JPH10115472A - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator

Info

Publication number
JPH10115472A
JPH10115472A JP28921096A JP28921096A JPH10115472A JP H10115472 A JPH10115472 A JP H10115472A JP 28921096 A JP28921096 A JP 28921096A JP 28921096 A JP28921096 A JP 28921096A JP H10115472 A JPH10115472 A JP H10115472A
Authority
JP
Japan
Prior art keywords
pulse tube
regenerator
film
heat exchanger
tube refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28921096A
Other languages
Japanese (ja)
Inventor
Fumio Kuriyama
文夫 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP28921096A priority Critical patent/JPH10115472A/en
Publication of JPH10115472A publication Critical patent/JPH10115472A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1407Pulse-tube cycles with pulse tube having in-line geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1412Pulse-tube cycles characterised by heat exchanger details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1416Pulse-tube cycles characterised by regenerator stack details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1417Pulse-tube cycles without any valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pulse tube refrigerator having a high reliability, in which thermal conduction loss is so lowered as to prevent a fall of refrigerating capacity and which can be assembled with improved efficiency. SOLUTION: A pulse tube refrigerator comprises a compressor 1, cold reservoir 3, heat exchanger (low temperature heat exchanger 4, high temperature heat exchanger 6), pulse tube 5, and piping and/or connection part for their connection and a working fluid flowing through the inside produces a refrigerating effect. The pulse tube 5 and the cold reservoir 3 are arranged in the form of a coaxial double cylinder with the pulse tube 5 on the inner side and the cold reservoir 3 on the outer side. A film type cold storage material 12 is wound around the pulse tube 5 and held inside the cold reservoir 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はパルスチューブ冷凍
機に関し、特に冷凍能力の向上と製造方法の改善が図れ
るパルスチューブ冷凍機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse tube refrigerator, and more particularly to a pulse tube refrigerator capable of improving a refrigerating capacity and a manufacturing method.

【0002】[0002]

【従来の技術】図6は従来のパルスチューブ冷凍機の構
成例を示す図である。図示するように、パルスチューブ
冷凍機は、圧縮機1、アフタークーラ2、蓄冷器3、低
温熱交換器4、パルス管5、高温熱交換器6、流量調整
弁7及びリザーバー8を具備し、これらを配管及び/又
は接続部で接続して構成されている。
2. Description of the Related Art FIG. 6 is a diagram showing a configuration example of a conventional pulse tube refrigerator. As shown in the figure, the pulse tube refrigerator includes a compressor 1, an aftercooler 2, a regenerator 3, a low-temperature heat exchanger 4, a pulse tube 5, a high-temperature heat exchanger 6, a flow control valve 7, and a reservoir 8, These are connected by piping and / or a connection part.

【0003】圧縮機1はパルスチューブ冷凍機内に作動
ガス(図示せず)の圧力振動を起させるものである。
[0003] The compressor 1 generates pressure oscillation of a working gas (not shown) in a pulse tube refrigerator.

【0004】蓄冷器3は内部に熱容量の大きな材料から
なる蓄冷材16を保有している。該蓄冷材16は細い素
線をちゅう密に網状に織って蓄冷器3の断面に合わせた
形状に打ち抜いたものを積層して蓄冷器3内に収納して
構成されている。パルス管5は単純な円筒構造をしてお
り、リザーバー8は他の構成要素に比べて大きな容積を
持つ容器である。
The regenerator 3 has a regenerator 16 made of a material having a large heat capacity. The regenerator 16 is formed by laminating thin strands in a dense net-like shape and punching them into a shape that matches the cross section of the regenerator 3 to be stored in the regenerator 3. The pulse tube 5 has a simple cylindrical structure, and the reservoir 8 is a container having a larger volume than other components.

【0005】先ず、圧縮機1で圧縮された作動流体は昇
温されるためアフタークーラ2で冷却された後、蓄冷器
3、低温熱交換器4、パルス管5及び高温熱交換器6内
の作動流体の圧力を上げる。
[0005] First, the working fluid compressed by the compressor 1 is cooled by the aftercooler 2 to raise the temperature, and then the working fluid in the regenerator 3, the low-temperature heat exchanger 4, the pulse tube 5, and the high-temperature heat exchanger 6 is removed. Increase the working fluid pressure.

