JP2004293998A - Pulse pipe refrigerator and manufacturing method thereof - Google Patents

Pulse pipe refrigerator and manufacturing method thereof Download PDF

Info

Publication number
JP2004293998A
JP2004293998A JP2003089563A JP2003089563A JP2004293998A JP 2004293998 A JP2004293998 A JP 2004293998A JP 2003089563 A JP2003089563 A JP 2003089563A JP 2003089563 A JP2003089563 A JP 2003089563A JP 2004293998 A JP2004293998 A JP 2004293998A
Authority
JP
Japan
Prior art keywords
pulse tube
temperature end
cooling stage
low
permeable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003089563A
Other languages
Japanese (ja)
Inventor
Tetsuya Ogura
鉄也 小倉
Toshio Uchida
年雄 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2003089563A priority Critical patent/JP2004293998A/en
Publication of JP2004293998A publication Critical patent/JP2004293998A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1412Pulse-tube cycles characterised by heat exchanger details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the work efficiency by stacking a wire net from a pulse pipe high temperature end of a pulse pipe refrigerator to dispense with work for manufacturing a streamline device and to improve reliability. <P>SOLUTION: In manufacturing the pulse pipe refrigerator where the streamline device formed by stacking an air permeable member is disposed at a low temperature end of the pulse pipe 18 connected to a cooling stage 14, after the ventilation member is stacked in a gas passage of the cooling stage 14, the air permeable member is fixed to the pulse pipe low temperature end and the cooling stage. That is, after the wire net 17 is stacked on the gas passage of the cooling stage 14, the wire net 17 is brazed to the pulse pipe low temperature end and the cooling stage 14 by brazing in assembling the pulse pipe 18. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷却ステージと連結されるパルス管の低温端に、通気性部材を積層してなる整流器が配設されたパルス管冷凍機、及び、その製造方法に係り、特に、長いパルス管であっても、整流器を容易に組み立てることができる、信頼性の高いパルス管冷凍機、及び、その製造方法に関する。
【0002】
【従来の技術】
核磁気共鳴診断装置(NMR)や電子顕微鏡等に使用される小型の極低温冷凍機として用いるのに好適な、動作ガスの圧力変化と体積変化との位相差を利用して、極低温を発生するパルス管冷凍機が、例えば特許文献1に記載されている。
【0003】
このパルス管冷凍機の1つに、図1に示すようなオリフィス型パルス管冷凍機がある。これは、圧縮機10と、蓄冷器12の高温端12Hとを所定の周期で切換連通させる高圧弁VH及び低圧弁VLと、蓄冷器12の低温端12Lと整流機能を有する熱交換器16を介在させて、その低温端18Lが連通しているパルス管18と、該パルス管18の高温端18Hと整流機構を有する熱交換器20及びオリフィス22を介して連通しているバッファタンク24から構成されている。
【0004】
前記蓄冷器12内には、銅、ステンレス鋼製金網等の蓄冷材13が充填されており、前記熱交換器16、20の内部には、銅、アルミニウム等の金網17、21やパンチングプレートが積層充填されている。
【0005】
図において、14は冷却ステージ(低温端ブロックとも称する)、26は高温端ブロックである。
【0006】
このパルス管冷凍機において、圧縮機10で圧縮された高圧のヘリウムガスは、高圧弁VHが開、低圧弁VLが閉の状態になると、蓄冷器12に流入し、蓄冷材13で冷却されて温度を下げながら、蓄冷器12の低温端12Lから低温端熱交換器16で更に冷却されて、パルス管18の低温端18Lへ流入する。
【0007】
パルス管18内に既に存在していた低圧ガスは、新たに流入された作動ガスにより圧縮されるため、パルス管18内の圧力がバッファタンク24内の圧力よりも高くなり、作動ガスはオリフィス22を通ってバッファタンク24へ流入する。
【0008】
次に、高圧弁VHが閉となり低圧弁VLが開に切り換わると、パルス管18内の作動ガスは、蓄冷器12の低温端12Lから蓄冷器12内を通過し、高温端12Hから低圧弁VLを通って圧縮機10へ回収される。
【0009】
パルス管18とバッファタンク24とは、オリフィス22を介して連通されているため、圧力変動の位相と作動ガスの体積変化の位相とが一定の位相差をもって変化する。この位相差によって、パルス管18の低温端18Lにおいて作動ガスの膨張に伴う寒冷が発生し、上記過程が反復されることにより、冷凍機として作用している。
【0010】
前記熱交換器16、20に内蔵する整流機構として、銅やアルミニウム等の金網を積層充填することが提案されている。
【0011】
従来は、特に低温端熱交換器16を作成する場合、図2に示す如く、まず(1)冷却ステージ14にパルス管18の低温端18Lを蝋付けし、次いで(2)パルス管18の高温端18Hから金網17類を1枚ずつ積層して整流機構を作成し、最後に(3)熱交換器16の内径よりも大きめの径を有する、例えばベリリウム銅製のCリング28をパルス管18の上から入れて、その上部を固定している。
【0012】
【特許文献1】
特開平7−310961号公報
【0013】
【発明が解決しようとする課題】
しかしながら、従来方法では、積層する金網17は、冷却ステージ14との伝熱を良くする目的で、厳しい公差のものを使用しているため、(1)積層が難しく、積層枚数が増えれば、工数増加や、傾かないように入れるための特殊な治具が必要となる。又、(2)パルス管18が大型化すると、パルス管長も増し、パルス管高温端18Hから積層することは、非常に困難となる。又、(3)固定方法も、上部でCリング28で固定しているだけであるので、外れてしまう可能性がある。又、(4)上からの押し具合や治具の挿入深さ等により、積層高さの管理が必要である等の問題点を有していた。
【0014】
本発明は、前記従来の問題点を解決するべくなされたもので、長いパルス管であっても、通気性部材を容易に且つ確実に積層して、作業効率及び信頼性を向上することを課題とする。
【0015】
【課題を解決するための手段】
本発明は、冷却ステージと連結されるパルス管の低温端に、通気性部材を積層してなる整流器が配設されたパルス管冷凍機において、前記通気性部材を、パルス管低温端と共に、冷却ステージに固着するようにして、前記課題を解決したものである。
【0016】
又、前記通気性部材を金網としたものである。
【0017】
又、前記通気性部材を、蝋付けにより、パルス管低温端と共に、冷却ステージに固着したものである。
【0018】
又、前記通気性部材の径を、パルス管低温端の内径より大きく、且つ、パルス管低温端の外径より小さくしたものである。
【0019】
本発明は、又、冷却ステージと連結されるパルス管の低温端に、通気性部材を積層してなる整流器が配設されたパルス管冷凍機を製造するに際して、冷却ステージのガス流路に前記通気性部材を積層した後、該通気性部材を、パルス管低温端とともに、冷却ステージに固着するようにして、前記課題を解決したものである。
【0020】
又、前記通気性部材を、パルス管組立時の蝋付けにより、パルス管低温端と共に、冷却ステージに固着するようにしたものである。
【0021】
本発明は、又、前記のパルス管冷凍機を備えた低温装置を提供するものである。
【0022】
【発明の実施の形態】
以下図面を参照して、本発明の実施形態を詳細に説明する。
【0023】
