method, the concentration of the concentrated phase solution obtained by the sedimentation separation in the phase separation tank depends on the pH of the liquid supplied to the phase separation tank. Therefore, the present invention is characterized in that the pH is adjusted by adding alkali to the liquid supplied to the phase separation tank. The kind of alkali to be added is preferably NaOH from the viewpoint of availability and cost. As an example, the pH to be adjusted is preferably pH 6.0 or more, and more preferably 6.5 or more. Even if the pH is raised above a certain level, the time required for sedimentation separation is not shortened and the chemical cost increases, so it is practically 9 or less, preferably 8 or less. This pH is a value inherent to the temperature sensitive drug, and it is desirable to obtain it in advance by a beaker test or the like. The alkali is preferably added before the heating step.

この本発明の方法を図1に模式化して示す。同図に示すように、海水等の被処理水1は正浸透膜装置10に送入され、半透膜3を介して水が反対側の室に透過されて残った膜濃縮水2が排出される。正浸透膜装置10の反対側の室には誘引溶液4が流入しており、そこで半透膜3を介して被処理水1と向流接触して被処理水1から移行した水で希釈されて正浸透膜装置10を出る。正浸透膜装置10を出た希釈誘引溶液5は、熱交換器(加温手段)11を通って加温され、相分離槽12に入る。   This method of the present invention is shown schematically in FIG. As shown in the figure, treated water 1 such as seawater is sent to a forward osmosis membrane device 10, and water is permeated through the semipermeable membrane 3 into the opposite chamber and the remaining membrane concentrated water 2 is discharged. Is done. The attracting solution 4 flows into the chamber on the opposite side of the forward osmosis membrane device 10, where it is diluted with the water transferred from the treated water 1 in countercurrent contact with the treated water 1 through the semipermeable membrane 3. And exit the forward osmosis membrane device 10. The dilution attraction solution 5 exiting the forward osmosis membrane device 10 is heated through a heat exchanger (heating means) 11 and enters a phase separation tank 12.

相分離槽12で分離された希薄相溶液6は、熱交換器13で冷却されてから膜ろ過装置14でろ過され、得られた膜ろ過水8は淡水として取り出される。膜ろ過装置14でろ過されなかった膜濃縮水9は、相分離槽12に返送されて希釈誘引溶液とともに熱交換器11で加温され、相分離槽12内で相分離される。   The dilute phase solution 6 separated in the phase separation tank 12 is cooled by a heat exchanger 13 and then filtered by a membrane filtration device 14, and the obtained membrane filtrate 8 is taken out as fresh water. Membrane concentrated water 9 that has not been filtered by the membrane filtration device 14 is returned to the phase separation tank 12, warmed by the heat exchanger 11 together with the dilution attraction solution, and phase-separated in the phase separation tank 12.

本発明では、この希釈誘引溶液5を相分離槽に送るラインの膜濃縮水9が合流した下流側に、アルカリ貯槽16からのアルカリ供給管を配設し、そのさらに下流側にはpH計17を取り付けて、その測定データからコントローラー18の指示によりアルカリ供給ポンプ19を作動させるようにしたところに特徴がある。このアルカリ供給装置によって、相分離槽12に供給される希釈誘引溶液5と膜濃縮水9の合流液のpHを所定の値に調整している。   In the present invention, an alkali supply pipe from the alkali storage tank 16 is disposed on the downstream side where the membrane concentrated water 9 of the line for sending the dilution attraction solution 5 to the phase separation tank is joined, and a pH meter 17 is further disposed on the downstream side thereof. And the alkali supply pump 19 is operated according to instructions from the controller 18 based on the measurement data. With this alkali supply device, the pH of the combined solution of the dilution attraction solution 5 and the membrane concentrated water 9 supplied to the phase separation tank 12 is adjusted to a predetermined value.

一方、重力分離槽12で分離された濃厚相溶液7は、熱交換器(冷却手段)15で冷却されて、誘引溶液4として正浸透装置10に返送される。   On the other hand, the concentrated phase solution 7 separated in the gravity separation tank 12 is cooled by the heat exchanger (cooling means) 15 and returned to the forward osmosis device 10 as the attraction solution 4.

図1に示す装置を用いた。正浸透膜装置10の半透膜には酢酸セルロース製FO膜を、膜ろ過装置14にはナノろ過膜をそれぞれ使用した。   The apparatus shown in FIG. 1 was used. A cellulose acetate FO membrane was used for the semipermeable membrane of the forward osmosis membrane device 10, and a nanofiltration membrane was used for the membrane filtration device 14.

