JP2002206816A - Cold heat storage unit and cryogenic freezer machine using the same - Google Patents

Cold heat storage unit and cryogenic freezer machine using the same

Info

Publication number
JP2002206816A
JP2002206816A JP2001003565A JP2001003565A JP2002206816A JP 2002206816 A JP2002206816 A JP 2002206816A JP 2001003565 A JP2001003565 A JP 2001003565A JP 2001003565 A JP2001003565 A JP 2001003565A JP 2002206816 A JP2002206816 A JP 2002206816A
Authority
JP
Japan
Prior art keywords
regenerator
heat storage
cold heat
cold storage
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001003565A
Other languages
Japanese (ja)
Inventor
Keiji Oshima
恵司 大嶋
Kentaro Toyama
健太郎 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001003565A priority Critical patent/JP2002206816A/en
Publication of JP2002206816A publication Critical patent/JP2002206816A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1415Pulse-tube cycles characterised by regenerator details

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify a manufacturing work for a heat storage plate and a laminating work for it in a cold heat storage unit in which several cold heat storage plates made of metallic fiber are laminated in a case. SOLUTION: Some metallic fibers 4 are laminated in a random manner, compressed and sintered to each other to manufacture a cold heat storage plate 3. This cold heat storage plate 3 is manufactured more easily than that of the prior art product comprised of metallic fibers and at the same time a thickness of one cold heat storage plate can be substantially increased. As a result, a handling of the cold heat storage plate 3 can be facilitated and the number of laminated plates becomes low, so that the laminating work becomes simple and the cold heat storage unit of high quality having a less degree of bending of the cold heat storage plate 3 can be attained at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、パルスチューブ
冷凍機などの極低温冷凍機に用いられる蓄冷器に関す
る。
The present invention relates to a regenerator used for a cryogenic refrigerator such as a pulse tube refrigerator.

【0002】[0002]

【従来の技術】図4はこの種の蓄冷器の従来構成を示す
縦断面図、図5はこれに用いられた蓄冷板の斜視図で、
図5のAは一部拡大図である。図4及び図5において、
蓄冷器1は両端が開口した円筒状のケース2内に、複数
枚の蓄冷板3が積層されて構成されている。蓄冷板3は
金属繊維4で織られた金網から円形に打ち抜かれて形成
され、金属繊維4の線径は15〜50μ程度、金網の目開き
は200〜500メッシュ程度である。この蓄冷板3は、ケー
ス2の軸方向と直交するように、数百〜数千枚積層され
ている。蓄冷板3の積層体は、熱抵抗が半径方向には小
さいのに対し、軸方向には金属繊維同士の点接触のため
大きく、かつ均一な多数の通気路を形成できるため、流
体抵抗が均一で蓄冷効率の高い蓄冷器1を構成してい
る。
2. Description of the Related Art FIG. 4 is a longitudinal sectional view showing a conventional structure of this type of regenerator, and FIG. 5 is a perspective view of a regenerator used in the regenerator.
FIG. 5A is a partially enlarged view. 4 and 5,
The regenerator 1 is configured by stacking a plurality of regenerator plates 3 in a cylindrical case 2 having both ends opened. The cold storage plate 3 is formed by circularly punching a metal mesh woven with metal fibers 4, and has a wire diameter of about 15 to 50 μm and a mesh size of about 200 to 500 mesh. Hundreds to thousands of the cold storage plates 3 are stacked so as to be orthogonal to the axial direction of the case 2. The laminated body of the cold storage plates 3 has a small thermal resistance in the radial direction, but a large and uniform number of air passages in the axial direction due to point contact between the metal fibers, so that the fluid resistance is uniform. Constitutes a regenerator 1 having a high regenerative efficiency.

【0003】[0003]

【発明が解決しようとする課題】このような蓄冷器1に
おいて、蓄冷板3は厚さが数十μ程度と小さいため、蓄
冷板3が折れ曲がらないように、かつ挿入圧力が均一に
なるように目視により確認しながら人手で慎重に行なう
積層作業は大変に手間がかかり、例えば1本当たり半日
以上を要した。また、金属繊維の素線径が小さくなるほ
ど、それを織るための費用が急増する一方、蓄冷板3の
枚数が多くなるため、蓄冷板3の折れ曲がりや積層密度
のばらつきが生じやすくなり、安定した特性を得ること
が困難であった。
In such a regenerator 1, since the regenerator plate 3 has a small thickness of about several tens of microns, the regenerator plate 3 is prevented from being bent and the insertion pressure is made uniform. The laminating operation, which is performed manually and carefully while visually confirming, takes a great deal of time, for example, it takes more than half a day for each layer. Further, as the strand diameter of the metal fiber decreases, the cost of weaving the metal fiber increases rapidly, while the number of the cold storage plates 3 increases. It was difficult to obtain the characteristics.