本発明を、図1に示したと同様の1段パルス管冷凍機に適用した本発明の第1実施形態は、図3に示す如く、まず(1)例えば銅C1020製の冷却ステージ14のガス流路15に純銅製の金網17とステンレスSUS304製のパンチングプレートを積層するように入れ、次いで(2)例えばSUS304製のパルス管18を差し込んで金網17とパンチングプレートを押え、その状態で(3)加熱炉(図示省略)に入れて、パルス管18の低温端18Lと共に、金網17とパンチングプレートを冷却ステージ14に金蝋で蝋付けするようにしたものである。
【0024】
前記金網17の蝋付けに際しては、粉末状のパウダー蝋を金網17とパンチングプレートの周辺に置き蝋しておき、加熱した際に金網17とパンチングプレートの周囲に自然に流れるようにすることができる。
【0025】
ここで、前記パルス管18の低温端18Lの内径xと、金網17やパンチングプレートの外径yと、パルス管低温端18Lの外径zの関係は、図4に示す如く、x<y<zとすることにより、金網17をしっかりと固定できる。
【0026】
これに対して従来は、金網17やパンチングプレートを、パルス管18の中を通してパルス管低温端18Lまで挿入する必要があるため、xの方がyより大きく、安定して固定することができなかった。
【0027】
次に、図5を参照して、2段パルス管冷凍機に適用した、本発明の第2実施形態を詳細に説明する。
【0028】
本実施形態においては、1段冷却ステージ31の整流器(熱交換器)41、2段冷却ステージ32の整流器(熱交換器)42のいずれにおいても、第1実施形態と同様に、各冷却ステージ31、32の内側に置き蝋した中に金網51、52やパンチングプレートをそれぞれ入れ、パルス管61、62を差し込んで金網51、52やパンチングプレートを押え、加熱して蝋付けするようにしたものである。図において、71、72は、それぞれ1段蓄冷管、2段蓄冷管である。
【0029】
他の点に関しては第1実施形態と同じであるので、説明は省略する。
【0030】
前記実施形態においては、いずれも金蝋により蝋付けしているので、金網やパンチングプレートと整流器壁(冷却ステージ)との熱交換が良くなり、性能が向上する。なお、金蝋付けに限定されず、銀蝋やニッケル蝋等の他の金属蝋を用いたり、あるいは蝋付け以外の方法により固定することも可能である。通気性部材の種類も、金網とパンチングプレートの組合せに限定されず、それぞれを単独で用いたり、メッシュ等、他の通気性素材を用いても構わない。材質も、純銅やSUS304ステンレスに限定されず、丹銅や、他のステンレスでも良い。
【0031】
本発明は、1段式、2段式又は多段式パルス管冷凍機を使った、各種超伝導磁石装置、各種センサ冷却システム、液化装置、液化ガス再凝縮装置、クライオポンプ、MRI診断機器、理化学機器等に適用可能である。
【0032】
【発明の効果】
本発明によれば、パルス管の高温端から通気性部材をパルス管低温端に積層する作業が無くなったので、長いパルス管にも有効に対応でき、作業効率が向上する。又、リングや止め輪でなく、通気性部材をしっかり冷却ステージに固着できるので、信頼性が向上する等の優れた効果を有する。
【図面の簡単な説明】
【図1】従来のオリフィス型パルス管冷凍機の一例の構成を示す断面図
【図2】従来例の問題点を説明するための図1のII部拡大斜視図
【図3】1段パルス管冷凍機に適用した本発明の第1実施形態の構成を示す断面図
【図4】第1実施形態における整流器の詳細図
【図5】2段パルス管冷凍機に適用した本発明の第2実施形態を示す断面図
【符号の説明】
10…圧縮機
12…蓄冷器
13…蓄冷材
14、31、32…冷却ステージ
16、20、41、42…整流器(熱交換器)
17、21、51、52…金網
18、61、62…パルス管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pulse tube refrigerator in which a rectifier formed by laminating a gas-permeable member is disposed at a low temperature end of a pulse tube connected to a cooling stage, and a method for manufacturing the pulse tube refrigerator. The present invention relates to a highly reliable pulse tube refrigerator capable of easily assembling a rectifier, and a method for manufacturing the same.
[0002]
[Prior art]
Generates cryogenic temperature using phase difference between pressure change and volume change of working gas, suitable for use as a small cryogenic refrigerator used in nuclear magnetic resonance diagnostic equipment (NMR), electron microscope, etc. The pulse tube refrigerator which performs is described in patent document 1, for example.
[0003]
One of such pulse tube refrigerators is an orifice type pulse tube refrigerator as shown in FIG. This is because a high pressure valve VH and a low pressure valve VL for switching communication between the compressor 10 and the high temperature end 12H of the regenerator 12 at a predetermined cycle, a low temperature end 12L of the regenerator 12 and a heat exchanger 16 having a rectifying function. The pulse tube 18 has a low temperature end 18L communicating therewith, a heat exchanger 20 having a rectifying mechanism with a high temperature end 18H of the pulse tube 18 and a buffer tank 24 communicating through an orifice 22. Have been.
[0004]
The regenerator 12 is filled with a regenerator 13 such as a copper or stainless steel wire mesh, and the heat exchangers 16 and 20 are provided with wire meshes 17 and 21 or a punching plate of copper or aluminum. Laminated and filled.
[0005]
In the figure, 14 is a cooling stage (also called a low-temperature end block), and 26 is a high-temperature end block.
[0006]
In this pulse tube refrigerator, the high-pressure helium gas compressed by the compressor 10 flows into the regenerator 12 when the high-pressure valve VH is open and the low-pressure valve VL is closed, and is cooled by the regenerator 13. While lowering the temperature, the heat is further cooled by the low-temperature end heat exchanger 16 from the low-temperature end 12L of the regenerator 12 and flows into the low-temperature end 18L of the pulse tube 18.
[0007]
Since the low-pressure gas already existing in the pulse tube 18 is compressed by the newly introduced working gas, the pressure in the pulse tube 18 becomes higher than the pressure in the buffer tank 24, and the working gas is supplied to the orifice 22. Through the buffer tank 24.
[0008]
