JP3936117B2 - Pulse tube refrigerator and superconducting magnet system - Google Patents

Pulse tube refrigerator and superconducting magnet system Download PDF

Info

Publication number
JP3936117B2
JP3936117B2 JP2000085344A JP2000085344A JP3936117B2 JP 3936117 B2 JP3936117 B2 JP 3936117B2 JP 2000085344 A JP2000085344 A JP 2000085344A JP 2000085344 A JP2000085344 A JP 2000085344A JP 3936117 B2 JP3936117 B2 JP 3936117B2
Authority
JP
Japan
Prior art keywords
stage
pulse tube
refrigerant gas
regenerator
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000085344A
Other languages
Japanese (ja)
Other versions
JP2001272126A (en
Inventor
安見 大谷
透 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000085344A priority Critical patent/JP3936117B2/en
Publication of JP2001272126A publication Critical patent/JP2001272126A/en
Application granted granted Critical
Publication of JP3936117B2 publication Critical patent/JP3936117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Description

【0001】
【発明の属する技術分野】
本発明は、パルス管を複数段に配置して複数段膨張方式を採用するパルス管冷凍機および超電導磁石装置に関する。
【0002】
【従来の技術】
例えば、超電導磁石装置を極低温に維持して運転させる蓄冷式の冷凍機には、ギフォード・マクマホン冷凍機やスターリング冷凍機等数多の形式のものが開示されているが、その中でも構成が比較的簡素化され、かつ極低温部に駆動部がないため低振動運転ができるパルス管冷凍機が、最近、注目されている。
【0003】
このパルス管冷凍機は、高圧冷媒ガス供給運転時、図9に示すように、コンプレッサ100で生成された高圧冷媒ガスを、高圧系HP、ロータリーバルブ101、第1段蓄冷器102、第1段冷却ステージ(第1段コールドヘッド)103を介して供給し、第1段冷却ステージ103でその一部を第1段パルス管104に分配・供給するとともに、残りを第2段蓄冷器105、第2段冷却ステージ(第2段コールドヘッド)106を介して別置きの第2段パルス管107に供給している。
【0004】
また、パルス管冷凍機は、コンプレッサ100からの高圧冷媒ガスを、第1段位相調整系108および第2段位相調整系109をそれぞれ分配・供給している。
【0005】
第1段位相調整系108に分配・供給された高圧冷媒ガスは、その一部を第1段バッファタンク110に分配・供給され、残りを第1段パルス管104に分配・供給されている。また、第2段位相調整系109に分配・供給された高圧冷媒ガスは、第1段位相調整系108と同様に、その一部を第2段バッファタンク111に分配・供給され、残りを第2段パルス管107に分配・供給される。
【0006】
一方、冷媒ガス排気運転時、パルス管冷凍機は、ロータリーバルブ101のポート112を図示の破線の位置に回転移動させ、第1段パルス管104内の冷媒ガスを膨張させて温度を低く下げ、その一部を第1段冷却ステージ103を介して第2段蓄冷器105からの冷媒ガスとともに第1段蓄冷器102、ロータリーバルブ101のポート112を経てコンプレッサ100の低圧系LPに戻している。
【0007】
また、パルス管冷凍機は、第1段パルス管104内の膨張後の冷媒ガスの残りを、第1段バッファタンク110内の冷媒ガスとともに第1段位相調整系108、ロータリーバルブ101のポート112を経てコンプレッサ100の低圧系LPに戻している。
【0008】
また、パルス管冷凍機は、第2段パルス管107内の膨張後の冷媒ガスを、上述と同様に、第2段位相調整系109、ロータリーバルブ101のポート112を経てコンプレッサ100の低圧系LPに戻している。
【0009】
なお、パルス管冷凍機は、第1段バッファタンク110、第2段バッファタンク111のそれぞれに冷媒ガス逃し系114,113を設け、冷媒ガスの給排運転中、第1段蓄冷器102および第1段パルス管104等に誘起する循環流れを抑制するため、第1段バッファタンク110、第2段バッファタンク111内の冷媒ガスを常にコンプレッサ100の低圧系LPに流している。
【0010】
このように、従来のパルス管冷凍機では、ロータリーバルブ101のポート112を高圧系HP、低圧系LPに交互に回転移動して冷媒ガスの給排を連続的に行わせ、その際、冷媒ガスを膨張させ、温度を低くさせて第1段冷却ステージ103に伝熱板115を介して、例えば熱シールド117に接続させ、また第2段冷却ステージ106に伝熱板116を介して、例えば超電導コイル118を接続させ、熱シールド117および超電導コイル118を極低温状態に維持させていた。
【0011】
【発明が解決しようとする課題】
図9で示した従来のパルス管冷凍機は、第1段冷却ステージ103や第2段冷却ステージ106に駆動部がないので、運転が低振動になっている優れた面を持つものの、冷媒ガスを膨張させる部分と蓄冷させる部分とを一つの容器等で兼用することができず、このため冷凍能力を同じにした場合、ギフォード・マクマホン冷凍機やスターリング冷凍機に較べてシリンダの容積が大きくなり、設置面積を多く必要とする等の不具合があった。
【0012】
また、図9で示した従来のパルス管冷凍機では、冷凍能力を向上させるために、第1段パルス管104と第2段パルス管107との複数段膨張部分を備えており、第2段パルス管107を第1段パルス管104の外側に配置しているため、この第2段パルス管107の設置位置を考慮して第2段冷却ステージ106を機械加工しなければならず、機械加工時間を多く必要とする不都合があった。
【0013】
また、最近では、2段式パルス管冷凍機も提案されているが、各段毎に独立の位相調整部がなく、このため冷凍能力の増加が僅かであり、比較的容量の大きい超電導コイル3bを極低温状態に維持させて通電運転をさせることができない等の問題点があった。
【0014】
本発明は、このような事情に基づいてなされたもので、構造簡素な多段膨張式のパルス管にするとともに、各パルス管の位相調整を独立に実施でき、より一層冷凍効率を向上させたパルス管冷凍機および超電導磁石装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明に係るパルス管冷凍機は、上述の目的を達成するために、請求項1に記載したように、系内に冷媒ガスを給排するとともに給排する際の冷媒ガスの圧力変動と体積流量との位相差を調整する冷媒ガス給排・位相調整兼用系と、この冷媒ガス給排・位相調整兼用系による冷媒ガスの給排により極低温に維持させる極低温系とを具備するパルス式冷凍機であって、前記極低温系は、区分けしてそれぞれ設けられる第1段極低温冷凍部および第2段極低温冷凍部と、大口径部分と比較的小口径部分として形成して組み合わせてなり、頭部側に高温端部を、中間部分に第1段冷却ステージを、底部側に第2段冷却ステージをそれぞれ備え、かつ前記大口径部分に前記第1段極低温冷凍部を、前記比較的小口径部分に前記第2段極低温冷凍部をそれぞれ収容させてなるシリンダと、を備え、かつ、前記第2段極低温冷凍部は、前記シリンダの大口径部分の中央に配置され前記高温端部から前記第2段冷却ステージに向かって延びる第2段パルス管と、この第2段パルス管の外側に同心的に配置され前記第1段冷却ステージから前記シリンダの比較的小口径部分の第2段冷却ステージに向かって延びる第2段蓄冷器と、この第2段蓄冷器と前記第2段パルス管との間の前記第2段冷却ステージ側に設けられ前記冷媒ガスの通路を狭めるスペーサと、このスペーサから前記第2段パルス管に流れる前記冷媒ガスの流れを整流する整流板と、を備え、前記第1段極低温冷凍部は、前記シリンダの大口径部分の中央で前記第2段パルス管の外側に同心的に配置され前記高温端部から前記第1段冷却ステージに向かって延びる第1段蓄冷器、を備え、さらに、前記冷媒ガス給排・位相調整兼用系は、ケーシング内の中央に区画し第2段蓄冷器用ピストンを収容する第2段パルス管用ピストン室と、この第2段パルス管用ピストン室の外側に同心的に区画し第1段蓄冷器用ピストンを収容する第1段蓄冷器用ピストン室と、この第1段蓄冷器用ピストン室の外側に同心的に区画し第1段パルス管用ピストンを収容する第1段パルス管用ピストン室と、前記第2段パルス管用ピストン、前記第1段蓄冷器用ピストンおよび前記第1段パルス管用ピストンのそれぞれを進退移動させるとともにそれぞれの位相角を調整するクランク軸と、を備えたものである。
【0016】
本発明に係るパルス管冷凍機は、上述の目的を達成するために、請求項2に記載したように、前記第1段極低温冷凍部は、シリンダの大口径部分の第1段蓄冷器の外側に同心的に配置され前記高温端部から前記第1段冷却ステージに向かって延びる第1段パルス管と、この第1段パルス管と前記第1の蓄冷器との間の前記第1段冷却ステージに設けられ前記冷媒ガスの通路を狭めるスペーサと、を備えたものである。
本発明に係るパルス管冷凍機は、上述の目的を達成するために、請求項3に記載したように、請求項1または2に記載のパルス管冷凍機と、真空容器内に設けられ第1の伝熱板を介して前記第1段冷却ステージと接続する熱シールドと、この熱シールドに収容され第2の伝熱板を介して前記第2段冷却ステージと接続する超電導コイルと、を備えたものである。
【0019】
本発明に係るパルス管冷凍機は、上述の目的を達成するために、請求項3に記載したように、位相調整系は、第1段位相調整系と第2段位相調整系とに区分けするとともに、各段位相調整系を、冷媒ガス給排系と極低温系の第1段極低温冷凍部とを互いに接続させる蓄冷器冷媒ガス往復配管に接続したものである。
【0031】
【発明の実施の形態】
以下、本発明に係るパルス管冷凍機および超電導磁石装置の実施形態を図面および図面に付した符号を引用して説明する。
【0032】
図1は、本発明に係るパルス管冷凍機の第1実施形態を示す概念図である。
【0033】
本実施形態に係るパルス管冷凍機は、冷媒ガス給排系1と、伝熱板2a,2bに接続し、超電導コイル3bを包囲する熱シールド3aと伝熱板2bに接続する超電導コイル3bとのそれぞれを極低温状態に維持させる極低温系4と、この極低温系4の冷凍効率を向上させる位相調整系5とを備えて構成される。
【0034】
冷媒ガス給排系1は、コンプレッサ6とロータリーバルブ7とを備え、冷媒ガスを極低温系4に供給する場合、ロータリーバルブ7を回転させ、ポート8を蓄冷器冷媒ガス往復配管24に接続させ(図示の状態)、コンプレッサ6で生成された高圧の冷媒ガスを高圧系HPを介して極低温系4に供給する一方、極低温系4からの冷媒ガスを低圧系LPを介してコンプレッサ6に返す場合、ロータリーバルブ7のポート8を破線で示す位置に回転移動させて極低温系4からの冷媒ガスを低圧系LPに戻しており、冷媒ガスの給排を、例えば1Hz(0.5秒)毎に繰り返し、極低温系4を極低温状態に維持させて熱シールド3aおよび超電導コイル3bを冷却している。
【0035】
また、極低温系4は、頂部を高温端部9で塞ぎ、中間部分に第1段冷却ステージ(第1段コールドヘッド)14を備え、底部を第2段冷却ステージ(第2段コールドヘッド)10で塞いだシリンダ11内に、例えば50Kの極低温に維持させる第1段極低温冷凍部12と、例えば4K〜20Kの極低温に維持させる第2段極低温冷凍部13とに区分けして収容する構成になっている。
【0036】
第1段極低温冷凍部12は、高温端部9と第1段冷却ステージ(第1段コールドヘッド)14との間に配置した第1段蓄冷器15と、この第1段蓄冷器15の外側を、図2に示すように、同心的に包囲して配置する第1段パルス管16とを備えている。なお、第1段蓄冷器15には、球径状の磁性蓄冷材が充填されている。また、第1段パルス管16は、筒状の中空管として形成されている。
【0037】
また、第2段極低温冷凍部13は、第1段冷却ステージ14から第2段冷却ステージ10に向って延びる第2段蓄冷器17と、第1段極低温冷凍部12に同心的に配置され、高温端部9の中央部から第2段冷却ステージ10に向って延びる第2段パルス管18を備えている。なお、第2段蓄冷器17も、第1段蓄冷器15と同様に、磁性蓄冷材を充填している。さらに、第2段パルス管18も、第1段パルス管16と同様に、筒状の中空になっている。
【0038】
一方、位相調整系5は、第1段位相調整系19と第2段位相調整系20とに区分けされている。
【0039】
第1段位相調整系19は、第2段位相調整系20と共通にするバッファタンク21と、第1段オリフィスバルブ22とを備えた第1段パルス管位相調整配管23と、この第1段パルス管位相調整配管23を冷媒ガス給排系1と極低温系4との間で冷媒ガスを給排させる蓄冷器冷媒ガス往復配管24に接続させ、かつ途中に第1段ダブルインレットバルブ25を介装させた第1段バイパス配管26とを備え、冷媒ガスの排気時、第1段パルス管16内の圧力変動と体積流量との位相差を、例えば90°以上に調整して効果的に膨張させるとともに、冷媒ガスの供給時、コンプレッサ6から第1段蓄冷器15に供給する冷媒ガスの流量を比較的少なくさせ、残りを第1段パルス管16に供給して冷凍効率を効果的に増加させるようになっている。
【0040】
また第2段位相調整系20も、第1段位相調整系19と同様に、第1段位相調整系19と共通のバッファタンク21と、第2段オリフィスバルブ27を備えた第2段パルス管位相調整配管28と、この第2段パルス管位相調整配管28を冷媒ガス給排系1と極低温系4との間で冷媒ガスを給排させる蓄冷器冷媒ガス往復配管24に接続させ、かつ途中第2段ダブルインレットバルブ29を介装させた第2段バイパス配管30とを備え、冷媒ガスの排気時の効果的な膨張と冷媒ガスの供給時の適正流量配分を行わせるようになっている。
【0041】
また、第1段位相調整系19および第2段位相調整系20は、共通のバッファタンク21にセカンドオリフィスバルブ31を介装させてコンプレッサ6の低圧系LPに接続する冷媒ガス逃し配管32を設け、冷媒ガス逃し配管32を介してバッファタンク21からの冷媒ガスをコンプレッサ6の低圧系LPに常時供給し、冷媒ガスの給排運転中、第1段蓄冷器15、第1段パルス管16等内の冷媒ガスの振動流に加わる定常流に基づいて発生する循環流を抑制するようになっている。
【0042】
このような構成を備えたパルス管冷凍機において、冷媒ガス供給運転時、冷媒ガス給排系1のコンプレッサ6で生成された高圧・高温の冷媒ガスのうち、高温熱を吸熱器(図示せず)で吸収させた高圧の冷媒ガスは、高圧系HP、ロータリーバルブ7のポート8を介して蓄冷器冷媒ガス往復配管24に供給され、ここで第1段極低温冷凍部12の第1段蓄冷器15に、また第1段バイパス配管26および第1段パルス管位相調整配管23を介して一方を第1段パルス管16に、他方をバッファタンク21に、さらに第2段バイパス配管30および第2段パルス管位相調整配管28を介して一方を第2段パルス管18に、他方をバッファタンク21にそれぞれ適正流量にして分配される。
【0043】
第1段蓄冷器15に分配された冷媒ガスは、ここで磁性蓄冷材で熱を吸収させ、第1段冷却ステージ14で極低温にさせ、その一部を第1段パルス管16に、また残りを第2段蓄冷器17のそれぞれに供給させる。なお、第1段蓄冷器15は、冷媒ガスを第1段パルス管16に分配させる際、スペーサ33を設けて通路を狭くさせ、高流速の下、熱伝達係数を高めて第1段冷却ステージ14を効果的に極低温状態に維持させている。
【0044】
また、第2段蓄冷器17に分配された冷媒ガスも、上述と同様に磁性蓄冷材で熱を吸収させ、さらにスペーサ34を設けて通路を狭くして冷媒ガスの熱伝達係数を高め、整流板35で冷媒ガスに整流効果を持たせて第2段パルス管18に供給される。
【0045】
なお、第1段パルス管16は、第1段蓄冷器15のほかに、第1段パルス管位相調整配管23からも冷媒ガスが供給されるが、第1段オリフィスバルブ22および第1段ダブルインレットバルブ25の弁開度を調整し、第1段冷却ステージ14側の位置で圧力バランスさせるようにしている。また、第2段パルス管18も、上述と同様に、第2段冷却ステージ10側の位置で圧力バランスさせている。
【0046】
一方、冷媒ガス排気運転時、冷媒ガス給排系1のロータリーバルブ7のポート8を破線で示す位置に回転移動させると、第1段パルス管16内の冷媒ガスは、膨張しながら温度を下げ、その一部が第1段冷却ステージ14、第1段蓄冷器15を流れる間に周囲の温度を下げ、伝熱板2aを介して接続させた熱シールド3aを極低温状態に維持させるとともに、その残りとバッファタンク21から第1段パルス管位相調整配管23、第1段バイパス配管26を介して戻される冷媒ガスとが蓄冷器冷媒ガス往復配管24で第1段蓄冷器15からの冷媒ガスに合流し、その合流冷媒ガスがコンプレッサ6の低圧系LPに戻される。なお、第2パルス管18内の冷媒ガスも、上述と同様にしてコンプレッサ6の低圧系LPに戻される。
【0047】
その際、第1段蓄冷器15、第1段パルス管16あるいは第2段蓄冷器17、第2段パルス管18内のそれぞれの冷媒ガスが循環流れを誘起するので、バッファタンク21は、冷媒ガスを冷媒ガス逃し配管32を介してコンプレッサ6の低圧系LPに戻し、循環流を抑制している。
【0048】
このように、本実施形態は、極低温系4を第1段極低温冷凍部12と第2段極低温冷凍部13とに区分けし、区分けした第1段極低温冷凍部12と第1段極低温冷凍部13とを、頂部に高温端部9を、中間部分に第1段冷却ステージ14を、底部に第2段冷却ステージ10をそれぞれ備えたシリンダ11に収容させる際、シリンダ11の中央部に高温端部9から第2段冷却ステージ10に向って延びる第2段極低温冷凍部13の第2段パルス管18を配置し、この第2段パルス管18の外側を同心的に配置し、かつ高温端部9から第1段冷却ステージ14に向って延びる第1段極低温冷凍部12の第1段蓄冷器15を配置するとともに、この第1段蓄冷器15の外側を同心的に配置し、かつ高温端部9から第1段冷却ステージ14に向って延びる第1段極低温冷凍部12の第1段パルス管16を配置する一方、第2段極低温冷凍部13の第2段パルス管18の外側を同心的に配置し、かつ第1段冷却ステージ14から第2段冷却ステージ10に向って延びる第2段蓄冷器17を配置したので、構造簡素にして設置面積の少ないパルス管冷凍機を実現することができる。
【0049】
その際、極低温系4に接続する第1段位相調整系19と第2段位相調整系20に共用のバッファタンク21を設けたので、パルス管冷凍機の構造をより一層簡素化させることができる。
【0050】
図3は、本発明に係るパルス管冷凍機および超電導磁石装置の第2実施形態を示す概念図である。
【0051】
なお、第1実施形態で用いた構成要素と同一要素には同一符号を付す。
【0052】
本実施形態に係るパルス管冷凍機は、極低温系4の第1段極低温冷凍部12および第2段極低温冷凍部13のそれぞれに接続する第1段位相調整系19の第1段パルス管位相調整配管23および第2段位相調整系20の第2段パルス管位相調整配管28のそれぞれに第1段バッファタンク36および第2段バッファタンク37のそれぞれを設けたものである。
【0053】
本実施形態は、第1段極低温冷凍部12の第1段パルス管16および第2段極低温冷凍部13の第2段パルス管18内の冷媒ガスを膨張させる際、圧力変動と体積流量との位相差を調整すれば、冷凍効率が向上することに着目したもので、第1段パルス管位相調整配管23に第1段バッファタンク36を、第2段パルス管位相調整配管28に第2段バッファタンク37をそれぞれ設け、各パルス管16,18内の冷媒ガスの位相差を別個独立に調整させたものである。
【0054】