【0004】そこで、この発明の課題は、蓄冷板の製作
及び積層作業を容易にして、蓄冷器のコストの低減と特
性の安定を図ることにある。
An object of the present invention is to facilitate the production and lamination work of a regenerator plate to reduce the cost of a regenerator and stabilize its characteristics.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、筒状のケース内に複数枚の蓄冷板を積
層した蓄冷器において、ランダムに積み重ねた金属繊維
を圧縮接合してシートを形成し、このシートから前記蓄
冷板を切り出すものとする(請求項1)。この請求項1
によれば、蓄冷器1枚あたりの厚さを従来より格段に大
きくすることができるため、積層が容易となり、かつ折
れ曲がりや積層圧力のばらつきが少なくなる。前記金属
繊維は燒結により接合するか(請求項2)、拡散接合に
より接合するのがよい(請求項3)。
In order to solve the above-mentioned problems, the present invention provides a regenerator in which a plurality of regenerator plates are stacked in a cylindrical case by compressing and joining metal fibers randomly stacked. A sheet is formed, and the cold storage plate is cut out from the sheet (claim 1). This claim 1
According to the method, the thickness per one regenerator can be made much larger than before, so that lamination is facilitated, and bending and variation in lamination pressure are reduced. The metal fibers are preferably joined by sintering (claim 2) or joined by diffusion bonding (claim 3).

【0006】一方、蓄冷器の熱抵抗は、蓄冷板積層体の
軸方向に大きく半径方向に小さいことが求められるが、
加圧接合により平坦化した前記蓄冷板は積層面の接触面
積が増え、積層状態での軸方向の熱抵抗が減少する。そ
こで、この熱抵抗を適切に増やしたい場合には、熱抵抗
を増加させるための熱抵抗板を積層した前記蓄冷板の間
に介挿するのがよい(請求項4)。前記熱抵抗板には金
属繊維の織物からなる網目板を用いることができる(請
求項5)。
On the other hand, the thermal resistance of the regenerator is required to be large in the axial direction of the cold storage plate laminate and small in the radial direction.
The cold storage plate flattened by the pressure bonding has an increased contact area of the lamination surface, and the axial thermal resistance in the lamination state decreases. Therefore, when it is desired to increase the thermal resistance appropriately, it is preferable to interpose the thermal storage plate between the cold storage plates on which the thermal resistance plate for increasing the thermal resistance is laminated. A mesh plate made of a metal fiber fabric can be used as the heat resistance plate (claim 5).

【0007】[0007]

【発明の実施の形態】図1はこの発明の実施の形態を示
す蓄冷器の縦断面図、図2はこれに用いられた蓄冷板の
斜視図で、図2のAは一部拡大図である。なお、従来例
と対応する部分には同一の符号を用いるものとする。図
1において、蓄冷器1は従来と同様に、両端が開口した
円筒状のケース2内に、複数枚の蓄冷板3が積層されて
構成されている。ケース2の大きさは、例えば内径20mm
〜80mm,高さ100mm程度である。ここで、蓄冷板3は、金
属繊維がランダムに積み重ねられ、次いで圧縮接合され
て形成されたシートから切り出されて構成されている。
その製作方法の具体例を次に述べる。
FIG. 1 is a longitudinal sectional view of a regenerator according to an embodiment of the present invention, FIG. 2 is a perspective view of a regenerator plate used in the regenerator, and FIG. 2A is a partially enlarged view. is there. Note that the same reference numerals are used for the portions corresponding to the conventional example. In FIG. 1, a regenerator 1 is configured by stacking a plurality of regenerator plates 3 in a cylindrical case 2 having both ends opened as in the conventional case. The size of the case 2 is, for example, 20 mm inside diameter.
It is about 80mm and height is about 100mm. Here, the cold storage plate 3 is configured by randomly cutting metal fibers and then cutting out a sheet formed by compression bonding.
A specific example of the manufacturing method will be described below.