【0006】高温熱交換器6とリザーバー8は流量調整
弁7を通して連通しており、該流量調整弁7で作動流体
の流量が絞られているためリザーバー8内の圧力変動は
極めて小さく抑えられている。圧縮機1により起される
圧力振動により、機内では作動流体は往復運動を行うこ
とになり、パルス管5内の作動流体は断熱変化に近い圧
縮と膨張を繰り返し、またアフタークーラ2、蓄冷器
3、低温熱交換器4及び高温熱交換器6内の作動流体は
等温変化に近い圧縮と膨張を繰り返すことになる。
The high-temperature heat exchanger 6 and the reservoir 8 communicate with each other through a flow control valve 7, and the flow rate of the working fluid is restricted by the flow control valve 7, so that the pressure fluctuation in the reservoir 8 is extremely suppressed. I have. Due to the pressure vibration generated by the compressor 1, the working fluid reciprocates in the machine, the working fluid in the pulse tube 5 repeats compression and expansion close to adiabatic change, and also includes an aftercooler 2, a regenerator 3 The working fluid in the low-temperature heat exchanger 4 and the high-temperature heat exchanger 6 repeats compression and expansion close to isothermal changes.

【0007】上記のような作動流体の運動により、低温
熱交換器4に冷凍が発生する。また、低温熱交換器4の
温度が低下すると同時に蓄冷器3及びパルス管5におい
て温度勾配が生じる。アフタークーラ2及び高温熱交換
器6で発熱が生じるため、冷却水(又は他の冷媒)13
で放熱させる必要がある。パルスチューブ冷凍機はこれ
を連続的に行って低温を成生させるものである。
The movement of the working fluid causes refrigeration in the low-temperature heat exchanger 4. At the same time as the temperature of the low-temperature heat exchanger 4 decreases, a temperature gradient occurs in the regenerator 3 and the pulse tube 5. Since heat is generated in the aftercooler 2 and the high-temperature heat exchanger 6, the cooling water (or other refrigerant) 13
It is necessary to radiate heat. The pulse tube refrigerator continuously performs this to generate a low temperature.

【0008】図9は、図6に示す従来構成のパルスチュ
ーブ冷凍機内の定常運転時の温度分布例を示す図であ
る。アフタークーラ2及び高温熱交換器6は冷却水13
(図6参照)により300K(27℃)に一定に保た
れ、内部で発生する熱を放出する。低温熱交換器4は内
部で成生された低温で被冷却物(図示せず)を冷却す
る。本図では、低温熱交換器4は被冷却物から熱を奪
い、100K(−173℃)に保たれていることを示し
ている。
FIG. 9 is a diagram showing an example of a temperature distribution during a steady operation in the conventional pulse tube refrigerator shown in FIG. Aftercooler 2 and high-temperature heat exchanger 6 are provided with cooling water 13.
(See FIG. 6), the temperature is kept constant at 300 K (27 ° C.) and the heat generated inside is released. The low-temperature heat exchanger 4 cools an object to be cooled (not shown) at a low temperature generated inside. This figure shows that the low-temperature heat exchanger 4 removes heat from the object to be cooled and is kept at 100 K (−173 ° C.).

【0009】パルス管5内の作動流体は断熱変化に近い
圧縮と膨張変化をしており、温度も時間的に振動してい
る。図9ではパルス管5内の時間平均温度を示してい
る。一方蓄冷器3内には熱容量の大きな蓄冷材16が充
填されているため作動流体は蓄冷材16と熱交換を行い
温度の時間的変動は極めて小さい。
The working fluid in the pulse tube 5 undergoes compression and expansion changes close to adiabatic changes, and the temperature also fluctuates with time. FIG. 9 shows the time average temperature in the pulse tube 5. On the other hand, since the regenerator 3 is filled with the regenerative material 16 having a large heat capacity, the working fluid exchanges heat with the regenerative material 16 and the time variation of the temperature is extremely small.

【0010】図7は他のパルスチューブ冷凍機の構成例
を示す図である。本パルスチューブ冷凍機は、前述図6
における蓄冷器3の蓄冷材16の充填構造が金網を積層
させる構造であるのに対して、膜状の蓄冷材12を芯棒
17に巻き付けて蓄冷器3に収納させる構造のものであ
る。
FIG. 7 is a diagram showing a configuration example of another pulse tube refrigerator. This pulse tube refrigerator is described in FIG.
In the regenerator 3 described above, the regenerator 16 is filled with a wire mesh, whereas the regenerator 12 in a film form is wound around a core rod 17 and stored in the regenerator 3.