また、本実施形態は、第1段パルス管位相調整配管23に第1段バッファタンク36を、第2段パルス管位相調整配管28に第2段バッファタンク37をそれぞれ設けることに伴って各バッファタンク36,37のそれぞれから冷媒ガス給排系1の低圧系LPに接続させる第1段セカンドオリフィスバルブ38を備えた第1段冷媒ガス逃し配管39と第2段セカンドオリフィスバルブ40を備えた第2段冷媒ガス逃し配管41とを設け、各バッファタンク36,37内の冷媒ガスを、常時、冷媒ガス給排系1の低圧系LPに流すことにより、冷媒ガス給排運転中に第1段蓄冷器15および第1段パルス管16等に誘起する循環流を抑制したものである。
【0055】
このように、本実施形態では、各パルス管16,18内の冷媒ガスの位相差を別個独立に調整する第1段バッファタンク36を第1段パルス管位相調整配管23に、第2段バッファタンク37を第2段パルス管位相調整配管28にそれぞれ設けるとともに、各バッファタンク36,37内の冷媒ガスを冷媒ガス給排系1の低圧系LPに流す第1段冷媒ガス逃し配管39および第2段冷媒ガス逃し配管41とをそれぞれ設けたので、冷媒ガスの圧力変動と体積流量との位相差を別個独立に調整でき、循環流を抑制でき、より一層冷凍効率を向上させることができ。
【0056】
なお、本実施形態は、第1段バッファタンク36を冷媒ガス給排系1の低圧系LPに接続させる第1段冷媒ガス逃し配管39と、第2段バッファタンク37を冷媒ガス給排系1の低圧系LPに接続させる第2段冷媒ガス逃し配管41とをそれぞれ設けたが、この例に限らず、例えば図4に示すように、第2段バッファタンク37を冷媒ガス給排系1の低圧系LPに接続させる第2段セカンドオリフィスバルブ40を備えた第2段冷媒ガス逃し配管41だけを設けてもよい。
【0057】
図5は、本発明に係るパルス管冷凍機および超電導磁石装置の第3実施形態を示す概念図である。なお、第1実施形態で用いた構成要素と同一要素には同一符号を付す。
【0058】
本実施形態に係るパルス管冷凍機は、冷媒ガス給排系1に第1ロータリーバルブ42と第2ロータリーバルブ43とを設けたものである。
【0059】
本実施形態は、冷媒ガス供給運転時、冷媒ガス給排系1のコンプレッサ6で生成された高圧・高温の冷媒ガスのうち、高温熱を吸熱器(図示せず)で吸収させた高圧の冷媒ガスの一部を高圧系HP、第1ロータリーバルブ42のポートPを介して極低温系4における第1段極低温冷凍部12の第1段蓄冷器15に供給するとともに、その残りを第2ロータリーバルブ43のポートPを介して第1段極低温冷凍部12の第1段パルス管16および第2段極低温冷凍部13の第2段パルス管18のそれぞれに供給する一方、冷媒ガス排気運転時、第1ロータリーバルブ42のポートPを破線で示す位置に回転移動させ、第1段蓄冷器15内の冷媒ガスをコンプレッサ6の低圧系LPに戻すとともに、第2ロータリーバルブ43のポートPを破線で示す位置に回転移動させ、第1段パルス管16および第2段パルス管18内の冷媒ガスをコンプレッサ6の低圧系LPに同時に戻し、冷媒ガス給排運転時の冷媒ガスの流量をより多量に処理し、冷凍効率を向上させたものである。なお、第1ロータリーバルブ42と第2ロータリーバルブ43とは、負荷に応じて回転切り替えを変えてもよい。
【0060】
このように、本実施形態は、冷媒ガス給排系1に第1ロータリーバルブ42と第2ロータリーバルブ43とを設けて冷媒ガス給排運転時の冷媒ガスの流量をより多く処理したので、冷凍効率をより一層向上させることができる。
【0061】
なお、本実施形態は、冷媒ガス給排系1に第1ロータリーバルブ42と第2ロータリーバルブ43とを設け、冷媒ガスの流量を多量に処理したが、この例に限らず、例えば、図6に示すように、冷媒ガス給排系1に第1ロータリーバルブ42、第2ロータリーバルブ43のほかに第3ロータリーバルブ44等のより多数個のロータリーバルブを設けてもよい。
【0062】
図7および図8は、本発明に係る超電導磁石装置を組み込んだパルス管冷凍機の実施形態を示す概念図である。なお、第1実施形態で用いた構成要素と同一要素には同一符号を付す。
【0063】
本実施形態に係る超電導磁石装置は、非磁性材で作製され、ボックス状に形成した真空容器44内に、非磁性材の熱シールド3aを設けるとともに、この熱シールド3a内に筒状の磁場空間46を介して超電導コイル47を収容する一方、超電導コイル47に伝熱板48、超電導コイル通電用パワーリード49を介してパルス管冷凍機50を接続させる構成になっている。なお、超電導コイル通電用パワーリード49は、熱シールド3aのアンカ51を介して外部に電源(図示せず)に接続している。
【0064】
パルス管冷凍機50は、極低温系4と冷媒ガス給排・位相調整兼用系52とを組み合せた構成になっている。
【0065】
この冷媒ガス給排・位相調整兼用系52は、図8に示すように、シリンダ53の中央に区画した第2段パルス管用ピストン室54に収容する第2段パルス管用ピストン54aと、この第2段パルス管用ピストン54aの外側に同心的に区画した第1段蓄冷器用ピストン室55に収容する第1段蓄冷器用ピストン55aと、この第1段蓄冷用ピストン55aの外側に同心的に区画した第1段パルス管用ピストン室56に収容する第1段パルス管用ピストン56aとをそれぞれ備えて構成される。
【0066】
また、冷媒ガス給排・位相調整兼用系52は、各ピストン室54,55,56に収容した各ピストン54a,55a,56aのそれぞれに、ロッド57a,57b,57cのそれぞれを介装させ、かつ各ピストン54a,55a,56aの位相角を適正に調整したクランク軸58に接続させ、モータ59の駆動力でクランク軸58を回転させ、クランク軸58の回転力で各ピストン54a,55a,56aのそれぞれを連続的に進退移動させるようになっている。なお、冷媒ガス給排・位相調整兼用系52に接続する極低温系4は、第1実施形態の構成と同一なので説明を省略する。
【0067】
このような構成を備えたパルス管冷凍機50は、冷媒ガス供給運転時、冷媒ガス給排・位相調整兼用系52のモータ59を駆動させ、クランク軸58を矢印ARの方向に向って回転させ、第1段蓄冷器用ピストン55aを図示の位置に移動させ、冷媒ガスを高圧に圧縮する。高圧ガスは、高温端部9を介して極低温系4の第1段蓄冷器15に供給され、ここで磁性蓄冷材で熱が吸収されて極低温になり、その一部を第1段冷却ステージ14、スペーサ33を介して第1段パルス管16に、残りを第2段蓄冷器15で再び熱が吸収されて極低温になった後、スペーサ34、第2段冷却ステージ10、整流板35を介して第2段パルス管18のそれぞれに供給される。
【0068】
このとき、パルス管冷凍機50は、クランク軸58の位相角の適正な調整の下、冷媒ガス供給運転とほぼ同時に、冷媒ガス排気運転を行っている。冷媒ガス排気運転時、パルス管冷凍機50は、冷媒ガス給排・位相調整兼用系52のモータ59の駆動力でクランク軸58を図示の位置(下死点)に移動させ、第2段パルス管用ピストン54a、第1段パルス管用ピストン56aをそれぞれ移動させ、第2段パルス管18、第1段パルス管16内の冷媒ガスを膨張させて温度を低くさせ、周囲の熱を奪いながら第2段冷却ステージ10、第1段冷却ステージ14を極低温に維持させ、さらに第2段蓄冷器17、第1段蓄冷器15の磁性蓄冷材に冷熱を与えて第1段蓄冷器用ピストン55に戻される。なお、本実施形態では、クランク軸58の適正な位相角調整の下、冷媒ガス供給運転、冷媒ガス排気運転を連続的に行い、熱シールド3aおよび超電導コイル3bを極低温に維持させている。
【0069】
このように、本実施形態は、パルス管冷凍機50を極低温系4と給排・位相調整兼用系52とを組み合せたので、構造簡素にして設置面積の少ないコンパクトな超電導磁石装置を実現することができる。
【0070】
【発明の効果】
以上の説明のとおり、本発明に係るパルス管冷凍機および超電導磁石装置は、極低温系を複数の極低温冷凍部に区分けし、区分けした複数の極低温冷凍部のうち、複数の蓄冷器と複数のパルス管とを同心的に配置して一つのシリンダ内に収容させるとともに、この極低温系に冷媒ガスの給排と冷媒ガスの圧力変動と体積流量との位相差を調整する冷媒ガス給排・位相調整兼用系とを組み合せて構成したので、構造簡素にして設置面積の少ないコンパクトな冷凍技術を実現することができる。
【0071】
その際、複数の蓄冷器に対応させて複数のパルス管を設け、冷媒ガスを複数のパルス管で膨張させたので、より一層冷凍効率を増加させることができる。
【図面の簡単な説明】
【図1】 本発明に係るパルス管冷凍機および超電導磁石装置の第1実施形態を示す概念図。
【図2】 図1のA−A矢視方向から見た切断断面図。
【図3】 本発明に係るパルス管冷凍機および超電導磁石装置の第2実施形態を示す概念図。
【図4】 本発明に係るパルス管冷凍機および超電導磁石装置の第2実施形態における変形例を示す概念図。
【図5】 本発明に係るパルス管冷凍機および超電導磁石装置の第3実施形態を示す概念図。
【図6】 本発明に係るパルス管冷凍機および超電導磁石装置の第3実施形態における変形例を示す概念図。
【図7】 本発明に係る超電導磁石装置を組み込んだパルス管冷凍機の実施形態を示す概念図。
【図8】 図7の全体のパルス管冷凍機から引き出した極低温系と冷媒ガス給排・位相調整兼用系とを示す部分拡大図
【図9】 従来のパルス管冷凍機を示す概念図。
【符号の説明】
1 冷媒ガス給排系
2a,2b 伝熱板
3a 熱シールド
3b 超電導コイル
4 極低温系
5 位相調整系
6 コンプレッサ
7 ロータリーバルブ
8 ポート
9 高温端部
10 第2段冷却ステージ
11 シリンダ
12 第1段極低温冷凍部
13 第2段極低温冷凍部
14 第1段冷却ステージ
15 第1段蓄冷器
16 第1段パルス管
17 第2段蓄冷器
18 第2段パルス管
19 第1段位相調整系
20 第2段位相調整系
21 バッファタンク
22 第1段オリフィスバルブ
23 第1段パルス管位相調整配管
24 蓄冷器冷媒ガス往復配管
25 第1段ダブルインレット
26 第1段バイパス配管
27 第2段オリフィスバルブ
28 第2段パルス管位相調整配管
29 第2段ダブルインレット
30 第2段バイパス配管
31 セカンドオリフィスバルブ
32 冷媒ガス逃し配管
33,34 スペーサ
35 整流板
36 第1段バッファタンク
37 第2段バッファタンク
38 第1段セカンドオリフィスバルブ
39 第1段冷媒ガス逃し配管
40 第2段セカンドオリフィスバルブ
41 第2段冷媒ガス逃し配管
42 第1ロータリーバルブ
43 第2ロータリーバルブ
44 第3ロータリーバルブ
45 真空容器
46 磁場空間
47 超電導コイル
48 伝熱板
49 超電導コイル通電用パワーリード
50 パルス管冷凍機
51 アンカ
52 冷媒ガス給排・位相調整兼用系
53 シリンダ
54 第2段パルス管用ピストン室
54a 第2段パルス管用ピストン
55 第1段蓄冷器用ピストン室
55a 第1段蓄冷器用ピストン
56 第1段パルス管用ピストン室
56a 第1段パルス管用ピストン
57a,57b,57c ロッド
58 クランク軸
59 モータ
100 コンプレッサ
101 ロータリーバルブ
102 第1段蓄冷器
103 第1段冷却ステージ
104 第1段パルス管
105 第2段蓄冷器
106 第2段冷却ステージ
107 第2段パルス管
108 第1段位相調整系
109 第2段位相調整系
110 第1段バッファタンク
111 第2段バッファタンク
112 ポート
113,114 冷媒ガス逃し系
115,116 伝熱板
117 熱シールド
118 超電導コイル
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a pulse tube refrigerator in which pulse tubes are arranged in a plurality of stages and adopt a multi-stage expansion systemAnd superconducting magnet deviceAbout.
[0002]
[Prior art]
For example, there are many types of regenerative refrigerators that operate superconducting magnet devices at extremely low temperatures, such as Gifford McMahon refrigerators and Stirling refrigerators. Recently, a pulse tube refrigerator that can be operated with low vibration because there is no drive part in the cryogenic part has recently attracted attention.
[0003]
In the pulse tube refrigerator, as shown in FIG. 9, the high-pressure refrigerant gas generated by the compressor 100 is supplied to the high-pressure system HP, the rotary valve 101, the first stage regenerator 102, the first stage during the high-pressure refrigerant gas supply operation. It is supplied via a cooling stage (first stage cold head) 103, and a part of the first stage cooling stage 103 is distributed and supplied to the first stage pulse tube 104, and the rest is supplied to the second stage regenerator 105, It is supplied to a separately provided second stage pulse tube 107 via a two stage cooling stage (second stage cold head) 106.
[0004]
The pulse tube refrigerator distributes and supplies high-pressure refrigerant gas from the compressor 100 to the first stage phase adjustment system 108 and the second stage phase adjustment system 109, respectively.
[0005]
A part of the high-pressure refrigerant gas distributed / supplied to the first-stage phase adjustment system 108 is distributed / supplied to the first-stage buffer tank 110, and the rest is distributed / supplied to the first-stage pulse tube 104. The high-pressure refrigerant gas distributed / supplied to the second-stage phase adjustment system 109 is partly distributed / supplied to the second-stage buffer tank 111, and the rest is supplied to the second-stage phase adjustment system 108, as in the first-stage phase adjustment system 108. Distribution and supply to the two-stage pulse tube 107.
[0006]
On the other hand, during the refrigerant gas exhaust operation, the pulse tube refrigerator rotates the port 112 of the rotary valve 101 to the position of the broken line in the figure, expands the refrigerant gas in the first stage pulse tube 104, and lowers the temperature. A part of the refrigerant is returned to the low-pressure system LP of the compressor 100 through the first-stage regenerator 102 and the port 112 of the rotary valve 101 together with the refrigerant gas from the second-stage regenerator 105 via the first-stage cooling stage 103.
[0007]
In addition, the pulse tube refrigerator uses the first stage phase adjustment system 108 and the port 112 of the rotary valve 101 together with the refrigerant gas in the first stage buffer tank 110 together with the refrigerant gas after expansion in the first stage pulse pipe 104. After that, the pressure is returned to the low pressure LP of the compressor 100.
[0008]
In addition, the pulse tube refrigerator uses the low-pressure system LP of the compressor 100 to pass the expanded refrigerant gas in the second-stage pulse tube 107 through the second-stage phase adjustment system 109 and the port 112 of the rotary valve 101 in the same manner as described above. It has returned to.
[0009]
The pulse tube refrigerator is provided with refrigerant gas escape systems 114 and 113 in the first stage buffer tank 110 and the second stage buffer tank 111, respectively, and the first stage regenerator 102 and the second stage regenerator 102 and the second stage buffer tank during the refrigerant gas supply / discharge operation. In order to suppress the circulation flow induced in the first-stage pulse tube 104 and the like, the refrigerant gas in the first-stage buffer tank 110 and the second-stage buffer tank 111 is always supplied to the low-pressure system LP of the compressor 100.
[0010]
