JP2010025411A - Heat exchanger and pulse tube refrigerating machine - Google Patents

Heat exchanger and pulse tube refrigerating machine Download PDF

Info

Publication number
JP2010025411A
JP2010025411A JP2008186126A JP2008186126A JP2010025411A JP 2010025411 A JP2010025411 A JP 2010025411A JP 2008186126 A JP2008186126 A JP 2008186126A JP 2008186126 A JP2008186126 A JP 2008186126A JP 2010025411 A JP2010025411 A JP 2010025411A
Authority
JP
Japan
Prior art keywords
heat exchanger
groove
pulse tube
regenerator
working gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008186126A
Other languages
Japanese (ja)
Inventor
Keiji Oshima
恵司 大嶋
Shin Matsumoto
伸 松本
Yoshinori Mizoguchi
義則 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008186126A priority Critical patent/JP2010025411A/en
Publication of JP2010025411A publication Critical patent/JP2010025411A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the capacity of a refrigerating machine by increasing pressure amplitude by reducing pressure loss in a boundary between a heat exchanger and a cold storage device and suppressing decline in a compression ratio. <P>SOLUTION: The heat exchanger is formed to have a columnar shape or cylindrical shape, and is provided with a plurality of through-holes formed on concentric circles on an end face of the column or cylinder and with grooves communicating the through-holes with each other at least on one face of the column or cylinder. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、作動ガスと熱交換を行う熱交換器、および、この熱交換器が搭載されるパルス管冷凍機に関する。   The present invention relates to a heat exchanger that exchanges heat with a working gas, and a pulse tube refrigerator in which the heat exchanger is mounted.

液体窒素温度のような極低温を発生する小型の極低温冷凍機としては、パルス管冷凍機等がよく知られている。
図4は同軸型パルス管冷凍機の構成図である。パルス管冷凍機は、圧縮機1、放熱器2、蓄冷器3、コールドヘッド4、パルス管5および位相制御機構6から構成されており、これの冷凍作用発生原理は、以下の通りに理解されている。
A pulse tube refrigerator or the like is well known as a small cryogenic refrigerator that generates an extremely low temperature such as liquid nitrogen temperature.
FIG. 4 is a block diagram of a coaxial pulse tube refrigerator. The pulse tube refrigerator is composed of a compressor 1, a radiator 2, a regenerator 3, a cold head 4, a pulse tube 5 and a phase control mechanism 6. The principle of generating the refrigeration action is understood as follows. ing.

この冷凍機の内部に封入されている作動ガス(例えばヘリウムガス)は、所定の周波数で往復運動する圧縮機1によって繰り返し圧縮と膨張が行われる。まず、圧縮機1の圧縮過程によって圧縮熱を発生した作動ガスは、放熱器2で熱交換器21を介して圧縮熱を外部に放出する(断熱圧縮行程)。圧縮された作動ガスは、蓄冷器3およびコールドヘッド4を通ってパルス管5に流入する(等温行程)。パルス管5においては、作動ガスは膨張して寒冷を発生する(断熱膨張行程)。この際、位相制御機構6によって、作動ガスの圧力と流速との位相が調整される。位相制御機構6はイナータンスチューブ61とバッファータンク62とで構成されており、作動ガスはこの中をほぼ正弦波的な圧力振幅を伴って流れる。電気回路に例えると、イナータンスチューブ61はインダクタンスおよび抵抗のインピーダンス成分に相当し、バッファータンク62はキャパシタンス成分に相当する。上記のようにして発生した寒冷によりコールドヘッド4から吸熱する。次に、圧縮機1の膨張過程においては、パルス管5で冷却された作動ガスが、蓄冷器3と準静的に熱交換しながら放熱器2を通って圧縮機1に戻ってくる(等温行程)。以上の4つの工程を繰り返すことによって、コールドヘッド4は極低温まで冷却される。   The working gas (for example, helium gas) enclosed in the refrigerator is repeatedly compressed and expanded by the compressor 1 that reciprocates at a predetermined frequency. First, the working gas that has generated compression heat by the compression process of the compressor 1 releases the compression heat to the outside through the heat exchanger 21 in the radiator 2 (adiabatic compression process). The compressed working gas flows into the pulse tube 5 through the regenerator 3 and the cold head 4 (isothermal stroke). In the pulse tube 5, the working gas expands to generate cold (adiabatic expansion process). At this time, the phase of the working gas pressure and flow velocity is adjusted by the phase control mechanism 6. The phase control mechanism 6 includes an inertance tube 61 and a buffer tank 62, and the working gas flows therethrough with a substantially sinusoidal pressure amplitude. In the case of an electric circuit, the inertance tube 61 corresponds to an impedance component of inductance and resistance, and the buffer tank 62 corresponds to a capacitance component. Heat is absorbed from the cold head 4 by the cold generated as described above. Next, in the expansion process of the compressor 1, the working gas cooled by the pulse tube 5 returns to the compressor 1 through the radiator 2 while performing quasi-static heat exchange with the regenerator 3 (isothermal). Process). By repeating the above four steps, the cold head 4 is cooled to a very low temperature.

