JP2005265261A - Pulse pipe refrigerator - Google Patents

Pulse pipe refrigerator Download PDF

Info

Publication number
JP2005265261A
JP2005265261A JP2004077346A JP2004077346A JP2005265261A JP 2005265261 A JP2005265261 A JP 2005265261A JP 2004077346 A JP2004077346 A JP 2004077346A JP 2004077346 A JP2004077346 A JP 2004077346A JP 2005265261 A JP2005265261 A JP 2005265261A
Authority
JP
Japan
Prior art keywords
pulse tube
space
heat exchange
tube refrigerator
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004077346A
Other languages
Japanese (ja)
Inventor
Shin Matsumoto
伸 松本
Keiji Oshima
恵司 大嶋
Yukio Yasukawa
保川  幸雄
Kentaro Toyama
健太郎 外山
Yoshinori Mizoguchi
義則 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004077346A priority Critical patent/JP2005265261A/en
Publication of JP2005265261A publication Critical patent/JP2005265261A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1412Pulse-tube cycles characterised by heat exchanger details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1423Pulse tubes with basic schematic including an inertance tube

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pulse pipe refrigerator of U-return type in which the performance is improved to a large extent by conducting a heat exchange with a working gas having lowest temperature in a fold-back space and decreasing the thermal loss by suppressing the expansion of the working gas as much as practicable. <P>SOLUTION: The pulse pipe refrigerator of U-return type consists of a coldness accumulator 30, a cold head 40, and a pulse pipe 50 which are arranged approximately in a U-shape, wherein a plurality of intra-space heat-exchange members 44 are installed in the fold-back space 42 of the cold head 40, and a flow passage 45 is formed leading from the coldness accumulator 30 to the pulse pipe 50. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、U字リターン型のパルス管冷凍機に関する。   The present invention relates to a U-shaped return type pulse tube refrigerator.

従来技術のパルス管冷凍機について図を参照しつつ説明する。
図14は従来技術のU字リターン型パルス管冷凍機の概要構成図である。このパルス管冷凍機100は、大きく圧縮機10、アフタークーラ20、蓄冷器30、コールドヘッド40、パルス管50、高温端60および位相制御部70を備えている。
A conventional pulse tube refrigerator will be described with reference to the drawings.
FIG. 14 is a schematic configuration diagram of a conventional U-shaped return type pulse tube refrigerator. The pulse tube refrigerator 100 includes a compressor 10, an aftercooler 20, a regenerator 30, a cold head 40, a pulse tube 50, a high temperature end 60, and a phase control unit 70.

圧縮機10は、シリンダ11とピストン12とを備えている。
アフタークーラ20は、熱交換器21と放熱器22とを備えている。
コールドヘッド40は、伝導ブロック41と折り返し空間42と低温熱交換器43とを備えている。
高温端60は、高温熱交換器61と高温放熱器62とを備えている。
位相制御部70は、イナータンスチューブ71とバッファタンク72とを備えている。
The compressor 10 includes a cylinder 11 and a piston 12.
The aftercooler 20 includes a heat exchanger 21 and a radiator 22.
The cold head 40 includes a conductive block 41, a folded space 42, and a low temperature heat exchanger 43.
The high temperature end 60 includes a high temperature heat exchanger 61 and a high temperature radiator 62.
The phase control unit 70 includes an inertance tube 71 and a buffer tank 72.

このようなパルス管冷凍機100には流路が形成される。流路内には作動ガス(冷媒ガス)として、例えば、ヘリウムが封入されている。パルス管冷凍機100の運転時に圧縮機10のシリンダ11内でピストン12が所定の周波数により往復動作することにより、シリンダ11内の作動ガスが圧縮、膨張する。このような作動ガスは圧縮機10からアフタークーラ20、蓄冷器30、コールドヘッド40、パルス管50、高温端60を通り、位相制御部70との間を往復動流として流れる。   In such a pulse tube refrigerator 100, a flow path is formed. For example, helium is sealed as working gas (refrigerant gas) in the flow path. When the pulse tube refrigerator 100 is operated, the piston 12 reciprocates at a predetermined frequency in the cylinder 11 of the compressor 10, so that the working gas in the cylinder 11 is compressed and expanded. Such a working gas flows as a reciprocating flow from the compressor 10 through the aftercooler 20, the regenerator 30, the cold head 40, the pulse tube 50, and the high temperature end 60 to the phase control unit 70.

続いてパルス管冷凍機100の冷凍発生原理について概略説明する。このパルス管冷凍機100の冷凍発生原理は、以下の通り理解されている。
まず、圧縮機10ではピストン12がシリンダ11内の作動ガスを圧縮し、この圧縮した作動ガスを出力する。この作動ガスは、アフタークーラ20へ流入する。作動ガスがアフタークーラ20の熱交換器21を通過すると、この熱交換器21で圧縮熱を熱交換して放熱器22に熱伝導する。そして放熱器22はこの熱を外部に放出する(第1行程:断熱圧縮行程)。
アフタークーラ20から流出した作動ガスは、蓄冷器30およびコールドヘッド40を通りパルス管50に流入する(第2行程:等温行程)。
パルス管50において作動ガスが膨張して、寒冷が発生する(第3行程:断熱膨張行程)。この発生寒冷をコールドヘッド40に設けられた低温熱交換器43にて吸熱が行われる。
そして、高温端60の高温熱交換器61では、この高温熱交換器61で作動ガスの熱を熱交換して高温放熱器62に熱伝導する。高温放熱器62は熱を外部に放出する。続いて、位相制御部70ではイナータンスチューブ71とバッファタンク72の中を、ほぼ正弦波的に圧力振幅を伴って作動ガスが流れて、作動ガスの圧力変化と流量変化の間に位相差を発生させる。
次に、圧縮機10が膨張を行う場合、パルス管50で冷却された作動ガスは蓄冷器30と準静的に熱交換を行いながらアフタークーラ20を通って、圧縮機10に戻ってくる(第4行程:等温行程)。
以上4行程を繰り返すことで極低温までコールドヘッド40は冷却される。
Next, the principle of refrigeration generation in the pulse tube refrigerator 100 will be described briefly. The refrigeration generation principle of the pulse tube refrigerator 100 is understood as follows.
First, in the compressor 10, the piston 12 compresses the working gas in the cylinder 11, and outputs this compressed working gas. This working gas flows into the aftercooler 20. When the working gas passes through the heat exchanger 21 of the aftercooler 20, the heat exchanger 21 exchanges heat with the heat and conducts heat to the radiator 22. And the heat radiator 22 discharge | releases this heat outside (1st process: adiabatic compression process).
The working gas that has flowed out of the aftercooler 20 passes through the regenerator 30 and the cold head 40 and flows into the pulse tube 50 (second stroke: isothermal stroke).
The working gas expands in the pulse tube 50 to generate cold (third process: adiabatic expansion process). The generated cold is absorbed by a low-temperature heat exchanger 43 provided in the cold head 40.
In the high temperature heat exchanger 61 at the high temperature end 60, the high temperature heat exchanger 61 exchanges heat of the working gas and conducts heat to the high temperature radiator 62. The high temperature radiator 62 releases heat to the outside. Subsequently, in the phase controller 70, the working gas flows in the inertance tube 71 and the buffer tank 72 with a pressure amplitude almost sinusoidally, and a phase difference is generated between the pressure change and the flow rate change of the working gas. generate.
Next, when the compressor 10 expands, the working gas cooled by the pulse tube 50 returns to the compressor 10 through the after cooler 20 while performing quasi-static heat exchange with the regenerator 30 ( Fourth stroke: isothermal stroke).
By repeating the above four steps, the cold head 40 is cooled to a very low temperature.

このようなU字リターン型のパルス管冷凍機100のコールドヘッド40の内部には折り返し空間42が形成されている。この折り返し空間42は、図14に示されるように伝導ブロック41に空間として設けられたり、また、図示しないが単純に曲げた円管などにより設けられたり、というようにただの空間として構成されている。したがって、先記の発生寒冷はパルス管50の流入直前に設置された低温熱交換器43のみで吸熱される構造になっている。   A folded space 42 is formed inside the cold head 40 of the U-shaped return type pulse tube refrigerator 100. The folded space 42 is provided as a space in the conduction block 41 as shown in FIG. 14, or is provided as a simple space, such as a simple bent circular pipe (not shown). Yes. Therefore, the generated cold is absorbed by only the low-temperature heat exchanger 43 installed immediately before the inflow of the pulse tube 50.

また、他の従来技術例として、特許文献1には低温端(コールドヘッドに相当)にフィン状熱交換部材を取付けたパルス管冷凍機が開示されている。
特開平11−182957号公報 (段落番号0010〜0019,図1〜図4)
As another prior art example, Patent Document 1 discloses a pulse tube refrigerator in which a fin-like heat exchange member is attached to a low temperature end (corresponding to a cold head).
JP 11-182957 A (paragraph numbers 0010 to 0019, FIGS. 1 to 4)

古典熱力学的には先記の第2行程(等温行程)から第3行程(断熱膨張行程)に移行する境界面、つまりコールドヘッド40の低温熱交換器43にて行われるとされている。しかし、U字リターン型のパルス管冷凍機100のように折り返し空間42を持つ場合、その折り返し空間42内にて徐々に作動ガスの膨張が始まっており、低温熱交換器43への到達時には作動ガスのガス温度が僅かに上昇している。したがって低温熱交換器43のみで熱交換を行った場合、コールドヘッド40全体の温度も伝導ブロック41を通して上昇し、熱的なロスを生じて冷凍機全体の性能を低下させるという問題が生じていた。   Classically, thermodynamics is performed at the boundary surface that transitions from the second stroke (isothermal stroke) to the third stroke (adiabatic expansion stroke), that is, at the low-temperature heat exchanger 43 of the cold head 40. However, when the folded space 42 is provided as in the U-shaped return-type pulse tube refrigerator 100, the working gas starts to expand gradually in the folded space 42 and is activated when it reaches the low-temperature heat exchanger 43. The gas temperature has risen slightly. Therefore, when heat exchange is performed only with the low-temperature heat exchanger 43, the temperature of the cold head 40 as a whole also rises through the conduction block 41, causing a problem of causing a thermal loss and reducing the performance of the entire refrigerator. .