【0011】図8は一般的に二重円筒方式と呼ばれてい
るパルスチューブ冷凍機の構成例を示す図である。本パ
ルスチューブ冷凍機は前述図6の各構成要素と同じ構成
要素を具備するものであるが、蓄冷器3の外側にパルス
管5を配置した構成が相違している。なお10は冷却板
であり、9は冷却水チャンバーであり、14,15はそ
れぞれ冷却水入口,冷却水出口である。本パルスチュー
ブ冷凍機は、図6に示すパルスチューブ冷凍機に比べて
全体の高さが低くなり、小型化が可能である。
FIG. 8 is a diagram showing a configuration example of a pulse tube refrigerator generally called a double cylinder system. This pulse tube refrigerator has the same components as those in FIG. 6 described above, but differs in that the pulse tube 5 is arranged outside the regenerator 3. Reference numeral 10 is a cooling plate, 9 is a cooling water chamber, and 14 and 15 are a cooling water inlet and a cooling water outlet, respectively. This pulse tube refrigerator has a lower overall height than the pulse tube refrigerator shown in FIG. 6, and can be downsized.

【0012】[0012]

【発明が解決しようとする課題】図6,図8に示される
従来のパルスチューブ冷凍機においては、蓄冷器3の蓄
冷材16は細い素線をちゅう密に織った網をピンセット
で1枚ずつ数千枚も積層させることにより充填させる方
式が一般的に行われている。
In the conventional pulse tube refrigerator shown in FIGS. 6 and 8, the regenerator material 16 of the regenerator 3 is made of a finely woven mesh of fine strands, one by one, using tweezers. A method of filling by stacking thousands of sheets is generally performed.

【0013】しかしながらこの方式では蓄冷材充填のた
めに多くの作業時間が費やされることになる。また、蓄
冷材16が網状であるため、蓄冷材充填密度が30%か
ら35%程度と低く、同時に低温では物性的に蓄冷材1
6自体の比熱が小さくなるので、蓄冷材16中の低温と
なる部分(低温熱交換器4近傍)で熱容量不足を招いて
しまい能力低下の原因となっていた。
However, in this method, much work time is spent for charging the regenerator material. Further, since the cold storage material 16 has a net shape, the cold storage material filling density is as low as about 30% to about 35%.
Since the specific heat of the heat storage material 6 itself becomes small, a heat capacity shortage is caused in a portion of the cold storage material 16 where the temperature is low (near the low temperature heat exchanger 4), which causes a decrease in performance.

【0014】また図8に示される従来のパルスチューブ
冷凍機においては、パルス管5は蓄冷器3の外周に設置
されるため管径が必然的に大きくなる。その結果、パル
ス管5の外周を囲む管壁自体の肉厚部分の横断面積が大
きくなり、低温熱交換器4から高温熱交換器6への該管
壁を伝っての熱伝導損失が大きくなり、冷凍能力の低下
の原因となる。また同時にパルス管5の外周側面積が大
きくなってパルス管5内の作動ガスとパルス管壁自体と
の熱のやり取りによる熱伝達量が多くなってその分だけ
熱損失となり、この点からも冷凍能力の低下を招く。
In the conventional pulse tube refrigerator shown in FIG. 8, the diameter of the pulse tube 5 is inevitably increased because the pulse tube 5 is provided on the outer periphery of the regenerator 3. As a result, the cross-sectional area of the thick wall portion of the tube wall surrounding the outer periphery of the pulse tube 5 increases, and the heat conduction loss from the low-temperature heat exchanger 4 to the high-temperature heat exchanger 6 along the tube wall increases. , Causing a decrease in refrigeration capacity. At the same time, the outer peripheral area of the pulse tube 5 increases, and the amount of heat transfer due to the exchange of heat between the working gas in the pulse tube 5 and the pulse tube wall itself increases, resulting in a corresponding heat loss. Invites a decline in ability.

【0015】一方図7に示される従来のパルスチューブ
冷凍機においては、蓄冷器3の膜状蓄冷材12は芯棒1
7に巻かれて収納されており、芯棒17はアフタークー
ラ2から低温熱交換器4へ熱伝導により入熱させてしま
い、冷凍効果を発生させている低温熱交換器4での冷凍
能力を低下させてしまう。
On the other hand, in the conventional pulse tube refrigerator shown in FIG.
7, the core rod 17 receives heat from the aftercooler 2 to the low-temperature heat exchanger 4 by heat conduction, and the refrigeration capacity of the low-temperature heat exchanger 4 generating the refrigeration effect is reduced. Lower it.