Next, when the high-pressure valve VH is closed and the low-pressure valve VL is switched to open, the working gas in the pulse tube 18 passes through the regenerator 12 from the low-temperature end 12L of the regenerator 12 and passes from the high-temperature end 12H to the low-pressure valve. It is recovered to the compressor 10 through the VL.
[0009]
Since the pulse tube 18 and the buffer tank 24 are communicated via the orifice 22, the phase of the pressure change and the phase of the volume change of the working gas change with a certain phase difference. Due to this phase difference, cold occurs due to the expansion of the working gas at the low temperature end 18L of the pulse tube 18, and the above process is repeated, thereby acting as a refrigerator.
[0010]
As a rectifying mechanism built in the heat exchangers 16 and 20, it has been proposed to stack and fill a wire mesh such as copper or aluminum.
[0011]
Conventionally, when the low-temperature end heat exchanger 16 is manufactured, as shown in FIG. 2, first, (1) the low-temperature end 18L of the pulse tube 18 is brazed to the cooling stage 14, and (2) the high-temperature The wire meshes 17 are stacked one by one from the end 18H to form a rectifying mechanism. Finally, (3) a C ring 28 made of, for example, beryllium copper, having a diameter larger than the inner diameter of the heat exchanger 16 is connected to the pulse tube 18. Put in from above and fix the top.
[0012]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 7-310961
[Problems to be solved by the invention]
However, in the conventional method, since the wire mesh 17 to be laminated has a tight tolerance in order to improve the heat transfer with the cooling stage 14, (1) lamination is difficult, and if the number of laminated layers increases, Special jigs are required to increase and not to tilt. (2) When the pulse tube 18 is increased in size, the pulse tube length also increases, and it is very difficult to stack the pulse tube 18 from the high-temperature end 18H. Also, (3) in the fixing method, since it is only fixed with the C-ring 28 at the upper part, there is a possibility that it will come off. Also, (4) there is a problem that it is necessary to control the stacking height depending on the degree of pushing from above and the insertion depth of the jig.
[0014]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and has an object to improve the working efficiency and reliability by easily and reliably laminating a permeable member even in a long pulse tube. And
[0015]
[Means for Solving the Problems]
The present invention relates to a pulse tube refrigerator in which a rectifier formed by laminating a gas-permeable member is provided at a low-temperature end of a pulse tube connected to a cooling stage, wherein the gas-permeable member is cooled together with the pulse tube low-temperature end. This problem has been solved by sticking to a stage.
[0016]
Further, the air-permeable member is a wire net.
[0017]
Further, the air-permeable member is fixed to the cooling stage together with the low-temperature end of the pulse tube by brazing.
[0018]
Further, the diameter of the permeable member is larger than the inner diameter of the low-temperature end of the pulse tube and smaller than the outer diameter of the low-temperature end of the pulse tube.
[0019]
The present invention also provides a pulse tube refrigerator in which a rectifier formed by laminating a gas-permeable member is provided at a low-temperature end of a pulse tube connected to a cooling stage. After laminating the air-permeable member, the air-permeable member is fixed to the cooling stage together with the low-temperature end of the pulse tube, thereby solving the above problem.
[0020]
Further, the air-permeable member is fixed to the cooling stage together with the low-temperature end of the pulse tube by brazing at the time of assembling the pulse tube.
[0021]
The present invention also provides a low-temperature device including the above-described pulse tube refrigerator.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0023]
