JPH06129723A - Temperature accumulating body - Google Patents

Temperature accumulating body

Info

Publication number
JPH06129723A
JPH06129723A JP4304476A JP30447692A JPH06129723A JP H06129723 A JPH06129723 A JP H06129723A JP 4304476 A JP4304476 A JP 4304476A JP 30447692 A JP30447692 A JP 30447692A JP H06129723 A JPH06129723 A JP H06129723A
Authority
JP
Japan
Prior art keywords
temperature
accumulating
sintered
metal material
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4304476A
Other languages
Japanese (ja)
Inventor
Katsuji Yoshikawa
勝治 吉川
Yuji Yamaguchi
勇治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4304476A priority Critical patent/JPH06129723A/en
Publication of JPH06129723A publication Critical patent/JPH06129723A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PURPOSE:To improve the workability and heat accumulation of a temperature accumulating body employed for the cooling unit of a cryopump and the like for a cryogenic refrigerating device. CONSTITUTION:A sintered body 10 is made by sintering fibrous metallic material 1 while providing a multitude of fine air passages 10A therein. An interposing body 11 is provided with a length shorter than the length L of the sintered body 10 or a thin thickness T and is manufactured employing a material having smaller heat conductivity compared with the metallic material of the sintered body 10 while providing air passages. A temperature accumulating body 12 is formed by piling the sintered body 10 and the interposing body 11 alternately. The principal body of the temperature accumulating body 12 is the sintered bodies 10 whereby the workability of filling work and the like is improved. On the other hand, the heat conductivity of the interposing body 11 is small whereby respective heat capacities accumulated in respective sintered bodies 10 can be maintained and the accumulating capacity of heat capacity is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、極低温の冷却エネル
ギーを蓄積するための蓄冷部体、または、高温の加熱エ
ネルギーを蓄積するため蓄熱部材として用いる温度蓄積
体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerator for accumulating cryogenic cooling energy or a temperature accumulator used as a heat accumulating member for accumulating high temperature heating energy.

【0002】[0002]

【従来の技術】この種の温度蓄積体には、熱エネルギー
の吸収・放出が速く蓄積量の多いものが必要とされ、例
えば、冷却エネルギーを蓄積するものとして、高圧ヘリ
ウムの膨張時における温度低下により得られる冷却エネ
ルギーを蓄積する蓄冷器を設けた熱交換装置があり、実
公昭53−52673・特公昭43−8656・特公昭
54−28623・特公昭47−16591・特公昭4
7−13588などにより開示されている。
2. Description of the Related Art This type of temperature accumulator is required to have a large amount of accumulated heat energy that can be absorbed and released quickly. For example, as a means for accumulating cooling energy, a temperature drop during expansion of high pressure helium is required. There is a heat exchange device provided with a regenerator for accumulating the cooling energy obtained by the method described in JP-B-53-52673, JP-B-43-8656, JP-B-54-28623, JP-B-47-16591, and JP-B-4.
7-13588 and the like.

【0003】こうした温度蓄積体により冷却エネルギー
を蓄積する蓄冷を行いながら冷凍動作を行う冷凍装置と
しては、内田老鶴圃新社発行「低温工学ハンドブック」
などに記載されているGMサイクル冷凍機・スターリン
グサイクル冷凍機などの蓄冷式熱交換器を内蔵する蓄冷
式熱交換冷凍装置があり、このような蓄冷式熱交換冷凍
装置の一例として、例えば、図7のようなGMサイクル
冷凍機をクライオポンプの冷却部50として使用したも
のがある。
[0003] As a refrigerating device for performing a refrigerating operation while accumulating cooling energy for accumulating cooling energy by such a temperature accumulating body, "Cryogenic Engineering Handbook" issued by Uchida Lao Tsuruga Shinsha Co., Ltd.
There is a regenerator type heat exchange refrigerating device including a regenerator type heat exchanger such as a GM cycle refrigerator / Stirling cycle refrigerator, etc. described in, for example, as an example of such a regenerator type heat exchange refrigerating device. There is one using a GM cycle refrigerator such as No. 7 as the cooling unit 50 of the cryopump.

