JP2015192979A - Water treatment apparatus using semipermeable membrane - Google Patents

Water treatment apparatus using semipermeable membrane Download PDF

Info

Publication number
JP2015192979A
JP2015192979A JP2014137346A JP2014137346A JP2015192979A JP 2015192979 A JP2015192979 A JP 2015192979A JP 2014137346 A JP2014137346 A JP 2014137346A JP 2014137346 A JP2014137346 A JP 2014137346A JP 2015192979 A JP2015192979 A JP 2015192979A
Authority
JP
Japan
Prior art keywords
water
membrane
solution
phase separation
separation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014137346A
Other languages
Japanese (ja)
Inventor
洋平 冨田
Yohei Tomita
洋平 冨田
渕上 浩司
Koji Fuchigami
浩司 渕上
戸村 啓二
Keiji Tomura
啓二 戸村
藤原 茂樹
Shigeki Fujiwara
茂樹 藤原
亮 功刀
Akira Kunugi
亮 功刀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2014137346A priority Critical patent/JP2015192979A/en
Publication of JP2015192979A publication Critical patent/JP2015192979A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of freshwater by forward osmosis using a temperature sensitive agent having a clouding point, which forms aggregates when heated, as attractant, capable of more efficiently separating the temperature sensitive agent aggregated by heating.SOLUTION: A water treatment apparatus includes: a forward osmosis membrane treatment apparatus 10 which allows water to be treated 1 to be contacted with an attractant solution 4 of a temperature sensitive agent dissolved in water through a semipermeable membrane 3 for the water in the water to be treated 1 to move into the attractant solution 4 through the semipermeable membrane 3, producing a water-diluted attractant solution 5 and a membrane concentrated water 2; first heating means 14 which heats the diluted attractant solution 5 flowing out from the forward osmosis membrane treatment apparatus 10 to a temperature equal to or higher than the clouding point of the attractant solution 5; a phase separation tank 11 in which the heated diluted attractant solution 5 is phase separated into a lower layer liquid 7 having a high concentration of the temperature sensitive agent and an upper layer liquid 6 having a lower concentration; cooling means 15 which cools the lower layer liquid 7 flowing out from the phase separation tank 11 to a temperature equal to or lower than the clouding point of the attractant solution 4; and a membrane filtration apparatus 12 for the membrane treatment of the upper layer liquid 6 flowing out from the phase separation tank 11 so as to produce a membrane filtration water 8.

Description

本発明は、海水、かん水などの被処理水から淡水を製造する水処理装置に関するものである。   The present invention relates to a water treatment apparatus for producing fresh water from water to be treated such as seawater and brine.

海水から半透膜を用いて淡水を製造する方法は種々知られているが、海水に浸透圧以上の圧力を加えて水を強制的に透過させる逆浸透法が主に開発されてきた。しかし、この方法は高圧に加圧する必要があるため、設備費および運転費にコストがかかるという問題点がある。そこで、半透膜を介して海水と海水より高濃度の塩溶液を接触させ、加圧せずとも浸透圧により海水中の水をこの塩溶液に移動させ、分離、回収することにより淡水を製造する方法が開発されている。(特許文献1、2)。   Various methods for producing fresh water from seawater using a semipermeable membrane are known, but a reverse osmosis method for forcibly permeating water by applying a pressure higher than the osmotic pressure to seawater has been mainly developed. However, since this method needs to be pressurized to a high pressure, there is a problem that the equipment cost and the operation cost are high. Therefore, seawater and salt solution with a higher concentration than seawater are brought into contact with each other through a semipermeable membrane, and water in seawater is transferred to this salt solution by osmotic pressure without being pressurized, and separated and recovered to produce fresh water. A method has been developed. (Patent Documents 1 and 2).

特許文献1の方法は、半透膜を介して海水と反対側にアンモニアと二酸化炭素を溶解して得られる塩溶液を流して、海水中の水を半透膜を通過させて該塩溶液に移動させ、得られた希釈塩溶液からイオン交換膜や蒸留塔等を用いてアンモニウムイオンと炭酸イオンを個別に分離して浄水を得るとともに、分離したアンモニウムイオンと炭酸イオンを該塩溶液に溶解して半透膜処理装置の元の部屋に戻す方法である。   In the method of Patent Document 1, a salt solution obtained by dissolving ammonia and carbon dioxide is passed through a semipermeable membrane on the side opposite to seawater, and water in the seawater is passed through the semipermeable membrane into the salt solution. From the diluted salt solution obtained, the ammonium ions and carbonate ions are separated separately using an ion exchange membrane, a distillation tower, etc. to obtain purified water, and the separated ammonium ions and carbonate ions are dissolved in the salt solution. This is a method of returning to the original room of the semipermeable membrane treatment apparatus.

特許文献2の方法は、曇点を有する温度感応性薬剤を溶質とした誘引溶液を用いており、図9に示すように、海水21を順浸透システム30に送って、そこで半透膜を介して誘引溶液24と接触させて海水21中の水を浸透圧により半透膜を透過させて誘引溶液24へ移動させる。水が誘引溶液に移動して残った濃縮海水22は順浸透システム30から流出する。一方、海水中の水で希釈された希釈誘引溶液25は加熱器を備えた沈殿システム34に送られ、そこで相分離あるいは沈殿を生じた希釈誘引溶液はポンプ37で加圧されてろ過システム32に送られる。その際、溶質の曇点より低い温度の液29を添加することができる。ろ過システム32で濃縮された誘引溶液24は順浸透システム30に返送される。一方、ろ過された膜ろ過水28は後処理部33でさらに精製されて飲料水となる。曇点を有する温度感応性薬剤としてはポリエチレングリコールやポリプロピレングリコールが使用され、ろ過システムのろ材にはナノろ過膜や逆浸透膜が使用されている。   The method of Patent Document 2 uses an attracting solution in which a temperature-sensitive drug having a cloud point is used as a solute, and as shown in FIG. 9, seawater 21 is sent to a forward osmosis system 30 where it passes through a semipermeable membrane. Then, it is brought into contact with the attracting solution 24, and the water in the seawater 21 is transferred to the attracting solution 24 through the semipermeable membrane by osmotic pressure. The concentrated seawater 22 remaining after the water has moved to the attracting solution flows out of the forward osmosis system 30. On the other hand, the diluted attraction solution 25 diluted with water in seawater is sent to a precipitation system 34 equipped with a heater, and the diluted attraction solution that has undergone phase separation or precipitation is pressurized by a pump 37 to the filtration system 32. Sent. At that time, a liquid 29 having a temperature lower than the cloud point of the solute can be added. The attraction solution 24 concentrated in the filtration system 32 is returned to the forward osmosis system 30. On the other hand, the filtered membrane filtrate 28 is further purified by the post-processing unit 33 to become drinking water. Polyethylene glycol or polypropylene glycol is used as a temperature-sensitive drug having a cloud point, and a nanofiltration membrane or a reverse osmosis membrane is used as a filter medium of a filtration system.

