JP2002257428A - Heat exchanger for pulse pipe refrigerating machine - Google Patents

Heat exchanger for pulse pipe refrigerating machine

Info

Publication number
JP2002257428A
JP2002257428A JP2001058106A JP2001058106A JP2002257428A JP 2002257428 A JP2002257428 A JP 2002257428A JP 2001058106 A JP2001058106 A JP 2001058106A JP 2001058106 A JP2001058106 A JP 2001058106A JP 2002257428 A JP2002257428 A JP 2002257428A
Authority
JP
Japan
Prior art keywords
heat exchanger
block material
pulse tube
working gas
tube refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001058106A
Other languages
Japanese (ja)
Inventor
Hotatsu Gan
鵬達 顔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2001058106A priority Critical patent/JP2002257428A/en
Publication of JP2002257428A publication Critical patent/JP2002257428A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1412Pulse-tube cycles characterised by heat exchanger details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger member of a heat exchanger for pulse pipe refrigerating machine that is free from dispersion in quality, can be manufactured easily, makes the performance control of a pulse pipe refrigerating machine easier, and, in its turn, contributes to the performance improvement of the refrigerating machine by solving the point at issue of the conventional heat exchanger member. SOLUTION: As the heat exchanger member of the heat exchanger 5b provided at the end section of the pulse pipe 6 of the pulse pipe refrigerating machine, a flow passage 102 for a working medium is formed in a blocking material 101 having a high coefficient of thermal conductivity. The heat exchanger member is thermally integrated with the main body 5b1 of the heat exchanger 5b by constituting the member in an integrated structure with the main body 5b1 or brazing the member to the main body 5b1 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はパルス管冷凍機詳し
くはパルス管冷凍機におけるパルス管の高温端部又は低
温端部或いは双方に設けた熱交換器の熱交換部材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse tube refrigerator, and more particularly to a heat exchanger member of a heat exchanger provided at a high temperature end or a low temperature end of a pulse tube in a pulse tube refrigerator.

【0002】[0002]

【従来の技術】核磁気共鳴診断装置(NMR)や電子顕
微鏡等に使用される小型の極低温冷凍機としてパルス管
冷凍機は公知である。図11に公知のダブルインレット
型パルス管冷凍機を示す。
2. Description of the Related Art A pulse tube refrigerator is known as a small cryogenic refrigerator used in a nuclear magnetic resonance diagnostic apparatus (NMR), an electron microscope and the like. FIG. 11 shows a known double-inlet type pulse tube refrigerator.

【0003】ダブルインレット型パルス管冷凍機は、ヘ
リウム圧縮機1と、蓄冷器2の高温部2aとを作動ガス
が所定の周期で切換え連通される高圧弁3a及び、低圧
弁3bと、蓄冷器2の低温部2bと連通路4及び、熱交
換器5bを介してその低温部が連通しているパルス管6
と、該パルス管6の高温部とバッファタンク8とを熱交
換器5a及びオリフィス7を介して連通させ、前記高圧
弁3a及び低圧弁3bと蓄冷器2の高温部2aへの作動
ガス通路と、前記熱交換器5aとオリフィス7の連通路
とを、オリフィス7’を有するバイパス通路9で連通し
て構成されている。
The double-inlet type pulse tube refrigerator includes a high pressure valve 3a and a low pressure valve 3b through which a working gas is switched between a helium compressor 1 and a high temperature portion 2a of a regenerator 2 at a predetermined cycle, and a regenerator. And a pulse tube 6 communicating with the low-temperature part 2b through the communication passage 4 and the heat exchanger 5b.
And a high-temperature portion of the pulse tube 6 and a buffer tank 8 communicate with each other through a heat exchanger 5a and an orifice 7. The high-pressure valve 3a and the low-pressure valve 3b communicate with the working gas passage to the high-temperature portion 2a of the regenerator 2. The heat exchanger 5a and the communication passage of the orifice 7 are connected by a bypass passage 9 having an orifice 7 '.

【0004】なお、蓄冷器2内には銅、ステンレス鋼製
金網等の蓄冷材が充填されており、熱交換器5a、5b
の内部にはアルミニウム等のパンチングプレート或いは
銅メッシュ10が熱交換部材として積層充填されてい
る。11は整流器である。
[0004] The regenerator 2 is filled with a regenerator material such as a copper or stainless steel wire mesh, and is provided with heat exchangers 5a and 5b.
Is filled with a punching plate or a copper mesh 10 of aluminum or the like as a heat exchange member. 11 is a rectifier.

【0005】上記のパルス管冷凍機は、圧縮機1で圧縮
された高圧のヘリウムガスは高圧弁3aが開、低圧弁3
bが閉の運転モードになると蓄冷器2に流入し、蓄冷材
で冷却されて温度を下げながら蓄冷器2の低温部2bか
ら連通路4を通って熱交換器5bへ流入しで更に冷却さ
れてパルス管6の低温部へ流入する。
In the pulse tube refrigerator described above, the high-pressure helium gas compressed by the compressor 1 is opened by the high-pressure valve 3a,
When b is in the closed operation mode, it flows into the regenerator 2, is cooled by the regenerator material, flows from the low temperature part 2 b of the regenerator 2 through the communication path 4 to the heat exchanger 5 b while being cooled, and is further cooled. And flows into the low temperature portion of the pulse tube 6.