そこで、本発明は上記した問題に鑑みてなされたものであり、その目的は、折り返し空間内の最低温の作動ガスとの熱交換を行うとともに、可能な限り作動ガスの膨張を抑制することで熱的なロスを減少させ、性能を大幅に改善したU字リターン型のパルス管冷凍機を提供することにある。   Therefore, the present invention has been made in view of the above problems, and its purpose is to perform heat exchange with the coldest working gas in the folded space and to suppress the expansion of the working gas as much as possible. The object is to provide a U-shaped return type pulse tube refrigerator with reduced thermal loss and greatly improved performance.

上記課題を解決するため、本発明の請求項1に係る発明のパルス管冷凍機は、
蓄冷器、コールドヘッドおよびパルス管が略U字型に接続されてU字リターン型の流路となるように圧縮機、蓄冷器、コールドヘッド、パルス管および位相制御部が接続され、このU字リターン型の流路を流れる作動ガスとの熱交換によりコールドヘッドに寒冷を発生させるU字リターン型のパルス管冷凍機において、
コールドヘッドの折り返し空間内に形成される熱交換器と、
蓄冷器側とパルス管側との間で連通させるように、熱交換器とコールドヘッドとにより分割形成される流路と、
を備えることを特徴とする。
In order to solve the above problems, a pulse tube refrigerator of the invention according to claim 1 of the present invention provides:
A compressor, a regenerator, a cold head, a pulse tube, and a phase control unit are connected so that a regenerator, a cold head, and a pulse tube are connected in a substantially U shape to form a U-shaped return type flow path. In a U-shaped return type pulse tube refrigerator that generates cold in the cold head by heat exchange with the working gas flowing through the return type flow path,
A heat exchanger formed in the folding space of the cold head;
A flow path divided and formed by the heat exchanger and the cold head so as to communicate between the regenerator side and the pulse tube side;
It is characterized by providing.

また、本発明の請求項2に係る発明のパルス管冷凍機は、
請求項1記載のパルス管冷凍機において、
前記熱交換器は、線状の空間内熱交換部材が、蓄冷器側とパルス管側との流路方向と略平行に複数設けられ、隣接する二個の空間内熱交換部材およびコールドヘッドにより略直線状の流路が複数形成される熱交換器であることを特徴とする。
The pulse tube refrigerator of the invention according to claim 2 of the present invention is
The pulse tube refrigerator according to claim 1, wherein
In the heat exchanger, a plurality of linear space heat exchange members are provided substantially in parallel with the flow passage directions on the regenerator side and the pulse tube side, and two adjacent space heat exchange members and a cold head are used. It is a heat exchanger in which a plurality of substantially linear flow paths are formed.

また、本発明の請求項3に係る発明のパルス管冷凍機は、
請求項2記載のパルス管冷凍機において、
前記熱交換器は、蓄冷器側およびパルス管側で流路間隔が同一間隔となるように、空間内熱交換部材が配置された熱交換器であることを特徴とする。
The pulse tube refrigerator of the invention according to claim 3 of the present invention is
In the pulse tube refrigerator according to claim 2,
The heat exchanger is a heat exchanger in which an in-space heat exchange member is arranged so that the flow path intervals are the same on the regenerator side and the pulse tube side.

また、本発明の請求項4に係る発明のパルス管冷凍機は、
請求項2記載のパルス管冷凍機において、
前記熱交換器は、長い流路では流路間隔が狭く、また、短い流路では流路間隔が広くなるように、空間内熱交換部材が配置された熱交換器であることを特徴とする。
The pulse tube refrigerator of the invention according to claim 4 of the present invention is
In the pulse tube refrigerator according to claim 2,
The heat exchanger is a heat exchanger in which an in-space heat exchange member is arranged so that a flow path interval is narrow in a long flow path and a flow path interval is wide in a short flow path. .

また、本発明の請求項5に係る発明のパルス管冷凍機は、
請求項1記載のパルス管冷凍機において、
前記熱交換器は、線状の空間内熱交換部材が、パルス管側を中心に放射状に複数設けられ、隣接する二個の空間内熱交換部材およびコールドヘッドにより略直線状の流路が放射状に複数形成される熱交換器であることを特徴とする。
The pulse tube refrigerator of the invention according to claim 5 of the present invention is
The pulse tube refrigerator according to claim 1, wherein
In the heat exchanger, a plurality of linear space heat exchange members are provided radially around the pulse tube side, and a substantially linear flow path is formed radially by two adjacent space heat exchange members and a cold head. A plurality of heat exchangers are formed.

また、本発明の請求項6に係る発明のパルス管冷凍機は、
請求項5記載のパルス管冷凍機において、
前記熱交換器は、蓄冷器側では流路間隔が広く、また、パルス管側では流路間隔が狭くなるように、空間内熱交換部材が配置された熱交換器であることを特徴とする。
Moreover, the pulse tube refrigerator of the invention according to claim 6 of the present invention,
In the pulse tube refrigerator according to claim 5,
The heat exchanger is a heat exchanger in which an in-space heat exchange member is arranged so that the flow path interval is wide on the regenerator side and the flow path interval is narrow on the pulse tube side. .

また、本発明の請求項7に係る発明のパルス管冷凍機は、
請求項5記載のパルス管冷凍機において、
前記熱交換器は、蓄冷器側およびパルス管側でガス流路開口率(=ガス流路断面積/全断面積)が一定となるように空間内熱交換部材が配置された熱交換器であることを特徴とする。
The pulse tube refrigerator of the invention according to claim 7 of the present invention is
In the pulse tube refrigerator according to claim 5,
The heat exchanger is a heat exchanger in which an in-space heat exchange member is arranged so that the gas channel opening ratio (= gas channel cross-sectional area / total cross-sectional area) is constant on the regenerator side and the pulse tube side. It is characterized by being.

また、本発明の請求項8に係る発明のパルス管冷凍機は、
請求項2〜請求項7の何れか一項に記載のパルス管冷凍機において、
前記空間内熱交換部材は、断面矩形状または断面三角形状の中実体である線状部材とすることを特徴とする。
The pulse tube refrigerator of the invention according to claim 8 of the present invention is
In the pulse tube refrigerator according to any one of claims 2 to 7,
The in-space heat exchange member is a linear member that is a solid body having a rectangular cross section or a triangular cross section.

また、本発明の請求項9に係る発明のパルス管冷凍機は、
請求項2〜請求項7の何れか一項に記載のパルス管冷凍機において、
前記空間内熱交換部材は、断面正弦波状、断面三角波状または断面矩形波状の板である波状部材とし、複数の空間内熱交換部材が一体に形成されることを特徴とする。
Moreover, the pulse tube refrigerator of the invention according to claim 9 of the present invention,
In the pulse tube refrigerator according to any one of claims 2 to 7,
The in-space heat exchanging member is a corrugated member that is a plate having a sinusoidal section, a triangular section, or a rectangular section, and a plurality of in-space heat exchanging members are integrally formed.

また、本発明の請求項10に係る発明のパルス管冷凍機は、
請求項2〜請求項7の何れか一項に記載のパルス管冷凍機において、
前記空間内熱交換部材は、中空の管状部材とすることを特徴とする。
The pulse tube refrigerator of the invention according to claim 10 of the present invention is
In the pulse tube refrigerator according to any one of claims 2 to 7,
The in-space heat exchange member is a hollow tubular member.

また、本発明の請求項11に係る発明のパルス管冷凍機は、
請求項1記載のパルス管冷凍機において、
前記熱交換器は、ピン形状の空間内熱交換部材が、蓄冷器側とパルス管側との流路方向と略鉛直方向に突出するように複数設けられた熱交換器であることを特徴とする。
Moreover, the pulse tube refrigerator of the invention according to claim 11 of the present invention is
The pulse tube refrigerator according to claim 1, wherein
The heat exchanger is a heat exchanger provided with a plurality of pin-shaped in-space heat exchange members so as to protrude in a substantially vertical direction with respect to the flow path direction on the regenerator side and the pulse tube side. To do.

また、本発明の請求項12に係る発明のパルス管冷凍機は、
請求項11記載のパルス管冷凍機において、
前記熱交換器は、ピン形状の多数の空間内熱交換部材が均等平行並列配列により配置されて、格子状流路が形成されることを特徴とする。
A pulse tube refrigerator of the invention according to claim 12 of the present invention is
The pulse tube refrigerator according to claim 11, wherein
The heat exchanger is characterized in that a large number of pin-shaped heat exchange members in a space are arranged in a parallel and parallel arrangement to form a lattice flow path.

また、本発明の請求項13に係る発明のパルス管冷凍機は、
請求項11記載のパルス管冷凍機において、
前記熱交換器は、ピン形状の多数の空間内熱交換部材が千鳥配列により配置されて、あみだ状流路が形成されることを特徴とする。
A pulse tube refrigerator of the invention according to claim 13 of the present invention is
The pulse tube refrigerator according to claim 11, wherein
The heat exchanger is characterized in that a large number of pin-shaped in-space heat exchange members are arranged in a staggered arrangement to form a worm-like flow path.

また、本発明の請求項14に係る発明のパルス管冷凍機は、
請求項11記載のパルス管冷凍機において、
前記熱交換器は、ピン形状の多数の空間内熱交換部材が一定開口率配列により配置されて、蓄冷器側およびパルス管側でガス流路開口率(=ガス流路断面積/全断面積)が一定の流路として形成されることを特徴とする。
The pulse tube refrigerator of the invention according to claim 14 of the present invention is
The pulse tube refrigerator according to claim 11, wherein
In the heat exchanger, a number of pin-shaped heat exchangers in the space are arranged in a constant aperture ratio arrangement, and the gas channel opening ratio (= gas channel cross-sectional area / total cross-sectional area) on the regenerator side and the pulse tube side. ) Is formed as a constant flow path.

また、本発明の請求項15に係る発明のパルス管冷凍機は、
請求項11〜請求項14の何れか一項に記載のパルス管冷凍機において、
前記空間内熱交換部材は、円柱、多角柱、円錐、または、多角錘によるピン形状であることを特徴とする。
A pulse tube refrigerator of the invention according to claim 15 of the present invention is
In the pulse tube refrigerator according to any one of claims 11 to 14,
The in-space heat exchanging member has a pin shape of a cylinder, a polygonal column, a cone, or a polygonal pyramid.