特開2011−83663号公報JP 2011-83663 A 米国特許第8.021.553B2号明細書U.S. Pat. No. 8.021.553 B2

特許文献1の方法では、誘引物質(例えば炭酸アンモニウム)の分離、回収を蒸発法で行うが、その際、アンモニアおよび同伴する水分の蒸発潜熱が多大で、膨大なエネルギーを要しコストも高い。さらに、蒸発設備サイズが極めて大きく、大量(例えば10万m/日)の飲料水製造には不向きである。また、投入エネルギーが大きいため熱交換器のサイズも大きくなり、大量処理には不向きである。さらに、炭酸アンモニウムを用いる場合には半透膜からのバックフローによって膜濃縮水を介して環境中に漏洩する誘引物質が窒素を含むため、富栄養化の原因となる。 In the method of Patent Document 1, the attracting substance (for example, ammonium carbonate) is separated and recovered by an evaporation method. At that time, the latent heat of vaporization of ammonia and accompanying water is great, enormous energy is required, and the cost is high. Furthermore, the size of the evaporation facility is extremely large, and is not suitable for producing a large amount (for example, 100,000 m 3 / day) of drinking water. Moreover, since the input energy is large, the size of the heat exchanger is also large, which is not suitable for mass processing. Furthermore, when ammonium carbonate is used, the attracting substance that leaks into the environment through the membrane concentrated water by backflow from the semipermeable membrane contains nitrogen, which causes eutrophication.

特許文献2の方法は、誘引溶液の温度感応性を利用して誘引物質の一部を凝集させることにより、膜ろ過エネルギーを低減させることができる。この方法においては、誘引物質を凝集させた希釈誘引溶液はそのままろ過システムに送って凝集物をろ過分離していた。ところが、曇点温度以上となって凝集した液滴は非常に微小であるため、ろ過分離に多大な時間とエネルギーを要していた。   The method of patent document 2 can reduce membrane filtration energy by aggregating a part of attractant using the temperature sensitivity of an attractant solution. In this method, the diluted attracting solution in which the attracting substance is aggregated is sent to the filtration system as it is to separate the aggregate by filtration. However, since the droplets aggregated at a temperature equal to or higher than the cloud point temperature are very fine, a great amount of time and energy are required for filtration and separation.

本発明者は、この問題を解決する手段として、誘引物質を凝集させた希釈誘引溶液を、そのままろ過システムへ送るのではなく、一旦、相分離槽で温度感応性薬剤である誘引物質を主体とする下層液と水を主体とする上層液に分離して、下層液は曇点以下に冷却して誘引溶液として順浸透工程へ循環し、上層液のみをナノろ過膜等でろ過する方法を既に開発している。   As a means for solving this problem, the present inventor does not send the diluted attraction solution in which the attracting substance is aggregated to the filtration system as it is, but once mainly uses the attracting substance which is a temperature-sensitive drug in the phase separation tank. The lower layer liquid is separated into an upper layer liquid mainly composed of water, and the lower layer liquid is cooled to below the cloud point and circulated to the forward osmosis step as an attracting solution, and only the upper layer liquid is filtered through a nanofiltration membrane or the like. We are developing.

そして、本発明者はさらに検討を進めて、加温工程で曇点以上の温度まで加温された希釈誘引溶液を相分離槽に供給しても、相分離槽において温度が下がって薬剤回収量が低下することを見出した。   Then, the present inventor further studied, and even if the dilution attraction solution heated to a temperature equal to or higher than the cloud point in the heating step was supplied to the phase separation tank, the temperature decreased in the phase separation tank and the amount of drug recovered Found that the decline.

本発明の目的は、曇点を有し加温すると凝集する温度感応性薬剤を誘引物質として用いた順浸透法による淡水の製造方法において、加温によって凝集した温度感応性薬剤をさらに効率よく分離できる方法を提供することにある。   An object of the present invention is to more efficiently separate a temperature-sensitive drug that has been aggregated by heating in a method for producing fresh water by forward osmosis using a temperature-sensitive drug that has a cloud point and aggregates when heated as an attractant. It is to provide a method that can.

本発明者は、上記課題を解決するべく、鋭意検討の結果、希釈誘引溶液の相分離を行う相分離槽に加温手段を設けて槽内の希釈誘引溶液を加温することによって、濃厚層である下層液の薬剤濃度をより高く、希薄層である上層液の薬剤濃度をより低くし、相分離槽での薬剤回収率の低下を防止することを可能とした。   In order to solve the above-mentioned problems, the present inventor, as a result of intensive studies, provided a heating means in the phase separation tank for performing phase separation of the dilution attraction solution to heat the dilution attraction solution in the tank, thereby concentrating the concentrated layer. The drug concentration of the lower layer liquid is higher, and the drug concentration of the upper layer liquid that is a dilute layer is lower, thereby preventing a decrease in the drug recovery rate in the phase separation tank.

しかしながら、槽内で加温すると、熱対流によって、凝集した薬剤液滴が浮上し、また、上層部の加温部で発生した微細な薬剤液滴も沈降する前に上層液として回収されてしまうことによる薬剤回収率の低下が見出された。そこで、相分離槽内に傾斜板を設置して、熱対流で上昇した薬剤液滴や上層部で発生した微細な薬剤液滴を合一させて大きな液滴として沈降させることによりこの問題を解決した。   However, when heated in the tank, the agglomerated drug droplets float up due to thermal convection, and the fine drug droplets generated in the heating part of the upper layer part are collected as the upper layer liquid before settling. As a result, a decrease in the drug recovery rate was found. To solve this problem, an inclined plate is installed in the phase separation tank, and the chemical droplets that have risen due to thermal convection and the fine chemical droplets generated in the upper layer are combined and settled as large droplets. did.

すなわち、本発明は、被処理水と、温度感応性薬剤を水に溶解した誘引溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘引溶液に移動させ、水で希釈された希釈誘引溶液と膜濃縮水を得る順浸透膜処理装置と、前記順浸透膜処理装置から流出する希釈誘引溶液を前記誘引溶液の曇点以上の温度まで加温する第一の加温手段と、前記第一の加温手段で加温した希釈誘引溶液を、温度感応性薬剤濃度の高い下層液と温度感応性薬剤濃度の低い上層液とに相分離する相分離槽と、前記相分離槽から流出する下層液を前記誘引溶液の曇点以下の温度まで冷却する冷却手段と、前記相分離槽から流出する上層液を膜ろ過し、膜ろ過水を得る膜ろ過装置を有する水処理装置であって、前記相分離槽に第二の加温手段と傾斜板を設けたことを特徴とする水処理装置を提供するものである。   That is, the present invention brings the water to be treated into contact with an attraction solution in which a temperature sensitive drug is dissolved in water through a semipermeable membrane, and moves the water in the to-be-treated water to the attraction solution through the semipermeable membrane. A forward osmosis membrane treatment device for obtaining a diluted attraction solution diluted with water and membrane concentrated water, and a first for heating the diluted attraction solution flowing out from the forward osmosis membrane treatment device to a temperature equal to or higher than a cloud point of the attraction solution. And a phase separation tank for phase-separating the dilution attraction solution heated by the first heating means into a lower layer liquid having a high temperature-sensitive drug concentration and an upper layer liquid having a low temperature-sensitive drug concentration, A cooling means for cooling the lower layer liquid flowing out from the phase separation tank to a temperature below the cloud point of the attracting solution, and a membrane filtration device for membrane filtration of the upper layer liquid flowing out from the phase separation tank to obtain membrane filtered water A water treatment device having a second heating means and a tilt in the phase separation tank The there is provided a water treatment apparatus characterized by comprising.

本発明により、曇点を有する温度感応性薬剤を用いた順浸透法による水処理装置において、相分離した温度感応性薬剤の希薄層である上層液から温度感応性薬剤を効率よく分離し、膜ろ過装置におけるろ過負担を大幅に軽減することができる。   According to the present invention, in a water treatment apparatus using a forward osmosis method using a temperature sensitive drug having a cloud point, the temperature sensitive drug is efficiently separated from the upper layer liquid which is a dilute layer of the phase separated temperature sensitive drug. The filtration burden on the filtration device can be greatly reduced.