【0006】パルス管6内に既に存在していた低圧ガス
は新に流入された作動ガスにより圧縮されるためにパル
ス管6内の圧力がバッファタンク8内の圧力よりも高く
なり作動ガスはオリフィス7を通ってバッファタンク8
へ流入する。
The low-pressure gas already existing in the pulse tube 6 is compressed by the newly introduced working gas, so that the pressure in the pulse tube 6 becomes higher than the pressure in the buffer tank 8 and the working gas becomes an orifice. 7 through buffer tank 8
Flows into

【0007】次に、高圧弁が閉となり低圧弁が開に切り
替わると、パルス管6内の作動ガスは蓄冷器2の低温部
2bから蓄冷器2内を通過して高温部2aから低圧弁3
bを経由して圧縮機1へと回収される。
Next, when the high-pressure valve is closed and the low-pressure valve is switched to open, the working gas in the pulse tube 6 passes from the low-temperature section 2b of the regenerator 2 to the inside of the regenerator 2, and from the high-temperature section 2a to the low-pressure valve 3
b, and is recovered to the compressor 1.

【0008】パルス管6とバッファタンク8とはオリフ
ィス7を介して連通されているため、圧力変動の位相と
作動ガスの体積変化の位相とが一定の位相差をもって変
化する。この位相差によってパルス管6の低温端におい
て作動ガスの膨張に伴う寒冷が発生し、上記課程が反復
されることにより冷凍機として作用している。ダブルオ
リフィス型パルス冷凍機では前記バイパス通路9に設け
たオリフィス7’を調節することにより前記位相差を自
由に調節している。
Since the pulse tube 6 and the buffer tank 8 communicate with each other through the orifice 7, the phase of the pressure change and the phase of the volume change of the working gas change with a certain phase difference. Due to this phase difference, cold occurs due to the expansion of the working gas at the low-temperature end of the pulse tube 6, and the above process is repeated to function as a refrigerator. In the double orifice type pulse refrigerator, the phase difference is freely adjusted by adjusting the orifice 7 'provided in the bypass passage 9.

【0009】公知のパルス管冷凍機の熱交換器5a、5
bは図11に示すように熱交換部材として、アルミニウ
ムや銅製のパンチングプレート或いは金網(メッシュ)
を熱交換器本体5b1内に1枚ずつ積層充填ているため
次の短所がある。
[0009] Heat exchangers 5a, 5
b is a heat-exchange member, as shown in FIG. 11, made of aluminum or copper punching plate or wire mesh (mesh).
Are stacked and filled one by one in the heat exchanger main body 5b1.

【0010】(1) パンチングプレートやメッシュのよう
な熱交換部材は空隙部の容積が多く熱伝導面積が小さい
ので熱伝導性能が悪く、該熱交換部材と熱交換器本体と
が二つの部材が接触した構造であるため、作動ガスと熱
交換器本体5b(5a)間の熱交換性能が悪い。
(1) A heat exchange member such as a punching plate or a mesh has a large capacity of a void portion and a small heat conduction area, so that the heat conduction performance is poor, and the heat exchange member and the heat exchanger body are composed of two members. Because of the contact structure, the heat exchange performance between the working gas and the heat exchanger body 5b (5a) is poor.

【0011】(2) 熱交換部材としてパンチングプレート
やメッシュを人手により1枚ずつ熱交換器本体内へ挿入
するため製造に労力と時間がかかり、更に、1枚1枚挿
入するときの押圧力の強さかげんのバラツキと、挿入角
度のズレによるガス流路の変位により熱交換性能と作動
ガスの流動抵抗のバラツキにより冷凍機の性能のコント
ロールが困難である。
(2) Since a punching plate or a mesh as a heat exchange member is manually inserted one by one into the heat exchanger body, it takes a lot of labor and time to manufacture, and furthermore, the pressing force when inserting one sheet at a time is reduced. It is difficult to control the performance of the refrigerator due to the variation in heat exchange performance and the flow resistance of the working gas due to the variation of the strength and the displacement of the gas passage due to the deviation of the insertion angle.

【0012】[0012]

【発明が解決しようとする課題】本発明は、従来の熱交
換部材の問題点を改良し、品質にバラツキがなく、製造
が容易で、パルス管冷凍機の性能のコントロールを容易
にし、ひいてはパルス管冷凍機の性能の向上に寄与する
熱交換器の熱交換部材を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION The present invention solves the problems of the conventional heat exchange member, has no variation in quality, is easy to manufacture, makes it easy to control the performance of the pulse tube refrigerator, and consequently makes the pulse tube refrigerator easier to control. An object of the present invention is to provide a heat exchange member of a heat exchanger that contributes to improvement of performance of a tube refrigerator.

【0013】[0013]

【課題を解決するための手段】本発明は、パルス管冷凍
機におけるパルス管の端部に設けた熱交換器の熱交換部
材を熱伝導率の高いブロック材に作動ガスの流通路を形
成したことである。
According to the present invention, a heat exchange member of a heat exchanger provided at an end of a pulse tube in a pulse tube refrigerator has a flow path of a working gas formed in a block material having a high thermal conductivity. That is.