【0016】以上説明したように従来のパルスチューブ
冷凍機の場合、温度が非常に低い低温熱交換器4への伝
熱による入熱が大きいことや、パルスチューブ冷凍機を
構成する各構成部材と作動流体との間の断熱や伝熱が不
完全であることが、冷凍能力低下の原因となっていた。
また蓄冷器3に非常に大きな温度勾配が生じることも低
温熱交換器4への入熱の原因となっていた。そして上記
従来のパルスチューブ冷凍機の構成のままで前記伝熱損
失を最小限に抑えるためには、別途特別の材料からなる
構成部材を用いたり、断熱部材を用いたりしてその構造
を考慮しなければならず、コストが増加するばかりか蓄
冷器3の組み立て作業に多くの時間を要してしまう。
As described above, in the case of the conventional pulse tube refrigerator, the heat input to the low-temperature heat exchanger 4 having a very low temperature due to heat transfer is large, and each component constituting the pulse tube refrigerator has Insufficient heat insulation and heat transfer with the working fluid has caused a decrease in refrigeration capacity.
Further, the generation of a very large temperature gradient in the regenerator 3 also causes heat input to the low-temperature heat exchanger 4. In order to minimize the heat transfer loss while maintaining the configuration of the above-described conventional pulse tube refrigerator, a component made of a special material is used separately, or the structure is considered by using a heat insulating member. This requires not only an increase in cost but also a lot of time for assembling the regenerator 3.

【0017】本発明は上述の点に鑑みてなされたもので
あり、上記問題点を除去し、熱伝導損失を低く抑えて冷
凍発生の能力低下を防ぐと共に、組み立て効率を改善さ
せた信頼性の高いパルスチューブ冷凍機を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in consideration of the above problems, and has been made in view of the above-mentioned problems. It is an object to provide a high pulse tube refrigerator.

【0018】[0018]

【課題を解決するための手段】上記課題を解決するため
本願請求項1に記載の発明は、圧縮機、蓄冷器、熱交換
器、パルス管及びそれらを結ぶ配管及び/又は接続部か
ら構成され、その内部を流動する作動流体の作用により
冷凍を発生させるパルスチューブ冷凍機において、前記
パルス管と蓄冷器を、パルス管が内側で蓄冷器が外側と
なるように同軸二重円筒状に配置し、且つ蓄冷器内にパ
ルス管の外周に巻き付けた膜状蓄冷材を収納して構成し
た。
According to a first aspect of the present invention, there is provided a compressor, a regenerator, a heat exchanger, a pulse tube, and a pipe and / or a connecting portion connecting them. In a pulse tube refrigerator that generates refrigeration by the action of a working fluid flowing through the inside thereof, the pulse tube and the regenerator are arranged in a coaxial double cylindrical shape such that the pulse tube is inside and the regenerator is outside. In addition, a film-shaped cold storage material wound around the outer periphery of the pulse tube was housed in the regenerator.

【0019】また請求項2に記載の発明は、請求項1に
記載のパルスチューブ冷凍機において、前記膜状蓄冷材
を、図3に示す如く、膜の片面に突起物を設けて構成し
た。
According to a second aspect of the present invention, in the pulse tube refrigerator according to the first aspect, as shown in FIG. 3, the film-shaped regenerator is provided with a protrusion on one surface of the film.

【0020】また請求項3に記載の発明は、請求項1に
記載のパルスチューブ冷凍機において、前記膜状蓄冷材
を、図4に示す如く、膜の片面に突起物を設け且つ該膜
を通過する孔を設けて構成した。
According to a third aspect of the present invention, in the pulse tube refrigerator according to the first aspect, as shown in FIG. 4, the film-shaped regenerator is provided with a protrusion on one side of the film and the film is provided with a projection. It was configured with a hole through which it passed.

【0021】また請求項4に記載の発明は、請求項1に
記載のパルスチューブ冷凍機において、前記膜状蓄冷材
を、図5に示す如く、網状に形成して構成した。
According to a fourth aspect of the present invention, in the pulse tube refrigerator of the first aspect, the film-shaped regenerator is formed in a net shape as shown in FIG.