従来技術においては、このような冷凍機に使われている放熱器2の熱交換器21は、図5(a)および図5(b)のように、銅などの熱抵抗の小さい材料で円筒リング部に軸方向に多数の貫通孔211を設けた形状を有している。熱交換器の円筒外周面は、放熱器2に一体的に接合され放熱経路を構成している。一方、円筒内周面にはパルス管が差し込まれているが、熱的に結合されていない方が良く、適切なクリアランスがあっても良い。円筒端面部は、片方を圧縮機の接続管と結合した空間22に、他端を蓄冷器3に接している。圧縮機側から流入する作動ガスの熱を多数の貫通孔211の表面で熱交換し、放熱器2に設けたフィン23で外部空間に放熱する機能を有している。   In the prior art, the heat exchanger 21 of the radiator 2 used in such a refrigerator is a cylinder made of a material having a low thermal resistance such as copper as shown in FIGS. 5 (a) and 5 (b). The ring portion has a shape in which a large number of through holes 211 are provided in the axial direction. The cylindrical outer peripheral surface of the heat exchanger is integrally joined to the radiator 2 to constitute a heat dissipation path. On the other hand, a pulse tube is inserted into the inner peripheral surface of the cylinder, but it is better not to be thermally coupled, and there may be an appropriate clearance. One end of the cylindrical end surface is in contact with the space 22 coupled to the connecting pipe of the compressor, and the other end is in contact with the regenerator 3. It has a function of exchanging heat of the working gas flowing in from the compressor side on the surfaces of the many through holes 211 and radiating heat to the external space by the fins 23 provided in the radiator 2.

この種の冷凍機の熱交換器としては、特許文献1に記載されているものがよく知られている。
特開2002−257428号公報
As a heat exchanger of this type of refrigerator, the one described in Patent Document 1 is well known.
JP 2002-257428 A

上記した従来型同軸パルス管冷凍機において、熱交換器は圧損が小さく熱交換表面積を大きく取れるように、円筒状の銅ブロックに小径の貫通孔211を多数個設けて、開口率40%程度にしたものが一般的に採用されている。一方、蓄冷器3はリング状に成形したステンレス金網31などを蓄冷材として積層し、作動ガスの流れ方向に抵抗が大きく、作動ガスの流れと直角方向の抵抗が小さくなるように構成している。具体的には、300〜500メッシュで開口率70〜80%程度のもので構成している。   In the conventional coaxial pulse tube refrigerator described above, the heat exchanger is provided with a large number of small-diameter through holes 211 in a cylindrical copper block so that the pressure loss is small and the heat exchange surface area can be increased, so that the opening ratio is about 40%. Is generally adopted. On the other hand, the regenerator 3 is constructed by laminating a stainless steel mesh 31 or the like formed in a ring shape as a regenerator material so that the resistance in the flow direction of the working gas is large and the resistance in the direction perpendicular to the flow of the working gas is small. . Specifically, it is composed of 300 to 500 mesh and an aperture ratio of about 70 to 80%.