【0014】前記熱交換部材は、熱交換器本体と一体構
造又はろう付けにより熱交換器本体に溶着されて、熱的
に一体構造に形成されていることである。
The heat exchange member may be integrally formed with the heat exchanger body or may be welded to the heat exchanger body by brazing to form a thermally integrated structure.

【0015】前記ブロック材に形成した作動ガスの流通
路は、円柱状ブロック材の外周壁から中心方向に、或い
は中心部から外周壁方向に放射状にスリットを刻設形成
したことである。
The flow path of the working gas formed in the block material has slits formed radially from the outer peripheral wall of the cylindrical block material toward the center or from the center toward the outer peripheral wall.

【0016】前記ブロック材に形成した作動ガスの流通
路は、円柱状ブロック材の軸線方向に断面が円形、楕円
形、多角形等の多数の貫通孔を規則的に配列穿設形成し
たことである。
The flow path of the working gas formed in the block member is formed by regularly arranging and forming a large number of through holes having a circular, elliptical, polygonal, etc. cross section in the axial direction of the columnar block member. is there.

【0017】前記ブロック材に形成した作動ガスの流通
路は、円柱状ブロック材の軸線方向に断面が円弧状の貫
通孔を同心円状に配列穿設形成したことである。
The flow path of the working gas formed in the block member is formed by arranging and forming concentrically arranged through-holes having a circular cross section in the axial direction of the columnar block member.

【0018】前記ブロック材に形成した作動ガスの流通
路は、円柱状ブロック材の軸線方向に断面が1対の櫛状
のスリットを刻設形成したことである。
The flow path of the working gas formed in the block is formed by engraving a pair of comb-shaped slits in the axial direction of the columnar block.

【0019】前記ブロック材に形成した作動ガスの流通
路は、円柱状ブロック材の外周壁から中心方向に放射状
に、かつ、螺旋状に捻転したスリットを刻設形成したこ
とである。
The flow path of the working gas formed in the block material is formed by engraving a slit which is radially and helically twisted from the outer peripheral wall of the columnar block material toward the center.

【0020】前記ブロック材に形成した作動ガスの流通
路は、円柱状ブロック材の1端面から他端面の近傍まで
平行な多数のスリットを刻設し、前記他端面の近傍に外
周から前記各スリットに連通する円弧状スリットを刻設
形成したことである。である。
The flow path of the working gas formed in the block material has a number of parallel slits cut from one end face to the vicinity of the other end face of the cylindrical block material, and the slits are formed from the outer periphery near the other end face. Is formed by engraving an arcuate slit communicating with the. It is.

【0021】[0021]

【発明の実施の形態】本発明にかかる熱交換材の実施形
態について図1ないし図10を参照して説明する。な
お、図中同一部品には同一符号を付し説明の重複を省略
する。図1、は本発明の第1の実施形態の熱交換部材を
熱交換器本体に取付けた状態の説明図で(a)図は取付
け部の縦断面図、(b)図は(a)図におけるA−A線
断面図である。この例はパルス管6の低温部に取付けら
れた熱交換器5bを示すものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a heat exchange material according to the present invention will be described with reference to FIGS. In the drawings, the same components are denoted by the same reference numerals, and the description will not be repeated. 1A and 1B are explanatory views showing a state in which a heat exchange member according to a first embodiment of the present invention is mounted on a heat exchanger main body. FIG. 1A is a longitudinal sectional view of a mounting portion, and FIG. 3 is a sectional view taken along line AA in FIG. This example shows a heat exchanger 5b attached to a low-temperature portion of the pulse tube 6.

【0022】円柱体からなる熱交換部材10は熱交換器
本体5b1に銀ろう付けされており、該本体5b1の外周
壁から中心部まで達する通孔5b2が穿設されており、
作動ガスは熱交換部材10の1端面の中心部から外周面
に向かって拡散し、該1端面の全面から熱交換部材の軸
線方向に流入し熱交換部材と熱交換して該熱交換部材の
他端面からパルス管6内へ流入する形式のものである。
熱交換部材10と熱交換器本体5b1とを鋳造等により
一体構造にすれば熱交換性能をさらに向上できる。
The heat exchange member 10 made of a cylindrical body is silver brazed to the heat exchanger body 5b 1, through holes 5b 2 extending from the outer peripheral wall of the body 5b 1 to the center portion is bored,
The working gas diffuses from the center of one end face of the heat exchange member 10 toward the outer peripheral surface, flows in the axial direction of the heat exchange member from the entire surface of the one end face, exchanges heat with the heat exchange member, and exchanges heat with the heat exchange member. It is of a type that flows into the pulse tube 6 from the other end surface.
The heat exchange performance can be further improved by the heat exchange member 10 and the heat exchanger body 5b 1 an integral structure by casting or the like.

【0023】図2は本発明の熱交換部材の第1の実施形
態の詳細説明図であって、銅等の熱伝導率の高い材料の
円柱状ブロック材101に該円柱状ブロック材の外周壁
から中心方向に放射状に複数のスリット102、102
・・を刻設した構造である。
[0023] Figure 2 is a detailed explanatory view of a first embodiment of a heat exchange member of the present invention, the outer periphery of the circular columnar block material in a cylindrical shape block member 10 1 of high thermal conductivity such as copper material A plurality of slits 10 2 , 10 2.
・ ・ It is a structure engraved.