As described above, in the conventional pulse tube refrigerator, the port 112 of the rotary valve 101 is alternately rotated to the high pressure system HP and the low pressure system LP to continuously supply and discharge the refrigerant gas. And the temperature is lowered to connect the first stage cooling stage 103 via the heat transfer plate 115, for example, to the heat shield 117, and to the second stage cooling stage 106 via the heat transfer plate 116, for example, superconductivity. The coil 118 is connected, and the heat shield 117 and the superconducting coil 118 are maintained in a cryogenic state.
[0011]
[Problems to be solved by the invention]
The conventional pulse tube refrigerator shown in FIG. 9 does not have a drive unit in the first stage cooling stage 103 or the second stage cooling stage 106, and therefore has an excellent aspect in which the operation is low vibration, but the refrigerant gas The part that expands and the part that stores cold cannot be used together in a single container. For this reason, if the refrigeration capacity is the same, the volume of the cylinder becomes larger compared to Gifford McMahon refrigerators and Stirling refrigerators. There were problems such as requiring a large installation area.
[0012]
In addition, the conventional pulse tube refrigerator shown in FIG. 9 includes a multi-stage expansion portion of a first stage pulse tube 104 and a second stage pulse tube 107 in order to improve the refrigerating capacity. Since the pulse tube 107 is disposed outside the first-stage pulse tube 104, the second-stage cooling stage 106 must be machined in consideration of the installation position of the second-stage pulse tube 107. There was an inconvenience that required a lot of time.
[0013]
Recently, a two-stage pulse tube refrigerator has also been proposed, but there is no independent phase adjustment unit for each stage, and therefore, the increase in the refrigerating capacity is slight, and the superconducting coil 3b having a relatively large capacity. There is a problem that it is not possible to maintain the temperature at a very low temperature and to perform the energization operation.
[0014]
  The present invention has been made based on such circumstances, and has a simple structure multi-stage expansion type pulse tube, and the phase of each pulse tube can be independently adjusted, and the refrigeration efficiency is further improved. Tube refrigeratorAnd superconducting magnet deviceThe purpose is to provide.
[0015]
[Means for Solving the Problems]
  In order to achieve the above object, the pulse tube refrigerator according to the present invention is as described in claim 1,Refrigerant gas supply / exhaust / phase adjustment system that adjusts the phase difference between refrigerant gas pressure fluctuation and volume flow rate when supplying / exhausting refrigerant gas to / from the system, and this refrigerant gas supply / exhaust / phase adjustment A cryogenic system having a cryogenic system maintained at a cryogenic temperature by supplying and discharging refrigerant gas by the system, wherein the cryogenic system is divided into a first-stage cryogenic refrigerator and a second cryogenic system, respectively. A stage cryogenic refrigeration unit, combined with a large-diameter part and a relatively small-diameter part, combined with a high-temperature end on the head, a first-stage cooling stage in the middle, and a second-stage cooling on the bottom Each of which has a stage, and a cylinder in which the first-stage cryogenic refrigeration unit is accommodated in the large-diameter portion, and the second-stage cryogenic refrigeration unit is accommodated in the relatively small-diameter portion, and The second stage cryogenic refrigeration unit is the cylinder A second-stage pulse tube disposed in the center of the large-diameter portion and extending from the high-temperature end toward the second-stage cooling stage, and concentrically disposed outside the second-stage pulse tube and the first-stage cooling stage. A second-stage regenerator extending from the second-stage regenerator to the second-stage cooling stage at a relatively small diameter portion of the cylinder, and the second-stage cooling stage side between the second-stage regenerator and the second-stage pulse tube And a rectifying plate that rectifies the flow of the refrigerant gas flowing from the spacer to the second-stage pulse tube, and the first-stage cryogenic refrigeration unit includes the spacer A first-stage regenerator that is concentrically disposed outside the second-stage pulse tube at the center of the large-diameter portion of the cylinder and extends from the high-temperature end toward the first-stage cooling stage; Gas supply / discharge / phase adjustment The system is partitioned in the center of the casing and accommodates a second-stage pulse tube piston chamber that houses the second-stage regenerator piston, and is concentrically partitioned outside the second-stage pulse tube piston chamber and the first-stage regenerator piston. A first-stage regenerator piston chamber, a first-stage pulse tube piston chamber that is concentrically partitioned outside the first-stage regenerator piston chamber and accommodates a first-stage pulse tube piston, and the second-stage piston chamber. A piston for a pulse tube, a piston for the first-stage regenerator, and a crankshaft that moves the first-stage pulse tube piston forward and backward and adjusts the phase angle thereof.Is.
[0016]
  In order to achieve the above object, the pulse tube refrigerator according to the present invention is as described in claim 2,The first stage cryogenic refrigeration unit is disposed concentrically outside the first stage regenerator of the large-diameter portion of the cylinder, and extends from the high temperature end toward the first stage cooling stage. A spacer provided on the first stage cooling stage between the first stage pulse tube and the first regenerator for narrowing the passage of the refrigerant gas.Is.
  In order to achieve the above object, a pulse tube refrigerator according to the present invention is provided in a pulse tube refrigerator according to claim 1 or 2 and a vacuum vessel as described in claim 3. A heat shield connected to the first stage cooling stage via a heat transfer plate, and a superconducting coil housed in the heat shield and connected to the second stage cooling stage via a second heat transfer plate. It is a thing.
[0019]
  In order to achieve the above-described object, the pulse tube refrigerator according to the present invention provides:Claim 3As described, the phase adjustment system is divided into a first stage phase adjustment system and a second stage phase adjustment system, and each stage phase adjustment system is divided into a first stage pole of a refrigerant gas supply / discharge system and a cryogenic system. It is connected to a regenerator refrigerant gas reciprocating pipe that connects the low-temperature refrigeration unit to each other.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, the pulse tube refrigerator according to the present invention.And superconducting magnet deviceThe embodiment will be described with reference to the drawings and the reference numerals attached to the drawings.
[0032]
FIG. 1 is a conceptual diagram showing a first embodiment of a pulse tube refrigerator according to the present invention.
[0033]
The pulse tube refrigerator according to the present embodiment is connected to the refrigerant gas supply / discharge system 1, the heat transfer plates 2a and 2b, the heat shield 3a surrounding the superconducting coil 3b, and the superconducting coil 3b connected to the heat transfer plate 2b. Are each provided with a cryogenic system 4 that maintains a cryogenic state, and a phase adjustment system 5 that improves the refrigeration efficiency of the cryogenic system 4.
[0034]
The refrigerant gas supply / discharge system 1 includes a compressor 6 and a rotary valve 7. When supplying the refrigerant gas to the cryogenic system 4, the refrigerant gas supply / exhaust system 1 rotates the rotary valve 7 to connect the port 8 to the regenerator refrigerant gas reciprocating pipe 24. (In the state shown in the figure) The high-pressure refrigerant gas generated by the compressor 6 is supplied to the cryogenic system 4 via the high-pressure system HP, while the refrigerant gas from the cryogenic system 4 is supplied to the compressor 6 via the low-pressure system LP. When returning, the port 8 of the rotary valve 7 is rotationally moved to the position indicated by the broken line to return the refrigerant gas from the cryogenic system 4 to the low-pressure system LP. The heat shield 3a and the superconducting coil 3b are cooled by repeatedly maintaining the cryogenic system 4 in a cryogenic state.
[0035]