図6(a)および図6(b)に示すように、熱交換器21と蓄冷器3の接触部では熱交換器の貫通孔211を蓄冷器の蓄冷材を構成しているステンレス金網31で塞ぐこととなり、実質の開口率は、30%程度に低下することになる。このため、圧力損失が大きくなり、極低温発生に寄与する圧力振幅が小さくなり効率が低下するという課題があった。
一方、単純に熱交換器21と蓄冷器3との間に一定の隙間を設けて開口率を確保するということも行われている。しかし、当該方法の場合には、圧縮機1から蓄冷器3の入口までの空間が圧縮機1のピストンによる作動ガスの圧縮空間として機能するため、作動ガスの圧縮比が低下して冷凍機の能力(効率)が下がるという問題が発生する。
As shown in FIG. 6A and FIG. 6B, the through hole 211 of the heat exchanger at the contact portion between the heat exchanger 21 and the regenerator 3 is made of a stainless wire mesh 31 constituting the regenerator material of the regenerator. As a result, the actual aperture ratio is reduced to about 30%. For this reason, there is a problem that pressure loss increases, pressure amplitude contributing to generation of cryogenic temperature decreases, and efficiency decreases.
On the other hand, simply providing a certain gap between the heat exchanger 21 and the regenerator 3 to ensure the aperture ratio is also performed. However, in the case of this method, the space from the compressor 1 to the inlet of the regenerator 3 functions as a working gas compression space by the piston of the compressor 1, so that the working gas compression ratio decreases and the refrigerator There arises a problem that the ability (efficiency) decreases.

そこで、本発明は、熱交換器と蓄冷器の境界における圧力損失を低減して圧力振幅を大きくし、かつ、圧縮比の低下を抑制することにより、冷凍機能力の向上させることを目的とする。   Therefore, the present invention aims to improve the refrigeration function by reducing the pressure loss at the boundary between the heat exchanger and the regenerator, increasing the pressure amplitude, and suppressing the decrease in the compression ratio. .

上記課題を解決するため、請求項1に係る発明は、円柱形状または円筒形状で構成され、円柱または円筒の軸方向に作動ガスを通流させる複数の貫通孔を設け、少なくとも円柱または円筒の一の端面に複数の貫通孔を連通する溝を設けたこと、を特徴とする。
請求項2に係る発明は、請求項1に係る熱交換器において、複数の貫通孔を複数の同心円上に設けることを特徴とする。
In order to solve the above problems, the invention according to claim 1 is configured in a columnar shape or a cylindrical shape, provided with a plurality of through holes through which the working gas flows in the axial direction of the column or the cylinder, and at least one of the columns or the cylinder is provided. A groove for communicating a plurality of through-holes is provided on the end face.
The invention according to claim 2 is characterized in that, in the heat exchanger according to claim 1, a plurality of through holes are provided on a plurality of concentric circles.

請求項3に係る発明は、請求項1または請求項2に記載の熱交換器において、溝を円状に設けることを特徴とする。
請求項4に係る発明は、請求項1乃至3に記載の熱交換器において、溝がV溝であることを特徴とする。
請求項5に係る発明は、圧縮機、蓄冷器、低温端、パルス管、高温端および位相制御部により流路を形成し、流路を流れる作動ガスの熱交換により低温端に寒冷を発生するパルス管冷凍機において、請求項1〜請求項4の何れか一項に記載の熱交換器を、溝を有する端面が蓄冷器の高温端側となるように配置することを特徴とするパルス管冷凍機。
According to a third aspect of the present invention, in the heat exchanger according to the first or second aspect, the groove is provided in a circular shape.
The invention according to claim 4 is the heat exchanger according to any one of claims 1 to 3, wherein the groove is a V-groove.
In the invention according to claim 5, the flow path is formed by the compressor, the regenerator, the low temperature end, the pulse tube, the high temperature end and the phase control unit, and the cold is generated at the low temperature end by heat exchange of the working gas flowing through the flow path. In the pulse tube refrigerator, the heat exchanger according to any one of claims 1 to 4 is disposed so that an end surface having a groove is on a high temperature end side of the regenerator. refrigerator.

この発明によれば、熱交換器の貫通孔の軸方向に蓄冷器の蓄冷材が位置していても作動ガスの流通経路が確保されるため、作動ガスの圧力損失による圧力振幅の低下を抑制でき、冷凍能力の向上を図れる。一方で、圧縮空間の増加による冷凍機能力の低下を必要最小限に抑えることができる。さらに、V溝とすることにより、熱交換器と蓄冷器との境界部における流体抵抗を低減させることにより、熱交換特性の向上と流体抵抗損失の低減を図ることもできる。   According to this invention, even if the regenerator material of the regenerator is located in the axial direction of the through hole of the heat exchanger, the working gas flow path is ensured, so that a decrease in pressure amplitude due to working gas pressure loss is suppressed. This can improve the refrigeration capacity. On the other hand, it is possible to minimize the reduction in the refrigeration function due to the increase in the compression space. Furthermore, by using the V groove, the fluid resistance at the boundary between the heat exchanger and the regenerator can be reduced, thereby improving the heat exchange characteristics and reducing the fluid resistance loss.