【0004】図7において、圧縮機101は、冷媒気
体、例えば、ヘリウムガスを圧縮した加圧冷媒を高圧管
路102からクライオポンプ冷却部50の交互開閉弁1
03に与え、クライオポンプ冷却部50内で膨張降圧し
た降圧冷媒を低圧管路103から回収して、再び加圧し
加圧冷媒として循環する。
In FIG. 7, a compressor 101 includes a refrigerant gas, for example, a pressurized refrigerant obtained by compressing a helium gas, supplied from a high pressure pipe 102 to an alternating opening / closing valve 1 of a cryopump cooling section 50.
03, the pressure-reduced refrigerant that has expanded and reduced in the cryopump cooling unit 50 is recovered from the low-pressure pipe 103, pressurized again, and circulates as a pressurized refrigerant.

【0005】クライオポンプ冷却部50は、第1シリン
ダ52内を往復移動する第1ディスプレーサ53と第2
シリンダ61内を往復移動する第2ディスプレーサ62
とを連結したものを往復駆動機構55によって往復行程
動作するとともに、この往復行程動作に連動して、交互
開閉弁51を、往復駆動機構55との連結駆動機構(図
示せず)によって高圧管路102側と低圧管路103側
とに対する通気を交互に開閉する。
The cryopump cooling unit 50 includes a first displacer 53 and a second displacer 53 that reciprocate in the first cylinder 52.
A second displacer 62 that reciprocates in the cylinder 61.
The reciprocating drive mechanism 55 operates a reciprocating stroke of a combination of the above and the reciprocating stroke mechanism. The ventilation on the side of 102 and the side of the low pressure pipe 103 are alternately opened and closed.

【0006】高圧管路102からの加圧冷媒は、通気路
56から第1ディスプレーサ53内の蓄冷部材、つま
り、蓄冷体54を通り通気路57に抜けて第1膨張室5
8に入った後、通気路59から第2ディスプレーサ62
内の蓄冷部材、つまり、蓄冷体63を通り通気路64を
抜けて第2膨張室65に入るという、流入行程動作を行
う。
The pressurized refrigerant from the high-pressure pipe line 102 passes from the vent passage 56 to the regenerator member in the first displacer 53, that is, the regenerator 54, to the vent passage 57, and then to the first expansion chamber 5.
After entering 8, the second displacer 62 from the air passage 59.
The inflow stroke operation of passing through the cold storage member inside, that is, the cold storage body 63, passing through the ventilation path 64 and entering the second expansion chamber 65 is performed.

【0007】膨張冷却動作によって降圧した降圧冷媒
は、流入行程時の経路を逆行する経路を経て、交互開閉
弁51を介して低圧管路103に排出する膨張排出行程
動作を行い、蓄冷体54と蓄冷体63とに冷却熱容量、
つまり、冷却エネルギーを蓄積するとともに、第1シリ
ンダ52と第2シリンダ61とに接続した冷却負荷装置
(図示せず)に所要の冷却を与えるようにして、流入行
程動作と膨張排出行程動作とを交互に繰り返すように構
成してある。
The depressurized refrigerant that has been depressurized by the expansion cooling operation goes through a path that is the reverse of the path during the inflow stroke, and is discharged to the low pressure pipe 103 via the alternate on-off valve 51, and undergoes an expansion and discharge stroke operation to form the regenerator 54. Cooling heat capacity to the regenerator 63,
That is, while the cooling energy is accumulated, the cooling load device (not shown) connected to the first cylinder 52 and the second cylinder 61 is provided with required cooling to perform the inflow stroke operation and the expansion discharge stroke operation. It is configured to repeat alternately.

【0008】蓄冷体54・63は、冷却用の熱エネルギ
ーを蓄積する温度蓄積体であるが、こうした温度蓄積体
によれば、加熱用の熱エネルギーを蓄積することができ
るので、加熱型の熱交換機器における温度蓄積体として
も使用し得ることは言うまでもない。
The regenerators 54 and 63 are temperature accumulators for accumulating heat energy for cooling. With such a temperature accumulator, since heat energy for heating can be accumulated, the heat of the heating type is reduced. It goes without saying that it can also be used as a temperature accumulator in exchange equipment.

【0009】上記のような温度蓄積体として、異種の金
属材による線状材を編み組して、図8のように、金網状
にしたものを多重に積層して構成(以下、第1従来技術
という)したものが実開昭62−112070などによ
り開示されている。
As the temperature accumulating body as described above, a wire material made of different kinds of metal materials is braided, and as shown in FIG. The technology) is disclosed in Japanese Utility Model Publication No. 62-11070.