【0022】[0022]

【発明の実施の形態】以下、本願発明の実施の形態を図
面に基づいて詳細に説明する。なお、本実施の形態は一
例であり、本願発明はこの実施の形態に限定されるもの
ではない。図1は本発明のパルスチューブ冷凍機の構成
例を示す図である。本パルスチューブ冷凍機は、圧縮機
1、アフタークーラ2、蓄冷器3、低温熱交換器4、パ
ルス管5、高温熱交換器6、流量調整弁7、リザーバー
8、冷却水チャンバー9、冷却板10を具備し、蓄冷器
3をパルス管4の同軸外周に配置して構成されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. Note that this embodiment is an example, and the present invention is not limited to this embodiment. FIG. 1 is a diagram showing a configuration example of a pulse tube refrigerator of the present invention. The pulse tube refrigerator includes a compressor 1, an aftercooler 2, a regenerator 3, a low-temperature heat exchanger 4, a pulse tube 5, a high-temperature heat exchanger 6, a flow control valve 7, a reservoir 8, a cooling water chamber 9, a cooling plate. The regenerator 3 is arranged on the coaxial outer periphery of the pulse tube 4.

【0023】ここで圧縮機1は、パルスチューブ冷凍機
内の作動流体(図示せず)に圧力振動を与えるものであ
り、該圧縮機1に連結されるアフタークーラ2は圧縮機
1で圧縮され昇温した作動流体を冷却水チャンバー9内
の冷却水13で放熱し、作動流体の温度を一定に保つた
めの熱交換器である。
Here, the compressor 1 applies pressure vibration to a working fluid (not shown) in the pulse tube refrigerator, and an aftercooler 2 connected to the compressor 1 is compressed by the compressor 1 and rises. This is a heat exchanger for radiating the heated working fluid with the cooling water 13 in the cooling water chamber 9 and keeping the temperature of the working fluid constant.

【0024】次にパルス管5は単純な円筒構造で、内部
の作動流体は圧縮と膨張を繰り返している。リザーバー
8内の作動流体の圧力は略一定に保たれており、このリ
ザーバー8とパルス管5内の高温熱交換器6は流量調整
弁7を介して連通している。
Next, the pulse tube 5 has a simple cylindrical structure, and the working fluid inside is repeatedly compressed and expanded. The pressure of the working fluid in the reservoir 8 is kept substantially constant, and the reservoir 8 and the high-temperature heat exchanger 6 in the pulse tube 5 communicate with each other via a flow control valve 7.

【0025】一方蓄冷器3内には図2に示すようにパル
ス管5に巻き付けられた膜状蓄冷材12が収納されてお
り、低温熱交換器4で発生した冷凍により冷却された作
動流体と熱交換し、機内の冷凍を保持するものである。
On the other hand, the regenerator 3 contains a film-like regenerator material 12 wound around the pulse tube 5 as shown in FIG. 2, and contains a working fluid cooled by refrigeration generated in the low-temperature heat exchanger 4. It exchanges heat and keeps the refrigeration inside the machine.

【0026】ここで膜状蓄冷材12は図3に示すように
蓄冷材製の膜121の片面に多数本の棒状の突起物12
3を突出して構成したり、図4に示すように蓄冷材製の
膜121の片面に多数本の棒状の突起物123を突出し
且つ該膜121にこれを通過する多数の孔125を設け
て構成したり、図5に示すように線状の蓄冷材を網状に
編むことによって構成している。
As shown in FIG. 3, the film-like cold storage material 12 has a large number of rod-like projections 12 on one side of a film 121 made of cold storage material.
3 or a plurality of rod-like projections 123 protruding on one side of a film 121 made of a cold storage material and provided with a number of holes 125 passing through the film 121 as shown in FIG. Or by knitting a linear cold storage material into a net as shown in FIG.

【0027】このように膜状蓄冷材12は、パルス管5
を軸にしてパルス管4の外周に巻かれることによって蓄
冷器3内に収納されるため、図7に示す芯棒17のよう
な特別な部材を必要としない。このためアフタークーラ
2から低温熱交換器4への熱伝導損失を少なくすること
ができる。またこの膜状蓄冷材12は、図6,図8に示
す蓄冷材16のような積層型蓄冷材収納方式に比べ、組
み立て作業が簡単で、該作業時間を短縮できるメリット
もある。
As described above, the film-like cold storage material 12 is supplied to the pulse tube 5
7 is housed in the regenerator 3 by being wound around the outer periphery of the pulse tube 4, so that a special member such as the core rod 17 shown in FIG. 7 is not required. For this reason, the heat conduction loss from the aftercooler 2 to the low-temperature heat exchanger 4 can be reduced. The film-like cold storage material 12 also has an advantage that the assembling work is simpler and the working time can be shortened as compared with a stacked cold storage material storage system such as the cold storage material 16 shown in FIGS.