本発明は、コールドヘッドの折り返し空間にも熱交換器を設置して、最も低温の作動ガス(蓄冷器近傍の作動ガス)と積極的に熱交換を行い、かつ折り返し空間内のパルス管の流入口へ流れるまで作動ガスの膨張を抑える構成とした。
このような本発明によれば、折り返し空間内の最低温の作動ガスとの熱交換を行うとともに、可能な限り作動ガスの膨張を抑制することでコールドヘッド内で生じていた熱的ロスを大幅に減少させ、大幅に性能を向上させたU字リターン型のパルス管冷凍機を提供することができる。
In the present invention, a heat exchanger is also installed in the folding space of the cold head to actively exchange heat with the coldest working gas (working gas in the vicinity of the regenerator), and the flow of the pulse tube in the folding space. It was set as the structure which suppresses expansion | swelling of working gas until it flows into an inlet_port | entrance.
According to the present invention as described above, heat exchange with the coldest working gas in the folded space is performed, and the thermal loss generated in the cold head is greatly reduced by suppressing the expansion of the working gas as much as possible. Therefore, it is possible to provide a U-shaped return type pulse tube refrigerator that is greatly reduced in performance.

続いて、本発明を実施するための最良の形態について、図を参照しつつ説明する。本形態では、図14のパルス管冷凍機100のうちコールドヘッド40に改良を施した点が新規である。以下、このコールドヘッド40を中心に説明し、他の箇所は従来技術の説明と同様であるとしてその重複する説明を省略する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. This embodiment is novel in that the cold head 40 is improved in the pulse tube refrigerator 100 of FIG. Hereinafter, the cold head 40 will be mainly described, and the other portions are the same as those of the prior art, and redundant description thereof will be omitted.

図1は本形態のパルス管冷凍機のコールドヘッド付近の概略図である。本形態は請求項1,2に係る発明に関するものである。本形態では、熱交換器を折り返し空間42内に設ける。この熱交換器は、コールドヘッド40の伝導ブロック41に複数(図1では五つ)の空間内熱交換部材44をネジ締結・ロー付け・溶接により熱伝導性を確保した上で取り付け、または、伝導ブロック41と一体形成することで設ける。このような熱交換器では、コールドヘッド40内の流路である折り返し空間42内に、蓄冷器30側とパルス管50側との間で連通し、作動ガスが流れる流路45も複数(図1では六つ)形成される。一つの流路45は、隣接する二個の空間内熱交換部材44および伝導ブロック42により仕切られて略直線状に形成される。空間内熱交換部材44の材料は、良伝導性の銅が一般的である。これら空間内熱交換部材44は、上側は勿論のこと下側も、蓄冷器30、低温熱交換器43および伝導ブロック41に表面が接触し、熱的に接続されている。なお、この下側では空間内熱交換部材44が蓄冷器30および低温熱交換器43に熱的に接続されないようにしても良く、図示しないが空間内熱交換部材44は、伝導ブロック41の上側のみ表面が接触して熱的に接続され、下側では若干の隙間を有するような構造とすることも可能である。   FIG. 1 is a schematic view of the vicinity of the cold head of the pulse tube refrigerator of this embodiment. This embodiment relates to inventions according to claims 1 and 2. In this embodiment, the heat exchanger is provided in the folded space 42. In this heat exchanger, a plurality of (five in FIG. 1) space heat exchange members 44 are attached to the conduction block 41 of the cold head 40 after securing thermal conductivity by screw fastening, brazing, and welding, or It is provided by being integrally formed with the conduction block 41. In such a heat exchanger, there are a plurality of flow paths 45 that communicate between the regenerator 30 side and the pulse tube 50 side in the folded space 42 that is a flow path in the cold head 40 and through which the working gas flows (see FIG. 6 in 1). One flow path 45 is partitioned by two adjacent in-space heat exchange members 44 and the conduction block 42 and is formed in a substantially linear shape. The material of the in-space heat exchange member 44 is generally a highly conductive copper. These in-space heat exchanging members 44 are in thermal contact with the regenerator 30, the low temperature heat exchanger 43, and the conduction block 41 on the upper side as well as the lower side. In this lower side, the space heat exchange member 44 may not be thermally connected to the regenerator 30 and the low temperature heat exchanger 43. Although not shown, the space heat exchange member 44 is located above the conduction block 41. It is also possible to have a structure in which only the surfaces are in thermal contact with each other and have a slight gap on the lower side.

このような折り返し空間42では蓄冷器30の出口直後の最低温ガスから、僅かに温度上昇したパルス管50入口の低温ガスまで、空間内熱交換部材44に接触し、折り返し空間42の全領域で強制的に作動ガスとの間で熱交換を行う。このようにコールドヘッド40全体で熱交換を行うことができる。
本形態では、コールドヘッド40内部全体の平均温度で熱交換することが可能となり、かつ作動ガス温度の急激な温度変化を抑えることが可能となる。その結果、従来技術のようにパルス管50の入口近傍の温度のみで熱交換する場合に比べて、コールドヘッド40をより温度低下させることができるとともに、仕様温度の冷凍出力も向上する。
In such a folding space 42, from the lowest temperature gas immediately after the outlet of the regenerator 30 to the low temperature gas at the inlet of the pulse tube 50 that has slightly increased in temperature, it contacts the heat exchange member 44 in the space, and in the entire area of the folding space 42. Force heat exchange with working gas. In this way, heat exchange can be performed in the entire cold head 40.
In this embodiment, heat exchange can be performed at the average temperature of the entire inside of the cold head 40, and a rapid change in the working gas temperature can be suppressed. As a result, the temperature of the cold head 40 can be further lowered and the refrigeration output at the specified temperature is improved as compared with the case where heat is exchanged only at the temperature near the inlet of the pulse tube 50 as in the prior art.

続けて本形態のより具体的な形態について説明する。図2は本形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の配置説明図である。本形態は請求項3に係る発明に関するものである。本形態はコールドヘッド40の折り返し空間42内に複数の線状(棒状)の空間内熱交換部材44を設置し、作動ガスが流れる流路45を形成する。特に蓄冷器30側およびパルス管50側で流路間隔が同一間隔となるように空間内熱交換部材44をそれぞれ平行に配置している。例えば、間隔aの空間内熱交換部材44と間隔bの流路45とを交互に配置した平行等間隔配置により熱交換器を形成している。   Next, a more specific form of this embodiment will be described. FIG. 2 is an explanatory view of the arrangement of the heat exchange members in the space of the cold head of the pulse tube refrigerator of the present embodiment. This embodiment relates to an invention according to claim 3. In this embodiment, a plurality of linear (bar-shaped) in-space heat exchange members 44 are installed in the folded space 42 of the cold head 40 to form a flow path 45 through which the working gas flows. In particular, the in-space heat exchange members 44 are arranged in parallel so that the flow path intervals are the same on the regenerator 30 side and the pulse tube 50 side. For example, the heat exchanger is formed by a parallel equidistant arrangement in which the heat exchange members 44 in the space a and the flow paths 45 in the distance b are alternately arranged.

なお、図1,図2で示すように、蓄冷器30は直径が大きく、また、パルス管50は直径が小さいため、空間内熱交換部材44を平行に配列するためには、複数列に並ぶ空間内熱交換部材44のうち、外側は空間内熱交換部材44を流路方向に短く、また、内側は空間内熱交換部材44を流路方向に長く形成する必要がある。空間内熱交換部材44の材料は、良伝導性の銅が一般的である。これら空間内熱交換部材44は、下側でも蓄冷器30、低温熱交換器43および伝導ブロック41に表面が接触し、熱的に接続されている。なお、図示しないが空間内熱交換部材44は、伝導ブロック41の上側のみ表面が接触して熱的に接続され、下側では隙間を有して熱的に接続されないようにしても良い。   1 and 2, since the regenerator 30 has a large diameter and the pulse tube 50 has a small diameter, in order to arrange the heat exchange members 44 in the space in parallel, they are arranged in a plurality of rows. Out of the space heat exchange member 44, the outside heat exchange member 44 needs to be shorter in the flow path direction, and the inside heat exchange member 44 needs to be formed longer in the flow path direction. The material of the in-space heat exchange member 44 is generally a highly conductive copper. These in-space heat exchange members 44 are in thermal contact with the regenerator 30, the low temperature heat exchanger 43, and the conduction block 41 on the lower side. Although not shown in the drawings, the space heat exchange member 44 may be thermally connected by contacting the surface only on the upper side of the conduction block 41 and not thermally connected with a gap on the lower side.

本形態では流路間隔を一定にしてコールドヘッド40内部の圧力損失を低減し、パルス管冷凍機100全体の効率向上に寄与する。また、間隔aの空間内熱交換部材44と間隔bの流路45とを交互に配置し熱交換器では、例えば、フライス盤により直径bのエンドミルにより流路45を切削して伝導ブロック41と一体に形成できるなどの利点が見込め、製作が容易である。   In this embodiment, the flow path interval is made constant, the pressure loss inside the cold head 40 is reduced, and the overall efficiency of the pulse tube refrigerator 100 is improved. In the heat exchanger, the space heat exchange members 44 in the space a and the flow channels 45 in the space b are alternately arranged. For example, the flow channel 45 is cut with an end mill having a diameter b by a milling machine and integrated with the conductive block 41. Advantages such as being able to be formed can be expected and manufacturing is easy.

続いて、他の形態について説明する。図3は本形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の配置説明図である。本形態は請求項4に係る発明に関するものである。本形態もコールドヘッド40の折り返し空間42内に複数の棒状の空間内熱交換部材44を設置し、作動ガスが流れる流路45を形成する。特に蓄冷器30側およびパルス管50側で複数列に並ぶ空間内熱交換部材44のうち、長い流路45では流路間隔が狭く、また、短い流路45では流路間隔が広くなるように空間内熱交換部材44を配置するものである。   Subsequently, another embodiment will be described. FIG. 3 is an explanatory view of the arrangement of the heat exchange members in the space of the cold head of the pulse tube refrigerator of the present embodiment. This embodiment relates to an invention according to claim 4. Also in this embodiment, a plurality of rod-shaped in-space heat exchange members 44 are installed in the folded space 42 of the cold head 40 to form a flow path 45 through which the working gas flows. In particular, among the in-space heat exchange members 44 arranged in a plurality of rows on the regenerator 30 side and the pulse tube 50 side, the long channel 45 has a narrow channel interval, and the short channel 45 has a large channel interval. The in-space heat exchange member 44 is arranged.