【0010】また、冷媒の出口側に得られている高い熱
エネルギーが、温度蓄積体自体の熱伝導によって冷媒の
入口側の低い熱エネルギーと均一化してしまい、せっか
く蓄えた高い熱エネルギーを入口側へ逃すという熱損失
を生ずるので、この熱損失を防ぐため、図8の金網に代
えて、熱伝導率の大きい金属の多孔板と、熱伝導率の小
さい樹脂材の多孔板とを交互に多重に積層して接着した
構成(以下、第2従来技術という)のものが実開昭62
−115059などにより開示されている。
Further, the high heat energy obtained at the outlet side of the refrigerant is made uniform with the low heat energy at the inlet side of the refrigerant due to the heat conduction of the temperature accumulating body itself, and the high heat energy stored with a great deal of effort is introduced at the inlet side. In order to prevent this heat loss, in order to prevent this heat loss, a metal perforated plate having a high thermal conductivity and a resin material perforated plate having a low thermal conductivity are alternately multiplexed in place of the metal net in FIG. A structure in which they are laminated and adhered to each other (hereinafter referred to as the second prior art) is the actual development number 62.
-115059 and the like.

【0011】[0011]

【発明が解決しようとする課題】上記の金網または多孔
板の厚みは、一般に、0.1mm程度にする必要がある
ため、第1従来技術のものでは、金網の製造や積層に手
間がかかり、第2従来技術のものでは、多孔板の製造や
積層のほか、接着作業に手間がかかるという不都合があ
る。
Since the thickness of the wire mesh or the perforated plate is generally required to be about 0.1 mm, in the first prior art, it takes time to manufacture and stack the wire mesh. In the second prior art, there is a problem that it takes a lot of time and labor for the bonding work in addition to manufacturing and laminating the perforated plate.

【0012】このため、こうした不都合がなく製造も簡
便なものの提供が望まれているという課題がある。
Therefore, there is a problem that it is desired to provide a product which does not have such inconvenience and is easy to manufacture.

【0013】[0013]

【課題を解決するための手段】この発明は、上記のよう
な細かい通気路をもつ金属材でなり、低温または高温の
熱エネルギーを蓄積しておくために用いる温度蓄積体で
あって、繊維状の金属材を細かい通気路を設けて焼結に
より形成した複数個の焼結体と、上記の焼結体の間に介
在しており、焼結体の長さよりも短いか、または、薄い
寸法をもち、上記の繊維状の金属材よりも熱伝導率の小
さい材質により通気路を設けて形成した介在体とを設け
る構成と、上記の介在体を網状または多孔板状に形成し
て設ける構成とを提供することにより上記の課題を解決
し得るようにしたものである。
The present invention is a temperature accumulating body made of a metal material having the above-mentioned fine ventilation passages and used for accumulating low-temperature or high-temperature thermal energy. It is shorter than the length of the sintered body or thinner than the length of the sintered body. And a configuration in which an intervening body formed by providing a ventilation path with a material having a thermal conductivity smaller than that of the fibrous metal material is provided, and a configuration in which the intervening body is formed in a mesh shape or a perforated plate shape. The above problems can be solved by providing and.

【0014】[0014]

【作用】温度蓄積体の主体部分を、繊維状の金属材の焼
結体で形成しているため、温度蓄積体を収納する蓄冷
器、例えば、ディスプレーサの蓄冷体収納室の内部形状
に合わせて形成し得るので、簡便安価に製造し得るほ
か、熱伝導を抑制するための介在体を、焼結体の間に介
在させる焼結体の長さよりも短いか、または、薄い寸法
にしてあるため、介在体を網状または多孔板状の層にし
て形成した場合でも、介在体の数がごく少ないので、従
来の網状または多孔板を交互に積層するものに比べて、
はるかに、簡便安価に製造し得るように作用する。
Since the main part of the temperature accumulator is made of a sintered body of fibrous metal material, it is suitable for the internal shape of the regenerator for accommodating the temperature accumulator, for example, the cool accumulator storage chamber of the displacer. Since it can be formed, it can be easily manufactured at low cost, and the intervening body for suppressing heat conduction is shorter or thinner than the length of the sintered body interposed between the sintered bodies. , Even when the interposition body is formed as a net-like or perforated plate-like layer, the number of intervening bodies is very small, so compared to the conventional one in which net-like or perforated plates are alternately laminated,
It works much easier and cheaper.

