WO2019009019A1 - Cryogenic refrigerator - Google Patents

Cryogenic refrigerator Download PDF

Info

Publication number
WO2019009019A1
WO2019009019A1 PCT/JP2018/022244 JP2018022244W WO2019009019A1 WO 2019009019 A1 WO2019009019 A1 WO 2019009019A1 JP 2018022244 W JP2018022244 W JP 2018022244W WO 2019009019 A1 WO2019009019 A1 WO 2019009019A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
fin
passage
heat exchange
expansion chamber
Prior art date
Application number
PCT/JP2018/022244
Other languages
French (fr)
Japanese (ja)
Inventor
乾 包
名堯 許
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017205231A external-priority patent/JP6975013B2/en
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN201880039686.1A priority Critical patent/CN110799796B/en
Publication of WO2019009019A1 publication Critical patent/WO2019009019A1/en
Priority to US16/720,934 priority patent/US11149993B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the present invention relates to a cryogenic refrigerator.
  • Cryogenic refrigerators represented by Gifford-McMahon (GM) refrigerators, have a cooling stage thermally coupled to an expansion chamber of a working gas. By properly synchronizing the expansion chamber volume change and the pressure change, the cryogenic refrigerator can cool the cooling stage to a desired cryogenic temperature.
  • the objects to be cooled are thermally coupled to the cooling stage and cooled by the cooling stage.
  • Such a cooling stage is also provided to other cryogenic refrigerators such as Stirling refrigerator and pulse tube refrigerator.
  • Cryogenic refrigerators are often used to cool various refrigerant fluids (hereinafter also referred to as refrigerants) such as liquid nitrogen, gaseous or liquid helium. Cooled refrigerants are used to cool various devices that require a low temperature environment, such as superconducting devices and instrumentation.
  • refrigerant tube for flowing the refrigerant is joined to the outer surface of the cooling stage of the cryogenic refrigerator by joining means such as welding or brazing and thermally coupled to the cooling stage.
  • the cooling pipe cools the refrigerant pipe, and the refrigerant pipe cools the refrigerant.
  • the bonding state of the refrigerant pipe and the outer surface of the cooling stage affects the cooling performance of the refrigerant by the cryogenic refrigerator. Since the joint failure of the refrigerant pipe generates a large thermal resistance between the refrigerant pipe and the cooling stage, the refrigerant becomes difficult to cool.
  • One of the exemplary objects of an aspect of the present invention is to provide a technique for improving the cooling performance of a cryogenic refrigerator.
  • the cryogenic refrigerator is an expansion chamber and a cooling stage thermally coupled to the expansion chamber, the cryogenic refrigerator being disposed outside the expansion chamber and the exposed surface to the expansion chamber.
  • a first heat transfer block having a first heat exchange surface
  • a second heat transfer block having a second heat exchange surface facing the first heat exchange surface, and the outside of the expansion chamber
  • a refrigerant supply port installed in the cooling stage, a refrigerant discharge port installed outside the expansion chamber and installed in the cooling stage, and a refrigerant passage fluidly isolated from the expansion chamber, Forming between the first heat transfer block and the second heat transfer block such that the refrigerant flows along the first heat exchange surface and the second heat exchange surface from the refrigerant supply port to the refrigerant discharge port And a refrigerant passage.
  • An object of the present invention is to provide a technique for improving the cooling performance of a cryogenic refrigerator.
  • FIG. 2 is a schematic view showing an AA cross section of the cryogenic refrigerator shown in FIG. 1; It is the schematic which shows the other example of the 1st heat-transfer block which concerns on 1st Embodiment. It is the schematic which shows the other example of the cooling stage which concerns on 1st Embodiment. It is a figure showing roughly the important section of the cryogenic refrigerator concerning a 2nd embodiment.