例えば、先に説明したが、図1,図2で示すように、蓄冷器30は直径が大きく、また、パルス管50は直径が小さいため、空間内熱交換部材44を平行に配列するためには、複数列に並ぶ空間内熱交換部材44のうち、外側は空間内熱交換部材44を流路方向に短く、また、内側は空間内熱交換部材44を流路方向に長く形成する必要がある。この場合、流路が長い内側では狭くまた流路が短い外側では広くなるように配置したものである。配置には無数あるが、例えば、流路45の間隔がb,1.2b,1.4b,1.6bの流路45となるように間隔aの空間内熱交換部材44を平行配置したものである。   For example, as described above, as shown in FIGS. 1 and 2, the regenerator 30 has a large diameter and the pulse tube 50 has a small diameter, so that the in-space heat exchange members 44 are arranged in parallel. Among the in-space heat exchange members 44 arranged in a plurality of rows, it is necessary to form the in-space heat exchange member 44 short in the flow path direction on the outside and the in-space heat exchange member 44 long in the flow path direction on the inside. is there. In this case, the flow path is arranged so that it is narrow inside the long channel and wide on the outside where the channel is short. There are innumerable arrangements, but, for example, the in-space heat exchange members 44 are arranged in parallel so that the intervals between the flow channels 45 are b, 1.2b, 1.4b, 1.6b. It is.

空間内熱交換部材44の材料は、良伝導性の銅が一般的である。これら空間内熱交換部材44は、下側では蓄冷器30、低温熱交換器43および伝導ブロック41に表面が接触し、熱的に接続されている。なお、図示しないが空間内熱交換部材44は、伝導ブロック41の上側のみ表面が接触して熱的に接続され、下側では隙間を有して熱的に接続されないようにしても良い。   The material of the in-space heat exchange member 44 is generally a highly conductive copper. These space heat exchange members 44 are in thermal contact with the regenerator 30, the low temperature heat exchanger 43 and the conduction block 41 on the lower side. Although not shown in the drawings, the space heat exchange member 44 may be thermally connected by contacting the surface only on the upper side of the conduction block 41 and not thermally connected with a gap on the lower side.

このような本形態では、空間内熱交換部材44による流路間隔を調整することで各流路45(部材間)の流体抵抗を等しくして、パルス管50への流入時の流れの偏りをなくす構造である。続いてこのような流れの偏りをなくす原理について解析的に説明する。
一般的に一方向流れの管路の圧力損失は、流体抵抗係数R、ガス密度ρ、管摩擦抵抗λ、管路の水力直径d、管路長さLおよび流速vを用いて以下の式で表される。
In this embodiment, the flow resistance between the flow paths 45 (between the members) is made equal by adjusting the flow path spacing between the heat exchange members 44 in the space, and the flow bias when flowing into the pulse tube 50 is made uniform. It is a structure to lose. Next, the principle of eliminating such a flow bias will be described analytically.
Generally, the pressure loss of a one-way flow pipe is expressed by the following equation using the fluid resistance coefficient R, gas density ρ, pipe friction resistance λ, pipe hydraulic diameter d, pipe length L, and flow velocity v. expressed.

Figure 2005265261
Figure 2005265261

また、管路の合流が生じる場合の圧力損失は、損失係数ζ(合流時の管路の角度や合流前後の流量比にて決まる係数)を用いて以下の式で表される。   Further, the pressure loss when the joining of the pipes occurs is expressed by the following expression using a loss coefficient ζ (a coefficient determined by the pipe angle at the time of joining and the flow rate ratio before and after joining).

Figure 2005265261
Figure 2005265261

続いて、以上の表記を用いて図を参照しつつ説明する。図4は流体抵抗の説明図であり、図4(a)は等断面積の合流管の模式図、図4(b)は等断面積の直管の模式図、図4(c)は合流管の等価回路図、図4(d)は直管の等価回路図である。図4(a),(b)では、例えば、管路径が全て等しく、直管の長さLに対して、合流管の長さをそれぞれL/2とする。また、出口流速vを一定とし、合流前の二本の管の入口流速をv/2で等しいとした場合、上記数2のζは約0.5程度になる。直管の流体抵抗Rは上記数1より、以下のようになる。 Then, it demonstrates, referring a figure using the above description. 4A and 4B are explanatory diagrams of fluid resistance. FIG. 4A is a schematic diagram of a confluent pipe having an equal cross-sectional area, FIG. 4B is a schematic diagram of a straight pipe having an equal cross-sectional area, and FIG. FIG. 4 (d) is an equivalent circuit diagram of a straight pipe. 4A and 4B, for example, the pipe diameters are all equal, and the length of the merged pipe is set to L / 2 with respect to the length L of the straight pipe. Further, when the outlet flow velocity v is constant and the inlet flow velocities of the two pipes before joining are equal to v / 2, the ζ of the above formula 2 is about 0.5. From the above equation 1, the fluid resistance R 0 of the straight pipe is as follows.

Figure 2005265261
Figure 2005265261

合流管の合成抵抗R’はまとめると以下の式で表される。   The combined resistance R ′ of the junction tube is collectively expressed by the following equation.

Figure 2005265261
Figure 2005265261

これらRとR’が等しい場合、両者の流体抵抗が同じになり、出口側の流速が等しいとしたときに矛盾が生じない。上記数3と上記数4より、以下の関係が導出される。 When these R 0 and R ′ are equal, the fluid resistance of both is the same, and no contradiction arises when the flow rates on the outlet side are equal. From Equation 3 and Equation 4, the following relationship is derived.

Figure 2005265261
Figure 2005265261

摩擦係数λ=0.01とした場合、上記数5よりL/d=33.3となる。ここでL/d<33.3となる場合、合流管側の流体抵抗R’の方が大きくなる。すなわち、パルス管50側出口を基準にみた場合の各流路抵抗を等しくするためには合流管側の流路間隔(水力直径)を大きくして流体抵抗R’を小さくしてやる必要がある。逆にL/d>33.3となる場合は直管の流体抵抗Rの方が大きくなるため、相対的に直管側の流路間隔を大きくして流体抵抗を小さくしてやれば良い。
一般的には、長さL、径dおよび摩擦係数λの関係がL/d<1/(3λ)の場合は空間内熱交換部材の間隔を内側(直管側)で狭く、外側(合流管側)に向かって徐々に広く設置し、L/d>1/(3λ)の場合は空間内熱交換部材の間隔を内側(直管側)で広く、外側(合流管側)に向かって徐々に狭く設置してコールドヘッドを構成することが望ましい。
(ex.L=20mm、d=1mmならば、L/d=20<33.3となって合流管側の流体抵抗R’の方が大きいため、合流管側の流路間隔を広く取って合流管側の流体抵抗R’を小さくして調整する必要がある。)
When the friction coefficient λ = 0.01, L / d = 33.3 is obtained from the above equation (5). Here, when L / d <33.3, the fluid resistance R ′ on the merging pipe side is larger. That is, in order to make each flow resistance equal when viewed from the outlet on the pulse tube 50 side, it is necessary to increase the flow channel interval (hydraulic diameter) on the merge tube side to reduce the fluid resistance R ′. Conversely, when L / d> 33.3, the fluid resistance R 0 of the straight pipe becomes larger, so it is only necessary to relatively increase the flow path distance on the straight pipe side to reduce the fluid resistance.
In general, when the relationship between the length L, the diameter d, and the friction coefficient λ is L / d <1 / (3λ), the space between the heat exchange members in the space is narrow on the inner side (straight pipe side) and the outer side (merging) When L / d> 1 / (3λ), the space between the heat exchange members in the space is wide on the inner side (straight pipe side) and toward the outer side (merging pipe side). It is desirable to configure the cold head by gradually installing it narrowly.
(If ex. L = 20 mm, d = 1 mm, L / d = 20 <33.3, and the fluid resistance R ′ on the merging tube side is larger. (It is necessary to adjust by reducing the fluid resistance R ′ on the confluence pipe side.)

このように流路45の流路間隔を調整することで各流路45(部材間)の流体抵抗を等しくして、パルス管50への流入時の流れの偏りをなくし、作動ガスを効率的に通流させることができる。このような配置としても良い。   In this way, by adjusting the channel spacing of the channels 45, the fluid resistance of each channel 45 (between members) is made equal to eliminate the uneven flow when flowing into the pulse tube 50, and the working gas can be efficiently used. Can be passed through. Such an arrangement may be adopted.

続いて、他の形態について説明する。図5は本形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の配置説明図である。本形態は請求項1,5,6に係る発明に関するものである。本形態では熱交換器は、線状(棒状)で全長にわたり部材間隔が等しい空間内熱交換部材44を、パルス管50側を中心に放射状に複数設け、隣接する二個の空間内熱交換部材44により形成される流路45を複数備える熱交換器である。さらに流路間隔が一定割合で変化し、蓄冷器30側では流路45の間隔が広く、また、パルス管50側では流路45の間隔が狭くなるように同じ長さの空間内熱交換部材44を複数配置した熱交換器である。
空間内熱交換部材44の材料は、良伝導性の銅が一般的である。これら空間内熱交換部材44は、下側では蓄冷器30、低温熱交換器43および伝導ブロック41に表面が接触し、熱的に接続されている。なお、図示しないが空間内熱交換部材44は、伝導ブロック41の上側のみ表面が接触して熱的に接続され、下側では隙間を有して熱的に接続されないようにしても良い。
Subsequently, another embodiment will be described. FIG. 5 is an explanatory view of the arrangement of the heat exchange members in the space of the cold head of the pulse tube refrigerator of the present embodiment. This embodiment relates to the inventions according to claims 1, 5, and 6. In this embodiment, the heat exchanger is provided with a plurality of in-space heat exchange members 44 that are linear (bar-shaped) and have the same member spacing over the entire length in a radial manner around the pulse tube 50 side. The heat exchanger is provided with a plurality of flow paths 45 formed by 44. Furthermore, the space interval is changed at a constant rate, and the space heat exchange member having the same length is formed so that the space between the flow channels 45 is wide on the regenerator 30 side and the space between the flow channels 45 is narrow on the pulse tube 50 side. This is a heat exchanger in which a plurality of 44 are arranged.
The material of the in-space heat exchange member 44 is generally a highly conductive copper. These space heat exchange members 44 are in thermal contact with the regenerator 30, the low temperature heat exchanger 43 and the conduction block 41 on the lower side. Although not shown in the drawings, the space heat exchange member 44 may be thermally connected by contacting the surface only on the upper side of the conduction block 41 and not thermally connected with a gap on the lower side.