【0015】[0015]

【実施例】以下、図1〜図6により実施例を説明する。
図1において、焼結体10を構成する繊維状の金属材1
は、熱伝導のよい金属材料、例えば、銅材を繊維状の形
状にしたもので、例えば、図2のような細い直線状の金
属材1A、細い平帯状の金属材1Bのほか、金属材1A
または1Bを、波形状に形成した金属材1C、カール状
に形成した金属材1Dなどによるものである。
EXAMPLES Examples will be described below with reference to FIGS.
In FIG. 1, a fibrous metal material 1 constituting a sintered body 10
Is a metal material having good thermal conductivity, for example, a copper material formed into a fibrous shape. For example, in addition to the thin linear metal material 1A and the thin flat strip metal material 1B as shown in FIG. 1A
Alternatively, 1B is made of a corrugated metal material 1C, a curled metal material 1D, or the like.

【0016】こうした形状の繊維状の金属材1を、例え
ば、図3のような円柱状の温度蓄積用の焼結体10とし
て形成するに適する所定の長さ、例えば、直径D以下の
長さにしたものを方向が異なるように、ばらばらにし
て、図4のような焼結体10の形状を内部形状とする形
成用容器20であって、耐高熱材、例えば、石英ガラス
材の容器中に、積み入れた後、金属の表面を清浄して活
性状態にするための雰囲気用のガス体、例えば、解離ア
ンモニアなどを入れ、容積を適宜に圧縮する重し蓋21
を施して、成形用容器20の周囲に施したニクロム線2
2に電流を与え、繊維状の金属材1を加熱して各繊維状
素材の接触している面を溶着させた後、冷却して取り出
すことにより、各繊維状素材の間に多数の通気路10A
を有する半固形状に一体化された目的形状の焼結体、例
えば、図3のような円柱状をした温度蓄積用の焼結体1
0を得るようにしたものである。
A predetermined length suitable for forming the fibrous metal material 1 having such a shape as, for example, a cylindrical temperature accumulating sintered body 10 as shown in FIG. 3, for example, a diameter D or less. In a container 20 for forming, which is made into pieces having different shapes so as to have different directions and whose inside shape is the shape of the sintered body 10 as shown in FIG. 4, which is made of a high heat resistant material, for example, a quartz glass material. After loading, a weight lid 21 for charging a gas body for atmosphere for cleaning the metal surface to an active state, for example, dissociated ammonia, and appropriately compressing the volume.
Nichrome wire 2 applied around the molding container 20
An electric current is applied to 2 to heat the fibrous metal material 1 to weld the surfaces of the fibrous materials in contact with each other, and then to cool and take out the air passages, so that a large number of air passages are provided between the fibrous materials. 10A
A semi-solid integrated sintered body having a target shape, for example, a cylindrical sintered body 1 for temperature accumulation as shown in FIG.
This is to obtain 0.

【0017】上記の半固形状に一体化するには、各繊維
状素材の表面を溶着させる方法のほかに、熔融温度が繊
維状の金属材1よりも低い金属の「ろう剤」、例えば、
銀ろう、または、はんだなどの粉末を混入させて、溶着
部分をろう付にして行うこともできる。
In order to integrate into the above-mentioned semi-solid state, in addition to the method of welding the surface of each fibrous material, a metal "waxing agent" whose melting temperature is lower than that of the fibrous metal material 1, for example,
It is also possible to mix powder of silver braze or solder and braze the welded portion.

【0018】また、通気路10Aは、焼結体10の空孔
率が、例えば、60〜70%程度になるように形成する
のが望ましい。この空孔率、つまり、通気路10Aの密
度は、例えば、冷凍装置が運転条件に対して最適な性能
を発揮し得るように、素材の金属繊維の充填量を変える
ことによって、任意に調節することができる。
The air passage 10A is preferably formed so that the porosity of the sintered body 10 is, for example, about 60 to 70%. The porosity, that is, the density of the ventilation passage 10A is arbitrarily adjusted, for example, by changing the filling amount of the metal fiber of the raw material so that the refrigerating device can exhibit optimum performance with respect to operating conditions. be able to.

【0019】この発明において、上記のように多数の通
気路を設けるとともに、通気路の密度を高くして溶着ま
たはろう付により形成することを焼結といい、一般にい
う、粉末金属を圧縮して固形体にしたものを高温で加熱
して溶着またろう付することにより、通気路の密度の少
ない固形体、例えば、オイルレスメタルに用いるような
焼結品を得るための焼結とは異なるものである。
In the present invention, forming a large number of air passages as described above and increasing the density of the air passages to form them by welding or brazing is called sintering. Generally, powder metal is compressed. Different from sintering to obtain a solid product with a low density of air passages, for example, by obtaining a solid product by heating at high temperature and welding or brazing, for example, a sintered product used for oilless metal Is.