  • FIG. 6 is a schematic view showing a cross section BB of the cryogenic refrigerator shown in FIG. 5; It is a figure showing roughly the important section of the cryogenic refrigerator concerning a 3rd embodiment. It is a figure showing roughly the important section of the cryogenic refrigerator concerning a 4th embodiment.
  • FIG. 9 is a schematic view showing a cross section CC of the cryogenic refrigerator shown in FIG. 8;
  • FIG. 10A and FIG. 10B are schematic views showing another example of the communication passage in the cryogenic refrigerator according to the fourth embodiment. It is a figure showing roughly other examples of the cryogenic refrigerator concerning a 4th embodiment. It is a figure showing roughly other examples of the cryogenic refrigerator concerning a 4th embodiment.
  • FIG. 1 is a view schematically showing a cryogenic refrigerator 10 according to the first embodiment.
  • FIG. 2 is a schematic view showing an AA cross section of the cryogenic refrigerator 10 shown in FIG.
  • the cryogenic refrigerator 10 includes a compressor 12 that compresses a working gas (e.g., helium gas) and a cold head 14 that cools the working gas by adiabatic expansion.
  • the compressor 12 has a compressor discharge port 12a and a compressor suction port 12b.
  • the cold head 14 is also called an expander.
  • the illustrated cryogenic refrigerator 10 is a single-stage GM refrigerator.
  • the compressor 12 supplies a high pressure (PH) working gas from the compressor discharge port 12 a to the cold head 14.
  • the cold head 14 is provided with a regenerator 15 for precooling the working gas.
  • the precooled working gas is further cooled by expansion in the cold head 14.
  • the working gas is recovered through the regenerator 15 to the compressor suction port 12b.
  • the working gas cools the regenerator 15 as it passes through the regenerator 15.
  • the compressor 12 compresses the recovered low pressure (PL) working gas and supplies it to the cold head 14 again.
  • both high pressure (PH) and low pressure (PL) are much higher than atmospheric pressure.
  • the high pressure (PH) is for example 2 to 3 MPa and the low pressure (PL) is for example 0.5 to 1.5 MPa.
  • the cold head 14 includes a displacer 20 capable of reciprocating in an axial direction (vertical direction in FIG. 1 and indicated by an arrow C), a cylinder 22 accommodating the displacer 20, and a displacer drive mechanism 16.
  • the displacer drive mechanism 16 comprises a connecting rod 24 coaxially connected to the displacer 20.
  • the cylinder 22 is configured as part of a pressure vessel for working gas.
  • the displacer drive mechanism 16 can adopt various known configurations.
  • the displacer drive mechanism 16 includes a scotch yoke mechanism and a motor.
  • the displacer 20 is mechanically connected to the motor via the connecting rod 24 and the scotch yoke mechanism and driven by the motor.
  • the displacer 20 is connected to the displacer drive piston via a connecting rod 24 and is driven by the gas pressure acting on the displacer drive piston.
  • the axial reciprocation of the displacer 20 is guided by the cylinder 22.
  • the displacer 20 and the cylinder 22 are each an axially extending cylindrical member, the inner diameter of the cylinder 22 corresponding to or slightly larger than the outer diameter of the displacer 20.
  • the central axes of the displacer 20 and the cylinder 22 correspond to the central axis 92 of the cryogenic refrigerator 10 (see FIG. 2).
  • the connecting rod 24 is smaller in diameter than the displacer 20.
  • the cylinder 22 is partitioned by the displacer 20 into an expansion chamber 34 and a room temperature chamber 36.
  • the expansion chamber 34 defines an expansion space for the working gas of the cryogenic refrigerator 10.
  • the displacer 20 forms an expansion chamber 34 with the cylinder 22 at one axial end, and forms a room temperature chamber 36 with the cylinder 22 at the other axial end.
  • the expansion chamber 34 is disposed on the bottom dead center LP side, and the room temperature chamber 36 is disposed on the top dead center UP side.
  • the connecting rod 24 extends through the room temperature chamber 36 to the upper lid of the displacer 20.