Further, the cryogenic system 4 has a top portion closed by a high temperature end portion 9, a first stage cooling stage (first stage cold head) 14 is provided at an intermediate portion, and a bottom section is a second stage cooling stage (second stage cold head). The cylinder 11 closed by 10 is divided into a first stage cryogenic refrigeration unit 12 that is maintained at a cryogenic temperature of 50K, for example, and a second stage cryogenic refrigeration unit 13 that is maintained at a cryogenic temperature of 4K to 20K, for example. It is configured to accommodate.
[0036]
The first stage cryogenic refrigeration unit 12 includes a first stage regenerator 15 disposed between the high temperature end portion 9 and a first stage cooling stage (first stage cold head) 14, and the first stage regenerator 15. As shown in FIG. 2, the outside is provided with a first stage pulse tube 16 concentrically surrounding and arranged. The first stage regenerator 15 is filled with a spherical diameter magnetic regenerator material. The first stage pulse tube 16 is formed as a cylindrical hollow tube.
[0037]
The second stage cryogenic refrigeration unit 13 is concentrically disposed in the second stage regenerator 17 extending from the first stage cooling stage 14 toward the second stage cooling stage 10 and the first stage cryogenic refrigeration unit 12. The second stage pulse tube 18 extending from the center of the high temperature end portion 9 toward the second stage cooling stage 10 is provided. The second stage regenerator 17 is also filled with a magnetic regenerator material in the same manner as the first stage regenerator 15. Further, the second stage pulse tube 18 is also cylindrical and hollow like the first stage pulse tube 16.
[0038]
On the other hand, the phase adjustment system 5 is divided into a first stage phase adjustment system 19 and a second stage phase adjustment system 20.
[0039]
The first stage phase adjustment system 19 includes a first stage pulse tube phase adjustment pipe 23 having a buffer tank 21 and a first stage orifice valve 22 which are shared with the second stage phase adjustment system 20, and the first stage. The pulse tube phase adjusting pipe 23 is connected to a regenerator refrigerant gas reciprocating pipe 24 for supplying and discharging refrigerant gas between the refrigerant gas supply / exhaust system 1 and the cryogenic system 4, and a first stage double inlet valve 25 is provided in the middle. An intervening first stage bypass pipe 26 and effectively adjusting the phase difference between the pressure fluctuation in the first stage pulse pipe 16 and the volume flow rate to, for example, 90 ° or more when the refrigerant gas is exhausted. While expanding the refrigerant gas, when the refrigerant gas is supplied, the flow rate of the refrigerant gas supplied from the compressor 6 to the first stage regenerator 15 is relatively reduced, and the remainder is supplied to the first stage pulse tube 16 to effectively improve the refrigeration efficiency. It is supposed to increase.
[0040]
Similarly to the first stage phase adjustment system 19, the second stage phase adjustment system 20 is also a second stage pulse tube including a buffer tank 21 common to the first stage phase adjustment system 19 and a second stage orifice valve 27. The phase adjustment pipe 28 and the second stage pulse pipe phase adjustment pipe 28 are connected to a regenerator refrigerant gas reciprocating pipe 24 for supplying and discharging refrigerant gas between the refrigerant gas supply / discharge system 1 and the cryogenic system 4; A second-stage bypass pipe 30 having a second-stage double inlet valve 29 interposed therebetween is provided to allow effective expansion when refrigerant gas is exhausted and appropriate flow distribution when refrigerant gas is supplied. Yes.
[0041]
Further, the first stage phase adjustment system 19 and the second stage phase adjustment system 20 are provided with a refrigerant gas escape pipe 32 that is connected to the low pressure system LP of the compressor 6 by interposing a second orifice valve 31 in a common buffer tank 21. The refrigerant gas from the buffer tank 21 is always supplied to the low pressure system LP of the compressor 6 through the refrigerant gas escape pipe 32, and the first stage regenerator 15, the first stage pulse tube 16 and the like during the refrigerant gas supply / discharge operation The circulating flow generated based on the steady flow added to the oscillating flow of the refrigerant gas inside is suppressed.
[0042]
In the pulse tube refrigerator having such a configuration, during the refrigerant gas supply operation, among the high-pressure and high-temperature refrigerant gas generated by the compressor 6 of the refrigerant gas supply / exhaust system 1, high-temperature heat is absorbed by a heat absorber (not shown). ) Is supplied to the regenerator refrigerant gas reciprocating pipe 24 through the high-pressure system HP and the port 8 of the rotary valve 7, where the first-stage cold storage of the first-stage cryogenic refrigeration unit 12 is supplied. One through the first stage bypass pipe 26 and the first stage pulse pipe phase adjusting pipe 23, the other into the first stage pulse pipe 16, the other into the buffer tank 21, and the second stage bypass pipe 30 and the second stage bypass pipe 30. Through the two-stage pulse tube phase adjusting pipe 28, one is distributed to the second-stage pulse tube 18 and the other is distributed to the buffer tank 21 at an appropriate flow rate.
[0043]
The refrigerant gas distributed to the first-stage regenerator 15 absorbs heat with the magnetic regenerator material and makes it extremely low temperature with the first-stage cooling stage 14, and a part of the refrigerant gas enters the first-stage pulse tube 16. The rest is supplied to each of the second stage regenerators 17. The first-stage regenerator 15 is provided with a spacer 33 to narrow the passage when distributing the refrigerant gas to the first-stage pulse tube 16, and the heat transfer coefficient is increased under a high flow rate to increase the first-stage cooling stage. 14 is effectively maintained in a cryogenic state.
[0044]
  Further, the refrigerant gas distributed to the second-stage regenerator 17 also absorbs heat with the magnetic regenerator material in the same manner as described above, and further the spacer 34.To narrow the passageThe heat transfer coefficient of the refrigerant gas is increased, and the rectifying plate 35 gives the refrigerant gas a rectifying effect and is supplied to the second-stage pulse tube 18.
[0045]
The first-stage pulse tube 16 is supplied with refrigerant gas from the first-stage pulse tube phase adjustment pipe 23 in addition to the first-stage regenerator 15, but the first-stage orifice valve 22 and the first-stage double valve are also supplied. The valve opening of the inlet valve 25 is adjusted so that the pressure is balanced at a position on the first cooling stage 14 side. The second-stage pulse tube 18 is also pressure-balanced at the position on the second-stage cooling stage 10 side as described above.
[0046]
On the other hand, when the port 8 of the rotary valve 7 of the refrigerant gas supply / exhaust system 1 is rotationally moved to the position indicated by the broken line during the refrigerant gas exhaust operation, the refrigerant gas in the first stage pulse tube 16 decreases its temperature while expanding. The temperature of the surroundings is lowered while a part of the first stage cooling stage 14 and the first stage regenerator 15 flows, and the heat shield 3a connected via the heat transfer plate 2a is maintained in a cryogenic state. The remainder and the refrigerant gas returned from the buffer tank 21 through the first stage pulse tube phase adjusting pipe 23 and the first stage bypass pipe 26 are refrigerating gas from the first stage regenerator 15 through the regenerator refrigerant gas reciprocating pipe 24. The combined refrigerant gas is returned to the low-pressure system LP of the compressor 6. Note that the refrigerant gas in the second pulse tube 18 is also returned to the low-pressure system LP of the compressor 6 in the same manner as described above.
[0047]
At that time, each refrigerant gas in the first stage regenerator 15, the first stage pulse tube 16, or the second stage regenerator 17, and the second stage pulse tube 18 induces a circulation flow. The gas is returned to the low pressure system LP of the compressor 6 through the refrigerant gas escape pipe 32 to suppress the circulation flow.
[0048]