【0020】上記の焼結体10を、温度蓄積材として用
いる構成と、この温度蓄積材を上記クライオポンプ冷却
部50における温度蓄積部材として用いる構成とを、本
願出願人による特願平4−108812によって開示し
てある。
The structure using the sintered body 10 as a temperature storage material and the structure using the temperature storage material as a temperature storage member in the cryopump cooling unit 50 are disclosed in Japanese Patent Application No. 4-108812 by the applicant of the present application. It is disclosed by.

【0021】この発明は、上記のような細かい多数の通
気路をもつ金属材でなり、冷却のための低温の熱エネル
ギーまたは加熱のための高温の熱エネルギーを蓄積して
おくために用いる温度蓄積体を図1の温度蓄積体12よ
うに構成したものである。
The present invention is made of a metal material having a large number of fine ventilation passages as described above and is used for accumulating low-temperature heat energy for cooling or high-temperature heat energy for heating. The body is configured like the temperature accumulator 12 of FIG.

【0022】温度蓄積体12は、図3のような繊維状の
金属材1を細かい多数の通気路10Aを設けて焼結によ
り形成した複数個の焼結体10と、各焼結体10の間に
介在しており、焼結体10の長さLよりも短いか、また
は、薄い寸法Tをもち、上記の繊維状の金属材1よりも
熱伝導率の小さい材質、例えば、ステンレス鋼材により
通気路11Aを設けて、例えば、網状に形成した介在体
11とを重ね合わせて設けた構成にしてある。
The temperature accumulating body 12 includes a plurality of sintered bodies 10 formed by sintering the fibrous metal material 1 as shown in FIG. A material that is interposed between them and is shorter than the length L of the sintered body 10 or has a thin dimension T and has a smaller thermal conductivity than the fibrous metal material 1 described above, for example, stainless steel material. The ventilation passage 11A is provided and, for example, the intervening body 11 formed in a net shape is overlapped and provided.

【0023】また、温度蓄積体12に用いる介在体11
の形状を、第1従来技術のような網状、または、第2従
来技術のような多孔板状に形成して設けた構成をも利用
し得るようにしている。各部の具体的寸法は、利用対象
によって異となるが、上記のクライオポンプ冷却部50
の場合の一例では、焼結体10は、繊維状の金属材の直
径が0.05mm程度、各焼結体10の直径Dが30m
m程度、各焼結体10の長さLが20mm程度であり、
また、各介在体11は厚みが0.1mm程度、通気路1
0Aは直径0.2mm程度の孔を無数に設けたものであ
る。
Also, the interposer 11 used for the temperature accumulator 12
It is also possible to use a configuration in which the shape is formed into a mesh shape as in the first conventional technique or a perforated plate shape as in the second conventional technique. The specific size of each part varies depending on the use target, but the cryopump cooling part 50 described above is used.
In an example of the case, the sintered body 10 has a diameter of a fibrous metal material of about 0.05 mm, and the diameter D of each sintered body 10 is 30 m.
m, the length L of each sintered body 10 is about 20 mm,
In addition, each interposer 11 has a thickness of about 0.1 mm,
OA has a large number of holes each having a diameter of about 0.2 mm.

【0024】〔変形実施〕この発明は次のように変形し
て実施することができる (1)図5のように、焼結体10の外周に薄い肉厚の金
属筒31を施して形成する。
[Modification Implementation] The present invention can be implemented by being modified as follows. (1) As shown in FIG. 5, the sintered body 10 is formed by forming a thin-walled metal cylinder 31 on the outer periphery thereof. .

【0025】(2)上記(1)のものにおいて、金属筒
11に用いる金属の熔融温度を繊維状の金属材1の熔融
温度よりも高いものにして形成する。さらに、金属筒3
1の肉厚をやや厚めのもので作り、成形容器20を用い
ずに、直接、雰囲気内で加熱して成形する。
(2) In the above (1), the melting temperature of the metal used for the metal cylinder 11 is set higher than the melting temperature of the fibrous metal material 1. Furthermore, the metal tube 3
1 is made to have a slightly thicker thickness, and is directly heated and molded in the atmosphere without using the molding container 20.

【0026】(3)上記(2)のものにおいて、金属筒
31を所要の焼結体10の複数個分にあたる長い管状の
ものにして、焼結成形後に所定の長さに切断する。
(3) In the above (2), the metal cylinder 31 is made into a long tubular shape corresponding to a plurality of required sintered bodies 10 and cut into a predetermined length after sintering and molding.