The first embodiment of the present invention in which the present invention is applied to a single-stage pulse tube refrigerator similar to that shown in FIG. 1 has, as shown in FIG. 3, first (1) gas flow of a cooling stage 14 made of, for example, copper C1020. The wire net 15 made of pure copper and the punching plate made of stainless steel SUS304 are put in the path 15 so as to be laminated, and then (2) a pulse tube 18 made of, for example, SUS304 is inserted and the wire net 17 and the punching plate are pressed, and in this state (3) In a heating furnace (not shown), the wire net 17 and the punching plate are brazed to the cooling stage 14 with gold wax together with the low-temperature end 18L of the pulse tube 18.
[0024]
At the time of brazing the wire mesh 17, powdered powder wax is placed around the wire mesh 17 and the punching plate and waxed, so that it can flow naturally around the wire mesh 17 and the punching plate when heated. .
[0025]
Here, the relationship among the inner diameter x of the low temperature end 18L of the pulse tube 18, the outer diameter y of the wire mesh 17 and the punching plate, and the outer diameter z of the pulse tube low temperature end 18L is x <y <, as shown in FIG. By setting z, the wire net 17 can be firmly fixed.
[0026]
On the other hand, conventionally, since it is necessary to insert the wire mesh 17 and the punching plate through the pulse tube 18 to the low-temperature end 18L of the pulse tube, x is larger than y and cannot be fixed stably. Was.
[0027]
Next, a second embodiment of the present invention applied to a two-stage pulse tube refrigerator will be described in detail with reference to FIG.
[0028]
In the present embodiment, in each of the rectifier (heat exchanger) 41 of the first cooling stage 31 and the rectifier (heat exchanger) 42 of the second cooling stage 32, as in the first embodiment, each cooling stage 31 , 32, and put the wire meshes 51, 52 and the punching plate into the wax, insert the pulse tubes 61, 62, hold down the wire meshes 51, 52 and the punching plate, and heat and braze. is there. In the figure, reference numerals 71 and 72 denote a first-stage regenerative tube and a two-stage regenerative tube, respectively.
[0029]
The other points are the same as in the first embodiment, and a description thereof will be omitted.
[0030]
In the above embodiments, since all are brazed by gold brazing, heat exchange between the wire mesh or the punching plate and the rectifier wall (cooling stage) is improved, and the performance is improved. In addition, it is not limited to gold brazing, and it is also possible to use another metal wax such as silver wax or nickel wax, or to fix by a method other than brazing. The type of the air-permeable member is not limited to the combination of the wire netting and the punching plate, and each may be used alone, or another air-permeable material such as a mesh may be used. The material is not limited to pure copper or SUS304 stainless steel, but may be steel bronze or other stainless steel.
[0031]
The present invention provides various superconducting magnet devices, various sensor cooling systems, liquefiers, liquefied gas recondensers, cryopumps, MRI diagnostic devices, and physics and chemistry using a one-stage, two-stage or multi-stage pulse tube refrigerator. Applicable to equipment and the like.
[0032]
【The invention's effect】
According to the present invention, since the work of laminating the air-permeable member from the high-temperature end of the pulse tube to the low-temperature end of the pulse tube is eliminated, it is possible to effectively cope with a long pulse tube, and work efficiency is improved. In addition, since a permeable member can be firmly fixed to the cooling stage instead of a ring or a retaining ring, there are excellent effects such as improvement in reliability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a configuration of a conventional orifice type pulse tube refrigerator. FIG. 2 is an enlarged perspective view of a portion II in FIG. 1 for explaining problems of the conventional example. FIG. 4 is a sectional view showing a configuration of a first embodiment of the present invention applied to a refrigerator; FIG. 4 is a detailed view of a rectifier in the first embodiment; FIG. 5 is a second embodiment of the present invention applied to a two-stage pulse tube refrigerator; Sectional view showing the form [Description of reference numerals]
DESCRIPTION OF SYMBOLS 10 ... Compressor 12 ... Regenerator 13 ... Cooling material 14,31,32 ... Cooling stage 16,20,41,42 ... Rectifier (heat exchanger)
17, 21, 51, 52 ... wire mesh 18, 61, 62 ... pulse tube