本発明の一実施態様を模式的に示すブロック図である。It is a block diagram which shows one embodiment of this invention typically. 相分離槽の一例の側面断面図である。It is side surface sectional drawing of an example of a phase separation tank. 図2のA−A´から下方を見た図である。It is the figure which looked at the downward direction from AA 'of FIG. 図2のB−B´から下方を見た図である。It is the figure which looked at the downward direction from BB 'of FIG. 図2のC−C´とD−D´から右方を見た図である。It is the figure which looked at the right side from CC 'and DD' of FIG. 本発明の別の実施態様を模式的に示すブロック図である。It is a block diagram which shows another embodiment of this invention typically. コアレッサーの一例の概略縦断面図である。It is a schematic longitudinal cross-sectional view of an example of a coalescer. 曇点温度と薬剤濃度の関係を示した曲線である。3 is a curve showing the relationship between cloud point temperature and drug concentration. 公知の水処理方法の概略を示すブロック図である。It is a block diagram which shows the outline of a well-known water treatment method.

図1に本発明の一実施態様を模式的に示す。   FIG. 1 schematically shows an embodiment of the present invention.

本発明の装置で処理される被処理水は水を溶媒とする溶液であり、海水、かん水などである。かん水は、シェールガス、オイルサンド、CBM(炭層メタン)、石油等を採掘する坑井からの随伴水も含まれる。   The water to be treated to be treated by the apparatus of the present invention is a solution using water as a solvent, such as seawater or brine. Brine includes associated water from wells that mine shale gas, oil sand, CBM (coal bed methane), oil, and the like.

随伴水は、坑井からの採掘目的物に同伴して排出される水であり、塩分、有機物、懸濁物などを含んでいる。汚濁物質の濃度としては、例えば蒸発残留物(主にNa+、K+、Ca2+、Cl-、SO4 2-など)が1,000〜100,000mg/L、有機物(油分や添加した薬剤など)がTOCとして10〜1,000mg/L、懸濁物質が100〜10,000mg/Lといった範囲で含有される。 Accompanying water is water that is discharged along with the object to be mined from the well, and includes salt, organic matter, suspended matter, and the like. Concentrations of pollutants include, for example, evaporation residues (mainly Na + , K + , Ca 2+ , Cl , SO 4 2−, etc.) of 1,000 to 100,000 mg / L, organic substances (such as oil and added chemicals) Is contained in a range of 10 to 1,000 mg / L as TOC and suspended material in a range of 100 to 10,000 mg / L.

油分と随伴水の分離手段は問わないが、例えば沈降などで油水分離が行われている。   There is no limitation on the means for separating oil and associated water, but oil-water separation is performed, for example, by sedimentation.

図1に示していないが、被処理水を必要によりまずろ過処理する。このろ過処理は、例えば、精密ろ過膜を用いたろ過器で行い、ろ過膜は、精密ろ過膜として使用されている通常の膜を使用することができる。例えば、酢酸セルロース、ポリテトラフルオロエチレン、ポリスルホン、ポリ塩化ビニルなどの他、セラミック製の膜や多孔質ガラス製の膜なども利用できる。精密膜ろ過処理では、精密ろ過膜を通過した膜ろ過水と、膜を通過しないで残った膜濃縮水が得られる。
精密膜ろ過のほか、限外膜ろ過、砂ろ過等のろ過処理を用いることができる。限外膜ろ過の材質は精密膜ろ過と同様のものが用いられる。
Although not shown in FIG. 1, the water to be treated is first filtered if necessary. This filtration treatment is performed, for example, with a filter using a microfiltration membrane, and a normal membrane used as a microfiltration membrane can be used as the filtration membrane. For example, in addition to cellulose acetate, polytetrafluoroethylene, polysulfone, polyvinyl chloride, etc., a ceramic film or a porous glass film can be used. In the micromembrane filtration treatment, membrane filtrate water that has passed through the microfiltration membrane and membrane concentrated water remaining without passing through the membrane are obtained.
In addition to precision membrane filtration, filtration treatment such as ultramembrane filtration and sand filtration can be used. The material for the ultrafiltration is the same as that for precision membrane filtration.

順浸透膜処理装置
順浸透膜処理装置は、ろ過処理した被処理水と、温度感応性薬剤を水に溶解した高浸透圧の誘引溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘引溶液に移動させ、水で希釈された希釈誘引溶液と膜濃縮水を得る装置である。
Forward osmosis membrane treatment device The forward osmosis membrane treatment device brings the treated water that has been filtered into contact with a high osmotic pressure attraction solution in which a temperature-sensitive drug is dissolved in water through a semipermeable membrane. The apparatus moves water to the attracting solution through the semipermeable membrane to obtain a diluted attracting solution diluted with water and membrane concentrated water.

半透膜は水を選択的に透過できるものがよく、順浸透(Forward Osmosis)膜が好ましいが、逆浸透膜も使用できる。材質は特に制限されないが、例示すれば、酢酸セルロース系、ポリアミド系、ポリエチレンイミン系、ポリスルホン系、ポリベンゾイミダゾール系のものなどを挙げることができる。半透膜の形態も特に制限されず、平膜、管状膜、中空糸などいずれであってもよい。   The semipermeable membrane is preferably one that can selectively permeate water, and is preferably a forward osmosis membrane, but a reverse osmosis membrane can also be used. The material is not particularly limited, and examples thereof include cellulose acetate-based, polyamide-based, polyethyleneimine-based, polysulfone-based, and polybenzimidazole-based materials. The form of the semipermeable membrane is not particularly limited and may be any of a flat membrane, a tubular membrane, a hollow fiber, and the like.

この半透膜を装着する順浸透膜処理装置は通常は円筒形あるいは箱形の容器内に半透膜を設置して、この半透膜で仕切られた一方の室に被処理水を流し、他方の室に誘引溶液を流せるものであり、公知の半透膜装置を用いることができ、市販品を用いることができる。   The forward osmosis membrane treatment apparatus to which this semipermeable membrane is attached usually has a semipermeable membrane installed in a cylindrical or box-shaped container, and water to be treated flows into one chamber partitioned by this semipermeable membrane, An attracting solution can be flowed into the other chamber, and a known semipermeable membrane device can be used, and a commercially available product can be used.

温度感応性薬剤は、低温では親水性で水によく溶けるが、ある温度以上になると疎水性化し溶解度が低下する物質であり、水溶性〜水不溶性に変化する温度が曇点と呼ばれる。この温度に達すると疎水性化した温度感応性薬剤が析出して白濁が起こる。   A temperature-sensitive drug is a substance that is hydrophilic and well soluble in water at low temperatures, but becomes hydrophobic and decreases in solubility at a certain temperature or higher, and the temperature at which it changes from water-soluble to water-insoluble is called a cloud point. When this temperature is reached, the hydrophobized temperature-sensitive drug precipitates and white turbidity occurs.