As described above, in this embodiment, the cryogenic system 4 is divided into the first stage cryogenic refrigeration unit 12 and the second stage cryogenic refrigeration unit 13, and the divided first stage cryogenic refrigeration unit 12 and first stage are divided. When the cryogenic refrigeration unit 13 is housed in a cylinder 11 having a high temperature end 9 at the top, a first cooling stage 14 at the middle, and a second cooling stage 10 at the bottom, The second stage pulse tube 18 of the second stage cryogenic refrigeration unit 13 extending from the high temperature end 9 toward the second stage cooling stage 10 is disposed in the section, and the outside of the second stage pulse tube 18 is concentrically disposed. In addition, the first stage regenerator 15 of the first stage cryogenic refrigeration unit 12 extending from the high temperature end portion 9 toward the first stage cooling stage 14 is disposed, and the outside of the first stage regenerator 15 is concentric. And extending from the high temperature end 9 toward the first cooling stage 14 The first stage pulse tube 16 of the first stage cryogenic refrigeration unit 12 is disposed, while the outside of the second stage pulse tube 18 of the second stage cryogenic refrigeration unit 13 is concentrically disposed, and the first stage cooling is performed. Since the second-stage regenerator 17 extending from the stage 14 toward the second-stage cooling stage 10 is arranged, the structure can be simplified and a pulse tube refrigerator with a small installation area can be realized.
[0049]
At that time, since the shared buffer tank 21 is provided in the first stage phase adjustment system 19 and the second stage phase adjustment system 20 connected to the cryogenic system 4, the structure of the pulse tube refrigerator can be further simplified. it can.
[0050]
  FIG. 3 shows a pulse tube refrigerator according to the present invention.And superconducting magnet deviceIt is a conceptual diagram which shows 2nd Embodiment of this.
[0051]
In addition, the same code | symbol is attached | subjected to the same element as the component used in 1st Embodiment.
[0052]
The pulse tube refrigerator according to the present embodiment includes a first stage pulse of a first stage phase adjustment system 19 connected to each of the first stage cryogenic refrigeration unit 12 and the second stage cryogenic refrigeration unit 13 of the cryogenic system 4. The first-stage buffer tank 36 and the second-stage buffer tank 37 are respectively provided in the tube phase adjustment pipe 23 and the second-stage pulse tube phase adjustment pipe 28 of the second-stage phase adjustment system 20.
[0053]
In this embodiment, when the refrigerant gas in the first stage pulse tube 16 of the first stage cryogenic refrigeration unit 12 and the second stage pulse tube 18 of the second stage cryogenic refrigeration unit 13 is expanded, pressure fluctuation and volume flow rate are increased. If the phase difference between the first stage and the second stage is adjusted, the refrigeration efficiency is improved. The first stage buffer tank 36 is provided in the first stage pulse tube phase adjustment pipe 23, and the second stage pulse tube phase adjustment pipe 28 is provided in the second stage. A two-stage buffer tank 37 is provided, and the phase difference of the refrigerant gas in each pulse tube 16, 18 is adjusted independently.
[0054]
Further, in the present embodiment, the first stage buffer tank 36 is provided in the first stage pulse tube phase adjustment pipe 23, and the second stage buffer tank 37 is provided in the second stage pulse pipe phase adjustment pipe 28. A first stage refrigerant gas relief pipe 39 provided with a first stage second orifice valve 38 and a second stage second orifice valve 40 provided with a first stage second orifice valve 38 connected to the low pressure system LP of the refrigerant gas supply / exhaust system 1 from each of the tanks 36 and 37. A two-stage refrigerant gas escape pipe 41 is provided, and the refrigerant gas in each of the buffer tanks 36 and 37 is always passed through the low-pressure system LP of the refrigerant gas supply / exhaust system 1, thereby allowing the first stage during the refrigerant gas supply / discharge operation. The circulating flow induced in the regenerator 15 and the first stage pulse tube 16 is suppressed.
[0055]
As described above, in the present embodiment, the first-stage buffer tank 36 that separately adjusts the phase difference of the refrigerant gas in each pulse tube 16, 18 is used as the first-stage pulse tube phase adjustment pipe 23, and the second-stage buffer tank 36. A tank 37 is provided in each of the second-stage pulse tube phase adjustment pipes 28, and the first-stage refrigerant gas relief pipe 39 and the first-stage refrigerant gas relief pipes 39 that flow the refrigerant gas in the buffer tanks 36 and 37 to the low-pressure system LP of the refrigerant gas supply / discharge system 1. Since the two-stage refrigerant gas escape pipe 41 is provided, the phase difference between the refrigerant gas pressure fluctuation and the volume flow rate can be adjusted independently, the circulation flow can be suppressed, and the refrigeration efficiency can be further improved.
[0056]
In the present embodiment, the first-stage refrigerant gas relief pipe 39 that connects the first-stage buffer tank 36 to the low-pressure system LP of the refrigerant gas supply / exhaust system 1 and the second-stage buffer tank 37 are connected to the refrigerant gas supply / exhaust system 1. The second-stage refrigerant gas escape pipe 41 connected to the low-pressure system LP is provided, but the present invention is not limited to this example. For example, as shown in FIG. 4, the second-stage buffer tank 37 is connected to the refrigerant gas supply / exhaust system 1. Only the second stage refrigerant gas escape pipe 41 provided with the second stage second orifice valve 40 connected to the low pressure system LP may be provided.
[0057]
  FIG. 5 shows a pulse tube refrigerator according to the present invention.And superconducting magnet deviceIt is a conceptual diagram which shows 3rd Embodiment of this. In addition, the same code | symbol is attached | subjected to the same element as the component used in 1st Embodiment.
[0058]
In the pulse tube refrigerator according to this embodiment, a first rotary valve 42 and a second rotary valve 43 are provided in the refrigerant gas supply / discharge system 1.
[0059]
This embodiment is a high-pressure refrigerant in which high-temperature heat is absorbed by a heat absorber (not shown) among the high-pressure and high-temperature refrigerant gas generated by the compressor 6 of the refrigerant gas supply / exhaust system 1 during the refrigerant gas supply operation. Part of the gas is high-pressure HP, port P of the first rotary valve 421Is supplied to the first stage regenerator 15 of the first stage cryogenic refrigeration unit 12 in the cryogenic system 4 and the rest is supplied to the port P of the second rotary valve 43.3Are supplied to the first stage pulse tube 16 of the first stage cryogenic refrigeration unit 12 and the second stage pulse tube 18 of the second stage cryogenic refrigeration unit 13, respectively, while the refrigerant is being exhausted, the first rotary Port P of valve 422Is moved to the position indicated by the broken line to return the refrigerant gas in the first-stage regenerator 15 to the low-pressure system LP of the compressor 6 and to the port P of the second rotary valve 43.4To the position indicated by the broken line, the refrigerant gas in the first stage pulse tube 16 and the second stage pulse tube 18 is simultaneously returned to the low pressure system LP of the compressor 6, and the flow rate of the refrigerant gas during the refrigerant gas supply / discharge operation is increased. A larger amount is processed to improve the refrigeration efficiency. The first rotary valve 42 and the second rotary valve 43 may change the rotation according to the load.
[0060]
As described above, in the present embodiment, the refrigerant gas supply / discharge system 1 is provided with the first rotary valve 42 and the second rotary valve 43 so that the flow rate of the refrigerant gas during the refrigerant gas supply / discharge operation is increased. Efficiency can be further improved.
[0061]
In the present embodiment, the first rotary valve 42 and the second rotary valve 43 are provided in the refrigerant gas supply / exhaust system 1 to process a large amount of refrigerant gas. However, the present invention is not limited to this example. As shown in FIG. 4, in addition to the first rotary valve 42 and the second rotary valve 43, a larger number of rotary valves such as the third rotary valve 44 may be provided in the refrigerant gas supply / exhaust system 1.
[0062]
  FIG.And FIG.In the present inventionOf a pulse tube refrigerator incorporating such a superconducting magnet deviceIt is a conceptual diagram which shows embodiment. In addition, the same code | symbol is attached | subjected to the same element as the component used in 1st Embodiment.
[0063]
The superconducting magnet device according to the present embodiment is provided with a nonmagnetic magnetic heat shield 3a in a vacuum container 44 made of a nonmagnetic material and formed in a box shape, and a cylindrical magnetic field space in the heat shield 3a. While the superconducting coil 47 is accommodated via 46, the pulse tube refrigerator 50 is connected to the superconducting coil 47 via a heat transfer plate 48 and a superconducting coil energizing power lead 49. The superconducting coil energizing power lead 49 is externally connected to a power source (not shown) via the anchor 51 of the heat shield 3a.