本形態では、流路45が蓄冷器30側では流路が広く、またパルス管50側では流路が狭くなるように空間内熱交換部材44をパルス管側から放射状に配置した放射状配置である。これにより、全ての流路の流体抵抗が同等となる。したがって、流れの偏りが改善されて、全体の熱交換効率を向上することができる。   In this embodiment, the flow path 45 is a radial arrangement in which the heat exchange members 44 in the space are arranged radially from the pulse tube side so that the flow path is wide on the regenerator 30 side and narrow on the pulse tube 50 side. . Thereby, the fluid resistance of all the flow paths becomes equivalent. Therefore, the uneven flow can be improved and the overall heat exchange efficiency can be improved.

続いて、他の形態について説明する。図6本形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の配置説明図である。本形態は請求項1,5,7に係る発明に関するものである。本形態では熱交換器は、線状(棒状)で一定割合で部材間隔が変化する空間内熱交換部材44を、パルス管50側を中心に放射状に複数設けて、隣接する二個の空間内熱交換部材44により、作動ガスが流れる流路45が複数形成された熱交換器である。さらに蓄冷器30側およびパルス管50側でガス流路開口率(=ガス流路断面積/全断面積)が一定の流路45となるように空間内熱交換部材44を配置した熱交換器である。
空間内熱交換部材44の材料は、良伝導性の銅が一般的である。これら空間内熱交換部材44は、下側では、蓄冷器30、低温熱交換器43および伝導ブロック41に表面が接触し、熱的に接続されている。なお、図示しないが空間内熱交換部材44は、伝導ブロック41の上側のみ表面が接触して熱的に接続され、下側では隙間を有して熱的に接続されないようにしても良い。
Subsequently, another embodiment will be described. 6 is an arrangement explanatory diagram of the heat exchange member in the space of the cold head of the pulse tube refrigerator of the present embodiment. This embodiment relates to the inventions according to claims 1, 5 and 7. In this embodiment, the heat exchanger is provided with a plurality of in-space heat exchanging members 44 that are linear (bar-shaped) and whose member interval changes at a constant rate, with a radial centering on the pulse tube 50 side. This is a heat exchanger in which a plurality of flow paths 45 through which the working gas flows are formed by the heat exchange member 44. Furthermore, the heat exchanger in which the space heat exchanging member 44 is arranged so that the gas channel opening ratio (= gas channel cross-sectional area / total cross-sectional area) becomes a constant channel 45 on the regenerator 30 side and the pulse tube 50 side. It is.
The material of the in-space heat exchange member 44 is generally a highly conductive copper. On the lower side, these in-space heat exchange members 44 are in thermal contact with the regenerator 30, the low-temperature heat exchanger 43, and the conduction block 41. Although not shown in the drawings, the space heat exchange member 44 may be thermally connected by contacting the surface only on the upper side of the conduction block 41 and not thermally connected with a gap on the lower side.

特に本形態では、図6でも明らかなように、蓄冷器40側では流路間隔が広い流路45が、パルス管50側へ進むにつれて流路間隔が狭くなるようにするため、蓄冷器40側からパルス管50側へ進むにつれて一定割合で部材間隔が狭くなるような空間内熱交換部材44をパルス管50側から放射状に配置した一定開口率配置である。
このような本形態では、全ての流路45の流体抵抗が同等となることに加えて、流路45の絞りが一定(=流体抵抗の変化率が一定)となる。したがって、コールドヘッド40内部の圧力損失を低減することで、パルス管冷凍機100全体の効率向上に寄与する。
In particular, in this embodiment, as clearly shown in FIG. 6, the flow path 45 having a wide flow path interval on the regenerator 40 side becomes narrower as the flow path interval decreases toward the pulse tube 50 side. This is a constant aperture ratio arrangement in which the in-space heat exchanging members 44 are arranged radially from the pulse tube 50 side so that the interval between the members becomes narrower at a constant rate as it advances from the pulse tube 50 side.
In this embodiment, in addition to the fluid resistances of all the flow paths 45 being equal, the restriction of the flow paths 45 is constant (= the rate of change in fluid resistance is constant). Therefore, reducing the pressure loss inside the cold head 40 contributes to improving the overall efficiency of the pulse tube refrigerator 100.

続いて、先に説明した空間内熱交換部材の具体的な構造を説明する。図7はコールドヘッドの空間内熱交換部材の構造図であり、図7(a)は矩形部材の断面構造図、図7(b)は三角形部材の断面構造図である。本形態は請求項8に係る発明に関するものである。伝導ブロック41の上面に複数の長尺の空間内熱交換部材44が設けられている。取付けはロー付けなどによる接着・ネジ等締結部材による取付けや、伝導ブロック41と空間内熱交換部材44とを一体的構造としても良く、熱伝導性が確保された状態で固着される。   Then, the specific structure of the heat exchange member in space demonstrated previously is demonstrated. FIG. 7 is a structural diagram of the heat exchange member in the space of the cold head, FIG. 7A is a sectional structural view of a rectangular member, and FIG. 7B is a sectional structural view of a triangular member. This embodiment relates to an invention according to claim 8. A plurality of elongated in-space heat exchange members 44 are provided on the upper surface of the conduction block 41. The attachment may be performed by adhesion such as brazing or a fastening member such as a screw, or the conductive block 41 and the in-space heat exchanging member 44 may be integrated and fixed in a state where thermal conductivity is ensured.

空間内熱交換部材44の形状パラメータのうち熱交換性能に関係する主要なパラメータは、空間内熱交換部材44の長さが一定の場合は水力直径である。流体抵抗と熱伝達率とのトレードオフによりパルス管冷凍機100の性能が左右されるため、最適な水力直径を選択することが好ましい。そこで、空間内熱交換部材44を図7(a)のように断面形状が矩形の中実体である矩形部材や、図7(b)のように断面形状が三角形の中実体である三角形部材とし、さらに空間内熱交換部材44の肉厚や、流路45の間隔を調整することで、最適な流体抵抗と熱伝達率に選択する。なお、線状部材の例として矩形部材・三角形部材を例に掲げて説明したが、図示しないが断面形状が台形状というように他の断面形状の線状部材を採用しても良い。   Of the shape parameters of the in-space heat exchange member 44, the main parameter related to the heat exchange performance is the hydraulic diameter when the length of the in-space heat exchange member 44 is constant. Since the performance of the pulse tube refrigerator 100 depends on the trade-off between fluid resistance and heat transfer coefficient, it is preferable to select an optimal hydraulic diameter. Therefore, the in-space heat exchanging member 44 is a rectangular member having a rectangular cross-section as shown in FIG. 7A, or a triangular member having a triangular cross-section as shown in FIG. 7B. Furthermore, the optimum fluid resistance and heat transfer coefficient are selected by adjusting the thickness of the in-space heat exchange member 44 and the interval between the flow paths 45. In addition, although the rectangular member and the triangular member were mentioned as an example as an example of the linear member, although not illustrated, a linear member having another cross-sectional shape such as a trapezoidal cross-sectional shape may be employed.

続いて、先に説明した熱交換部材の他の具体的な構造を説明する。図8はコールドヘッドの空間内熱交換部材の構造図であり、図8(a)は正弦波状板の空間内熱交換部材の断面構造図、図8(b)は矩形波状板の空間内熱交換部材の断面構造図である。本形態は請求項9に係る発明に関するものである。本形態の空間内熱交換部材44は、断面正弦波状、断面三角波状または断面矩形波状の板である波状部材を採用している。   Then, the other specific structure of the heat exchange member demonstrated previously is demonstrated. FIG. 8 is a structural diagram of the heat exchange member in the space of the cold head, FIG. 8 (a) is a cross-sectional structure diagram of the heat exchange member in the space of the sine wave plate, and FIG. 8 (b) is the heat in the space of the rectangular wave plate. It is sectional structure drawing of an exchange member. This embodiment relates to an invention according to claim 9. The in-space heat exchange member 44 of this embodiment employs a corrugated member that is a plate having a sinusoidal section, a triangular section, or a rectangular section.

図8(a)は良伝導性(例えば銅)の薄板に曲げ加工を施して形成した正弦波状板の山部を複数の接続層46により伝導ブロック41の上面に固着したものである。この場合一つの空間内熱交換部材44は個々の山であり、複数の空間内熱交換部材44が一体に形成された状態である。このような熱交換器では、伝導ブロック41と空間内熱交換部材44とで閉じた流路が形成され、また、空間内熱交換部材44と図示しない伝導ブロック41の下面(蓄冷器30・低温熱交換43も含む)により閉じた流路が形成されている。取付けはロー付けなどによる接着により接続層46を形成して行う。なお、正弦波状部材に代えて、図示しないが、三角波状部材を採用することもできる。   FIG. 8A shows a structure in which a crest portion of a sinusoidal plate formed by bending a thin plate of good conductivity (for example, copper) is fixed to the upper surface of the conductive block 41 by a plurality of connection layers 46. In this case, one space heat exchange member 44 is an individual mountain, and a plurality of space heat exchange members 44 are integrally formed. In such a heat exchanger, a closed flow path is formed by the conduction block 41 and the space heat exchange member 44, and the space heat exchange member 44 and the lower surface of the conduction block 41 (not shown) (the regenerator 30 / low temperature). A closed flow path is formed by including the heat exchange 43. The attachment is performed by forming the connection layer 46 by adhesion such as brazing. In place of the sine wave member, a triangular wave member may be employed although not shown.