この温度感応性薬剤は、各種界面活性剤、分散剤、乳化剤などとして利用されており、例示すれば、アルコールまたは脂肪酸とエチレンオキサイドの化合物、アルコールまたは脂肪酸とプロピレンオキサイドの化合物、アクリルアミドとアルキル基の化合物、エチレングリコール脂肪酸エステル、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステルエチレンオキサイド付加物、アミノ酸およびその誘導体などであり、好ましくは、ポリエチレングリコールとポリプロピレン/ポリブチレングリコールのブロック共重合体、グリセロールエトキシレートブトキシレート、トリメチロールプロパンエトキシブトキシレート等である。本発明において使用する温度感応性薬剤としては、曇点が30℃〜80℃の範囲、特に40℃〜60℃の範囲のものが好ましい。そのために、HLB値が10以上の非イオン性界面活性剤とそれよりHLB値が低い非イオン性界面活性剤、脂肪酸あるいはアルコールを組み合わせて曇点を上記の範囲に調節することができる。   This temperature-sensitive agent is used as various surfactants, dispersants, emulsifiers, and the like. For example, alcohol or fatty acid and ethylene oxide compound, alcohol or fatty acid and propylene oxide compound, acrylamide and alkyl group Compounds, ethylene glycol fatty acid esters, glycerin fatty acid esters, sorbitan fatty acid esters, ethylene oxide adducts, amino acids and derivatives thereof, preferably block copolymers of polyethylene glycol and polypropylene / polybutylene glycol, glycerol ethoxylate butoxylate, And trimethylolpropane ethoxybutoxylate. As the temperature sensitive agent used in the present invention, those having a cloud point in the range of 30 ° C to 80 ° C, particularly in the range of 40 ° C to 60 ° C are preferable. Therefore, the cloud point can be adjusted to the above range by combining a nonionic surfactant having an HLB value of 10 or more and a nonionic surfactant having a lower HLB value, a fatty acid or an alcohol.

誘引溶液の濃度は、誘引溶液の浸透圧が、被処理液の浸透圧より十分高くなるように調整しなければならない。   The concentration of the attracting solution must be adjusted so that the osmotic pressure of the attracting solution is sufficiently higher than the osmotic pressure of the liquid to be treated.

この誘引溶液には、凝集用固体粒子を添加することもできる。凝集用固体粒子としては、ベントナイト、カオリン、活性炭粉末等が使用でき、無機吸着剤がより望ましい。粒径としては、平均粒径で0.1〜10μm程度のものが望ましい。固体粒子の添加量は、温度感応性薬剤に対する重量比で0.1〜10%程度が適当である。ただし、これらは温度感応性薬剤と固体粒子との親和性を勘案して決定することが望ましい。   Aggregating solid particles may be added to the attracting solution. As the solid particles for aggregation, bentonite, kaolin, activated carbon powder and the like can be used, and an inorganic adsorbent is more desirable. The average particle size is preferably about 0.1 to 10 μm. The amount of solid particles added is suitably about 0.1 to 10% by weight with respect to the temperature sensitive drug. However, these are preferably determined in consideration of the affinity between the temperature sensitive drug and the solid particles.

順浸透膜処理装置で被処理水を半透膜を介して誘引溶液と接触させると浸透圧の差によって被処理水中の水が半透膜を通って誘引溶液に移動する。   When the water to be treated is brought into contact with the attracting solution through the semipermeable membrane in the forward osmosis membrane treatment apparatus, the water in the treated water moves to the attracting solution through the semipermeable membrane due to the difference in osmotic pressure.

第一の加温手段
順浸透膜処理装置から流出する希釈誘引溶液を曇点以上の温度まで加温して、温度感応性薬剤の少なくとも一部を液滴として凝集させる手段である。この凝集液滴は、温度感応性薬剤の濃厚溶液が相分離したものである。
The first heating means is means for warming the dilution attraction solution flowing out from the forward osmosis membrane treatment apparatus to a temperature equal to or higher than the cloud point and aggregating at least a part of the temperature sensitive drug as droplets. These agglomerated droplets are obtained by phase separation of a concentrated solution of a temperature sensitive drug.

加温手段は所定の温度まで加熱できればよく、電気ヒーター、熱交換器など如何なるものでも用いることができる。   The heating means is only required to be heated to a predetermined temperature, and any device such as an electric heater or a heat exchanger can be used.

この加温手段の熱源には、次の相分離槽で分離された下層液の顕熱を使用することが好ましい。
相分離槽
相分離槽は、前記第一の加温手段で加温した希釈誘引溶液を、温度感応性薬剤濃度の高い下層液と温度感応性薬剤濃度の低い上層液に相分離する槽である。この相分離は曇点以上の液温で相分離槽内で静置することによって行うことができる。その際、前記第一の加温手段で凝集した温度感応性薬剤の濃厚溶液は、凝集用固体粒子があるとそれを核として微細な液滴の状態になる。そして、この状態で相分離槽に投入されると、濃厚溶液の微細液滴は速やかに沈降し、液滴同士が合一して下に濃厚層が形成される。凝集用固体粒子のほとんどは濃厚層に集まるが、極く一部は上の希薄層に残る。この分層に要する時間は、凝集用固体粒子が存在しない場合は2〜4時間位かかるが、これを存在させることにより、0.5〜1.0時間程度(約4分の1程)に短縮させることができる。
It is preferable to use the sensible heat of the lower layer liquid separated in the next phase separation tank as the heat source of the heating means.
Phase separation tank The phase separation tank is a tank for phase-separating the dilution attraction solution heated by the first heating means into a lower layer liquid having a high temperature sensitive drug concentration and an upper layer liquid having a low temperature sensitive drug concentration. . This phase separation can be performed by standing in a phase separation tank at a liquid temperature higher than the cloud point. At that time, the concentrated solution of the temperature-sensitive drug aggregated by the first heating means is in the form of fine droplets with the aggregation solid particles as a core. And if it puts into a phase-separation tank in this state, the fine droplet of a concentrated solution will settle quickly, and droplets will unite and a dense layer will be formed underneath. Most of the solid particles for agglomeration collect in the dense layer, but only a small part remains in the upper dilute layer. The time required for this layering is about 2 to 4 hours in the absence of agglomerating solid particles, but it is about 0.5 to 1.0 hours (about one quarter) by the presence of this. It can be shortened.

ところで、本発明者は、この相分離槽に第二の加温手段を設けて槽内の希釈誘引溶液を加温することによって濃厚層である下層液の薬剤濃度をより高く、希薄層である上層液の薬剤濃度をより低くすることができるが、槽内の加温による熱対流で凝集した薬剤液滴が浮上し、また上層部の加温部で発生した薬剤液滴も沈降する前に上層液として分離されてしまうことを見出した。そして、相分離槽内に傾斜板を設けることにより、熱対流で上昇した薬剤液滴や上層部で発生した微細な薬剤液滴を合体させて大きな液滴にして沈降速度を早められることを見出した。   By the way, the present inventor provides a second heating means in this phase separation tank to heat the dilution attraction solution in the tank, thereby increasing the concentration of the lower layer solution, which is a concentrated layer, to be a dilute layer. Although the drug concentration in the upper layer liquid can be lowered, the drug droplets aggregated by heat convection due to heating in the tank rise, and before the drug droplets generated in the heating part of the upper layer also settle It was found that it was separated as an upper layer liquid. Then, by providing an inclined plate in the phase separation tank, it was found that drug droplets that were raised by thermal convection and fine drug droplets that were generated in the upper layer could be combined into large droplets to increase the sedimentation speed. It was.

第二の加温手段は、相分離槽内の希釈誘引溶液の上層部および下層部の両方を加温できるよう配置される。加温手段は、電気ヒーター、熱交換器など如何なるものでも用いることができるが、上層部および下層部の希釈誘引溶液を均一に加熱できるよう、管状や板状のものをなるべく均等に配置するのがよい。加温能力は希釈誘引溶液を相分離槽の滞留時間において、1〜5℃程度、好ましくは2〜4℃程度上昇させられればよい。   A 2nd heating means is arrange | positioned so that both the upper layer part and lower layer part of the dilution attraction solution in a phase separation tank can be heated. The heating means can be any one such as an electric heater or a heat exchanger, but the tubular and plate-like ones are arranged as evenly as possible so as to uniformly heat the dilution-inducing solution in the upper and lower layers. Is good. The heating ability may be increased by about 1 to 5 ° C., preferably about 2 to 4 ° C., in the residence time of the phase separation tank in the dilution attraction solution.