[0064]
The pulse tube refrigerator 50 has a configuration in which the cryogenic system 4 and the refrigerant gas supply / discharge / phase adjustment system 52 are combined.
[0065]
As shown in FIG. 8, the refrigerant gas supply / discharge / phase adjustment system 52 includes a second-stage pulse tube piston 54 a housed in a second-stage pulse tube piston chamber 54 defined in the center of the cylinder 53, and the second-stage pulse tube piston 54 a. The first stage regenerator piston 55a accommodated in the first stage regenerator piston chamber 55 concentrically partitioned outside the stage pulse tube piston 54a, and the first stage regenerator piston 55a concentrically partitioned outside the first stage regenerator piston 55a. And a first-stage pulse tube piston 56a housed in the first-stage pulse tube piston chamber 56.
[0066]
The refrigerant gas supply / discharge / phase adjustment combined system 52 includes rods 57a, 57b, and 57c interposed in the pistons 54a, 55a, and 56a accommodated in the piston chambers 54, 55, and 56, respectively. Each piston 54a, 55a, 56a is connected to a crankshaft 58 with the phase angle adjusted appropriately, the crankshaft 58 is rotated by the driving force of the motor 59, and the rotational force of the crankshaft 58 is used to rotate each piston 54a, 55a, 56a. Each is continuously moved forward and backward. The cryogenic system 4 connected to the refrigerant gas supply / discharge / phase adjustment system 52 has the same configuration as that of the first embodiment, and a description thereof will be omitted.
[0067]
The pulse tube refrigerator 50 having such a configuration drives the motor 59 of the refrigerant gas supply / discharge / phase adjustment system 52 and rotates the crankshaft 58 in the direction of the arrow AR during the refrigerant gas supply operation. The first stage regenerator piston 55a is moved to the position shown in the figure to compress the refrigerant gas to a high pressure. The high-pressure gas is supplied to the first-stage regenerator 15 of the cryogenic system 4 via the high-temperature end 9, where heat is absorbed by the magnetic regenerator material and becomes a very low temperature, and a part thereof is cooled to the first stage. After the stage 14 and the spacer 33 are passed through the first stage pulse tube 16 and the remainder is absorbed again by the second stage regenerator 15 to become a very low temperature, the spacer 34, the second stage cooling stage 10, the current plate 35 to be supplied to each of the second stage pulse tubes 18.
[0068]
At this time, the pulse tube refrigerator 50 performs the refrigerant gas exhaust operation almost simultaneously with the refrigerant gas supply operation under proper adjustment of the phase angle of the crankshaft 58. During the refrigerant gas exhaust operation, the pulse tube refrigerator 50 moves the crankshaft 58 to the position shown in the drawing (bottom dead center) by the driving force of the motor 59 of the refrigerant gas supply / discharge / phase adjustment system 52, and the second stage pulse. The pipe piston 54a and the first-stage pulse pipe piston 56a are respectively moved to expand the refrigerant gas in the second-stage pulse pipe 18 and the first-stage pulse pipe 16 to lower the temperature and take away the surrounding heat. The stage cooling stage 10 and the first stage cooling stage 14 are maintained at an extremely low temperature, and further, cold heat is applied to the magnetic regenerator material of the second stage regenerator 17 and the first stage regenerator 15 and returned to the piston 55 for the first stage regenerator. It is. In the present embodiment, the refrigerant gas supply operation and the refrigerant gas exhaust operation are continuously performed under the appropriate phase angle adjustment of the crankshaft 58, and the heat shield 3a and the superconducting coil 3b are maintained at an extremely low temperature.
[0069]
Thus, in this embodiment, since the pulse tube refrigerator 50 is combined with the cryogenic system 4 and the combined supply / discharge / phase adjustment system 52, the structure is simplified and a compact superconducting magnet apparatus with a small installation area is realized. be able to.
[0070]
【The invention's effect】
  As described above, the pulse tube refrigerator according to the present invention.And superconducting magnet deviceDivides the cryogenic system into a plurality of cryogenic refrigeration units, and among the divided cryogenic refrigeration units, a plurality of regenerators and a plurality of pulse tubes are arranged concentrically and accommodated in one cylinder MakeAt the same time, this cryogenic system is combined with a refrigerant gas supply / discharge phase adjustment system that adjusts the phase difference between refrigerant gas supply and discharge, refrigerant gas pressure fluctuation and volume flow rate,Compact structure and small installation areaReal freezing technologycan do.
[0071]
At that time, since a plurality of pulse tubes are provided corresponding to the plurality of regenerators and the refrigerant gas is expanded by the plurality of pulse tubes, the refrigeration efficiency can be further increased.
[Brief description of the drawings]
1 is a pulse tube refrigerator according to the present invention.And superconducting magnet deviceThe conceptual diagram which shows 1st Embodiment.
FIG. 2 is a cross-sectional view taken from the direction of arrows AA in FIG.
FIG. 3 is a pulse tube refrigerator according to the present invention.And superconducting magnet deviceThe conceptual diagram which shows 2nd Embodiment.
FIG. 4 is a pulse tube refrigerator according to the present invention.And superconducting magnet deviceThe conceptual diagram which shows the modification in 2nd Embodiment.
FIG. 5 is a pulse tube refrigerator according to the present invention.And superconducting magnet deviceThe conceptual diagram which shows 3rd Embodiment of this.
FIG. 6 shows a pulse tube refrigerator according to the present invention.And superconducting magnet deviceThe conceptual diagram which shows the modification in 3rd Embodiment of this.
FIG. 7 shows the present invention.Of a pulse tube refrigerator incorporating such a superconducting magnet deviceThe conceptual diagram which shows embodiment.
[Fig. 8]FIG. 7 is a partially enlarged view showing a cryogenic system drawn from the entire pulse tube refrigerator of FIG. 7 and a refrigerant gas supply / discharge / phase adjustment combined system..
FIG. 9 is a conceptual diagram showing a conventional pulse tube refrigerator.
[Explanation of symbols]
1 Refrigerant gas supply / discharge system
2a, 2b Heat transfer plate
3a heat shield
3b Superconducting coil
4 Cryogenic system
5 Phase adjustment system
6 Compressor
7 Rotary valve
8 ports
9 High temperature end
10 Second cooling stage
11 cylinders
12 1st stage cryogenic freezing section
13 Second stage cryogenic freezing section
14 First cooling stage
15 First stage regenerator
16 First stage pulse tube
17 Second stage regenerator
18 Second stage pulse tube
19 First stage phase adjustment system
20 Second stage phase adjustment system
21 Buffer tank
22 First stage orifice valve
23 First stage pulse tube phase adjustment piping
24 Regenerator refrigerant gas reciprocating piping
25 1st stage double inlet
26 First stage bypass piping
27 Second stage orifice valve
28 Second stage pulse tube phase adjustment piping
29 Second stage double inlet
30 Second stage bypass piping
31 Second orifice valve
32 Refrigerant gas escape piping
33, 34 Spacer
35 Current plate
36 1st stage buffer tank
37 Second stage buffer tank
38 First stage second orifice valve
39 First stage refrigerant gas relief piping
40 Second stage second orifice valve
41 Second stage refrigerant gas relief piping
42 First rotary valve
43 Second rotary valve
44 3rd rotary valve
45 Vacuum container
46 Magnetic field space
47 Superconducting coil
48 Heat transfer plate
49 Power Lead for Superconducting Coil Energization
50 Pulse tube refrigerator
51 anchor
52 Refrigerant gas supply / discharge / phase adjustment system
53 cylinders
54 Piston chamber for second stage pulse tube
54a Second stage pulse tube piston
55 Piston chamber for first stage regenerator
55a Piston for first stage regenerator
56 Piston chamber for first stage pulse tube
56a Piston for first stage pulse tube
57a, 57b, 57c Rod
58 crankshaft
59 Motor
100 compressor
101 Rotary valve
102 First stage regenerator
103 1st stage cooling stage
104 First stage pulse tube
105 Second stage regenerator
106 Second stage cooling stage
107 Second stage pulse tube
108 First stage phase adjustment system
109 Second stage phase adjustment system
110 First stage buffer tank
111 Second stage buffer tank
112 ports
113,114 Refrigerant gas escape system
115,116 Heat transfer plate
117 heat shield
118 Superconducting coil