【0027】(4)図1の波形状の金属材1、または、
のカール状の金属材1を平行に多数並べて所要の直径以
上に束ねたものを、金属板で寿司巻状に巻ながら所要量
圧縮して目的の直径にした後に焼結して、目的寸法の焼
結体10を得る。また、上記(3)と同様に長く成形し
た後、切断して目的寸法の焼結体10を得る。
(4) The corrugated metal material 1 of FIG. 1, or
A large number of curled metal materials 1 arranged in parallel and bundled to have a required diameter or more are rolled into a sushi roll on a metal plate, compressed to a desired diameter, and then sintered to obtain a desired size. A sintered body 10 is obtained. Further, similarly to the above (3), it is formed into a long shape and then cut to obtain a sintered body 10 having a desired size.

【0028】(5)温度蓄積体12を収納する室部分、
例えば、各ディスプレーサ53・62の蓄冷体54・6
3を収納する蓄冷室32の形状を、図6のように、テー
パー状に形成するとともに、この収納室の形状に合わせ
て焼結体10の外形を形成することにより、温度蓄積体
12の装填作業・取出作業を行い易くする。
(5) A chamber portion for accommodating the temperature accumulating body 12,
For example, the cool storage body 54.6 of each displacer 53.62.
As shown in FIG. 6, the cold accumulating chamber 32 accommodating 3 is formed in a tapered shape, and the outer shape of the sintered body 10 is formed in accordance with the shape of the accommodating chamber. Make it easy to carry out work and take-out work.

【0029】(6)温度蓄積体12を、加熱装置におけ
る加熱エネルギーを蓄積するための部材、つまり、蓄熱
体として用いる。
(6) The temperature accumulator 12 is used as a member for accumulating heating energy in the heating device, that is, a heat accumulator.

【0030】(7)繊維状の金属材1を、成形容器20
に積み入れる場合において、繊維状の金属材1を切断し
て短くせずに、長いまま、つづら折り状、または渦巻き
状などの適宜の並べ方で積み入れて所要の通気路10A
が焼結体10に形成されるようにする。
(7) The fibrous metal material 1 is added to the molding container 20.
In the case of loading into a pipe, the fibrous metal material 1 is not cut and shortened, but is left in a long shape, is folded in a zigzag shape, or is wound in an appropriate arrangement such as a spiral shape, and the required ventilation passage 10A.
Are formed on the sintered body 10.

【0031】(8)温度蓄積体12を熱伝導式熱交換器
における同様機能部分の蓄熱部材として用いる。
(8) The temperature accumulating body 12 is used as a heat accumulating member of a similar function part in the heat conduction type heat exchanger.

【0032】(9)介在体11を、大きな通気路11A
を設けた単なるリング状に形成し、または、このリング
状を三角形・多角形などに変形して形成し、もしくは、
中心から放射状に張り出した線状部分のみをもつ星形に
形成したもので構成する。
(9) The intermediate body 11 is replaced with a large ventilation passage 11A.
It is formed into a simple ring shape provided with, or is formed by transforming this ring shape into a triangle, a polygon, or the like, or
Consists of a star-shaped one with only linear parts that radiate from the center.

【0033】(10)焼結体10と介在体11とを接着
固定して一体に形成し、温度蓄積体12の装填作業・取
出作業を行い易くする。
(10) The sintered body 10 and the interposition body 11 are adhered and fixed and integrally formed to facilitate the loading and unloading operations of the temperature accumulating body 12.

【0034】(11)介在体11の材質を、他の熱伝導
率の小さい金属材、例えば、インコネル(ニッケル・ク
ロム合金鋼系)、ハステロ(イニッケル・クロム合金鋼
系)、チタン、マンガン含有率の高い合金鋼など、また
は、熱伝導率の小さい樹脂材、例えば、フッ素系樹脂材
などで形成したもので構成する。
(11) The material of the interposer 11 is selected from other metal materials having a small thermal conductivity, such as Inconel (nickel-chromium alloy steel series), Hastello (innickel-chrome alloy steel series), titanium and manganese content. And a resin material having a low thermal conductivity, for example, a fluorine-based resin material or the like.

【0035】(12)焼結体10の長さLと、介在体1
1の厚みTとの比率を、20:1から1000:1程度
の間に選択して構成する。
(12) Length L of sintered body 10 and interposer 1
The thickness T of 1 is selected to be in the range of 20: 1 to 1000: 1.