【0008】すなわち、例えば素線径30μのステンレ
ス、銅、銅合金などからなる金属繊維を束にして適宜の
長さ、例えば40mm〜50mm程度に切断し、次いでこれを均
一にほぐして繊維の向きがランダムに錯綜した綿状にし
た後、これを一定厚さ、例えば20mm〜100mmに積み重ね
て板状にする。その後、これをプレスで圧縮しながら加
熱して、燒結あるいは拡散接合により金属繊維同士を接
合し、所要の開口率・密度を有する厚さが例えば0.6mm
〜3mm程度、大きさ数十cm〜100cm角程度のシートを形
成する。このシートから図2に示すように、ケース2の
内径に見合う径の円板を打ち抜き、蓄冷板3とする。金
属繊維の綿状化は、切断した金属繊維を例えば風力によ
り吹き溜めるようにして行なうとよい。
That is, for example, a metal fiber made of stainless steel, copper, copper alloy or the like having a wire diameter of 30 μm is bundled, cut into an appropriate length, for example, about 40 mm to 50 mm, and then uniformly unraveled, and the direction of the fiber is adjusted. Are randomly intricately formed into a cotton-like shape, and then stacked into a certain thickness, for example, 20 mm to 100 mm, to form a plate shape. Then, it is heated while compressing it with a press, and the metal fibers are joined to each other by sintering or diffusion bonding, and the thickness having a required aperture ratio and density is, for example, 0.6 mm.
A sheet having a size of about 3 mm and a size of about several tens cm to 100 cm square is formed. As shown in FIG. 2, a disc having a diameter corresponding to the inner diameter of the case 2 is punched from the sheet to form a cold storage plate 3. The flocculation of the metal fibers may be performed by blowing the cut metal fibers by, for example, wind power.

【0009】このようにして製作した蓄冷板3は、厚さ
が金属繊維の織物からなる従来品の例えば10〜50倍に形
成でき、積層枚数も同じ素線径の従来品の1/10〜1/50に
なる。従って、積層時間もこの割合で短縮することがで
き、かつ1枚当たりの剛性も大きくなるので、取り扱い
が容易になるとともに、折れ曲がりなどの積層ミスも低
減する。
The cold storage plate 3 thus manufactured can be formed, for example, 10 to 50 times as thick as a conventional product made of a metal fiber fabric, and the number of laminations is 1/10 to 10 times that of a conventional product having the same strand diameter. It becomes 1/50. Accordingly, the lamination time can be shortened at this ratio, and the rigidity per sheet is increased, so that the handling is facilitated and lamination errors such as bending are reduced.

【0010】金属繊維を圧縮接合した蓄冷板3は、積層
面が平坦化するため積層接触面の熱抵抗が減り、結果と
して積層体の軸方向の熱抵抗が小さくなる。そこで、こ
の熱抵抗を適切に増やしたい場合には、積層した蓄冷板
3の間に熱抵抗を増加させる熱抵抗板を介挿する。図3
はその実施の形態を示す蓄冷器1の縦断面図である。す
なわち、図3において、ケース2内には、蓄冷板3と熱
抵抗板5とが交互に積層されている。熱抵抗板5には、
従来と同様の金属繊維の織物である網目板を用いるのが
よく、これにより介挿面で蓄冷板3との接触面積を減ら
して熱抵抗を増やすことができる。熱抵抗板5は非金属
でもよく、例えばフッ素樹脂などのそれ自体、蓄冷板3
より熱抵抗の大きい材料からなるシートに多数の孔をあ
けたものを用いることもできる。図示実施の形態では、
蓄冷板3と熱抵抗板5とを交互に積層する例を示した
が、熱抵抗板5の介挿は蓄冷板3と必ずしも交互に行な
う必要はなく、介挿枚数の増減により熱抵抗を適宜に調
整することができる。
[0010] The cold storage plate 3 formed by compression bonding of the metal fibers has a flat laminated surface, so that the thermal resistance of the laminated contact surface is reduced. As a result, the thermal resistance of the laminated body in the axial direction is reduced. Therefore, when it is desired to increase the thermal resistance appropriately, a thermal resistance plate for increasing the thermal resistance is inserted between the stacked cold storage plates 3. FIG.
1 is a longitudinal sectional view of a regenerator 1 showing the embodiment. That is, in FIG. 3, the cold storage plates 3 and the heat resistance plates 5 are alternately stacked in the case 2. The thermal resistance plate 5 includes
It is preferable to use a mesh plate, which is a metal fiber fabric similar to that of the related art, so that the contact area of the interposed surface with the cold storage plate 3 can be reduced and the thermal resistance can be increased. The heat resistance plate 5 may be made of a non-metallic material.
It is also possible to use a sheet made of a material having higher thermal resistance and having many holes. In the illustrated embodiment,
Although the example in which the cold storage plates 3 and the heat resistance plates 5 are alternately laminated is shown, the insertion of the heat resistance plates 5 does not necessarily have to be performed alternately with the cold storage plates 3, and the heat resistance is appropriately adjusted by increasing or decreasing the number of the inserted heat storage plates. Can be adjusted.