Claims (7)

冷却ステージと連結されるパルス管の低温端に、通気性部材を積層してなる整流器が配設されたパルス管冷凍機において、
前記通気性部材が、パルス管低温端と共に、冷却ステージに固着されていることを特徴とするパルス管冷凍機。
At a low temperature end of the pulse tube connected to the cooling stage, a pulse tube refrigerator in which a rectifier formed by laminating a gas-permeable member is provided.
A pulse tube refrigerator, wherein the air-permeable member is fixed to a cooling stage together with a pulse tube low-temperature end.
前記通気性部材が、金網であることを特徴とする請求項1に記載のパルス管冷凍機。The pulse tube refrigerator according to claim 1, wherein the air-permeable member is a wire mesh. 前記通気性部材が、蝋付けにより、パルス管低温端と共に、冷却ステージに固着されていることを特徴とする請求項1又は2に記載のパルス管冷凍機。The pulse tube refrigerator according to claim 1, wherein the air-permeable member is fixed to the cooling stage together with a low-temperature end of the pulse tube by brazing. 前記通気性部材の径が、パルス管低温端の内径より大きく、且つ、パルス管低温端の外径より小さくされていることを特徴とする請求項1乃至3のいずれかに記載のパルス管冷凍機。The pulse tube refrigeration according to any one of claims 1 to 3, wherein a diameter of the air-permeable member is larger than an inner diameter of the pulse tube at a low temperature end and smaller than an outer diameter of the pulse tube at a low temperature end. Machine. 冷却ステージと連結されるパルス管の低温端に、通気性部材を積層してなる整流器が配設されたパルス管冷凍機を製造するに際して、
冷却ステージのガス流路に前記通気性部材を積層した後、
該通気性部材を、パルス管低温端とともに、冷却ステージに固着することを特徴とするパルス管冷凍機の製造方法。
At the time of manufacturing a pulse tube refrigerator in which a rectifier formed by laminating a permeable member is arranged at a low temperature end of a pulse tube connected to a cooling stage.
After laminating the permeable member in the gas passage of the cooling stage,
A method for manufacturing a pulse tube refrigerator, wherein the air permeable member is fixed to a cooling stage together with a low temperature end of the pulse tube.
前記通気性部材を、パルス管組立時の蝋付けにより、パルス管低温端と共に、冷却ステージに固着することを特徴とする請求項5に記載のパルス管冷凍機の製造方法。6. The method according to claim 5, wherein the air-permeable member is fixed to a cooling stage together with a low-temperature end of the pulse tube by brazing at the time of assembling the pulse tube. 請求項1乃至4のいずれかに記載のパルス管冷凍機を備えたことを特徴とする低温装置。A low-temperature device comprising the pulse tube refrigerator according to claim 1.
JP2003089563A 2003-03-28 2003-03-28 Pulse pipe refrigerator and manufacturing method thereof Pending JP2004293998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089563A JP2004293998A (en) 2003-03-28 2003-03-28 Pulse pipe refrigerator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089563A JP2004293998A (en) 2003-03-28 2003-03-28 Pulse pipe refrigerator and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2004293998A true JP2004293998A (en) 2004-10-21