誘引溶液には、ポリオキシエチレン・ポリオキシプロピレン・アルキルエーテルに、水を加えて80重量%の溶液とした。この溶液の下限臨界温度は65℃であった。この下限臨界温度は薬剤濃度によって変わる。   To the attracting solution, water was added to polyoxyethylene / polyoxypropylene / alkyl ether to prepare an 80% by weight solution. The lower critical temperature of this solution was 65 ° C. This lower critical temperature varies depending on the drug concentration.

UF膜でろ過し、硫酸を加えてpH6.5に調整した海水を被処理水1として正浸透膜装置10に15L/分の流速で流入させた。希釈誘引溶液5は熱交換器11で88℃に加温し、相分離槽12に流入させた。相分離槽12では温度感応性薬剤が凝集し、濃度80重量%の濃厚相溶液7と1%の希薄相溶液6に重力分離した。下層である濃厚相溶液7は熱交換器15で40℃に冷却し、再び正浸透膜装置10に流入させた。上層である希薄相溶液6は膜ろ過装置14に導入し、膜ろ過水8と膜濃縮水9に分離した。膜濃縮水9のpHは5.0であり、この膜濃縮水9を合流させた希釈誘引溶液のpHは5.5であったので、これにNaOHを加えてpH6.5に調整し、相分離槽に投入した。   Seawater filtered through a UF membrane and adjusted to pH 6.5 by adding sulfuric acid was made to flow into the forward osmosis membrane device 10 at a flow rate of 15 L / min as treated water 1. The dilution attraction solution 5 was heated to 88 ° C. by the heat exchanger 11 and was allowed to flow into the phase separation tank 12. In the phase separation tank 12, the temperature sensitive drug aggregated and was gravity separated into a concentrated phase solution 7 having a concentration of 80% by weight and a diluted phase solution 6 having a concentration of 1%. The concentrated phase solution 7 as the lower layer was cooled to 40 ° C. by the heat exchanger 15 and again flowed into the forward osmosis membrane device 10. The dilute phase solution 6 as the upper layer was introduced into a membrane filtration device 14 and separated into membrane filtrate 8 and membrane concentrate 9. The pH of the membrane concentrated water 9 was 5.0, and the pH of the diluted attraction solution in which the membrane concentrated water 9 was combined was 5.5, so that NaOH was added to this to adjust the pH to 6.5. It put into the separation tank.

膜ろ過水8は後処理装置を経て淡水を得た。この淡水は飲料水として使用可能であった。   Membrane filtrate 8 obtained fresh water through a post-treatment device. This fresh water could be used as drinking water.

意図的にNaOH添加量を調整した場合の、相分離槽へ流入する希釈誘引溶液のpHと相分離槽から得られる濃厚相溶液の濃度は表1の通りである。   Table 1 shows the pH of the dilution-induced solution flowing into the phase separation tank and the concentration of the concentrated phase solution obtained from the phase separation tank when the NaOH addition amount is intentionally adjusted.

Figure 2019155289
Figure 2019155289

本発明の方法は、海水から淡水の製造や、坑井からの随伴水の処理などに広く利用できる。   The method of the present invention can be widely used for production of fresh water from seawater, treatment of associated water from a well, and the like.

1 被処理水
2 膜濃縮水
3 半透膜
4 誘引溶液
5 希釈誘引溶液
6 希薄相溶液
7 濃厚相溶液
8 膜ろ過水
9 膜濃縮水
10 正浸透膜装置
11 熱交換器(加温手段)
12 相分離槽
13 熱交換器
14 膜ろ過装置
15 熱交換器(冷却手段)
16 アルカリ貯槽
17 pH計
18 コントローラー
19 アルカリ供給ポンプ
DESCRIPTION OF SYMBOLS 1 Water to be treated 2 Membrane concentrated water 3 Semipermeable membrane 4 Attraction solution 5 Dilution attraction solution 6 Dilute phase solution 7 Concentrated phase solution 8 Membrane filtrate 9 Membrane concentrated water 10 Forward osmosis membrane device 11 Heat exchanger (heating means)
12 phase separation tank 13 heat exchanger 14 membrane filtration device 15 heat exchanger (cooling means)
16 Alkali storage tank 17 pH meter 18 Controller 19 Alkali supply pump

Claims (6)