【0011】図6は上記蓄冷器1を用いたパルスチュー
ブ冷凍機を示すシステム構成図である。図6において、
6はピストン7を有する圧縮機、8は一端が圧縮機6の
一端に通じ他端が蓄冷器1の一端に通じる高温側熱交換
器、9は低温端部10が蓄冷器1の他端に通じ、高温端
部11がイナータンスチューブ13を介してバッファタ
ンク12に通じるパルスチューブである。このパルスチ
ューブ冷凍機において、冷媒として例えばヘリウムガス
が用いられ、圧縮機6のピストン7で圧縮された冷媒ガ
スは、高温側熱交換器8及び蓄冷器1を通る間に冷却さ
れてパルスチューブ9に流入する。その際、イナータン
スチューブ13を流れてバッファタンク12に流出する
冷媒ガスの位相制御作用により、パルスチューブ9に流
入する冷媒ガスが膨張仕事を行ない、低温端部10を冷
却する。一方、パルスチューブ9の高温端部11からは
膨張仕事に相当する熱量が放熱される。ピストン7が吸
引方向に動作すると、低温化した冷媒ガスは低温端部1
0及び蓄冷器1を冷却して圧縮機6に戻り、この往復動
作を繰り返すことにより、低温端部10に100°K以下
の極低温が得られる。
FIG. 6 is a system configuration diagram showing a pulse tube refrigerator using the regenerator 1. As shown in FIG. In FIG.
6 is a compressor having a piston 7, 8 is a high-temperature side heat exchanger having one end connected to one end of the compressor 6 and the other end connected to one end of the regenerator 1, and 9 is a low-temperature end 10 connected to the other end of the regenerator 1. The high-temperature end portion 11 is a pulse tube that communicates with the buffer tank 12 via the inertance tube 13. In this pulse tube refrigerator, for example, helium gas is used as a refrigerant, and the refrigerant gas compressed by the piston 7 of the compressor 6 is cooled while passing through the high-temperature side heat exchanger 8 and the regenerator 1 to form the pulse tube 9. Flows into. At this time, due to the phase control action of the refrigerant gas flowing through the inertance tube 13 and flowing out to the buffer tank 12, the refrigerant gas flowing into the pulse tube 9 performs expansion work and cools the low-temperature end portion 10. On the other hand, heat corresponding to the expansion work is radiated from the high-temperature end 11 of the pulse tube 9. When the piston 7 operates in the suction direction, the low-temperature refrigerant gas is supplied to the low-temperature end 1.
0 and the regenerator 1 are cooled and returned to the compressor 6, and by repeating this reciprocating operation, an extremely low temperature of 100 ° K or less is obtained at the low temperature end portion 10.

【0012】[0012]

【発明の効果】以上の通り、この発明によれば、ランダ
ムに積み重ねた金属繊維を圧縮接合して形成したシート
から蓄冷板を切り出し形成することにより、従来の金網
から成る蓄冷板と同じ素線径の金属繊維を用い、従来と
同等の熱交換面積及び通気路開口を確保しながら、蓄冷
板1枚あたりの厚さを約10倍〜50倍に大きくし、単
位厚さ当たりの製造コストを大幅に引き下げるととも
に、積層作業時の取り扱いを容易にして、積層工数の低
減及び積層品質の向上を図り、低コストで高品質の蓄冷
器を得ることが可能になる。
As described above, according to the present invention, a cold storage plate is cut out from a sheet formed by compressively joining metal fibers that are randomly stacked, thereby forming the same wire as the conventional cold storage plate made of a wire mesh. Using metal fibers of the same diameter, the thickness per cold storage plate is increased to about 10 to 50 times, while ensuring the same heat exchange area and ventilation path opening as before, and the manufacturing cost per unit thickness is reduced. It is possible to greatly reduce the number of laminating steps and improve the laminating quality while greatly reducing the number of laminating operations, and to obtain a low-cost, high-quality regenerator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を示す蓄冷器の縦断面図
である。
FIG. 1 is a longitudinal sectional view of a regenerator showing an embodiment of the present invention.