図8(b)は良伝導性(例えば銅)の薄板に曲げ加工を施して形成した矩形波状板の山部を接続層46により伝導ブロック41に固着したものである。この場合、一つの空間内熱交換部材44は個々の凸辺が対応し、複数の空間内熱交換部材44が一体に形成されている。熱交換器では空間内熱交換部材44と図示しない伝導ブロック41の下面(蓄冷器30・低温熱交換43も含む)により閉じた流路が形成されている。接続層46の取付けはロー付けなどによる接着により接続層46を形成して行う。
これらのような本形態によれば、安価な構成であり、また、作動ガスと接触する表面積の増大も図れ、冷却効果を高めることができる。
FIG. 8B is a diagram in which a peak portion of a rectangular corrugated plate formed by bending a thin plate of good conductivity (for example, copper) is fixed to the conductive block 41 by a connection layer 46. In this case, each convex side corresponds to one in-space heat exchange member 44, and a plurality of in-space heat exchange members 44 are integrally formed. In the heat exchanger, a closed flow path is formed by the space heat exchange member 44 and the lower surface of the conduction block 41 (not shown) (including the regenerator 30 and the low temperature heat exchange 43). The connection layer 46 is attached by forming the connection layer 46 by adhesion such as brazing.
According to the present embodiment as described above, the structure is inexpensive, the surface area in contact with the working gas can be increased, and the cooling effect can be enhanced.

続いて、先に説明した熱交換部材の他の具体的な構造を説明する。図9はコールドヘッドの楕円管の空間内熱交換部材の断面構造図である。本形態は請求項10に係るものである。本形態では空間内熱交換部材44は、中空の管状部材である。図9は良伝導性(例えば銅)の円管に潰し加工を施した楕円管状部材の空間内熱交換部材44としている。これら空間内熱交換部材44の頂部を接続層46により伝導ブロック41に固着し、多数並べて熱交換器を形成する。この場合、空間内熱交換部材44の管内には閉じた流路が形成されている。接続層46の取付けはロー付けなどによる接着により接続層46を形成して行う。   Then, the other specific structure of the heat exchange member demonstrated previously is demonstrated. FIG. 9 is a cross-sectional view of the heat exchange member in the space of the elliptical tube of the cold head. This embodiment relates to claim 10. In this embodiment, the in-space heat exchange member 44 is a hollow tubular member. FIG. 9 shows an in-space heat exchange member 44 of an elliptical tubular member obtained by crushing a circular tube of good conductivity (for example, copper). The tops of these in-space heat exchange members 44 are fixed to the conduction block 41 by the connection layer 46, and a large number of them are arranged to form a heat exchanger. In this case, a closed flow path is formed in the pipe of the in-space heat exchange member 44. The connection layer 46 is attached by forming the connection layer 46 by adhesion such as brazing.

これらのように製作することで、単一のブロック材料に切削等の加工にて空間内熱交換部材44を製作する場合よりも安価に製作することができる。また、切削やワイヤーカットなどの機械加工では、加工できる空間内熱交換部材44の肉厚や隙間に限界があり、必要な表面積が確保できない場合がある。しかし、この方法では、空間内熱交換部材44の肉厚や隙間を自由にとることが可能となり、設計時に自由度が増し、最適設計が可能となる。   By manufacturing in this way, it is possible to manufacture the single block material at a lower cost than when the in-space heat exchange member 44 is manufactured by processing such as cutting. Further, in machining such as cutting and wire cutting, there is a limit to the thickness and gap of the space heat exchange member 44 that can be processed, and a required surface area may not be ensured. However, according to this method, the thickness and gap of the in-space heat exchanging member 44 can be freely set, and the degree of freedom is increased at the time of designing, and the optimum design is possible.

続いて、格子状に流路を形成する熱交換部材の構造を説明する。図10は本形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の配置説明図である。本形態は請求項11,12に係る発明に関するものである。本形態では、ピン形状の空間内熱交換部材44を、蓄冷器30側とパルス管50側との流路方向と略鉛直方向に突出するように複数設けた熱交換器である。さらに、熱交換器は、ピン形状の多数の空間内熱交換部材44を均等平行並列配列により配置して形成し、この多数の空間内熱交換部材44により流路が縦横に伸びる格子状流路(井柄状の流路)となる。
ピン形状にすることで、積極的に渦を誘起して熱伝達率を向上させることができる。
Then, the structure of the heat exchange member which forms a flow path in a grid | lattice form is demonstrated. FIG. 10 is an explanatory view of the arrangement of the heat exchange members in the space of the cold head of the pulse tube refrigerator of the present embodiment. This embodiment relates to the inventions according to claims 11 and 12. In this embodiment, a plurality of pin-shaped in-space heat exchange members 44 are provided so as to protrude in a substantially vertical direction with respect to the flow path direction on the regenerator 30 side and the pulse tube 50 side. Further, the heat exchanger is formed by arranging a large number of pin-shaped in-space heat exchange members 44 in an equally parallel and parallel arrangement, and the plurality of in-space heat exchange members 44 have lattice-like channels whose channels extend vertically and horizontally. (Well-patterned flow path).
By using a pin shape, it is possible to positively induce vortices and improve the heat transfer coefficient.

続いて、他の格子状に流路を形成する熱交換部材の構造を説明する。図11は本形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の構造図である。本形態は請求項11,13に係る発明に関するものである。本形態では、ピン形状の空間内熱交換部材44を、蓄冷器30側とパルス管50側との流路方向と略鉛直方向に突出するように複数設けた熱交換器である。さらに、熱交換器は、ピン形状の多数の空間内熱交換部材44を千鳥配列により配置して熱交換器を形成し、この多数の空間内熱交換部材44により流路があみだ状に伸びるあみだ状流路としている。
この場合もピン形状にすることで、積極的に渦を誘起して熱伝達率を向上させることができる。また、並行並列に配置するよりも乱流が促進されて、さらに熱伝達率を向上させることができる。
Then, the structure of the heat exchange member which forms a flow path in another grid | lattice form is demonstrated. FIG. 11 is a structural diagram of the in-space heat exchange member of the cold head of the pulse tube refrigerator of this embodiment. This embodiment relates to inventions according to claims 11 and 13. In this embodiment, a plurality of pin-shaped in-space heat exchange members 44 are provided so as to protrude in a substantially vertical direction with respect to the flow path direction on the regenerator 30 side and the pulse tube 50 side. Further, the heat exchanger forms a heat exchanger by arranging a large number of pin-shaped space heat exchange members 44 in a staggered arrangement, and the flow paths extend in a staggered manner by the number of space heat exchange members 44. Amida-shaped channel.
In this case as well, by forming a pin shape, it is possible to positively induce vortices and improve the heat transfer coefficient. Moreover, turbulent flow is promoted more than arranging in parallel, and the heat transfer rate can be further improved.

続いて、他の格子状に流路を形成する熱交換部材の構造を説明する。図12は本形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の配置説明図である。本形態は請求項11,14に係る発明に関するものである。本形態では、ピン形状の空間内熱交換部材44を、蓄冷器30側とパルス管50側との流路方向と略鉛直方向に突出するように複数設けた熱交換器である。さらに、図12に示すように、熱交換器の空間内熱交換部材44は、蓄冷器30側では辺が大きい正方形ピンとして、また、パルス管50側では辺が小さい正方形ピンとして放射状に配置され、ピン形状の多数の空間内熱交換部材44を一定開口率配列により配置して流路が蓄冷器30側およびパルス管50側でガス流路開口率(=ガス流路断面積/全断面積)が一定の流路となるように流路間隔を変化させた一定開口率配列である。なお、二個の空間内熱交換部材44結ぶ線上に図示しない多数の空間内熱交換部材44を配置しても良い。
これにより、折り返し空間42に同一流路長さを持つようにパルス管50側から放射状に配置することで、全ての流路45の流体抵抗が同等となることに加えて、流路45の絞りが一定(=流体抵抗の変化率が一定)となる。したがって、コールドヘッド40内部の圧力損失を低減することで、パルス管冷凍機100全体の効率向上に寄与する。
Then, the structure of the heat exchange member which forms a flow path in another grid | lattice form is demonstrated. FIG. 12 is an explanatory view of the arrangement of the heat exchange members in the space of the cold head of the pulse tube refrigerator of this embodiment. This embodiment relates to the inventions according to claims 11 and 14. In this embodiment, a plurality of pin-shaped in-space heat exchange members 44 are provided so as to protrude in a substantially vertical direction with respect to the flow path direction on the regenerator 30 side and the pulse tube 50 side. Furthermore, as shown in FIG. 12, the in-space heat exchanging member 44 of the heat exchanger is radially arranged as a square pin having a large side on the regenerator 30 side and as a square pin having a small side on the pulse tube 50 side. In addition, a large number of pin-shaped heat exchangers 44 in the space are arranged in a constant aperture ratio arrangement, and the flow paths are arranged on the regenerator 30 side and the pulse tube 50 side. ) Is a constant aperture ratio array in which the flow path interval is changed so as to be a constant flow path. A large number of in-space heat exchange members 44 may be arranged on a line connecting the two in-space heat exchange members 44.
As a result, the flow resistances of all the flow paths 45 are equalized by arranging them radially from the side of the pulse tube 50 so as to have the same flow path length in the folded space 42. Becomes constant (= change rate of fluid resistance is constant). Therefore, reducing the pressure loss inside the cold head 40 contributes to improving the overall efficiency of the pulse tube refrigerator 100.