【0028】またパルス管5が内側で蓄冷器3が外側と
なるように同軸二重円筒状に配置したので、パルス管5
を蓄冷器3の外側に配置した場合(図8参照)に比べて
パルス管4の管壁面積を小さくすることができる。それ
ゆえ、パルス管5内の作動流体とパルス管壁との熱伝達
量が少なくなり、作動流体のより理想に近い断熱圧縮・
膨張変化によってより大きな冷凍能力が得られる。
Further, the pulse tube 5 is arranged in a coaxial double cylindrical shape so that the pulse tube 5 is inside and the regenerator 3 is outside, so that the pulse tube 5
Is arranged outside the regenerator 3 (see FIG. 8), the wall area of the pulse tube 4 can be reduced. Therefore, the amount of heat transfer between the working fluid in the pulse tube 5 and the pulse tube wall is reduced, and the adiabatic compression and compression of the working fluid, which is closer to ideal,
A larger refrigeration capacity is obtained by the expansion change.

【0029】ところで図3,図4に示す膜状蓄冷材12
の場合は、これを巻き回した際に隣り合う突起物12
3,123の間の凹状となっている部分が作動流体の通
路となる。そしてこれら膜状蓄冷材12の場合、該通路
部分を除く全ての部分が蓄冷材12で満たされるので、
蓄冷材充填密度は50%以上となり、膜状蓄冷材12の
中の低温熱交換器4近くの低温となる部分でも熱容量不
足を生じにくい。
The film-like cold storage material 12 shown in FIGS.
In the case of this, when this is wound, the adjacent protrusions 12
The concave portion between 3,123 serves as a working fluid passage. And in the case of these film-like cold storage materials 12, since all parts except the passage part are filled with the cold storage material 12,
The regenerator material filling density becomes 50% or more, and shortage of heat capacity hardly occurs even in a low temperature part near the low temperature heat exchanger 4 in the film regenerator material 12.

【0030】なお図4に示す膜状蓄冷材12において孔
125を設けたのは、膜状蓄冷材12を巻き回すことに
よって形成される作動流体の多数の通路間を連通し、こ
れによって各通路における作動流体の流通量を均一化す
るためである。
The reason why the holes 125 are provided in the film-like cold storage material 12 shown in FIG. 4 is that many working fluid passages formed by winding the film-like cold storage material 12 communicate with each other. This is for equalizing the flow rate of the working fluid in.

【0031】[0031]

【発明の効果】以上詳細に説明したように本願発明によ
れば、パルス管が内側で蓄冷器が外側となるように同軸
二重円筒状に配置し、且つパルス管の外周に膜状蓄冷材
を巻き付けるようにして該膜状蓄冷材を蓄冷器内に収納
したので、冷凍能力の向上が図れると共に、組み立て効
率が改善できるという優れた効果が得られる。
As described above in detail, according to the present invention, the pulse tube is arranged in a coaxial double cylindrical shape so that the regenerator is on the inside and the regenerator is on the outside. Is stored in the regenerator so that the refrigerating capacity can be improved and the assembling efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のパルスチューブ冷凍機の構成例を示す
図である。
FIG. 1 is a diagram showing a configuration example of a pulse tube refrigerator of the present invention.

【図2】膜状蓄冷材12のパルス管5への取り付け構造
を示す図である。
FIG. 2 is a diagram showing a structure for attaching a film-like cold storage material 12 to a pulse tube 5;

【図3】膜状蓄冷材12の一例を示す図である。FIG. 3 is a view showing an example of a film-like cold storage material 12;

【図4】膜状蓄冷材12−2の一例を示す図である。FIG. 4 is a diagram showing an example of a film-like cold storage material 12-2.

【図5】膜状蓄冷材12−3の一例を示す図である。FIG. 5 is a diagram showing an example of a film-like cold storage material 12-3.