【図2】図1の蓄冷器に用いる蓄冷板の斜視図である。FIG. 2 is a perspective view of a cold storage plate used in the cold storage device of FIG.

【図3】この発明の異なる実施の形態を示す蓄冷器の縦
断面図である。
FIG. 3 is a longitudinal sectional view of a regenerator showing a different embodiment of the present invention.

【図4】図1の蓄冷器を用いたパルスチューブ冷凍機を
示すシステム構成図である。
FIG. 4 is a system configuration diagram showing a pulse tube refrigerator using the regenerator of FIG. 1;

【図5】従来例を示す蓄冷器の縦断面図である。FIG. 5 is a longitudinal sectional view of a regenerator showing a conventional example.

【図6】図5の蓄冷器に用いる蓄冷板の斜視図である。6 is a perspective view of a cold storage plate used in the cold storage device of FIG.

【符号の説明】[Explanation of symbols]

1 蓄冷器 2 ケース 3 蓄冷板 4 金属繊維 5 熱抵抗板 9 パルスチューブ REFERENCE SIGNS LIST 1 regenerator 2 case 3 regenerator plate 4 metal fiber 5 heat resistance plate 9 pulse tube

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】筒状のケース内に複数枚の蓄冷板を積層し
た蓄冷器において、ランダムに積み重ねた金属繊維を圧
縮接合してシートを形成し、このシートから前記蓄冷板
を切り出したことを特徴とする蓄冷器。
In a regenerator in which a plurality of cold storage plates are stacked in a cylindrical case, a sheet is formed by compressively joining metal fibers that are randomly stacked, and the cold storage plate is cut out from the sheet. Characteristic regenerator.
【請求項2】前記金属繊維を燒結により互いに接合した
ことを特徴とする請求項1記載の蓄冷器。
2. The regenerator according to claim 1, wherein said metal fibers are joined to each other by sintering.
【請求項3】前記金属繊維を拡散接合により互いに接合
したことを特徴とする請求項1記載の蓄冷器。
3. The regenerator according to claim 1, wherein said metal fibers are bonded to each other by diffusion bonding.
【請求項4】積層した前記蓄冷板の軸方向の熱抵抗を増
加させるための熱抵抗板を前記蓄冷板の間に介挿したこ
とを特徴とする請求項1記載の蓄冷器。
4. The regenerator according to claim 1, wherein a heat resistance plate for increasing the thermal resistance in the axial direction of the stacked cold storage plates is interposed between the cold storage plates.
【請求項5】前記熱抵抗板は金属繊維の織物からなる網
目板であることを特徴とする請求項4記載の蓄冷器。
5. The regenerator according to claim 4, wherein said heat resistance plate is a mesh plate made of a metal fiber fabric.
【請求項6】一端から流入する低温流体と蓄冷板との熱
交換により冷熱を蓄冷する一方、他端から流入する高温
流体と前記蓄冷板との熱交換により前記高温流体を冷却
する蓄冷器を備え、この蓄冷器として請求項1〜請求項
5のいずれかに記載の蓄冷器を用いたことを特徴とする
極低温冷凍機。
6. A regenerator for storing cold heat by exchanging heat between a low-temperature fluid flowing from one end and a cold storage plate and cooling the high-temperature fluid by exchanging heat between the high-temperature fluid flowing from the other end and the cold storage plate. A cryogenic refrigerator comprising the regenerator according to claim 1 as the regenerator.
JP2001003565A 2001-01-11 2001-01-11 Cold heat storage unit and cryogenic freezer machine using the same Pending JP2002206816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001003565A JP2002206816A (en) 2001-01-11 2001-01-11 Cold heat storage unit and cryogenic freezer machine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001003565A JP2002206816A (en) 2001-01-11 2001-01-11 Cold heat storage unit and cryogenic freezer machine using the same

Publications (1)

Publication Number Publication Date
JP2002206816A true JP2002206816A (en) 2002-07-26

Family

ID=18871891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001003565A Pending JP2002206816A (en) 2001-01-11 2001-01-11 Cold heat storage unit and cryogenic freezer machine using the same

Country Status (1)