【0036】[0036]

【発明の効果】この発明によれば、温度蓄積体12の主
体部分を、繊維状の金属材1の焼結体10で形成してい
るため、温度蓄積体を収納する蓄冷器、例えば、ディス
プレーサ53・62の蓄冷体収納室の形状に合わせて形
成できる。
According to the present invention, since the main portion of the temperature accumulating body 12 is formed of the sintered body 10 of the fibrous metal material 1, a regenerator for accommodating the temperature accumulating body, for example, a displacer. It can be formed in conformity with the shape of the regenerator storage chamber 53/62.

【0037】また、焼結体10の長さLよりも短いか、
または、薄い寸法Tにした熱伝導率の小さい介在体11
を、複数個の焼結体10の間に介在させて、温度蓄積体
12内での熱伝導を緩慢化しているため、従来と同様
に、網状または多孔板状して形成した場合でも、介在体
11の数をごく少なくできるので、高い熱エネルギーを
蓄積し得る温度蓄積体を簡便安価に提供し得るなどの特
長がある。
In addition, it is shorter than the length L of the sintered body 10,
Alternatively, the inclusion 11 having a thin dimension T and a small thermal conductivity is used.
Are intervened between the plurality of sintered bodies 10 to slow the heat conduction in the temperature accumulating body 12. Therefore, even if they are formed as a mesh or a perforated plate like the conventional case, Since the number of the bodies 11 can be made very small, there is a feature that a temperature accumulator capable of accumulating high thermal energy can be provided simply and inexpensively.

【図面の簡単な説明】[Brief description of drawings]

図1〜図7はこの発明の実施例を、また、図8は従来技
術を示し、各図の内容は次のとおりである。
1 to 7 show an embodiment of the present invention, and FIG. 8 shows a prior art. The contents of each drawing are as follows.

【図1】温度蓄積体の分解状態斜視図FIG. 1 is an exploded perspective view of a temperature accumulator.

【図2】素材の斜視図[Figure 2] Perspective view of the material

【図3】焼結体の斜視図FIG. 3 is a perspective view of a sintered body.

【図4】焼結体成形構成の縦断面図FIG. 4 is a vertical cross-sectional view of a sintered body forming structure.

【図5】温度蓄積体と収納室の変形例の縦断面図FIG. 5 is a vertical sectional view of a modification of the temperature accumulator and the storage chamber.

【図6】焼結体の変形例の斜視図FIG. 6 is a perspective view of a modified example of a sintered body.

【図7】温度蓄積体を適用するクライオポンプ冷却部の
構成略図
FIG. 7 is a schematic configuration diagram of a cryopump cooling unit to which a temperature accumulator is applied.

【図8】温度蓄積体の分解斜視図FIG. 8 is an exploded perspective view of a temperature accumulator.

【符号の説明】[Explanation of symbols]

1 繊維状の金属材 10 焼結体 10A 通気路 11 介在体 20 形成用容器 21 重し蓋 22 ニクロム線 31 金属筒 32 蓄冷室 50 クライオポンプ冷却部 51 交互開閉弁 52 第1シリンダ 53 第1ディスプレーサ 54 蓄冷体 55 往復駆動機構 56 通気路 57 通気路 58 第1膨張室 59 通気路 61 第2シリンダ 62 第2ディスプレーサ 63 蓄冷体 64 通気路 65 第2膨張室 101 圧縮機 102 高圧管路 103 低圧管路 DESCRIPTION OF SYMBOLS 1 Fibrous metal material 10 Sintered body 10A Ventilation path 11 Interposition body 20 Forming container 21 Weight lid 22 Nichrome wire 31 Metal cylinder 32 Cold storage chamber 50 Cryopump cooling section 51 Alternate on-off valve 52 First cylinder 53 First displacer 54 regenerator 55 reciprocating drive mechanism 56 air passage 57 air passage 58 first expansion chamber 59 air passage 61 second cylinder 62 second displacer 63 regenerator 64 air passage 65 second expansion chamber 101 compressor 102 high-pressure pipe 103 low-pressure pipe Road