続いて、これらピン形状の熱交換部材の構造を説明する。図13はコールドヘッドの空間内熱交換部材の構造図であり、図13(a)は円柱状の空間内熱交換部材の斜視図、図13(b)は多角柱状の空間内熱交換部材の斜視図、図13(c)は円錐状の空間内熱交換部材の斜視図、図13(d)は多角錘状の空間内熱交換部材の斜視図である。
同一のブロック材料に切削等の加工を施して上側の伝導ブロック41と空間内熱交換部材44とを一体に切り出して製作する場合、加工限度とコストの兼ね合いにより空間内熱交換部材44は直方体のような形状に限定される。しかし、伝導ブロック41にピン形状の空間内熱交換部材44を直接打ち付けたり、ロー付けしたりする場合のピン形状は円柱、円錐、多角柱など多数選択することが可能である。これにより、乱流の促進・流体抵抗の調整等が可能となり、選択肢を広げることができる。
Next, the structure of these pin-shaped heat exchange members will be described. FIG. 13 is a structural diagram of the heat exchange member in the space of the cold head, FIG. 13 (a) is a perspective view of the cylindrical heat exchange member in the space, and FIG. 13 (b) is a view of the heat exchange member in the polygonal column shape. FIG. 13C is a perspective view of a conical space heat exchange member, and FIG. 13D is a perspective view of a polygonal pyramid heat exchange member.
When the upper conductive block 41 and the in-space heat exchange member 44 are cut out and manufactured by cutting the same block material and the like, the in-space heat exchange member 44 is a rectangular parallelepiped due to the balance between the processing limit and cost. It is limited to such a shape. However, when the pin-shaped in-space heat exchange member 44 is directly struck or brazed to the conduction block 41, a large number of pin shapes such as a cylinder, a cone, and a polygonal column can be selected. This makes it possible to promote turbulence, adjust fluid resistance, etc., and expand the options.

以上本発明について説明した。これら発明では何れも、コールドヘッドの折り返し空間にも熱交換器を設置して、最も低温の作動ガスと積極的に熱交換を行い、かつ作動ガスの膨張を押さえた構成にしたため、折り返し空間内の最低温の作動ガスとの熱交換を行うとともに、可能な限り作動ガスの膨張を抑制して、コールドヘッド内で生じていた熱的ロスを大幅に低減して、大幅に性能を向上させることができる。   The present invention has been described above. In any of these inventions, a heat exchanger is also installed in the folding space of the cold head to actively exchange heat with the coldest working gas and suppress the expansion of the working gas. Exchanging heat with the coldest working gas at the same time, suppressing the expansion of working gas as much as possible, greatly reducing the thermal loss that has occurred in the cold head, and greatly improving performance Can do.

本発明を実施するための最良の形態のパルス管冷凍機のコールドヘッド付近の概略図である。It is the schematic of the cold head vicinity of the pulse tube refrigerator of the best form for implementing this invention. 本発明を実施するための最良の形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の配置説明図である。It is arrangement | positioning explanatory drawing of the heat exchange member in the space of the cold head of the pulse tube refrigerator of the best form for implementing this invention. 本発明を実施するための最良の形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の配置説明図である。It is arrangement | positioning explanatory drawing of the heat exchange member in the space of the cold head of the pulse tube refrigerator of the best form for implementing this invention. 流体抵抗の説明図であり、図4(a)は等断面積の合流管の模式図、図4(b)は等断面積の直管の模式図、図4(c)は合流管の等価回路図、図4(d)は直管の等価回路図である。FIG. 4A is a schematic diagram of a confluent pipe having an equal cross-sectional area, FIG. 4B is a schematic diagram of a straight pipe having an equal cross-sectional area, and FIG. 4C is an equivalent diagram of a confluent pipe. The circuit diagram and FIG. 4D are equivalent circuit diagrams of straight pipes. 本発明を実施するための最良の形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の配置説明図である。It is arrangement | positioning explanatory drawing of the heat exchange member in the space of the cold head of the pulse tube refrigerator of the best form for implementing this invention. 本発明を実施するための最良の形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の配置説明図である。It is arrangement | positioning explanatory drawing of the heat exchange member in the space of the cold head of the pulse tube refrigerator of the best form for implementing this invention. コールドヘッドの空間内熱交換部材の構造図であり、図7(a)は矩形部材の断面構造図、図7(b)は三角形部材の断面構造図である。FIG. 7A is a cross-sectional structural view of a rectangular member, and FIG. 7B is a cross-sectional structural view of a triangular member. コールドヘッドの空間内熱交換部材の構造図であり、図8(a)は正弦波状板の空間内熱交換部材の断面構造図、図8(b)は矩形波状板の空間内熱交換部材の断面構造図である。FIG. 8A is a structural diagram of an in-space heat exchange member of a cold head, FIG. 8A is a cross-sectional structure diagram of an in-space heat exchange member of a sine wave plate, and FIG. 8B is an in-space heat exchange member of a rectangular wave plate. FIG. コールドヘッドの楕円管の空間内熱交換部材の断面構造図である。It is a cross-section figure of the heat exchange member in the space of the elliptic tube of a cold head. 本発明を実施するための最良の形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の配置説明図である。It is arrangement | positioning explanatory drawing of the heat exchange member in the space of the cold head of the pulse tube refrigerator of the best form for implementing this invention. 本発明を実施するための最良の形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の配置説明図である。It is arrangement | positioning explanatory drawing of the heat exchange member in the space of the cold head of the pulse tube refrigerator of the best form for implementing this invention. 本発明を実施するための最良の形態のパルス管冷凍機のコールドヘッドの空間内熱交換部材の配置説明図である。It is arrangement | positioning explanatory drawing of the heat exchange member in the space of the cold head of the pulse tube refrigerator of the best form for implementing this invention. コールドヘッドの空間内熱交換部材の構造図であり、図13(a)は円柱状の空間内熱交換部材の斜視図、図13(b)は多角柱状の空間内熱交換部材の斜視図、図13(c)は円錐状の空間内熱交換部材の斜視図、図13(d)は多角錘状の空間内熱交換部材の斜視図である。FIG. 13A is a structural diagram of a space heat exchange member of the cold head, FIG. 13A is a perspective view of a columnar space heat exchange member, and FIG. 13B is a perspective view of a polygonal column heat heat exchange member. FIG. 13C is a perspective view of a conical space heat exchange member, and FIG. 13D is a perspective view of a polygonal pyramid heat exchange member. 従来技術のU字リターン型パルス管冷凍機の概要構成図である。It is a schematic block diagram of the U-shaped return type pulse tube refrigerator of a prior art.

符号の説明Explanation of symbols

100:パルス管冷凍機
10:圧縮機
11:シリンダ
12:ピストン
20:アフタークーラ
21:熱交換器
22:放熱器
30:蓄冷器
40:コールドヘッド
41:伝導ブロック
42:折り返し空間
43:低温熱交換器
44:空間内熱交換部材
45:流路
46:接続層
50:パルス管
60:高温端
61:高温熱交換器
62:高温放熱器
70:位相制御部
71:イナータンスチューブ
72:バッファタンク
DESCRIPTION OF SYMBOLS 100: Pulse tube refrigerator 10: Compressor 11: Cylinder 12: Piston 20: After cooler 21: Heat exchanger 22: Radiator 30: Regenerator 40: Cold head 41: Conduction block 42: Turn-back space 43: Low-temperature heat exchange Unit 44: Heat exchange member in space 45: Flow path 46: Connection layer 50: Pulse tube 60: High temperature end 61: High temperature heat exchanger 62: High temperature radiator 70: Phase control unit
71: Inertance tube 72: Buffer tank

Claims (15)