以下、本発明の実施形態について図面に基づいて説明する。なお、本発明においては、熱交換器21以外の構成は従来技術と同様の構成であるため、熱交換器以外の部分の説明は省略する。
図1は本発明に係る熱交換器を同軸パルス管冷凍機に適用した図である。図1(a)は平面図であり、図1(b)は断面図である。図2は、図1(b)のD部の詳細図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in this invention, since structures other than the heat exchanger 21 are the same structures as a prior art, description of parts other than a heat exchanger is abbreviate | omitted.
FIG. 1 is a diagram in which a heat exchanger according to the present invention is applied to a coaxial pulse tube refrigerator. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view. FIG. 2 is a detailed view of a portion D in FIG.

熱交換器21は、銅等のような熱伝導性の高い材質で円筒形状に形成されている。さらに、円筒の軸と中心が一致する同心円上に複数の小さな貫通孔211が設けられている。つまり、貫通孔211の中心が同心円上に位置するように形成されている。当然に、図1(a)に示すように、複数の同心円上に小さな貫通孔211を設けることができる。このように多重に貫通孔211を設けることで、熱交換器の開口率を向上するとともに熱交換する表面積を増大させている。   The heat exchanger 21 is formed in a cylindrical shape with a material having high thermal conductivity such as copper. Further, a plurality of small through holes 211 are provided on a concentric circle whose center coincides with the axis of the cylinder. That is, it is formed so that the center of the through hole 211 is located on a concentric circle. Naturally, as shown to Fig.1 (a), the small through-hole 211 can be provided on several concentric circles. Thus, by providing the multiple through-holes 211, the aperture ratio of the heat exchanger is improved and the surface area for heat exchange is increased.

さらに、熱交換器21の円筒の少なくとも一の端面には、貫通孔211を設けた同心円と一致するようにV溝212を形成している。具体的には、図1および図2に示すようにV形状の凹部先端と貫通孔中心が一致するようにV溝212を多重に形成してもよい。また、溝は貫通孔211の一部でも連通すれば良く、貫通孔の中心と溝中心が必ずしも一致する必要はない。   Furthermore, a V groove 212 is formed on at least one end face of the cylinder of the heat exchanger 21 so as to coincide with a concentric circle provided with a through hole 211. Specifically, as shown in FIGS. 1 and 2, multiple V grooves 212 may be formed so that the tip of the V-shaped recess coincides with the center of the through hole. Further, the groove only needs to communicate with a part of the through hole 211, and the center of the through hole and the center of the groove do not necessarily coincide with each other.

図3は熱交換器の一部の拡大図である。図3(a)は拡大された平面図であり、図3(b)はその断面図である。図3(b)のE−E断面図のように、熱交換器の貫通孔211の上側に蓄冷機の蓄冷材であるステンレス金網31が位置する場合でも、図3(a)の平面図に示すようにV溝212により溝方向に作動ガスが拡散する。よって、図6に示された従来の熱交換器に比べて蓄冷器との境界面における圧力損失を著しく低減することができる。   FIG. 3 is an enlarged view of a part of the heat exchanger. FIG. 3A is an enlarged plan view, and FIG. 3B is a cross-sectional view thereof. Even when the stainless wire mesh 31 that is a regenerator material of the regenerator is located above the through hole 211 of the heat exchanger as shown in the EE cross-sectional view of FIG. 3B, the plan view of FIG. As shown, the working gas diffuses in the groove direction by the V groove 212. Therefore, the pressure loss at the interface with the regenerator can be significantly reduced as compared with the conventional heat exchanger shown in FIG.

さらに、V溝は必要な深さや幅にて加工が可能であるために作動ガスの圧縮空間の拡大を最小限度に抑えることが可能であり、単純に熱交換器と蓄冷器との境界に空間を設けるのに比べて圧縮比低下による冷凍能力低減を抑制できる。
また、V溝とすることで、貫通孔端部の形状係数が改善されることで、熱交換器全体としての圧力損失が小さくなって冷凍機の効率が向上することになる。
Furthermore, since the V-groove can be processed at the required depth and width, it is possible to minimize the expansion of the compression space for the working gas, and the space is simply at the boundary between the heat exchanger and the regenerator. Compared with the provision of refrigeration, it is possible to suppress a reduction in refrigeration capacity due to a decrease in compression ratio.
In addition, by forming the V groove, the shape factor of the end portion of the through hole is improved, so that the pressure loss as the whole heat exchanger is reduced and the efficiency of the refrigerator is improved.