【0024】図3は本発明の熱交換部材の第2の実施形
態の詳細説明図であって、銅等の熱伝導率の高い材料の
円柱状ブロック材101に該円柱状ブロック材の中心部
に設けた貫通孔から外周壁に向かって放射状に複数のス
リット102、102・・・を刻設した構造である。
[0024] Figure 3 is centered a detailed illustration of a second embodiment of a heat exchange member, the cylindrical block member 10 1 of high thermal conductivity such as copper material of the circular columnar block material of the present invention a structure in which engraved the plurality of slits 10 2, 10 2, ... radially toward the outer peripheral wall of the through hole provided in section.

【0025】図4、図5は本発明の熱交換部材の第3の
実施形態の説明図であって、銅等の熱伝導率の高い材料
の円柱状ブロック材101に該円柱状ブロック材の軸線
方向に図4では断面が円形(楕円形も含む)の、図5で
は角型(多角形)の多数の貫通孔103、103、・・、
104、104、・・を規則的に配列穿設した構造であ
る。
FIG. 4, FIG. 5 is an explanatory view of a third embodiment of a heat exchange member of the present invention, the circular columnar block material in a cylindrical shape block member 10 1 of high thermal conductivity such as copper material In FIG. 4, a large number of through-holes 10 3 , 10 3 ,... Having a circular cross section (including an elliptical shape) in FIG.
It is a structure in which 10 4 , 10 4 ,.

【0026】図6は本発明の熱交換部材の第4の実施形
態の説明図であって、銅等の熱伝導率の高い材料の円柱
状ブロック材101の軸線方向に断面が円弧状の貫通孔
105、105、・・同心円状に配列穿設した構造であ
る。
FIG. 6 is an explanatory view of a fourth embodiment of a heat exchange member of the present invention, such as copper having a high thermal conductivity material of the cylindrical block member 10 1 in the axial section is arcuate The through holes 10 5 , 10 5 ,... Are formed in a concentric arrangement.

【0027】図7は本発明の第5の実施形態の説明図で
あって、銅等の熱伝導率の高い材料の円柱状ブロック材
101の軸線方向に断面が1対の櫛状のスリット106
10 6、・・を刻設した構造である。
FIG. 7 is an explanatory view of a fifth embodiment of the present invention.
A cylindrical block of high thermal conductivity material such as copper
101A pair of comb-shaped slits 10 having a cross section in the axial direction of6,
10 6It is a structure engraved with.

【0028】図8は本発明の第6の実施形態の説明図で
あって、(a)図は正面図、(b)図は(a)図におけ
るC−C線断面図である。該実施形態は、銅等の熱伝導
率の高い材料の円柱状ブロック材101の外周壁から中
心方向に放射状に、かつ、螺旋状に捻転したスリット1
7、107・・を刻設した構造である。この実施形態は
熱交換部材の熱伝導面積を大きくできる。
FIGS. 8A and 8B are explanatory views of a sixth embodiment of the present invention. FIG. 8A is a front view, and FIG. 8B is a cross-sectional view taken along line CC in FIG. The embodiment, slits 1 radially toward the center from the cylindrical block member 10 first outer peripheral wall of the high thermal conductivity such as copper materials, and which is twisted spirally
It is a structure engraved with 0 7 , 10 7 . This embodiment can increase the heat conduction area of the heat exchange member.

【0029】図9は本発明の第7の実施形態の説明図で
あって、(a)図は本発明にかかる熱交換部材の正面
図、(b)図は平面図、(c)図は(a)図におけるD
−D断面図、(d)図は右側面図である。銅等の熱伝導
率の高い材料の円柱状ブロック材101の1端面から他
端面の近傍まで平行な多数のスリット108、108、・
・を刻設し、前記他端面の近傍に外周から前記各スリッ
ト108、・・に連通する円弧状スリット109を刻設し
た構造である。
FIGS. 9A and 9B are explanatory views of a seventh embodiment of the present invention. FIG. 9A is a front view of a heat exchange member according to the present invention, FIG. 9B is a plan view, and FIG. (A) D in the figure
FIG. 3D is a cross-sectional view, and FIG. Number of slits 10 8 parallel to the vicinity of the other end surface from the one end face of the cylindrical block member 10 1 of a material having high thermal conductivity such as copper, 10 8, -
Are engraved, and arc-shaped slits 10 9 communicating with the slits 10 8 ,.

【0030】上記第7の実施形態の熱交換部材は、図1
0に示すように熱交換部材10の端面部側方から円弧状
スリット109内へ作動ガスを流入させ、円弧状スリッ
ト109と連通しているスリット108、・・内を通って
パルス管6内へ流入させる形式の構造である。
The heat exchange member of the seventh embodiment is shown in FIG.
As shown in FIG. 0, the working gas flows into the arc-shaped slit 10 9 from the side of the end face of the heat exchange member 10, and the pulse tube passes through the slit 10 8 communicating with the arc-shaped slit 10 9. 6 is a structure of a type that flows into the inside.