Claims (3)

系内に冷媒ガスを給排するとともに給排する際の冷媒ガスの圧力変動と体積流量との位相差を調整する冷媒ガス給排・位相調整兼用系と、この冷媒ガス給排・位相調整兼用系による冷媒ガスの給排により極低温に維持させる極低温系とを具備するパルス式冷凍機であって、Refrigerant gas supply / exhaust / phase adjustment system that adjusts the phase difference between refrigerant gas pressure fluctuation and volume flow rate when supplying / exhausting refrigerant gas to / from the system, and this refrigerant gas supply / exhaust / phase adjustment A pulsed refrigerator having a cryogenic system maintained at a cryogenic temperature by supplying and discharging refrigerant gas by the system,
前記極低温系は、The cryogenic system is
区分けしてそれぞれ設けられる第1段極低温冷凍部および第2段極低温冷凍部と、A first-stage cryogenic refrigeration unit and a second-stage cryogenic refrigeration unit provided separately,
大口径部分と比較的小口径部分として形成して組み合わせてなり、頭部側に高温端部を、中間部分に第1段冷却ステージを、底部側に第2段冷却ステージをそれぞれ備え、かつ、前記大口径部分に前記第1段極低温冷凍部を、前記比較的小口径部分に前記第2段極低温冷凍部をそれぞれ収容させてなるシリンダと、A large-diameter portion and a relatively small-diameter portion are formed and combined. A cylinder in which the first-stage cryogenic refrigeration unit is accommodated in the large-diameter portion, and the second-stage cryogenic refrigeration unit is accommodated in the relatively small-diameter portion;
を備え、かつAnd
前記第2段極低温冷凍部は、前記シリンダの大口径部分の中央に配置され前記高温端部から前記第2段冷却ステージに向かって延びる第2段パルス管と、この第2段パルス管の外側に同心的に配置され前記第1段冷却ステージから前記シリンダの比較的小口径部分の第2段冷却ステージに向かって延びる第2段蓄冷器と、この第2段蓄冷器と前記第2段パルス管との間の前記第2段冷却ステージ側に設けられ前記冷媒ガスの通路を狭めるスペーサと、このスペーサから前記第2段パルス管に流れる前記冷媒ガスの流れを整流する整流板と、を備え、The second-stage cryogenic refrigeration unit is arranged at the center of the large-diameter portion of the cylinder and extends from the high-temperature end to the second-stage cooling stage, and the second-stage pulse tube A second-stage regenerator disposed concentrically on the outside and extending from the first-stage cooling stage toward the second-stage cooling stage at a relatively small diameter portion of the cylinder; the second-stage regenerator and the second stage A spacer provided on the second cooling stage side between the pulse tube and narrowing the refrigerant gas passage; and a rectifying plate for rectifying the flow of the refrigerant gas flowing from the spacer to the second pulse tube. Prepared,
前記第1段極低温冷凍部は、前記シリンダの大口径部分の中央で前記第2段パルス管の外側に同心的に配置され前記高温端部から前記第1段冷却ステージに向かって延びる第1段蓄冷器、を備え、The first stage cryogenic refrigeration unit is arranged concentrically outside the second stage pulse tube at the center of the large-diameter portion of the cylinder, and extends from the high temperature end toward the first stage cooling stage. A stage regenerator,
さらに、前記冷媒ガス給排・位相調整兼用系は、Furthermore, the refrigerant gas supply / discharge / phase adjustment combined system is:
ケーシング内の中央に区画し第2段蓄冷器用ピストンを収容する第2段パルス管用ピストン室と、A second-stage pulse tube piston chamber that is partitioned in the center of the casing and accommodates the second-stage regenerator piston;
この第2段パルス管用ピストン室の外側に同心的に区画し第1段蓄冷器用ピストンを収容する第1段蓄冷器用ピストン室と、A first-stage regenerator piston chamber that is concentrically partitioned outside the second-stage pulse tube piston chamber and houses a first-stage regenerator piston;
この第1段蓄冷器用ピストン室の外側に同心的に区画し第1段パルス管用ピストンを収容する第1段パルス管用ピストン室と、A first-stage pulse tube piston chamber that is concentrically partitioned outside the first-stage regenerator piston chamber and accommodates the first-stage pulse tube piston;
前記第2段パルス管用ピストン、前記第1段蓄冷器用ピストンおよび前記第1段パルス管用ピストンのそれぞれを進退移動させるとともにそれぞれの位相角を調整するクランク軸と、を備えたA crankshaft that moves the second-stage pulse tube piston, the first-stage regenerator piston, and the first-stage pulse tube piston forward and backward, and adjusts the phase angle thereof.
ことを特徴とするパルス管冷凍機。A pulse tube refrigerator characterized by that.
前記第1段極低温冷凍部は、シリンダの大口径部分の第1段蓄冷器の外側に同心的に配置され前記高温端部から前記第1段冷却ステージに向かって延びる第1段パルス管と、この第1段パルス管と前記第1の蓄冷器との間の前記第1段冷却ステージに設けられ前記冷媒ガスの通路を狭めるスペーサと、を備えたことを特徴とする請求項1記載のパルス管冷凍機。The first stage cryogenic refrigeration unit is disposed concentrically outside the first stage regenerator of the large-diameter portion of the cylinder, and extends from the high temperature end toward the first stage cooling stage. 2. A spacer provided in the first stage cooling stage between the first stage pulse tube and the first regenerator, and a spacer for narrowing a passage of the refrigerant gas. Pulse tube refrigerator. 請求項1または2に記載のパルス管冷凍機と、真空容器内に設けられ第1の伝熱板を介して前記第1段冷却ステージと接続する熱シールドと、この熱シールドに収容され第2の伝熱板を介して前記第2段冷却ステージと接続する超電導コイルと、を備えてなる超電導磁石装置。The pulse tube refrigerator according to claim 1, a heat shield provided in a vacuum vessel and connected to the first stage cooling stage via a first heat transfer plate, and a second contained in the heat shield. And a superconducting coil connected to the second cooling stage via a heat transfer plate.
JP2000085344A 2000-03-24 2000-03-24 Pulse tube refrigerator and superconducting magnet system Expired - Fee Related JP3936117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000085344A JP3936117B2 (en) 2000-03-24 2000-03-24 Pulse tube refrigerator and superconducting magnet system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000085344A JP3936117B2 (en) 2000-03-24 2000-03-24 Pulse tube refrigerator and superconducting magnet system