傾斜板は、熱対流によって上昇してきた下層液中の微細液滴や加温によって発生した上層液中の微細液滴を板に付着して合体させて大粒化し、沈降させるものであり、原則として上層液の上部、液面近傍に設ける。板は、通常は、複数枚、2〜20枚程度、好ましくは4〜10枚程度を平行に設ければよく、上からの投影面積で、液面の50%以上、好ましくは100%以上を覆うように設置する。傾斜角度は、上層液の流出方向と同じ方向に傾けるのがよく、角度は0〜90°程度、好ましくは15〜45°程度でよい。   Inclined plates are the ones that cause the fine droplets in the lower layer liquid that has risen due to thermal convection and the fine droplets in the upper layer liquid generated by heating to adhere to the plate, coalesce into large particles, and settle. Provided near the top of the upper liquid and near the liquid surface. Usually, a plurality of sheets, about 2 to 20 sheets, preferably about 4 to 10 sheets, may be provided in parallel, and the projected area from the top is 50% or more, preferably 100% or more of the liquid surface. Install to cover. The tilt angle is preferably tilted in the same direction as the flow direction of the upper layer liquid, and the angle may be about 0 to 90 °, preferably about 15 to 45 °.

冷却手段
前記相分離槽で分離された下層液は、これを前記誘引溶液の曇点より低い温度に冷却することで温度感応性薬剤を水に溶解させて誘引溶液に再生する。この温度は広い範囲で採用可能であるが、経済性を考慮すると常温かそれより高い温度が好ましい。この冷却熱源としては、被処理水あるいは順浸透膜処理装置において得られた希釈誘引溶液を用いることがエネルギーの効率利用の点で好ましい。この冷却が不充分な場合には、順浸透膜処理装置で被処理水から移動してくる水によって濃度が下がるので曇点を発現して相分離し、浸透圧が低下してしまう。
Cooling means The lower layer liquid separated in the phase separation tank is cooled to a temperature lower than the cloud point of the attracting solution, so that the temperature sensitive drug is dissolved in water and regenerated into the attracting solution. Although this temperature can be employed in a wide range, considering the economy, a temperature of room temperature or higher is preferable. As this cooling heat source, it is preferable from the viewpoint of efficient use of energy to use the water to be treated or the dilution attraction solution obtained in the forward osmosis membrane treatment apparatus. If this cooling is insufficient, the concentration is lowered by the water moving from the water to be treated in the forward osmosis membrane treatment apparatus, so that a cloud point is developed and the phases are separated and the osmotic pressure is lowered.

再生した誘引溶液はそのまま循環使用できる。   The regenerated attractant solution can be recycled as it is.

コアレッサー
本発明においては、前述のように、相分離槽に第二の加温手段と傾斜板を設けることによって分離効率を高めることができる。しかしながら、相分離槽で分離された上層液には温度感応性薬剤が1〜5重量%、通常2〜3重量%程度含まれており、これが膜ろ過装置におけるろ過負担をかなり大きくしているので、上層液を膜ろ過装置に送る前に温度感応性薬剤を低減しておくことが好ましい。ところが、上層液に含まれている温度感応性薬剤は極めて微細な粒子であるため、その分離が容易ではない。本発明者は、分離手段を種々検討した結果、コアレッサーを用いることによって極めて効率よく分離できることを見出した。コアレッサーとは、疎水性の液滴を含む水溶液がフィルターを通過する際に、疎水性の液滴をろ過媒体に付着させ絡ませて、強制的に合一させて粗大化して分離するもので、この分離は通常比重分離で行うことができる。ろ過媒体は、フッ素樹脂、その他の各種樹脂、アルミナ繊維、ガラス繊維等で形成され、特表2000−508581号公報、特開2012−200682号公報などの特許出願がある。また、「フェーズセップHEシリーズ」(日本ポール株式会社、ポールインダストリアルカンパニー)、「ユーテック」(旭化成せんい株式会社)などの商品名で市販されている。
In the present invention, as described above, the separation efficiency can be increased by providing the second heating means and the inclined plate in the phase separation tank. However, the upper layer liquid separated in the phase separation tank contains 1 to 5% by weight, usually 2 to 3% by weight, of the temperature sensitive drug, which considerably increases the filtration load in the membrane filtration device. It is preferable to reduce the temperature sensitive drug before sending the upper layer liquid to the membrane filtration device. However, since the temperature-sensitive drug contained in the upper layer liquid is extremely fine particles, the separation thereof is not easy. As a result of various studies on the separation means, the present inventor has found that separation can be performed very efficiently by using a coalescer. The coalescer is an aqueous solution containing hydrophobic droplets that passes through the filter, attaches the hydrophobic droplets to the filtration medium and entangles them, forcibly coalesces them, coarsens them, and separates them. This separation can usually be performed by specific gravity separation. The filtration medium is made of fluororesin, other various resins, alumina fibers, glass fibers, and the like, and there are patent applications such as JP 2000-508581 and JP 2012-200682. Moreover, it is marketed with brand names, such as "Phase Cep HE series" (Nippon Pole Co., Ltd., Pole Industrial Company), and "Utec" (Asahi Kasei Fibers Co., Ltd.).

コアレッサーは、本体であるカートリッジを槽内に収容したものであり、縦型のものと横型のものがある。いずれも、分離しようとする液体の入口側を仕切ってカートリッジ内に流入させ、カートリッジを通過した液はその際に成長した疎水性の液滴を槽内で水相と比重分離して、一方を上部から他方を下部から抜き出す構造になっている。縦型のコアレッサーの一例を図7に示す。このコアレッサーは、円筒型のタンク171の底部を仕切る底板172が設けられ、その中央の通路から上方にコアレッサーの本体であるカートリッジ173が垂直に設けられている。そして、底板172の直ぐ上には温度感応性薬剤の抜出口174が、タンク171の上部には温度感応性薬剤が除去された上層液の抜出口175が設けられている。温度感応性薬剤を含む上層液6はタンク171の底部入口176から入ってカートリッジ173を通過し、その際温度感応性薬剤の液滴はろ過媒に付着して絡みつき、液滴が合一して粗大化し、タンク室内に放出される。放出された温度感応性薬剤の液滴は沈降してさらに合一され、タンク室下部の温度感応性薬剤抜出口174から取り出される。一方、温度感応性薬剤の液滴が捕集されて分離された上層液はタンク上部の上層液抜出口175から流出する。   The coalescer is a main body cartridge accommodated in a tank, and there are a vertical type and a horizontal type. In both cases, the inlet side of the liquid to be separated is partitioned and allowed to flow into the cartridge, and the liquid that has passed through the cartridge separates the hydrophobic droplets grown at that time from the water phase in the tank with a specific gravity. The other is extracted from the upper part from the lower part. An example of a vertical coalescer is shown in FIG. This coalescer is provided with a bottom plate 172 that partitions the bottom of a cylindrical tank 171 and a cartridge 173 that is the main body of the coalescer is vertically provided above the central passage. A temperature-sensitive drug outlet 174 is provided immediately above the bottom plate 172, and an upper-layer liquid outlet 175 from which the temperature-sensitive drug has been removed is provided above the tank 171. The upper layer liquid 6 containing the temperature sensitive drug enters from the bottom inlet 176 of the tank 171 and passes through the cartridge 173. At that time, the temperature sensitive drug droplets adhere to the filter medium and become entangled, and the droplets coalesce. It becomes coarse and is discharged into the tank chamber. The discharged temperature-sensitive drug droplets settle and further coalesce, and are taken out from the temperature-sensitive drug outlet 174 at the bottom of the tank chamber. On the other hand, the upper layer liquid from which the temperature-sensitive drug droplets are collected and separated flows out from the upper layer liquid outlet 175 at the upper part of the tank.