被処理水と、下限臨界温度を有する温度感応性薬剤を水に溶解した誘引溶液とを半透膜を介して接触させ、前記被処理水中の水について前記半透膜を介して前記誘引溶液に移動させ、水で希釈された希釈誘引溶液と膜濃縮水を得る正浸透工程と、前記希釈誘引溶液を前記誘引溶液の前記下限臨界温度以上の温度まで加温する加温工程と、前記加温工程で相分離した温度感応性薬剤を主体とする濃厚相溶液と、水を主体とし少量の温度感応性薬剤を含有する希薄相溶液とに重力分離する重力分離工程と、前記重力分離工程で分離された濃厚相溶液を前記誘引溶液の前記下限臨界温度以下の温度まで冷却した後、前記正浸透工程へ循環し、誘引溶液として再使用する冷却・循環工程とを有する水処理工程において、前記希釈誘引溶液にアルカリを加えてpHを調整することを特徴とする水処理方法。   The water to be treated and an attraction solution in which a temperature-sensitive drug having a lower critical temperature is dissolved in water are brought into contact with each other through a semipermeable membrane, and the water in the water to be treated is brought into the attraction solution through the semipermeable membrane. A forward osmosis step for obtaining a diluted attraction solution and membrane-concentrated water diluted by water, a heating step for heating the diluted attraction solution to a temperature equal to or higher than the lower critical temperature of the attraction solution, and the heating Gravity separation step of gravity separation into concentrated phase solution mainly composed of temperature sensitive drug phase-separated in process and dilute phase solution mainly composed of water and containing a small amount of temperature sensitive drug, and separated by said gravity separation step In the water treatment step, the cooled concentrated phase solution is cooled to a temperature below the lower critical temperature of the attracting solution and then circulated to the forward osmosis step and reused as the attracting solution. Alkali in the attractant solution Ete water treatment method characterized by adjusting the pH. 前記重力分離工程で分離された希薄相溶液を膜処理し、膜ろ過水と膜濃縮水を得る膜処理工程をさらに有し、該膜処理工程で得られた膜濃縮水を希釈誘引溶液へ添加するとともに、該膜濃縮水を添加した後の希釈誘引溶液にアルカリを加えてpHを調整することを特徴とする請求項1に記載の水処理方法。   The dilute phase solution separated in the gravity separation step is further subjected to membrane treatment to obtain membrane filtration water and membrane concentrated water, and the membrane concentrated water obtained in the membrane treatment step is added to the dilution attraction solution. The water treatment method according to claim 1, wherein the pH is adjusted by adding an alkali to the dilution attraction solution after adding the membrane concentrated water. 前記アルカリを加えた希釈誘引溶液のpHが6以上9以下であることを特徴とする請求項1又は2に記載の水処理方法。   The water treatment method according to claim 1 or 2, wherein a pH of the dilution attraction solution to which the alkali is added is 6 or more and 9 or less. 温度感応性薬剤がアルキル鎖にエチレンオキサイドあるいはエチレンオキサイドとプロピレンオキサイドが付加した重合体であることを特徴とする請求項1〜3のいずれかに記載の水処理方法。   The water treatment method according to any one of claims 1 to 3, wherein the temperature-sensitive drug is a polymer in which ethylene oxide or ethylene oxide and propylene oxide are added to an alkyl chain. 被処理水と、下限臨界温度を有する温度感応性薬剤を水に溶解した誘引溶液とを半透膜を介して接触させ、前記被処理水中の水について前記半透膜を介して前記誘引溶液に移動させ、水で希釈された希釈誘引溶液と膜濃縮水を得る正浸透膜処理装置と、前記希釈誘引溶液を前記誘引溶液の前記下限臨界温度以上の温度まで加温する加温手段と、前記加温手段で加温され相分離した温度感応性薬剤を主体とする濃厚相溶液と、水を主体とし少量の温度感応性薬剤を含有する希薄相溶液とに重力分離する相分離槽と、前記相分離槽で分離された濃厚相溶液を前記誘引溶液の前記下限臨界温度以下の温度まで冷却した後、前記正浸透膜処理装置へ循環し、誘引溶液として再使用する冷却・循環手段と、前記相分離槽で分離された希薄相溶液を膜処理し、膜ろ過水と膜濃縮水を得る膜処理装置を有し、前記膜処理装置で分離された膜濃縮水を正浸透膜処理装置から排出されて加温手段に送られる希釈誘引溶液に加える循環ラインと、該膜濃縮水が加えられた希釈誘引溶液のpHを測定するpH計と該膜濃縮水が加えられた希釈誘引溶液にアルカリを供給する手段が設けられていることを特徴とする水処理装置。   The water to be treated and an attraction solution in which a temperature-sensitive drug having a lower critical temperature is dissolved in water are brought into contact with each other through a semipermeable membrane, and the water in the water to be treated is brought into the attraction solution through the semipermeable membrane. A forward osmosis membrane treatment device for obtaining a diluted attraction solution and membrane concentrated water that is moved and diluted with water, a heating means for heating the diluted attraction solution to a temperature equal to or higher than the lower critical temperature of the attraction solution, and A phase separation tank that gravity-separates into a concentrated phase solution mainly composed of a temperature-sensitive drug heated by a heating means and phase-separated, and a dilute phase solution mainly composed of water and containing a small amount of the temperature-sensitive drug; After cooling the concentrated phase solution separated in the phase separation tank to a temperature equal to or lower than the lower critical temperature of the attracting solution, it is circulated to the forward osmosis membrane treatment device and reused as an attracting solution, Membrane treatment of dilute phase solution separated in phase separation tank Circulate, having a membrane treatment device for obtaining membrane filtrate and membrane concentrate, and adding the membrane concentrate separated by the membrane treatment device to the dilute attraction solution discharged from the forward osmosis membrane treatment device and sent to the heating means A line, a pH meter for measuring the pH of the diluted attraction solution to which the membrane concentrated water is added, and means for supplying alkali to the diluted attraction solution to which the membrane concentrated water is added. Processing equipment. 前記アルカリを供給する手段が、アルカリ供給ポンプと前記pH計の測定結果に応じて該アルカリ供給ポンプに指令を送るコントローラーよりなることを特徴とする請求項5に記載の水処理装置。   6. The water treatment apparatus according to claim 5, wherein the means for supplying alkali comprises a controller that sends a command to the alkali supply pump in accordance with a measurement result of the alkali supply pump and the pH meter.
JP2018046274A 2018-03-14 2018-03-14 Water treatment method and apparatus Pending JP2019155289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018046274A JP2019155289A (en) 2018-03-14 2018-03-14 Water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046274A JP2019155289A (en) 2018-03-14 2018-03-14 Water treatment method and apparatus