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 細かい多数の通気路をもつ金属材でな
り、低温または高温の熱エネルギーを蓄積しておくため
に用いる温度蓄積体であって、 繊維状の金属材を前記細かい多数の通気路を設けて焼結
により形成した複数個の焼結体と、 前記焼結体の間に介在しており、前記焼結体の長さより
も短いか、または、薄い寸法をもち、前記繊維状の金属
材よりも熱伝導率の小さい材質により通気路を設けて形
成した介在体とを具備することを特徴とする温度蓄積
体。
1. A temperature accumulator made of a metal material having a large number of fine ventilation passages, which is used for accumulating low-temperature or high-temperature thermal energy, wherein a fibrous metal material is used for the fine ventilation passages. And a plurality of sintered bodies formed by sintering and interposed between the sintered bodies and having a length shorter than or shorter than the length of the sintered body, and having a fibrous shape. A temperature accumulator, comprising: an interposition body formed by providing a ventilation path with a material having a lower thermal conductivity than a metal material.
【請求項2】 細かい多数の通気路をもつ金属材でな
り、低温または高温の熱エネルギーを蓄積しておくため
に用いる温度蓄積体であって、 繊維状の金属材を前記細かい多数の通気路を設けて焼結
により形成した複数個の焼結体と、 前記焼結体の間に介在しており、前記繊維状の金属材よ
りも熱伝導率の小さい材質により網状または多孔板状に
形成した介在体とを具備することを特徴とする温度蓄積
体。
2. A temperature accumulator made of a metal material having a large number of fine ventilation passages, which is used for accumulating low-temperature or high-temperature thermal energy, wherein a fibrous metal material is used for the fine ventilation passages. And a plurality of sintered bodies formed by sintering and interposed between the sintered bodies, and formed in a mesh shape or a perforated plate shape with a material having a smaller thermal conductivity than the fibrous metal material. A temperature accumulator characterized by comprising:
JP4304476A 1992-10-19 1992-10-19 Temperature accumulating body Pending JPH06129723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4304476A JPH06129723A (en) 1992-10-19 1992-10-19 Temperature accumulating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4304476A JPH06129723A (en) 1992-10-19 1992-10-19 Temperature accumulating body

Publications (1)

Publication Number Publication Date
JPH06129723A true JPH06129723A (en) 1994-05-13

Family

ID=17933483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4304476A Pending JPH06129723A (en) 1992-10-19 1992-10-19 Temperature accumulating body

Country Status (1)

Country Link
JP (1) JPH06129723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799229A (en) * 2010-03-26 2010-08-11 上海理工大学 Heat regenerator of heat-regenerating type low-temperature refrigerator
JP2014055738A (en) * 2012-09-13 2014-03-27 Railway Technical Research Institute Cold storage refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799229A (en) * 2010-03-26 2010-08-11 上海理工大学 Heat regenerator of heat-regenerating type low-temperature refrigerator
JP2014055738A (en) * 2012-09-13 2014-03-27 Railway Technical Research Institute Cold storage refrigerator

Similar Documents

Publication Publication Date Title
CN100366991C (en) Cooling device
US4359872A (en) Low temperature regenerators for cryogenic coolers
JP5805421B2 (en) Regenerator type refrigerator and partition member
EP0870814B1 (en) Cold accumulation material for ultra-low temperature, refrigerating machine using the material, and heat shield material
CN100458310C (en) Coolness storage unit and cryopump
JP5599739B2 (en) Regenerator type refrigerator
JPH01305271A (en) Manufacture of cold storage machine for cryogenic refrigerator and cold storage machine manufactured through said method
JPH06129723A (en) Temperature accumulating body
JP5305633B2 (en) Regenerative refrigerator
JP3642980B2 (en) Regenerative refrigerator
JP3566751B2 (en) Large pulse tube refrigerator
JP2002206816A (en) Cold heat storage unit and cryogenic freezer machine using the same
JPH03117855A (en) Chiller type cryogenic refrigerator
JP2003148822A (en) Cold storage unit for very low temperature refrigerator
JP3258796B2 (en) Stirling engine heat regenerator
JP3293538B2 (en) Cool storage refrigerator
JPH10115472A (en) Pulse tube refrigerator
JPH06213520A (en) Temperature accumulating material and device using same
JPH09178278A (en) Cold heat accumulator
US5983645A (en) Regenerator and cryogenic refrigerator having regenerator
JP2004233004A (en) Cold storage unit
KR20060045109A (en) Regenerator of cryocooler and its applicable refrigerator and manufacturing method thereof
JP2011117698A (en) Cold storage device
JP2005030704A (en) Bonded heat exchanger and pulse tube refrigerator
JPS6354577A (en) Cold accumulator for cryogenic gas refrigerator