  • the cold head 14 is provided with a cooling stage 26 fixed to the cylinder 22 so as to enclose the expansion chamber 34. Cooling stage 26 is thermally coupled to expansion chamber 34. The cooling stage 26 is joined to the cylinder 22 by brazing or welding, for example. The details of the cooling stage 26 will be described later.
  • the regenerator 15 is built in the displacer 20.
  • the displacer 20 has an inlet channel 40 in the upper lid thereof, which connects the regenerator 15 to the room temperature chamber 36. Further, the displacer 20 has an outlet flow passage 42 communicating the regenerator 15 with the expansion chamber 34 in the cylindrical portion thereof. Alternatively, the outlet channel 42 may be provided in the lower lid of the displacer 20.
  • the regenerator 15 includes an inlet retainer 41 inscribed in the upper lid portion, an outlet retainer 43 inscribed in the lower lid portion, and a regenerator material sandwiched between the two retainers.
  • the cool storage material is illustrated as a dotted area sandwiched by the inlet retainer 41 and the outlet retainer 43.
  • the cold storage material may be, for example, a copper wire mesh.
  • the retainer may be a wire mesh coarser than the regenerator material.
  • a seal portion 44 is provided between the displacer 20 and the cylinder 22.
  • the seal portion 44 is, for example, a slipper seal, and is attached to the cylindrical portion or the upper lid portion of the displacer 20. Since the clearance between the displacer 20 and the cylinder 22 is sealed by the seal portion 44, there is no direct gas flow between the room temperature chamber 36 and the expansion chamber 34 (that is, the gas flow bypassing the regenerator 15).
  • the expansion chamber 34 and the room temperature chamber 36 complementarily increase or decrease in volume. That is, when the displacer 20 moves downward, the expansion chamber 34 narrows and the room temperature chamber 36 widens. The reverse is also true.
  • the working gas flows from the room temperature chamber 36 into the regenerator 15 through the inlet channel 40. More precisely, the working gas flows from the inlet channel 40 into the regenerator 15 through the inlet retainer 41. The working gas flows from the regenerator 15 into the expansion chamber 34 via the outlet retainer 43 and the outlet channel 42. When the working gas returns from the expansion chamber 34 to the room temperature chamber 36, it passes the reverse path. That is, the working gas returns from the expansion chamber 34 to the room temperature chamber 36 through the outlet channel 42, the regenerator 15, and the inlet channel 40. The working gas that bypasses the regenerator 15 and tries to flow through the clearance is shut off by the seal portion 44.
  • the cryogenic refrigerator 10 includes a working gas circuit 52 connecting the compressor 12 to the cold head 14.
  • the working gas circuit 52 comprises a valve unit 54 configured to control the pressure of the expansion chamber 34.
  • the valve unit 54 has an intake on-off valve V1 and an exhaust on-off valve V2.
  • the valve unit 54 can adopt various known configurations such as a rotary valve system.
  • the intake on-off valve V1 When the intake on-off valve V1 is open, the exhaust on-off valve V2 is closed. A high pressure working gas is supplied to the cylinder 22 from the compressor discharge port 12a through the intake on-off valve V1.
  • the exhaust on / off valve V2 When the exhaust on / off valve V2 is open, the intake on / off valve V1 is closed. Working gas is recovered from the cylinder 22 to the compressor suction port 12b through the exhaust on-off valve V2, and the cylinder 22 is depressurized.
  • the intake on-off valve V1 and the exhaust on-off valve V2 may be temporarily closed together.
  • the cylinders 22 are alternately connected to the compressor discharge port 12a and the compressor suction port 12b.
  • the displacer 20 is located in the cylinder 22 at the bottom dead center LP.
  • high-pressure working gas is supplied from the compressor 12 to the cylinder 22.
  • the working gas is supplied to the expansion chamber 34 while being cooled by the regenerator 15.