Publications (2)

Publication Number Publication Date
JP2001272126A JP2001272126A (en) 2001-10-05
JP3936117B2 true JP3936117B2 (en) 2007-06-27

Family

ID=18601698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000085344A Expired - Fee Related JP3936117B2 (en) 2000-03-24 2000-03-24 Pulse tube refrigerator and superconducting magnet system

Country Status (1)

Country Link
JP (1) JP3936117B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7497084B2 (en) * 2005-01-04 2009-03-03 Sumitomo Heavy Industries, Ltd. Co-axial multi-stage pulse tube for helium recondensation
US7296418B2 (en) * 2005-01-19 2007-11-20 Raytheon Company Multi-stage cryocooler with concentric second stage
US7568351B2 (en) * 2005-02-04 2009-08-04 Shi-Apd Cryogenics, Inc. Multi-stage pulse tube with matched temperature profiles
JP5165645B2 (en) 2009-07-03 2013-03-21 住友重機械工業株式会社 Double inlet type pulse tube refrigerator
EP3285024B1 (en) 2009-08-25 2020-08-05 Kabushiki Kaisha Toshiba Refrigerator and method for manufacturing the same
JP5599766B2 (en) 2011-09-30 2014-10-01 住友重機械工業株式会社 Cryogenic refrigerator
CN104019587B (en) * 2014-04-29 2016-08-24 浙江大学 Cryogenic regenerator and Cryo Refrigerator
US10060655B2 (en) 2014-08-11 2018-08-28 Raytheon Company Temperature control of multi-stage cryocooler with load shifting capabilities
JP7186133B2 (en) * 2019-05-24 2022-12-08 住友重機械工業株式会社 Multi-stage pulse tube refrigerator and cold head of multi-stage pulse tube refrigerator

Also Published As

Publication number Publication date
JP2001272126A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
CN103062951B (en) Low-temperature J-T (Joule-Thomson) throttling cooler precooled by Stirling/pulse tube composite type cooler
US6378312B1 (en) Pulse-tube cryorefrigeration apparatus using an integrated buffer volume
US7497084B2 (en) Co-axial multi-stage pulse tube for helium recondensation
KR101342455B1 (en) Fast cool down cryogenic refrigerator
JPH05506919A (en) cryogenic cooling equipment
US6629418B1 (en) Two-stage inter-phasing pulse tube refrigerators with and without shared buffer volumes
KR100513207B1 (en) Superconducting Rotor With Conduction Cooling System
JPH10132404A (en) Pulse pipe freezer
US6263677B1 (en) Multistage low-temperature refrigeration machine
JP2000502175A (en) Cryogenic refrigerator with refrigeration head and method for optimizing refrigeration head for desired temperature range
JP3936117B2 (en) Pulse tube refrigerator and superconducting magnet system
CN101275793B (en) Heat voice magnetic refrigeration low temperature system
JP2005515386A (en) A cryopump with a two-stage pulse tube refrigerator
JP2783112B2 (en) Cryogenic refrigerator
KR102059088B1 (en) Hybrid brayton-gifford-mcmahon expander
US20150226465A1 (en) Cryogenic engine with rotary valve
JP2650437B2 (en) Cold storage cryogenic refrigerator
JP2012255590A (en) Cryopump, and cryogenic refrigerator
JP2000161803A (en) Cooling device
JP2831809B2 (en) Cryogenic refrigeration equipment
JPH11304271A (en) Cold storage type refrigerating machine and superconducting magnet using it
JPH0936442A (en) Superconducting magnet
JP2941575B2 (en) Cryogenic refrigerator and operating method thereof
JP2002286311A (en) Cryogenic refrigerating machine
JPH08313095A (en) Cold storage type refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070322

LAPS Cancellation because of no payment of annual fees