【図6】従来のパルスチューブ冷凍機の構成を示す図で
ある。
FIG. 6 is a diagram showing a configuration of a conventional pulse tube refrigerator.

【図7】従来のパルスチューブ冷凍機の構成を示す図で
ある。
FIG. 7 is a diagram showing a configuration of a conventional pulse tube refrigerator.

【図8】従来のパルスチューブ冷凍機の構成を示す図で
ある。
FIG. 8 is a diagram showing a configuration of a conventional pulse tube refrigerator.

【図9】一般的なパルスチューブ冷凍機の各部の温度分
布を示す図である。
FIG. 9 is a diagram showing a temperature distribution of each part of a general pulse tube refrigerator.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 アフタークーラ 3 蓄冷器 4 低温熱交換器 5 パルス管 6 高温熱交換器 7 流量調整弁 8 リザーバー 9 冷却水チャンバー 10 冷却板 11 ピストン 12 膜状蓄冷材 123 突起物 125 孔 13 冷却水 14 冷却水入口 15 冷却水出口 DESCRIPTION OF SYMBOLS 1 Compressor 2 Aftercooler 3 Regenerator 4 Low-temperature heat exchanger 5 Pulse tube 6 High-temperature heat exchanger 7 Flow control valve 8 Reservoir 9 Cooling water chamber 10 Cooling plate 11 Piston 12 Film cold storage material 123 Projection 125 Hole 13 Cooling water 14 Cooling water inlet 15 Cooling water outlet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、蓄冷器、熱交換器、パルス管及
びそれらを結ぶ配管及び/又は接続部から構成され、そ
の内部を流動する作動流体の作用により冷凍を発生させ
るパルスチューブ冷凍機において、 前記パルス管と蓄冷器は、パルス管が内側で蓄冷器が外
側となるように同軸二重円筒状に配置され、且つ蓄冷器
内にはパルス管の外周に巻き付けた膜状蓄冷材を収納し
たことを特徴とするパルスチューブ冷凍機。
1. A pulse tube refrigerator comprising a compressor, a regenerator, a heat exchanger, a pulse tube and a pipe and / or a connecting portion connecting them, and generating refrigeration by the action of a working fluid flowing inside the pulse tube refrigerator. The pulse tube and the regenerator are arranged in a coaxial double cylindrical shape such that the pulse tube is on the inside and the regenerator is on the outside, and the regenerator contains a film-like regenerator wound around the outer periphery of the pulse tube. A pulse tube refrigerator characterized by:
【請求項2】 請求項1に記載のパルスチューブ冷凍機
において、 前記膜状蓄冷材は、膜の片面に突起物を設けてなること
を特徴とするパルスチューブ冷凍機。
2. The pulse tube refrigerator according to claim 1, wherein the film-shaped regenerator has a protrusion on one surface of the film.
【請求項3】 請求項1に記載のパルスチューブ冷凍機
において、 前記膜状蓄冷材は、膜の片面に突起物を設け、且つ該膜
を通過する孔を設けてなることを特徴とするパルスチュ
ーブ冷凍機。
3. The pulse tube refrigerator according to claim 1, wherein the film-shaped regenerator has a protrusion on one surface of the film and a hole passing through the film. Tube refrigerator.
【請求項4】 請求項1に記載のパルスチューブ冷凍機
において、 前記膜状蓄冷材は、網状に形成してなることを特徴とす
るパルスチューブ冷凍機。
4. The pulse tube refrigerator according to claim 1, wherein the film-shaped regenerator is formed in a net shape.
JP28921096A 1996-10-09 1996-10-09 Pulse tube refrigerator Pending JPH10115472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28921096A JPH10115472A (en) 1996-10-09 1996-10-09 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28921096A JPH10115472A (en) 1996-10-09 1996-10-09 Pulse tube refrigerator

Publications (1)

Publication Number Publication Date
JPH10115472A true JPH10115472A (en) 1998-05-06