蓄冷器、コールドヘッドおよびパルス管が略U字型に接続されてU字リターン型の流路となるように圧縮機、蓄冷器、コールドヘッド、パルス管および位相制御部が接続され、このU字リターン型の流路を流れる作動ガスとの熱交換によりコールドヘッドに寒冷を発生させるU字リターン型のパルス管冷凍機において、
コールドヘッドの折り返し空間内に形成される熱交換器と、
蓄冷器側とパルス管側との間で連通させるように、熱交換器とコールドヘッドとにより分割形成される流路と、
を備えることを特徴とするパルス管冷凍機。
A compressor, a regenerator, a cold head, a pulse tube, and a phase control unit are connected so that the regenerator, the cold head, and the pulse tube are connected in a substantially U shape to form a U-shaped return type flow path. In the U-shaped return type pulse tube refrigerator that generates cold in the cold head by heat exchange with the working gas flowing through the return type flow path,
A heat exchanger formed in the folding space of the cold head;
A flow path divided and formed by the heat exchanger and the cold head so as to communicate between the regenerator side and the pulse tube side;
A pulse tube refrigerator comprising:
請求項1記載のパルス管冷凍機において、
前記熱交換器は、線状の空間内熱交換部材が、蓄冷器側とパルス管側との流路方向と略平行に複数設けられ、隣接する二個の空間内熱交換部材およびコールドヘッドにより略直線状の流路が複数形成される熱交換器であることを特徴とするパルス管冷凍機。
The pulse tube refrigerator according to claim 1, wherein
In the heat exchanger, a plurality of linear space heat exchange members are provided substantially in parallel with the flow passage directions on the regenerator side and the pulse tube side, and two adjacent space heat exchange members and a cold head are used. A pulse tube refrigerator characterized by being a heat exchanger in which a plurality of substantially linear flow paths are formed.
請求項2記載のパルス管冷凍機において、
前記熱交換器は、蓄冷器側およびパルス管側で流路間隔が同一間隔となるように、空間内熱交換部材が配置された熱交換器であることを特徴とするパルス管冷凍機。
In the pulse tube refrigerator according to claim 2,
The pulse tube refrigerator, wherein the heat exchanger is a heat exchanger in which an in-space heat exchange member is arranged so that the flow path interval is the same on the regenerator side and the pulse tube side.
請求項2記載のパルス管冷凍機において、
前記熱交換器は、長い流路では流路間隔が狭く、また、短い流路では流路間隔が広くなるように、空間内熱交換部材が配置された熱交換器であることを特徴とするパルス管冷凍機。
In the pulse tube refrigerator according to claim 2,
The heat exchanger is a heat exchanger in which an in-space heat exchange member is arranged so that a flow path interval is narrow in a long flow path and a flow path interval is wide in a short flow path. Pulse tube refrigerator.
請求項1記載のパルス管冷凍機において、
前記熱交換器は、線状の空間内熱交換部材が、パルス管側を中心に放射状に複数設けられ、隣接する二個の空間内熱交換部材およびコールドヘッドにより略直線状の流路が放射状に複数形成される熱交換器であることを特徴とするパルス管冷凍機。
The pulse tube refrigerator according to claim 1, wherein
In the heat exchanger, a plurality of linear space heat exchange members are provided radially around the pulse tube side, and a substantially linear flow path is formed radially by two adjacent space heat exchange members and a cold head. A pulse tube refrigerator characterized in that a plurality of heat exchangers are formed.
請求項5記載のパルス管冷凍機において、
前記熱交換器は、蓄冷器側では流路間隔が広く、また、パルス管側では流路間隔が狭くなるように、空間内熱交換部材が配置された熱交換器であることを特徴とするパルス管冷凍機。
In the pulse tube refrigerator according to claim 5,
The heat exchanger is a heat exchanger in which an in-space heat exchange member is arranged so that the flow path interval is wide on the regenerator side and the flow path interval is narrow on the pulse tube side. Pulse tube refrigerator.
請求項5記載のパルス管冷凍機において、
前記熱交換器は、蓄冷器側およびパルス管側でガス流路開口率(=ガス流路断面積/全断面積)が一定となるように空間内熱交換部材が配置された熱交換器であることを特徴とするパルス管冷凍機。
In the pulse tube refrigerator according to claim 5,
The heat exchanger is a heat exchanger in which an in-space heat exchange member is arranged so that the gas channel opening ratio (= gas channel cross-sectional area / total cross-sectional area) is constant on the regenerator side and the pulse tube side. A pulse tube refrigerator characterized by being.
請求項2〜請求項7の何れか一項に記載のパルス管冷凍機において、
前記空間内熱交換部材は、断面矩形状または断面三角形状の中実体である線状部材とすることを特徴とするパルス管冷凍機。
In the pulse tube refrigerator according to any one of claims 2 to 7,
The pulse heat exchanger according to claim 1, wherein the heat exchange member in the space is a linear member that is a solid body having a rectangular cross section or a triangular cross section.
請求項2〜請求項7の何れか一項に記載のパルス管冷凍機において、
前記空間内熱交換部材は、断面正弦波状、断面三角波状または断面矩形波状の板である波状部材とし、複数の空間内熱交換部材が一体に形成されることを特徴とするパルス管冷凍機。
In the pulse tube refrigerator according to any one of claims 2 to 7,
The space heat exchange member is a corrugated member which is a plate having a sine wave shape, a triangular wave shape or a rectangular wave shape in cross section, and a plurality of heat exchange members in the space are integrally formed.
請求項2〜請求項7の何れか一項に記載のパルス管冷凍機において、
前記空間内熱交換部材は、中空の管状部材とすることを特徴とするパルス管冷凍機。
In the pulse tube refrigerator according to any one of claims 2 to 7,
The in-space heat exchange member is a hollow tubular member.
請求項1記載のパルス管冷凍機において、
前記熱交換器は、ピン形状の空間内熱交換部材が、蓄冷器側とパルス管側との流路方向と略鉛直方向に突出するように複数設けられた熱交換器であることを特徴とするパルス管冷凍機。
The pulse tube refrigerator according to claim 1, wherein
The heat exchanger is a heat exchanger provided with a plurality of pin-shaped in-space heat exchange members so as to protrude in a substantially vertical direction with respect to the flow path direction on the regenerator side and the pulse tube side. Pulse tube refrigerator.
請求項11記載のパルス管冷凍機において、
前記熱交換器は、ピン形状の多数の空間内熱交換部材が均等平行並列配列により配置されて、格子状流路が形成されることを特徴とするパルス管冷凍機。
The pulse tube refrigerator according to claim 11, wherein
The heat exchanger is a pulse tube refrigerator in which a large number of pin-shaped heat exchange members in a space are arranged in a parallel and parallel arrangement to form a lattice flow path.
請求項11記載のパルス管冷凍機において、
前記熱交換器は、ピン形状の多数の空間内熱交換部材が千鳥配列により配置されて、あみだ状流路が形成されることを特徴とするパルス管冷凍機。
The pulse tube refrigerator according to claim 11, wherein
The heat exchanger is a pulse tube refrigerator characterized in that a large number of pin-shaped heat exchange members in a space are arranged in a staggered arrangement to form a worm-like flow path.
請求項11記載のパルス管冷凍機において、
前記熱交換器は、ピン形状の多数の空間内熱交換部材が一定開口率配列により配置されて、蓄冷器側およびパルス管側でガス流路開口率(=ガス流路断面積/全断面積)が一定の流路として形成されることを特徴とするパルス管冷凍機。
The pulse tube refrigerator according to claim 11, wherein
In the heat exchanger, a number of pin-shaped heat exchangers in the space are arranged in a constant aperture ratio arrangement, and the gas channel opening ratio (= gas channel cross-sectional area / total cross-sectional area) on the regenerator side and the pulse tube side. ) Is formed as a constant flow path.
請求項11〜請求項14の何れか一項に記載のパルス管冷凍機において、
前記空間内熱交換部材は、円柱、多角柱、円錐、または、多角錘によるピン形状であることを特徴とするパルス管冷凍機。
In the pulse tube refrigerator according to any one of claims 11 to 14,
The in-space heat exchange member has a cylindrical shape, a polygonal column, a cone, or a pin shape with a polygonal pyramid.
JP2004077346A 2004-03-18 2004-03-18 Pulse pipe refrigerator Pending JP2005265261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077346A JP2005265261A (en) 2004-03-18 2004-03-18 Pulse pipe refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004077346A JP2005265261A (en) 2004-03-18 2004-03-18 Pulse pipe refrigerator

Publications (1)

Publication Number Publication Date
JP2005265261A true JP2005265261A (en) 2005-09-29

Family

ID=35090009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077346A Pending JP2005265261A (en) 2004-03-18 2004-03-18 Pulse pipe refrigerator

Country Status (1)

Country Link
JP (1) JP2005265261A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175118A (en) * 2009-01-28 2010-08-12 Aisin Seiki Co Ltd Refrigerator
JP2010210124A (en) * 2009-03-09 2010-09-24 Sanken Setsubi Kogyo Co Ltd Heat source system
JP2011179808A (en) * 2010-02-03 2011-09-15 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2014044018A (en) * 2012-08-28 2014-03-13 Sumitomo Heavy Ind Ltd Cryogenic refrigerator
JP2016057016A (en) * 2014-09-10 2016-04-21 住友重機械工業株式会社 Stirling type pulse tube refrigerator
US10060656B2 (en) 2014-09-10 2018-08-28 Sumitomo Heavy Industries, Ltd. Pulse tube refrigerator
JP2019113281A (en) * 2017-12-26 2019-07-11 住友重機械工業株式会社 Pulse tube freezing machine and manufacturing method of the same
JP2020003098A (en) * 2018-06-26 2020-01-09 株式会社アルバック Pulse tube refrigerator
CN112212536A (en) * 2020-09-15 2021-01-12 中国科学院上海技术物理研究所 Gas coupling type pulse tube refrigerator split-flow type cold end heat exchanger and design method
JP7270144B1 (en) 2022-10-28 2023-05-10 国立大学法人東京農工大学 Heat transfer device and furnace

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175118A (en) * 2009-01-28 2010-08-12 Aisin Seiki Co Ltd Refrigerator
JP2010210124A (en) * 2009-03-09 2010-09-24 Sanken Setsubi Kogyo Co Ltd Heat source system
JP2011179808A (en) * 2010-02-03 2011-09-15 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2014044018A (en) * 2012-08-28 2014-03-13 Sumitomo Heavy Ind Ltd Cryogenic refrigerator
JP2016057016A (en) * 2014-09-10 2016-04-21 住友重機械工業株式会社 Stirling type pulse tube refrigerator
US10060656B2 (en) 2014-09-10 2018-08-28 Sumitomo Heavy Industries, Ltd. Pulse tube refrigerator
JP2019113281A (en) * 2017-12-26 2019-07-11 住友重機械工業株式会社 Pulse tube freezing machine and manufacturing method of the same
JP2020003098A (en) * 2018-06-26 2020-01-09 株式会社アルバック Pulse tube refrigerator
JP7111526B2 (en) 2018-06-26 2022-08-02 株式会社アルバック pulse tube refrigerator
CN112212536A (en) * 2020-09-15 2021-01-12 中国科学院上海技术物理研究所 Gas coupling type pulse tube refrigerator split-flow type cold end heat exchanger and design method
CN112212536B (en) * 2020-09-15 2021-12-31 中国科学院上海技术物理研究所 Gas coupling type pulse tube refrigerator split-flow type cold end heat exchanger and design method
JP7270144B1 (en) 2022-10-28 2023-05-10 国立大学法人東京農工大学 Heat transfer device and furnace

Similar Documents

Publication Publication Date Title
JP5509466B2 (en) Finned cylindrical heat exchanger
CN201731784U (en) Heat-pipe type fin heat exchange device
JP2005265261A (en) Pulse pipe refrigerator
JP6214670B2 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
JP5545160B2 (en) Heat exchanger
CN101893399A (en) Heat pipe type fin heat exchanger
JP2007309533A (en) Fin tube heat exchanger
CN107356008B (en) Intermediate heat exchanger of coaxial type primary Stirling secondary pulse tube mixed refrigerator
JP5414502B2 (en) Plate heat exchanger and heat pump device
EP3798564B1 (en) Vapor chamber for cooling an electronic component
JP3911604B2 (en) Heat exchanger and refrigeration cycle
US20230108485A1 (en) Monocoque shell and tube heat exchanger
JP5862250B2 (en) Thermoacoustic refrigeration equipment
JP2010025411A (en) Heat exchanger and pulse tube refrigerating machine
JP2007527480A (en) Collision heat exchanger for Stirling cycle machine
CN104538836B (en) A kind of liquid refrigerating chip for high-power semiconductor laser
JP2021152434A (en) Regenerator material, regenerator, and cool storage type refrigerator, and heat accumulator material, heat accumulator
JP2008286507A (en) Pulse tube refrigerator
JP2003166766A (en) Heat exchanger for pulse pipe refrigerator
JP7111526B2 (en) pulse tube refrigerator
JP4000512B2 (en) Pulse tube refrigerator
US20130048261A1 (en) Heat exhanger
JP6315945B2 (en) Heat exchanger
JP2006078003A (en) Pulse tube refrigerating machine
CN216385188U (en) Shell and tube heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060914

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A02 Decision of refusal

Effective date: 20080603

Free format text: JAPANESE INTERMEDIATE CODE: A02