【0031】図1〜図10に示す本発明の何れの実施形
態においても、熱交換部材10を銅等の高熱伝導率のブ
ロックに作動ガスの流通路を加工しているため、作動ガ
スが熱交換器(5a、5b)の本体(5a1、5b1)へ
の熱伝導により熱交換を行なう熱伝導面積が従来のメッ
シュやパンチングプレートを積層したものに比べて大き
いので熱伝導性能を向上できる。
In any of the embodiments of the present invention shown in FIGS. 1 to 10, since the heat exchange member 10 is formed into a block having a high thermal conductivity such as copper and the like, the working gas flow path is formed. exchanger (5a, 5b) because the heat conduction area for heat exchange by the heat conduction to the main body (5a 1, 5b 1) is larger than those formed by laminating a conventional mesh or punching plate can be improved heat transfer performance .

【0032】[0032]

【発明の効果】本発明は熱交換部材を銅等の高熱伝導率
のブロック材に作動ガスの流通路を加工しているため、
作動ガスが熱交換器(5a、5b)の本体(5a1、5
1)への熱伝導により熱交換を行なう熱伝導面積が従
来のメッシュやパンチングプレートを積層したものに比
べて大きいので熱交換器の熱伝導性能を向上できる。
According to the present invention, since the heat exchange member is formed into a block material having a high thermal conductivity such as copper, the flow path of the working gas is processed.
The body of the working gas heat exchanger (5a, 5b) (5a 1 , 5
Since the heat conduction area for performing heat exchange by heat conduction to b 1 ) is larger than that of a conventional structure in which meshes and punching plates are stacked, the heat conduction performance of the heat exchanger can be improved.

【0033】熱交換部材と熱交換器本体とを一体構造又
はろう付けにより溶着することにより作動ガスと熱交換
器本体間の熱交換性能を向上させることができ冷凍性能
を向上できる。さらに、熱交換部材を機械加工により製
作できるので製作が容易であるとともに、品質にバラツ
キがないのでパルス管冷凍機の性能のコントロールを容
易にし、ひいてはパルス管冷凍機の性能の向上に寄与で
きる。
By welding the heat exchange member and the heat exchanger body integrally or by brazing, the heat exchange performance between the working gas and the heat exchanger body can be improved, and the refrigeration performance can be improved. Further, since the heat exchange member can be manufactured by machining, it is easy to manufacture, and since there is no variation in quality, the performance of the pulse tube refrigerator can be easily controlled, and the performance of the pulse tube refrigerator can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる第1の実施形態の熱交換部材を
熱交換器本体内へ取付けた状態の説明図で、(a)図は
取付け部の縦断面図。(b)図は(a)図におけるA−
A線断面図。
FIG. 1 is an explanatory view of a state in which a heat exchange member according to a first embodiment of the present invention is mounted in a heat exchanger main body, and FIG. 1A is a longitudinal sectional view of a mounting portion. (B) is a view of A- in FIG.
FIG.

【図2】本発明にかかる第1の実施形態の熱交換部材の
詳細説明図で(a)図は正面図。(b)図は(a)図に
おけるB−B線断面図。
FIG. 2 is a detailed explanatory view of the heat exchange member according to the first embodiment of the present invention, and FIG. FIG. 2B is a sectional view taken along line BB in FIG.

【図3】本発明にかかる第2の実施形態の熱交換部材の
平面図
FIG. 3 is a plan view of a heat exchange member according to a second embodiment of the present invention.

【図4】本発明にかかる第3の実施形態の熱交換部材の
平面図。
FIG. 4 is a plan view of a heat exchange member according to a third embodiment of the present invention.

【図5】本発明にかかる第3の実施形態の熱交換部材の
平面図。
FIG. 5 is a plan view of a heat exchange member according to a third embodiment of the present invention.

【図6】本発明にかかる第4の実施形態の熱交換部材の
平面図。
FIG. 6 is a plan view of a heat exchange member according to a fourth embodiment of the present invention.

【図7】本発明にかかる第5の実施形態の熱交換部材の
平面図。
FIG. 7 is a plan view of a heat exchange member according to a fifth embodiment of the present invention.

【図8】本発明にかかる第6の実施形態の熱交換部材の
説明図で(a)図は正面図。(b)図は(a)図におけ
るC−C線断面図。
FIG. 8 is an explanatory view of a heat exchange member according to a sixth embodiment of the present invention, and FIG. FIG. 2B is a cross-sectional view taken along line CC in FIG.

【図9】本発明にかかる第7の実施形態の熱交換部材の
説明図で(a)図は正面図。(b)図は平面図。(c)
図は(a)図におけるD−D線断面図。(d)図は右側
面図。
FIG. 9 is an explanatory view of a heat exchange member according to a seventh embodiment of the present invention, and FIG. 9 (a) is a front view. (B) The figure is a plan view. (C)
The figure is a sectional view taken along line DD in the figure (a). (D) The figure is a right side view.

【図10】同第7の実施形態の熱交換部材を熱交換器本
体に取付けた状態の説明図。
FIG. 10 is an explanatory view showing a state in which the heat exchange member according to the seventh embodiment is attached to a heat exchanger main body.

【図11】公知のダブルインレット型パルス管冷凍機の
説明図。
FIG. 11 is an explanatory view of a known double inlet type pulse tube refrigerator.