Family

ID=17740212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28921096A Pending JPH10115472A (en) 1996-10-09 1996-10-09 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JPH10115472A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021245A (en) * 1999-07-09 2001-01-26 Irie Koken Kk Material and device for cold storage
JP2001172618A (en) * 1999-12-16 2001-06-26 Ekuteii Kk Tape type cool storage medium, method for producing the same, cold reserving tool and refrigerator using the same
FR2821150A1 (en) * 2001-02-17 2002-08-23 Lg Electronics Inc Pulse tube refrigerator has cover partially inserted into hollow cylinder with central cylinder combined with pulse tube and regenerator
WO2004040206A1 (en) * 2002-10-31 2004-05-13 Sharp Kabushiki Kaisha Regenerator, method for manufacturing regenerator, system for manufacturing regenerator and stirling refrigerating machine
CN102735088A (en) * 2012-06-25 2012-10-17 中国科学院上海技术物理研究所 Conical slit-type hot end heat exchanger of coaxial pulse tube refrigerator and manufacturing method
CN104019587A (en) * 2014-04-29 2014-09-03 浙江大学 Low-temperature heat regenerator and low-temperature refrigerator
CN107091539A (en) * 2017-06-02 2017-08-25 中科力函(深圳)低温技术有限公司 Pulse tube refrigerating machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021245A (en) * 1999-07-09 2001-01-26 Irie Koken Kk Material and device for cold storage
JP2001172618A (en) * 1999-12-16 2001-06-26 Ekuteii Kk Tape type cool storage medium, method for producing the same, cold reserving tool and refrigerator using the same
FR2821150A1 (en) * 2001-02-17 2002-08-23 Lg Electronics Inc Pulse tube refrigerator has cover partially inserted into hollow cylinder with central cylinder combined with pulse tube and regenerator
WO2004040206A1 (en) * 2002-10-31 2004-05-13 Sharp Kabushiki Kaisha Regenerator, method for manufacturing regenerator, system for manufacturing regenerator and stirling refrigerating machine
US7383687B2 (en) 2002-10-31 2008-06-10 Sharp Kabushiki Kaisha Regenerator method for manufacturing regenerator, system for manufacturing regenerator and stirling refrigerating machine
CN102735088A (en) * 2012-06-25 2012-10-17 中国科学院上海技术物理研究所 Conical slit-type hot end heat exchanger of coaxial pulse tube refrigerator and manufacturing method
CN104019587A (en) * 2014-04-29 2014-09-03 浙江大学 Low-temperature heat regenerator and low-temperature refrigerator
CN104019587B (en) * 2014-04-29 2016-08-24 浙江大学 Cryogenic regenerator and Cryo Refrigerator
US20170045274A1 (en) * 2014-04-29 2017-02-16 Zhejiang University Cryogenic regenerator and cryogenic refrigerator
US10247451B2 (en) * 2014-04-29 2019-04-02 Zhejiang University Cryogenic regenerator and cryogenic refrigerator
CN107091539A (en) * 2017-06-02 2017-08-25 中科力函(深圳)低温技术有限公司 Pulse tube refrigerating machine
CN107091539B (en) * 2017-06-02 2020-09-18 中科力函(深圳)低温技术有限公司 Pulse tube refrigerator

Similar Documents

Publication Publication Date Title
JP5889743B2 (en) Regenerative refrigerator
JP4824256B2 (en) Apparatus and method for obtaining temperature stability in a two-stage cryocooler
JP2006284060A (en) Pulse pipe refrigerating machine
JPH10115472A (en) Pulse tube refrigerator
JP5882110B2 (en) Regenerator type refrigerator, regenerator
JP2022084912A (en) Heat exchanger for cryogenic freezer having helium as working gas, method for manufacturing such heat exchanger, and cryogenic freezer comprising such heat exchanger
JP4259252B2 (en) Cryogenic refrigerator
US5609034A (en) Cooling system
JP3602823B2 (en) Pulsating tube refrigerator
US9752802B2 (en) Regenerative refrigerator
JP3566751B2 (en) Large pulse tube refrigerator
JPH03117855A (en) Chiller type cryogenic refrigerator
JP3293538B2 (en) Cool storage refrigerator
JP2915709B2 (en) Pulse tube refrigerator and operating method thereof
JP6320142B2 (en) Cryogenic refrigerator
JPH09178278A (en) Cold heat accumulator
JP2003148822A (en) Cold storage unit for very low temperature refrigerator
JP2004353967A (en) Pulse tube refrigerator
JP2002286311A (en) Cryogenic refrigerating machine
JP3618886B2 (en) Pulse tube refrigerator
JP3605878B2 (en) Pulse tube refrigerator
JP2563272Y2 (en) Low temperature regenerator
JP2003028526A (en) Cool storage unit and refrigerating machine
Wang et al. High efficiency, single-stage GM cryorefrigerators optimized for 20 to 40K
JPS6256420B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040720