Publications (1)

Publication Number Publication Date
JP2019155289A true JP2019155289A (en) 2019-09-19

Family

ID=67996741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046274A Pending JP2019155289A (en) 2018-03-14 2018-03-14 Water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2019155289A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100155329A1 (en) * 2008-12-18 2010-06-24 Quantumsphere, Inc. Systems and methods for forward osmosis fluid purification
JP2015054293A (en) * 2013-09-12 2015-03-23 Jfeエンジニアリング株式会社 Water treatment method using semi-permeable membrane
JP2017148735A (en) * 2016-02-24 2017-08-31 旭化成株式会社 Solvent separation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100155329A1 (en) * 2008-12-18 2010-06-24 Quantumsphere, Inc. Systems and methods for forward osmosis fluid purification
JP2015054293A (en) * 2013-09-12 2015-03-23 Jfeエンジニアリング株式会社 Water treatment method using semi-permeable membrane
JP2017148735A (en) * 2016-02-24 2017-08-31 旭化成株式会社 Solvent separation method

Similar Documents

Publication Publication Date Title
JP6149627B2 (en) Water treatment method with semipermeable membrane
US7942205B2 (en) Secondary oil recovery
KR101987870B1 (en) Thermo-sensitive water absorbent, method of water treatment, and water treatment apparatus
JP6149626B2 (en) Water treatment method with semipermeable membrane
JP6210033B2 (en) Water desalination method and apparatus
JP2015192979A (en) Water treatment apparatus using semipermeable membrane
JP5900743B2 (en) Method and apparatus for treatment of associated water from a well
JP2016016384A (en) Evaluation device and evaluation method for osmosis membrane module
JP2014100692A (en) Water treatment method
JP6028645B2 (en) Water treatment equipment
JP6210008B2 (en) Water treatment equipment
JP6463620B2 (en) Desalination system and desalination method
JP6210034B2 (en) Water desalination method and apparatus
JP6465301B2 (en) Water desalination equipment
JP2019141812A (en) Water treatment equipment and water treatment method
JP2015037771A (en) Water treatment method
JP2019155289A (en) Water treatment method and apparatus
JP6414528B2 (en) Water desalination method and apparatus
JP6210011B2 (en) Water treatment method and apparatus
JP2020142162A (en) Forward osmosis water treatment method and apparatus
JP6974797B2 (en) Forward osmosis water treatment method and equipment
JP2021035656A (en) Forward osmosis water treatment method and apparatus
JP2020175312A (en) Normal osmosis water treatment method and device
JP2016010767A (en) Water treatment apparatus
JP2022129707A (en) Purification method and device of temperature sensitive agent aqueous solution used in forward osmosis water treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220126