Family

ID=33403380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089563A Pending JP2004293998A (en) 2003-03-28 2003-03-28 Pulse pipe refrigerator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2004293998A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275477A (en) * 2005-03-30 2006-10-12 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2011149600A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2011149601A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
US11137216B2 (en) 2013-06-20 2021-10-05 Sumitomo Heavy Industries, Ltd. Regenerator material and regenerative refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275477A (en) * 2005-03-30 2006-10-12 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
US7600385B2 (en) 2005-03-30 2009-10-13 Sumitomo Heavy Industries, Ltd. Pulse tube cryogenic cooler
JP2011149600A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2011149601A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
US11137216B2 (en) 2013-06-20 2021-10-05 Sumitomo Heavy Industries, Ltd. Regenerator material and regenerative refrigerator

Similar Documents

Publication Publication Date Title
US20070157632A1 (en) Pulse tube cryogenic cooler
JP5805421B2 (en) Regenerator type refrigerator and partition member
JP5889743B2 (en) Regenerative refrigerator
US20070119191A1 (en) Pulse tube cryogenic cooler
CN100458310C (en) Coolness storage unit and cryopump
JPWO2003081145A1 (en) Cryogenic regenerator and refrigerator
CN105485955B (en) Refrigerator of pulse tube
JP4365188B2 (en) Pulse tube type refrigeration equipment
US7114341B2 (en) Cryopump with two-stage pulse tube refrigerator
US7234307B2 (en) Cryocooler with grooved flow straightener
US6205791B1 (en) High efficiency modular cryocooler with floating piston expander
JP2004293998A (en) Pulse pipe refrigerator and manufacturing method thereof
JP3936117B2 (en) Pulse tube refrigerator and superconducting magnet system
JP3652623B2 (en) Pulse tube refrigerator
JP5936938B2 (en) Method for manufacturing a cryogenic regenerator
JP2003148822A (en) Cold storage unit for very low temperature refrigerator
JP5606744B2 (en) Pulse tube refrigerator
JPH04186802A (en) Magnetic material with high thermal capacity within temperature range of 4k-20k, and cold acculator and magnetic refrigeration unit using same
JP2003148826A (en) Pulse tube refrigerating machine
KR100785745B1 (en) Coolness storage unit and cryopump
US7219501B2 (en) Cryocooler operation with getter matrix
CN112867898B (en) Pulse tube refrigerator and method for manufacturing pulse tube refrigerator
JP2021519407A (en) Heat station for cooling circulating refrigerant
JP2845761B2 (en) Regenerator for cryogenic refrigerator
JPH0311270A (en) Cryogenic cold accumulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Effective date: 20060810

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20061003

Free format text: JAPANESE INTERMEDIATE CODE: A02