【図12】公知のパルス管冷凍機における熱交換器の説
明図。
FIG. 12 is an explanatory diagram of a heat exchanger in a known pulse tube refrigerator.

【符号の説明】[Explanation of symbols]

1 圧縮機 7、7’ オリ
フィス 2 蓄冷器 8 バッ
ファタンク 2a 蓄冷器高温部 9 バイ
パス通路 2b 蓄冷器低温部 10 熱交
換部材 3a 高圧弁 101 円柱
状ブロック材 3b 低圧弁 102 スリ
ット 4 連通路 103、104 貫通
孔 5a、5b 熱交換器 105~9 スリ
ット 5a1、5b2 熱交換器本体 11 整
流器 6 パルス管
DESCRIPTION OF SYMBOLS 1 Compressor 7, 7 'Orifice 2 Regenerator 8 Buffer tank 2a Regenerator high temperature part 9 Bypass passage 2b Regenerator low temperature part 10 Heat exchange member 3a High pressure valve 10 1 Columnar block material 3b Low pressure valve 10 2 Slit 4 Communication path 10 3, 10 4 through holes 5a, 5b heat exchanger 10 5-9 slits 5a 1, 5b 2 heat exchanger body 11 the rectifier 6 pulse tube

Claims (8)

【特許請求の範囲】[The claims] 【請求項1】パルス管冷凍機におけるパルス管の端部に
設けた熱交換器の熱交換部材を熱伝導率の高いブロック
材に作動ガスの流通路を形成していることを特徴とする
パルス管冷凍機の熱交換器。
1. A pulse wherein a heat exchange member of a heat exchanger provided at an end of a pulse tube in a pulse tube refrigerator has a flow path of a working gas formed in a block material having a high thermal conductivity. Tube refrigerator heat exchanger.
【請求項2】ブロック材に作動ガスの流通路を形成して
なる熱交換部材は、熱交換器本体と一体構造又はろう付
けにより熱交換器本体に溶着されていることを特徴とす
る請求項1記載のパルス管冷凍機の熱交換器。
2. A heat exchange member comprising a block material and a working gas flow passage formed therein, wherein the heat exchange member is welded to the heat exchanger body by integral construction or brazing with the heat exchanger body. 2. A heat exchanger for the pulse tube refrigerator according to 1.
【請求項3】ブロック材に形成した作動ガスの流通路
は、円柱状ブロック材の外周壁から中心方向に、或いは
中心部から外周壁方向に放射状にスリットを刻設形成し
ていることを特徴とする請求項1又は請求項2記載のパ
ルス管冷凍機の熱交換器。
3. A flow path of the working gas formed in the block material has slits formed radially from the outer peripheral wall of the cylindrical block material toward the center or from the center toward the outer peripheral wall. The heat exchanger for a pulse tube refrigerator according to claim 1 or 2, wherein
【請求項4】ブロック材に形成した作動ガスの流通路
は、円柱状ブロック材の軸線方向に断面が円形、楕円
形、多角形等の多数の貫通孔を規則的に配列穿設形成し
ていることを特徴とする請求項1又は請求項2記載のパ
ルス管冷凍機の熱交換器。
4. A flow passage for a working gas formed in a block material is formed by regularly arranging and forming a large number of through holes having a circular, elliptical, polygonal, etc. cross section in the axial direction of the cylindrical block material. The heat exchanger for a pulse tube refrigerator according to claim 1 or 2, wherein
【請求項5】ブロック材に形成した作動ガスの流通路
は、円柱状ブロック材の軸線方向に断面が円弧状の貫通
孔を同心円状に配列穿設形成していることを特徴とする
請求項1又は請求項2記載のパルス管冷凍機の熱交換
器。
5. A flow passage for a working gas formed in a block material, wherein through holes having a circular cross section in the axial direction of the cylindrical block material are formed in a concentric array. A heat exchanger for a pulse tube refrigerator according to claim 1.
【請求項6】ブロック材に形成した作動ガスの流通路
は、円柱状ブロック材の軸線方向に断面が1対の櫛状の
スリットを刻設形成していることを特徴とする請求項1
又は請求項2記載のパルス管冷凍機の熱交換器。
6. A flow passage for a working gas formed in a block material, wherein a pair of comb-shaped slits having a cross section are formed in the axial direction of the cylindrical block material.
Or a heat exchanger for a pulse tube refrigerator according to claim 2.
【請求項7】ブロック材に形成した作動ガスの流通路
は、円柱状ブロック材の外周壁から中心方向に放射状
に、かつ、螺旋状に捻転したスリットを刻設形成してい
ることを特徴とする請求項1又は請求項2記載のパルス
管冷凍機の熱交換器。
7. A flow path of a working gas formed in a block material is formed by engraving a slit which is radially and helically twisted from an outer peripheral wall of a cylindrical block material toward a center. A heat exchanger for a pulse tube refrigerator according to claim 1 or claim 2.
【請求項8】ブロック材に形成した作動ガスの流通路
は、円柱状ブロック材の1端面から他端面の近傍まで平
行な多数のスリットを刻設し、前記他端面の近傍に外周
から前記各スリットに連通する円弧状スリットを刻設形
成していることを特徴とする請求項1又は請求項2記載
のパルス管冷凍機の熱交換器。
8. A flow path of the working gas formed in the block material has a number of parallel slits cut from one end face to the vicinity of the other end face of the columnar block material, and each of the slits is formed from an outer periphery near the other end face. 3. The heat exchanger for a pulse tube refrigerator according to claim 1, wherein an arc-shaped slit communicating with the slit is formed.
JP2001058106A 2001-03-02 2001-03-02 Heat exchanger for pulse pipe refrigerating machine Pending JP2002257428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058106A JP2002257428A (en) 2001-03-02 2001-03-02 Heat exchanger for pulse pipe refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058106A JP2002257428A (en) 2001-03-02 2001-03-02 Heat exchanger for pulse pipe refrigerating machine