  • the intake on-off valve V1 When the expansion chamber 34 is filled with the high pressure working gas, the intake on-off valve V1 is closed. At this time, the displacer 20 is located in the cylinder 22 at the top dead center UP. At the same time or when the exhaust on-off valve V2 is opened at a timing shifted slightly, the working gas of the expansion chamber 34 is decompressed and expanded. The expansion brings the working gas to a low temperature and absorbs heat from the cooling stage 26.
  • the displacer 20 moves toward the bottom dead center LP, and the volume of the expansion chamber 34 decreases.
  • the working gas in the expansion chamber 34 cools the regenerator material while passing through the regenerator 15, and is recovered by the compressor 12.
  • the above steps constitute one cycle, and the cryogenic refrigerator 10 cools the cooling stage 26 to a desired cryogenic temperature by repeating this cooling cycle.
  • the cooling stage 26 includes a first heat transfer block 28 and a second heat transfer block 30.
  • the cylinder 22, the first heat transfer block 28, and the second heat transfer block 30 are axially arranged in this order of description.
  • the cylinder 22 extends in the axial direction from the first heat transfer block 28.
  • the cooling stage 26 is formed in a cylindrical shape slightly larger in diameter than the cylinder 22.
  • the first heat transfer block 28 and the second heat transfer block 30 are formed in combination to form a cylindrical shape.
  • the first heat transfer block 28 and the second heat transfer block 30 are formed of, for example, a metal or other heat conductive material having a relatively high thermal conductivity, such as copper.
  • the first heat transfer block 28 and the second heat transfer block 30 are typically formed of the same material, but may be formed of different materials.
  • the first heat transfer block 28 is formed, for example, by machining such as cutting from a block of material.
  • the second heat transfer block 30 is also formed by machining, such as cutting, from a block of material.
  • the first heat transfer block 28 is disposed to surround the expansion chamber 34 and is thermally coupled to the expansion chamber 34.
  • the first heat transfer block 28 forms an expansion chamber 34 with the displacer bottom 20 a.
  • the first heat transfer block 28 has an exposed surface to the expansion chamber 34, and the exposed surface includes an expansion chamber bottom surface 34a opposite to the displacer bottom 20a.
  • the expansion chamber bottom surface 34 a forms a plane substantially perpendicular to the central axis 92 of the cryogenic refrigerator 10.
  • the first heat transfer block 28 includes a first heat exchange surface 46 disposed outside the expansion chamber 34.
  • the first heat exchange surface 46 is directed in the axial direction opposite to the expansion chamber bottom surface 34 a.
  • the second heat transfer block 30 is disposed adjacent to the first heat transfer block 28 and thermally coupled to the expansion chamber 34 via the first heat transfer block 28.
  • the second heat transfer block 30 is joined to the first heat transfer block 28 by brazing or welding, for example.
  • the outer peripheral portion of the second heat transfer block 30 is joined to the outer peripheral portion of the first heat transfer block 28.
  • the second heat transfer block 30 is disposed outside the expansion chamber 34 and has no exposed surface to the expansion chamber 34.
  • the second heat transfer block 30 includes a second heat exchange surface 48 facing the first heat exchange surface 46.
  • the cryogenic refrigerator 10 includes a refrigerant circuit 60 for flowing a refrigerant.
  • the refrigerant circuit 60 is fluidly isolated from the working gas circuit 52.
  • the refrigerant circuit 60 is provided as a separate system from the working gas circuit 52, and both are separated.
  • the refrigerant flowing through the refrigerant circuit 60 is not mixed with the working gas flowing through the working gas circuit 52.
  • the refrigerant may be the same kind as the working gas (for example, helium gas).
  • the refrigerant may be different (e.g., liquid nitrogen) from the working gas.
  • the pressure of the refrigerant in the refrigerant circuit 60 is generally lower than the pressure of the working gas in the working gas circuit 52, for example, about atmospheric pressure.