なお、溝はV溝形状に限定されず、半円状や四角形等の各種断面形状を有する溝でもよい。また、貫通孔211を熱交換器21の円中心に放射線状に配置し、かつ、溝も放射線上に形成しても良い。
本実施例においては蓄冷機側のみに溝を設けているが、もちろん空間22側にも溝を設けて良い。
The groove is not limited to the V-groove shape, and may be a groove having various cross-sectional shapes such as a semicircular shape and a square shape. Moreover, the through-hole 211 may be radially arranged in the center of the circle of the heat exchanger 21, and the groove may be formed on the radiation.
In this embodiment, the groove is provided only on the regenerator side, but of course, the groove may also be provided on the space 22 side.

上記は同軸パルス管冷凍機およびその熱交換器に基づいて説明したが、本発明は同軸パルス管冷凍機およびその熱交換器に限定したものではなく、U字リターン型パルスチューブ冷凍機および直列型パルスチューブ冷凍機においても、熱交換器を円柱形状とすることにより当然適用できる。   The above description is based on the coaxial pulse tube refrigerator and its heat exchanger. However, the present invention is not limited to the coaxial pulse tube refrigerator and its heat exchanger, but a U-shaped return type pulse tube refrigerator and a series type. Of course, the present invention can also be applied to a pulse tube refrigerator by making the heat exchanger cylindrical.

本発明に係る熱交換器を同軸型パルス管冷凍機に適用した場合の図である。It is a figure at the time of applying the heat exchanger which concerns on this invention to a coaxial type pulse tube refrigerator. 図1に示すD部の拡大図である。It is an enlarged view of the D section shown in FIG. 本発明に係る熱交換器と蓄冷器の蓄冷材である金網との位置関係を示した図である。It is the figure which showed the positional relationship of the heat exchanger which concerns on this invention, and the wire mesh which is a cool storage material of a cool storage. 同軸型パルス管冷凍機の構成図である。It is a block diagram of a coaxial pulse tube refrigerator. 従来の熱交換器の図である。It is a figure of the conventional heat exchanger. 従来の熱交換器と蓄冷器の蓄冷材である金網との位置関係を示した図である。It is the figure which showed the positional relationship of the conventional heat exchanger and the wire mesh which is a cool storage material of a cool storage.

符号の説明Explanation of symbols

1 圧縮器
2 放熱器
21 熱交換器
211 貫通孔
212 V溝
3 蓄冷機
31 金網
4 コールドヘッド
5 パルス管
6 位相制御部
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 21 Heat exchanger 211 Through-hole 212 V groove 3 Regenerator 31 Wire net 4 Cold head 5 Pulse tube 6 Phase control part

Claims (5)

円柱形状または円筒形状で構成され、
円柱または円筒の軸方向に作動ガスを通流させる複数の貫通孔を設け、
少なくとも円柱または円筒の一の端面に複数の貫通孔を連通する溝を設けたこと、
を特徴とする熱交換器。
Consists of a cylindrical or cylindrical shape,
Providing a plurality of through holes that allow the working gas to flow in the axial direction of the cylinder or cylinder,
Providing a groove for communicating with a plurality of through holes on at least one end face of a column or cylinder;
A heat exchanger characterized by
請求項1に係る熱交換器において、複数の貫通孔を複数の同心円上に設けることを特徴とする熱交換器。   The heat exchanger according to claim 1, wherein a plurality of through holes are provided on a plurality of concentric circles. 請求項1または請求項2に記載の熱交換器において、溝を円状に設けることを特徴とする熱交換器。   The heat exchanger according to claim 1 or 2, wherein the groove is provided in a circular shape. 請求項1乃至3に記載の熱交換器において、溝がV溝であることを特徴とする熱交換器。   4. The heat exchanger according to claim 1, wherein the groove is a V groove. 圧縮機、蓄冷器、低温端、パルス管、高温端および位相制御部により流路を形成し、流路を流れる作動ガスの熱交換により低温端に寒冷を発生するパルス管冷凍機において、
請求項1乃至請求項4の何れか一項に記載の熱交換器を、溝を有する端面が蓄冷器の高温端側となるように配置することを特徴とするパルス管冷凍機。
In a pulse tube refrigerator that forms a flow path by a compressor, a regenerator, a low temperature end, a pulse tube, a high temperature end and a phase control unit, and generates cold at the low temperature end by heat exchange of the working gas flowing through the flow path,
A pulse tube refrigerator, wherein the heat exchanger according to any one of claims 1 to 4 is disposed such that an end surface having a groove is on a high temperature end side of the regenerator.
JP2008186126A 2008-07-17 2008-07-17 Heat exchanger and pulse tube refrigerating machine Withdrawn JP2010025411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008186126A JP2010025411A (en) 2008-07-17 2008-07-17 Heat exchanger and pulse tube refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008186126A JP2010025411A (en) 2008-07-17 2008-07-17 Heat exchanger and pulse tube refrigerating machine