Publications (1)

Publication Number Publication Date
JP2002257428A true JP2002257428A (en) 2002-09-11

Family

ID=18917885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058106A Pending JP2002257428A (en) 2001-03-02 2001-03-02 Heat exchanger for pulse pipe refrigerating machine

Country Status (1)

Country Link
JP (1) JP2002257428A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286507A (en) * 2007-05-21 2008-11-27 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2010025411A (en) * 2008-07-17 2010-02-04 Fuji Electric Systems Co Ltd Heat exchanger and pulse tube refrigerating machine
JP2011149600A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2012167867A (en) * 2011-02-15 2012-09-06 Sumitomo Heavy Ind Ltd Regenerative refrigerator
CN103574961A (en) * 2012-07-20 2014-02-12 住友重机械工业株式会社 Regenerative refrigerator
KR101517786B1 (en) * 2013-04-12 2015-05-06 한국기계연구원 Heat exchanger for pulse tube refrigerator and method for manufacturing the same
JP2015175548A (en) * 2014-03-14 2015-10-05 アイシン精機株式会社 Cool storage type refrigerator
JP2015230131A (en) * 2014-06-05 2015-12-21 住友重機械工業株式会社 Stirling type pulse tube refrigerator
JP2016090061A (en) * 2014-10-29 2016-05-23 住友重機械工業株式会社 Cryogenic refrigerator
CN107270576A (en) * 2017-07-03 2017-10-20 浙江磁石科技有限公司 A kind of heat-exchange system of magnetic refrigerator
CN108195215A (en) * 2017-12-28 2018-06-22 陕西仙童科技有限公司 A kind of slit heat exchanger for acoustic energy refrigeration machine
CN109237830A (en) * 2017-09-30 2019-01-18 北京空间飞行器总体设计部 Coaxial type pulse pipe refrigerator cold end and refrigeration machine based on the cold end
CN110579035A (en) * 2018-06-11 2019-12-17 同济大学 Heat exchanger and pulse tube refrigerator comprising same
JP2020003098A (en) * 2018-06-26 2020-01-09 株式会社アルバック Pulse tube refrigerator
JP2020046125A (en) * 2018-09-20 2020-03-26 住友重機械工業株式会社 Pulse tube refrigeration machine and method for manufacturing pulse tube refrigeration machine
CN111981722A (en) * 2020-09-01 2020-11-24 苏州大学 Pulse tube refrigerator and assembling method thereof
CN113091343A (en) * 2021-05-12 2021-07-09 中国科学院上海技术物理研究所 Integrated hot end structure of pulse tube refrigerator and implementation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712267A (en) * 1980-06-25 1982-01-22 Yoshihiro Ishizaki Cylinder construction of closed cycle gas engine
JPH04225755A (en) * 1990-12-26 1992-08-14 Sanyo Electric Co Ltd Cryogenic refrigerating device
JPH05160311A (en) * 1991-12-09 1993-06-25 Hitachi Ltd Semiconductor cooling structure and computer loaded with same
JPH07180938A (en) * 1993-12-24 1995-07-18 Toshiba Corp Pulse tube refrigerator
JPH11281273A (en) * 1998-03-31 1999-10-15 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Cold accumulator
JP2000046427A (en) * 1998-07-30 2000-02-18 Aisin Seiki Co Ltd Pulse tube refrigerating machine
JP2000205674A (en) * 1999-01-08 2000-07-28 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Heat exchanger for pulse pipe refrigerating machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712267A (en) * 1980-06-25 1982-01-22 Yoshihiro Ishizaki Cylinder construction of closed cycle gas engine
JPH04225755A (en) * 1990-12-26 1992-08-14 Sanyo Electric Co Ltd Cryogenic refrigerating device
JPH05160311A (en) * 1991-12-09 1993-06-25 Hitachi Ltd Semiconductor cooling structure and computer loaded with same
JPH07180938A (en) * 1993-12-24 1995-07-18 Toshiba Corp Pulse tube refrigerator
JPH11281273A (en) * 1998-03-31 1999-10-15 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Cold accumulator
JP2000046427A (en) * 1998-07-30 2000-02-18 Aisin Seiki Co Ltd Pulse tube refrigerating machine
JP2000205674A (en) * 1999-01-08 2000-07-28 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Heat exchanger for pulse pipe refrigerating machine