このコアレッサー処理により、上層液に含まれている温度感応性薬剤は50〜80%程度除去され、その濃度は2重量%未満になる。   By this coalescer treatment, about 50 to 80% of the temperature sensitive drug contained in the upper layer liquid is removed, and the concentration becomes less than 2% by weight.

また、滞留時間が0.5〜1.0時間程度である相分離槽を小型化(滞留時間10分〜20分)した場合,相分離槽の表面負荷より液滴の沈降速度が小さいものが増加するため、上層液の温度感応性薬剤濃度は5〜7重量%と高濃度になる。これをコアレッサー処理することで、上層液濃度は2重量%未満となった。このように、コアレッサー処理の導入によって、相分離槽の小型化が可能である。   In addition, when the phase separation tank with a residence time of about 0.5 to 1.0 hour is downsized (residence time of 10 to 20 minutes), the droplet settling rate is smaller than the surface load of the phase separation tank. Since it increases, the temperature-sensitive drug concentration of the upper layer liquid becomes a high concentration of 5 to 7% by weight. By treating this with a coalescer, the concentration of the upper layer liquid became less than 2% by weight. Thus, the phase separation tank can be downsized by introducing the coalescer process.

膜ろ過装置
一方、前記相分離槽で分離されあるいはコアレッサーでさらに温度感応性薬剤を除去された上層液は、ナノろ過膜や逆浸透膜などで膜ろ過して、そこに残存している温度感応性薬剤や凝集用固体粒子を除去する。膜ろ過水は淡水であり、飲料水などに利用できる。膜ろ過されないで残った膜濃縮水は、温度感応性薬剤や凝集用固体粒子が含まれているので、相分離槽に循環するのがよい。あるいは、濃縮して誘引溶液として順浸透膜処理装置に直接返送することもできる。
Membrane filtration device On the other hand, the upper layer liquid separated by the phase separation tank or further having the temperature-sensitive agent removed by the coalescer is subjected to membrane filtration with a nanofiltration membrane or a reverse osmosis membrane, and the temperature remaining there Remove sensitive drugs and solid particles for aggregation. Membrane filtrate is fresh water and can be used for drinking water and the like. The membrane concentrated water remaining without being membrane filtered contains a temperature sensitive drug and solid particles for agglomeration, and therefore should be circulated to the phase separation tank. Alternatively, it can be concentrated and returned directly to the forward osmosis membrane treatment apparatus as an attracting solution.

一方、順浸透膜処理装置で得られた膜濃縮水は塩分を高濃度で含んでいるので、これを濃縮して塩分を析出させて分離し、有効利用することができる。   On the other hand, since the membrane concentrated water obtained by the forward osmosis membrane treatment apparatus contains a high concentration of salt, it can be concentrated by depositing the salt to separate it for effective use.

本発明の装置の一例を図1に模式化して示す。同図に示すように、海水等の被処理水1は順浸透膜処理装置10に送入され、半透膜3を通して水が反対側の室に透過されて残った膜濃縮水2が排出される。順浸透膜処理装置10の反対側の室には誘引溶液4が流入しており、そこで半透膜3を介して被処理水1と向流接触して被処理水1から移行した水で希釈されて順浸透膜処理装置10を出る。順浸透膜処理装置10を出た希釈誘引溶液5は、熱交換器16で相分離された下層液7と熱交換して加温され、加熱器14でさらに加温されて相分離槽11に入る。   An example of the apparatus of the present invention is schematically shown in FIG. As shown in the figure, water 1 to be treated such as seawater is fed into a forward osmosis membrane treatment apparatus 10, and water is permeated through the semipermeable membrane 3 to the opposite chamber and the remaining membrane concentrated water 2 is discharged. The The attracting solution 4 flows into the chamber on the opposite side of the forward osmosis membrane treatment apparatus 10, and is diluted with water transferred from the treatment water 1 in countercurrent contact with the treatment water 1 through the semipermeable membrane 3. Then, the forward osmosis membrane treatment apparatus 10 is exited. The dilution attraction solution 5 exiting the forward osmosis membrane treatment apparatus 10 is heated by heat exchange with the lower layer liquid 7 phase-separated by the heat exchanger 16, and further heated by the heater 14 to the phase separation tank 11. enter.

相分離槽11は、図1の右上に模式的に示すように、内部にヒーター111と傾斜板112が設置されている。ヒーター111は相分離槽11内の上層液と下層液の両方を加熱できるように配置されており、傾斜板112は上層液の流出方向と同じ方向に傾けて配置されている。   As schematically shown in the upper right of FIG. 1, the phase separation tank 11 is provided with a heater 111 and an inclined plate 112 therein. The heater 111 is disposed so as to heat both the upper layer liquid and the lower layer liquid in the phase separation tank 11, and the inclined plate 112 is disposed so as to be inclined in the same direction as the outflow direction of the upper layer liquid.

相分離槽11で分離された上層液6は膜ろ過装置12でろ過され、得られた膜ろ過水8は活性炭等の後処理装置13でさらに精製されて精製水を得る。膜ろ過装置12でろ過されなかった膜濃縮水9は相分離槽11に返送されて希釈誘引溶液とともに相分離される。   The upper layer liquid 6 separated in the phase separation tank 11 is filtered by a membrane filtration device 12, and the obtained membrane filtrate 8 is further purified by an aftertreatment device 13 such as activated carbon to obtain purified water. The membrane concentrated water 9 that has not been filtered by the membrane filtration device 12 is returned to the phase separation tank 11 and phase-separated together with the dilution attraction solution.

一方、相分離槽11で分離された下層液7は、熱交換器16を経て冷却器15で冷却されて、誘引溶液4として順浸透膜処理装置10に返送される。   On the other hand, the lower layer liquid 7 separated in the phase separation tank 11 is cooled by the cooler 15 through the heat exchanger 16 and returned to the forward osmosis membrane treatment apparatus 10 as the attraction solution 4.

本発明の装置の別の例を図6に示す。この装置は、相分離層11の上層液6の出口と膜ろ過装置12の間にコアレッサー17を設けた外は、図1の装置と同じである。コアレッサー17で温度感応性薬剤が分離された上層液は膜ろ過装置12に送られ、コアレッサー17で分離された温度感応性薬剤は相分離槽11へ返送される。   Another example of the apparatus of the present invention is shown in FIG. This apparatus is the same as the apparatus of FIG. 1 except that a coalescer 17 is provided between the outlet of the upper layer liquid 6 of the phase separation layer 11 and the membrane filtration device 12. The upper layer liquid from which the temperature sensitive drug is separated by the coalescer 17 is sent to the membrane filtration device 12, and the temperature sensitive drug separated by the coalescer 17 is returned to the phase separation tank 11.

図1に示す装置を用いた。順浸透膜処理装置10の半透膜には酢酸セルロース製順浸透膜を、膜ろ過装置12にはナノろ過膜をそれぞれ使用した。   The apparatus shown in FIG. 1 was used. A cellulose acetate forward osmosis membrane was used as the semipermeable membrane of the forward osmosis membrane treatment device 10, and a nanofiltration membrane was used as the membrane filtration device 12.