Country Link
JP (1) JP2002206816A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225920A (en) * 2002-11-27 2004-08-12 Aisin Seiki Co Ltd Cool accumulator
WO2005010449A1 (en) * 2003-07-25 2005-02-03 Lg Electronics Inc. Regenerator for cooler
WO2007012845A1 (en) * 2005-07-27 2007-02-01 Microgen Energy Limited A method of assembling the head of a stirling machine
CN100398938C (en) * 2005-11-25 2008-07-02 中国科学院理化技术研究所 Recuperative heat exchanger with radial reinforced heat conduction
JP2012521533A (en) * 2009-03-24 2012-09-13 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Heat exchanger for heat cycle engines
JP2013194996A (en) * 2012-03-21 2013-09-30 Sumitomo Heavy Ind Ltd Regenerative refrigerator
CN108426332A (en) * 2018-05-18 2018-08-21 东莞市兆荣节能科技有限公司 A kind of phase change cold-storage module of Liftable
US11137216B2 (en) 2013-06-20 2021-10-05 Sumitomo Heavy Industries, Ltd. Regenerator material and regenerative refrigerator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225920A (en) * 2002-11-27 2004-08-12 Aisin Seiki Co Ltd Cool accumulator
WO2005010449A1 (en) * 2003-07-25 2005-02-03 Lg Electronics Inc. Regenerator for cooler
EP1651921A1 (en) * 2003-07-25 2006-05-03 Lg Electronics Inc. Regenerator for cooler
EP1651921A4 (en) * 2003-07-25 2009-01-14 Lg Electronics Inc Regenerator for cooler
WO2007012845A1 (en) * 2005-07-27 2007-02-01 Microgen Energy Limited A method of assembling the head of a stirling machine
CN100398938C (en) * 2005-11-25 2008-07-02 中国科学院理化技术研究所 Recuperative heat exchanger with radial reinforced heat conduction
JP2012521533A (en) * 2009-03-24 2012-09-13 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Heat exchanger for heat cycle engines
US8782890B2 (en) 2009-03-24 2014-07-22 Nv Bekaert Sa Regenerator for a thermal cycle engine
JP2013194996A (en) * 2012-03-21 2013-09-30 Sumitomo Heavy Ind Ltd Regenerative refrigerator
US9127864B2 (en) 2012-03-21 2015-09-08 Sumitomo Heavy Industries, Ltd. Regenerative refrigerator
US11137216B2 (en) 2013-06-20 2021-10-05 Sumitomo Heavy Industries, Ltd. Regenerator material and regenerative refrigerator
CN108426332A (en) * 2018-05-18 2018-08-21 东莞市兆荣节能科技有限公司 A kind of phase change cold-storage module of Liftable

Similar Documents

Publication Publication Date Title
JP5805421B2 (en) Regenerator type refrigerator and partition member
JP4672160B2 (en) Regenerator and regenerative refrigerator using the regenerator
US5101894A (en) Perforated plate heat exchanger and method of fabrication
US3825063A (en) Heat exchanger and method for making the same
JP2002206816A (en) Cold heat storage unit and cryogenic freezer machine using the same
JP2002257428A (en) Heat exchanger for pulse pipe refrigerating machine
US20120193063A1 (en) Thermodynamic regenerator
JP2007292326A (en) Stack and its manufacturing method
KR20190015202A (en) Cryogenic apparatus with a compact exchanger
JPH07504125A (en) Perforated plate for cryogenic regenerator and manufacturing method
JP2019536972A (en) Heat exchanger for cryogenic refrigerator with helium as working gas, method for producing such heat exchanger, and cryogenic refrigerator including such heat exchanger
JP2003148822A (en) Cold storage unit for very low temperature refrigerator
JP6184262B2 (en) refrigerator
CN208382633U (en) A kind of finned evaporator
JP2005069622A (en) Cool storage unit and extremely low temperature freezer using it
JP2005030704A (en) Bonded heat exchanger and pulse tube refrigerator
JP2021152434A (en) Regenerator material, regenerator, and cool storage type refrigerator, and heat accumulator material, heat accumulator
JPH10115472A (en) Pulse tube refrigerator
JP2889221B1 (en) Regenerator
KR20060045109A (en) Regenerator of cryocooler and its applicable refrigerator and manufacturing method thereof
EP2135016B1 (en) A condenser
CN112368537A (en) Heat transport device and method for manufacturing the same
JP2697470B2 (en) Regenerator and manufacturing method thereof
WO2021145036A1 (en) Method for manufacturing heat exchanger
JPH06129723A (en) Temperature accumulating body