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286507A (en) * 2007-05-21 2008-11-27 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2010025411A (en) * 2008-07-17 2010-02-04 Fuji Electric Systems Co Ltd Heat exchanger and pulse tube refrigerating machine
JP2011149600A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2012167867A (en) * 2011-02-15 2012-09-06 Sumitomo Heavy Ind Ltd Regenerative refrigerator
CN103574961A (en) * 2012-07-20 2014-02-12 住友重机械工业株式会社 Regenerative refrigerator
KR101517786B1 (en) * 2013-04-12 2015-05-06 한국기계연구원 Heat exchanger for pulse tube refrigerator and method for manufacturing the same
JP2015175548A (en) * 2014-03-14 2015-10-05 アイシン精機株式会社 Cool storage type refrigerator
JP2015230131A (en) * 2014-06-05 2015-12-21 住友重機械工業株式会社 Stirling type pulse tube refrigerator
JP2016090061A (en) * 2014-10-29 2016-05-23 住友重機械工業株式会社 Cryogenic refrigerator
US9976779B2 (en) 2014-10-29 2018-05-22 Sumitomo Heavy Industries, Ltd. Cryogenic refrigerator
CN107270576A (en) * 2017-07-03 2017-10-20 浙江磁石科技有限公司 A kind of heat-exchange system of magnetic refrigerator
CN109237830A (en) * 2017-09-30 2019-01-18 北京空间飞行器总体设计部 Coaxial type pulse pipe refrigerator cold end and refrigeration machine based on the cold end
CN109237830B (en) * 2017-09-30 2020-12-11 北京空间飞行器总体设计部 Coaxial type pulse tube refrigerator cold end and refrigerator based on cold end
CN108195215A (en) * 2017-12-28 2018-06-22 陕西仙童科技有限公司 A kind of slit heat exchanger for acoustic energy refrigeration machine
CN110579035A (en) * 2018-06-11 2019-12-17 同济大学 Heat exchanger and pulse tube refrigerator comprising same
JP2020003098A (en) * 2018-06-26 2020-01-09 株式会社アルバック Pulse tube refrigerator
JP7111526B2 (en) 2018-06-26 2022-08-02 株式会社アルバック pulse tube refrigerator
JP2020046125A (en) * 2018-09-20 2020-03-26 住友重機械工業株式会社 Pulse tube refrigeration machine and method for manufacturing pulse tube refrigeration machine
CN112867898A (en) * 2018-09-20 2021-05-28 住友重机械工业株式会社 Pulse tube refrigerator and method for manufacturing pulse tube refrigerator
WO2020059317A1 (en) * 2018-09-20 2020-03-26 住友重機械工業株式会社 Pulse tube refrigerator and method for manufacturing pulse tube refrigerator
JP7146543B2 (en) 2018-09-20 2022-10-04 住友重機械工業株式会社 Pulse tube refrigerator and method for manufacturing pulse tube refrigerator
US11506426B2 (en) 2018-09-20 2022-11-22 Sumitomo Heavy Industries, Ltd. Pulse tube cryocooler and method of manufacturing pulse tube cryocooler
CN112867898B (en) * 2018-09-20 2023-01-13 住友重机械工业株式会社 Pulse tube refrigerator and method for manufacturing pulse tube refrigerator
CN111981722A (en) * 2020-09-01 2020-11-24 苏州大学 Pulse tube refrigerator and assembling method thereof
CN111981722B (en) * 2020-09-01 2021-09-07 苏州大学 Pulse tube refrigerator and assembling method thereof
CN113091343A (en) * 2021-05-12 2021-07-09 中国科学院上海技术物理研究所 Integrated hot end structure of pulse tube refrigerator and implementation method

Similar Documents

Publication Publication Date Title
JP2002257428A (en) Heat exchanger for pulse pipe refrigerating machine
US20070119191A1 (en) Pulse tube cryogenic cooler
US5101894A (en) Perforated plate heat exchanger and method of fabrication
US5429177A (en) Foil regenerator
JP5805421B2 (en) Regenerator type refrigerator and partition member
US20070157632A1 (en) Pulse tube cryogenic cooler
JP2011149600A (en) Pulse tube refrigerator
JP4561305B2 (en) Heat exchanger
JP6474226B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
CN103759560A (en) Micro heat exchanger with small hole throttling function
JP2005265261A (en) Pulse pipe refrigerator
JP3652623B2 (en) Pulse tube refrigerator
JP2003097891A (en) Heat exchanger
JP2000283677A (en) Heat exchanger
JP2002206816A (en) Cold heat storage unit and cryogenic freezer machine using the same
JP2889221B1 (en) Regenerator
US10976080B2 (en) Pulse tube cryocooler and method of manufacturing pulse tube cryocooler
CN110864468A (en) Low-temperature refrigerator adopting micro-channel metal round pipe heat exchanger as post-stage cooler
JP2020165644A (en) Heat exchanger, method for manufacturing heat exchanger, and method for manufacturing header assembly
US20050005613A1 (en) Pulse tube refrigerator
CN112867898B (en) Pulse tube refrigerator and method for manufacturing pulse tube refrigerator
JP2004293998A (en) Pulse pipe refrigerator and manufacturing method thereof
KR20060045109A (en) Regenerator of cryocooler and its applicable refrigerator and manufacturing method thereof
CN212133419U (en) Liquid collector for small-channel heat exchanger
JP6887074B2 (en) Heat exchanger

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090409

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091126

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207