相分離槽11には、図2〜図5に示すものを用いた。この槽は箱型で、大きさは縦550mm、横1000mm、深さ700mmである。図2の左側には、希釈誘引溶液流入管が設けられ、それより槽の内部側には投入された希釈誘引溶液が槽の底部から横方向に広がって槽の内部へ進入するよう整流板が槽の左壁に平行に垂直に設けられている。整流板より内側には管状のヒーターが図2と図4に示すように蛇行して4段に設けられ、その上には、4枚の傾斜板が図面右側に垂直から30°に傾けて設けられている。各傾斜板は上からの投影面積で幅130mm長さ550mm傾斜板の間隔20mmである。ヒーター部には温度計が設けられている。槽の図面右側の下部には濃厚層である下層液の取出口が、上部には越流堰が設けられ、そこを越流してきた希薄層である上層液の取出口が越流堰内に設けられている。   As the phase separation tank 11, the one shown in FIGS. This tank has a box shape and is 550 mm long, 1000 mm wide, and 700 mm deep. On the left side of FIG. 2, a dilute attracting solution inflow pipe is provided, and on the inner side of the tank, there is a rectifying plate so that the dilute attracting solution introduced spreads laterally from the bottom of the tank and enters the tank. It is provided perpendicular to the left wall of the tank. As shown in FIGS. 2 and 4, a tubular heater is provided in four stages on the inner side of the rectifying plate, and four inclined plates are provided on the right side of the drawing at an angle of 30 ° from the vertical. It has been. Each inclined plate has a projected area from above, a width of 130 mm, a length of 550 mm, and an interval of inclined plates of 20 mm. A thermometer is provided in the heater section. A lower layer liquid outlet that is a thick layer is provided in the lower part on the right side of the tank drawing, and an overflow overflow weir is provided in the upper part, and an outlet of the upper layer liquid that is a dilute layer that has overflowed there is in the overflow weir. Is provided.

誘引溶液には、ポリグリセリンモノラウレートとソルビタンモノカプリレートの混合物に、水を加えて薬剤濃度90重量%とした溶液を用いた。この溶液の曇点は60℃であった。   As the attracting solution, a solution obtained by adding water to a mixture of polyglycerin monolaurate and sorbitan monocaprylate to a drug concentration of 90% by weight was used. The cloud point of this solution was 60 ° C.

この曇点温度は薬剤濃度によって変わる。上記薬剤の濃度と曇点の関係を調べた結果を図8に示す。   This cloud point temperature varies depending on the drug concentration. FIG. 8 shows the results of examining the relationship between the drug concentration and the cloud point.

上記誘引溶液に平均粒径1μmのベントナイトを上記の温度感応性薬剤に対し1重量%を加えて懸濁させた。   Bentonite having an average particle size of 1 μm was suspended in the attracting solution by adding 1% by weight to the temperature-sensitive drug.

UF膜により前処理した海水を被処理水1として順浸透膜処理装置10に3L/分の流速で流入させた。膜透過水の量は1.5L/分であり、順浸透膜処理装置10から流出する希釈誘引溶液5の量は3.8L/分であった。この希釈誘引溶液5は熱交換器16を経て加熱器14で60℃に加温し、相分離槽11に流入させた。相分離槽でさらに加温し、70℃とすることで、より多くの薬剤が液滴化した。上層部で発生した液滴や熱対流によって上昇した薬剤液滴が、傾斜板により凝集し、効果的に分離した結果、温度感応性薬剤濃度が、希薄上層液は2〜3重量%、濃厚下層液は90〜93重量%と、60℃での相分離で想定される希薄上層液濃度(5重量%)より低く、濃厚下層液濃度(90重量%)より高くすることができた。   Seawater pretreated with a UF membrane was treated as treated water 1 and allowed to flow into the forward osmosis membrane treatment apparatus 10 at a flow rate of 3 L / min. The amount of the membrane permeated water was 1.5 L / min, and the amount of the dilution attraction solution 5 flowing out from the forward osmosis membrane treatment apparatus 10 was 3.8 L / min. The dilution attraction solution 5 was heated to 60 ° C. by the heater 14 through the heat exchanger 16 and flowed into the phase separation tank 11. By further heating in the phase separation tank to 70 ° C., a larger amount of the drug became droplets. As a result of the droplets generated in the upper layer and the drug droplets raised by thermal convection being aggregated and effectively separated by the inclined plate, the temperature-sensitive drug concentration is 2 to 3% by weight for the diluted upper layer liquid, the dense lower layer The liquid was 90 to 93% by weight, which was lower than the dilute upper layer liquid concentration (5% by weight) assumed by phase separation at 60 ° C. and higher than the concentrated lower layer liquid concentration (90% by weight).

得られた下層液7は熱交換器16を経て冷却器15で40℃に冷却し、再び順浸透膜処理装置10に流入させた。上層液6は膜ろ過装置12に導入し、膜ろ過水8と膜濃縮水9に分離した。膜濃縮水9は再び相分離槽11へ流入させた。膜ろ過水8は後処理装置13を経て1.5L/分の淡水を獲た。この淡水は飲料水として使用可能であった。   The obtained lower layer liquid 7 was cooled to 40 ° C. by the cooler 15 through the heat exchanger 16 and again flowed into the forward osmosis membrane treatment apparatus 10. The upper layer liquid 6 was introduced into the membrane filtration device 12 and separated into membrane filtrate 8 and membrane concentrated water 9. The membrane concentrated water 9 was again flowed into the phase separation tank 11. Membrane filtrate 8 obtained fresh water of 1.5 L / min via post-treatment device 13. This fresh water could be used as drinking water.

一方、相分離槽で追加の加温を行わなかった場合は、相分離槽で液温が低下し、温度感応性薬剤濃度が、希薄上層液は5〜7重量%と高くなり、濃厚下層液は85〜90重量%と低くなった。   On the other hand, when no additional heating is performed in the phase separation tank, the liquid temperature is lowered in the phase separation tank, and the temperature-sensitive drug concentration is increased to 5 to 7% by weight in the diluted upper layer liquid. Was as low as 85 to 90% by weight.

本発明の方法は、海水から淡水の製造や、坑井からの随伴水の処理などに広く利用できる。   The method of the present invention can be widely used for production of fresh water from seawater, treatment of associated water from a well, and the like.

1 被処理水
2 膜濃縮水
3 半透膜
4 誘引溶液
5 希釈誘引溶液
6 上層液
7 下層液
8 膜ろ過水
9 膜濃縮水
10 順浸透膜処理装置
11 相分離槽
111 ヒーター(第二の加温手段)
112 傾斜板
12 膜ろ過装置
13 後処理装置
14 加熱器(第一の加温手段)
15 冷却器(冷却手段)
16 熱交換器(冷却手段)
17 コアレッサー
171 タンク
172 底板
173 カートリッジ
174 温度感応性薬剤抜出口
175 上層液抜出口
176 上層液入口
DESCRIPTION OF SYMBOLS 1 Water to be treated 2 Membrane concentrated water 3 Semipermeable membrane 4 Attraction solution 5 Dilution attraction solution 6 Upper layer liquid 7 Lower layer liquid 8 Membrane filtered water 9 Membrane concentrated water 10 Forward osmosis membrane treatment device 11 Phase separation tank 111 Heater (second addition Temperature means)
112 Inclined plate 12 Membrane filtration device 13 Post-processing device 14 Heater (first heating means)
15 Cooler (cooling means)
16 Heat exchanger (cooling means)
17 Coalesser 171 Tank 172 Bottom plate 173 Cartridge 174 Temperature sensitive drug outlet 175 Upper liquid outlet 176 Upper liquid inlet