Publications (1)

Publication Number Publication Date
JP2010025411A true JP2010025411A (en) 2010-02-04

Family

ID=41731424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008186126A Withdrawn JP2010025411A (en) 2008-07-17 2008-07-17 Heat exchanger and pulse tube refrigerating machine

Country Status (1)

Country Link
JP (1) JP2010025411A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713468A (en) * 2010-02-24 2012-10-03 Lg电子株式会社 Cryogenic refrigerator
CN105115182A (en) * 2015-09-25 2015-12-02 中国科学院上海技术物理研究所 Monopole coaxial pulse tube refrigeration device of annular pulse tube structure and design method thereof
CN109210826A (en) * 2018-08-27 2019-01-15 江苏热声机电科技有限公司 Cryocooler cold head

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257428A (en) * 2001-03-02 2002-09-11 Sumitomo Heavy Ind Ltd Heat exchanger for pulse pipe refrigerating machine
JP2006013256A (en) * 2004-06-28 2006-01-12 Kyocera Corp Electrostatic chuck

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257428A (en) * 2001-03-02 2002-09-11 Sumitomo Heavy Ind Ltd Heat exchanger for pulse pipe refrigerating machine
JP2006013256A (en) * 2004-06-28 2006-01-12 Kyocera Corp Electrostatic chuck

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713468A (en) * 2010-02-24 2012-10-03 Lg电子株式会社 Cryogenic refrigerator
CN102713468B (en) * 2010-02-24 2015-07-01 Lg电子株式会社 Cryogenic refrigerator
CN105115182A (en) * 2015-09-25 2015-12-02 中国科学院上海技术物理研究所 Monopole coaxial pulse tube refrigeration device of annular pulse tube structure and design method thereof
CN109210826A (en) * 2018-08-27 2019-01-15 江苏热声机电科技有限公司 Cryocooler cold head

Similar Documents

Publication Publication Date Title
JP5917153B2 (en) Cryogenic refrigerator, displacer
JP2007032949A (en) Heat exchanger
US10274230B2 (en) Annular portions protruding from a displacer and expansion space of a cryocooler
US9976780B2 (en) Stirling-type pulse tube refrigerator
JP2010025411A (en) Heat exchanger and pulse tube refrigerating machine
US20210095931A1 (en) Vapor chamber for cooling an electronic component
JP2005265261A (en) Pulse pipe refrigerator
CN220187129U (en) Hot end heat exchanger and Stirling refrigerator
JP2008202881A (en) Cooling block body and cooling device
JP2005214614A (en) Cryogenic refrigerator
JP2015021671A (en) Accumulator and accumulator manufacturing method
JP2006275316A (en) Heat exchanger and stirling engine
JP2021152434A (en) Regenerator material, regenerator, and cool storage type refrigerator, and heat accumulator material, heat accumulator
JP7111526B2 (en) pulse tube refrigerator
JP5786658B2 (en) Thermoacoustic engine
JP2007003130A (en) Stirling cycle engine
JP2006090648A (en) Cold accumulator and cold accumulating type refrigerator
JP2006078003A (en) Pulse tube refrigerating machine
JP2005127633A (en) Pulse pipe refrigerating machine
US10976080B2 (en) Pulse tube cryocooler and method of manufacturing pulse tube cryocooler
JP2013117324A (en) Thermoacoustic refrigeration device
JP2006017421A (en) Heat exchanger for refrigerator
JP2983215B1 (en) Pulse tube refrigerator heat exchanger
JP2008286507A (en) Pulse tube refrigerator
WO2019009019A1 (en) Cryogenic refrigerator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120919