Claims (5)

被処理水と、温度感応性薬剤を水に溶解した誘引溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記誘引溶液に移動させ、水で希釈された希釈誘引溶液と膜濃縮水を得る順浸透膜処理装置と、前記順浸透膜処理装置から流出する希釈誘引溶液を前記誘引溶液の曇点以上の温度まで加温する第一の加温手段と、前記第一の加温手段で加温した希釈誘引溶液を、温度感応性薬剤濃度の高い下層液と温度感応性薬剤濃度の低い上層液とに相分離する相分離槽と、前記相分離槽から流出する下層液を前記誘引溶液の曇点以下の温度まで冷却する冷却手段と、前記相分離槽から流出する上層液を膜ろ過し、膜ろ過水を得る膜ろ過装置を有する水処理装置であって、前記相分離槽に第二の加温手段と傾斜板を設けたことを特徴とする水処理装置。   The water to be treated was brought into contact with an attraction solution in which a temperature sensitive drug was dissolved in water through a semipermeable membrane, and the water in the water to be treated was transferred to the attraction solution through the semipermeable membrane and diluted with water. A forward osmosis membrane treatment device for obtaining a diluted attraction solution and membrane concentrated water, and a first heating means for heating the diluted attraction solution flowing out of the forward osmosis membrane treatment device to a temperature equal to or higher than a cloud point of the attraction solution; From the phase separation tank, a phase separation tank for phase-separating the dilution attraction solution heated by the first heating means into a lower layer liquid having a high temperature-sensitive drug concentration and an upper layer liquid having a low temperature-sensitive drug concentration; A water treatment device having a cooling means for cooling the lower layer liquid flowing out to a temperature below the cloud point of the attracting solution, and a membrane filtration apparatus for filtering the upper layer liquid flowing out from the phase separation tank to obtain membrane filtered water. A second heating means and an inclined plate are provided in the phase separation tank. Water treatment device that. 前記相分離槽から流出する上層液中の微細な温度感応性薬剤を凝集、分離するコアレッサーを前記膜ろ過装置の前段に有することを特徴とする請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, further comprising a coalescer that aggregates and separates a fine temperature-sensitive drug in the upper layer liquid flowing out of the phase separation tank in front of the membrane filtration apparatus. 前記膜ろ過装置から流出する膜濃縮水を前記相分離槽へ循環する循環手段を有することを特徴とする請求項1または請求項2に記載の水処理装置。   The water treatment apparatus according to claim 1 or 2, further comprising a circulation means for circulating the membrane concentrated water flowing out from the membrane filtration apparatus to the phase separation tank. 誘引溶液の曇点が30℃〜80℃の範囲にあることを特徴とする請求項1乃至請求項3のいずれか1項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 3, wherein the clouding point of the attracting solution is in the range of 30 ° C to 80 ° C. 相分離槽から流出する下層液と前記希釈誘引溶液との熱交換手段を有することを特徴とする請求項1乃至請求項4のいずれか1項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 4, further comprising a heat exchange means for the lower layer liquid flowing out from the phase separation tank and the dilution attraction solution.
JP2014137346A 2014-03-28 2014-07-03 Water treatment apparatus using semipermeable membrane Pending JP2015192979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014137346A JP2015192979A (en) 2014-03-28 2014-07-03 Water treatment apparatus using semipermeable membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014068049 2014-03-28
JP2014068049 2014-03-28
JP2014137346A JP2015192979A (en) 2014-03-28 2014-07-03 Water treatment apparatus using semipermeable membrane

Publications (1)

Publication Number Publication Date
JP2015192979A true JP2015192979A (en) 2015-11-05

Family

ID=54432549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014137346A Pending JP2015192979A (en) 2014-03-28 2014-07-03 Water treatment apparatus using semipermeable membrane

Country Status (1)

Country Link
JP (1) JP2015192979A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038402A1 (en) * 2015-08-31 2017-03-09 東洋紡株式会社 Water treatment method and water treatment system
JP2019147078A (en) * 2018-02-26 2019-09-05 Jfeエンジニアリング株式会社 Water treatment apparatus and water treatment method
JP2019171258A (en) * 2018-03-28 2019-10-10 Jfeエンジニアリング株式会社 Method and device of treating water by forward osmosis
JP2019171230A (en) * 2018-03-27 2019-10-10 Jfeエンジニアリング株式会社 Water treatment device and starting method thereof
JP2020078799A (en) * 2015-01-19 2020-05-28 アディオニク Apparatus and method for desalination of water by thermal deionization and liquid phase ionic extraction liquid
JP7462460B2 (en) 2020-04-06 2024-04-05 美浜株式会社 Concentration Equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078799A (en) * 2015-01-19 2020-05-28 アディオニク Apparatus and method for desalination of water by thermal deionization and liquid phase ionic extraction liquid
US11066356B2 (en) 2015-01-19 2021-07-20 Adionics Device and method for the desalination of water by means of thermal deionisation and liquid-phase ion extraction liquid
US11731933B2 (en) 2015-01-19 2023-08-22 Adionics Device and method for the desalination of water by means of thermal deionisation and liquid-phase ion extraction liquid
WO2017038402A1 (en) * 2015-08-31 2017-03-09 東洋紡株式会社 Water treatment method and water treatment system
JPWO2017038402A1 (en) * 2015-08-31 2018-03-01 東洋紡株式会社 Water treatment method and water treatment system
JP2019147078A (en) * 2018-02-26 2019-09-05 Jfeエンジニアリング株式会社 Water treatment apparatus and water treatment method
JP2019171230A (en) * 2018-03-27 2019-10-10 Jfeエンジニアリング株式会社 Water treatment device and starting method thereof
JP2019171258A (en) * 2018-03-28 2019-10-10 Jfeエンジニアリング株式会社 Method and device of treating water by forward osmosis
JP7462460B2 (en) 2020-04-06 2024-04-05 美浜株式会社 Concentration Equipment

Similar Documents

Publication Publication Date Title
JP6149627B2 (en) Water treatment method with semipermeable membrane
JP2015192979A (en) Water treatment apparatus using semipermeable membrane
KR101987870B1 (en) Thermo-sensitive water absorbent, method of water treatment, and water treatment apparatus
JP6210033B2 (en) Water desalination method and apparatus
JP6149626B2 (en) Water treatment method with semipermeable membrane
RU2630541C2 (en) Saline water treatment device and method
JP5900743B2 (en) Method and apparatus for treatment of associated water from a well
JP2014097483A (en) Water treatment method and apparatus
Sherhan et al. Produced water treatment using ultrafiltration and nanofiltration membranes
JP2014100692A (en) Water treatment method
JP6028645B2 (en) Water treatment equipment
JP5850443B2 (en) Method and system for processing crude oil using cross-flow filtration
JP6210008B2 (en) Water treatment equipment
JP6210034B2 (en) Water desalination method and apparatus
Karakulski et al. Production of process water using integrated membrane processes
JP2015037771A (en) Water treatment method
JP6465301B2 (en) Water desalination equipment
JP6414528B2 (en) Water desalination method and apparatus
CN104961287A (en) Oily sewage zero-discharge treatment method and system
JP2016010767A (en) Water treatment apparatus
JP6210011B2 (en) Water treatment method and apparatus
JP6974797B2 (en) Forward osmosis water treatment method and equipment
JP2019155289A (en) Water treatment method and apparatus
TWI532686B (en) High salinity wastewater treatment system and method thereof
JP2022129707A (en) Purification method and device of temperature sensitive agent aqueous solution used in forward osmosis water treatment