  • the refrigerant circuit 60 includes a refrigerant pump 62, a refrigerant supply port 64, a refrigerant discharge port 66, and a refrigerant passage 68.
  • the refrigerant pump 62 is provided to circulate the refrigerant in the refrigerant circuit 60.
  • the refrigerant pump 62 is connected to the refrigerant supply port 64 and the refrigerant discharge port 66 so as to deliver the refrigerant discharged from the refrigerant discharge port 66 to the refrigerant supply port 64.
  • the discharge port of the refrigerant pump 62 is connected to the refrigerant supply port 64 by a refrigerant supply pipe 63a, and the recovery port of the refrigerant pump 62 is connected to the refrigerant discharge port 66 by a refrigerant discharge pipe 63b.
  • the refrigerant pump 62, the refrigerant supply pipe 63a, and the refrigerant discharge pipe 63b may not be considered to constitute a part of the cryogenic refrigerator 10.
  • the refrigerant supply pipe 63 a and the refrigerant discharge pipe 63 b may be manufactured by a manufacturer different from the manufacturer of the cryogenic refrigerator 10 and may be prepared by the user of the cryogenic refrigerator 10.
  • the refrigerant supply port 64 and the refrigerant discharge port 66 are disposed on the outer surface of the cooling stage 26 as a part of the cryogenic refrigerator 10. Therefore, the refrigerant supply port 64 and the refrigerant discharge port 66 are disposed outside the expansion chamber 34.
  • the refrigerant supply port 64 is provided with a refrigerant inflow hole 64 a which allows the refrigerant to flow into the cooling stage 26, specifically to the refrigerant passage 68.
  • the refrigerant inflow hole 64 a connects the refrigerant supply pipe 63 a to the refrigerant passage 68.
  • the refrigerant discharge port 66 includes a refrigerant outflow hole 66 a which causes the refrigerant to flow out from the inside of the cooling stage 26, specifically, from the refrigerant passage 68.
  • the refrigerant outflow hole 66a connects the refrigerant passage 68 to the refrigerant discharge pipe 63b.
  • the refrigerant is supplied from the refrigerant pump 62 to the refrigerant passage 68 through the refrigerant supply port 64.
  • the refrigerant is discharged from the refrigerant passage 68 to the refrigerant pump 62 through the refrigerant outlet 66.
  • the positions and the number of the refrigerant supply ports 64 on the outer surface of the cooling stage 26 are arbitrary, a plurality of refrigerant supply ports 64 are arranged at equal intervals in the circumferential direction on the outer peripheral surface of the cooling stage 26 here.
  • the refrigerant supply port 64 is provided at the boundary between the first heat transfer block 28 and the second heat transfer block 30, but is not limited thereto.
  • the refrigerant supply port 64 may be one.
  • coolant discharge port 66 is provided in the end surface center part of the 2nd heat-transfer block 30 on the opposite side to the 2nd heat exchange surface 48, it is not restricted to this.
  • a plurality of refrigerant outlets 66 may be provided.
  • the refrigerant passage 68 is fluidly isolated from the expansion chamber 34.
  • the refrigerant passage 68 is formed inside the cooling stage 26 and penetrates the cooling stage 26. In the cooling stage 26, the refrigerant passage 68 and the expansion chamber 34 are separated from each other.
  • the working gas does not flow into the refrigerant passage 68 from the expansion chamber 34.
  • the refrigerant does not leak from the refrigerant passage 68 to the expansion chamber 34.
  • the refrigerant passage 68 has a first heat transfer block 28 and a second heat transfer block 30 so that the refrigerant flows from the refrigerant supply port 64 to the refrigerant discharge port 66 along the first heat exchange surface 46 and the second heat exchange surface 48. It is formed between.
  • the refrigerant passage 68 is formed between the first heat exchange surface 46 and the second heat exchange surface 48.
  • a heat exchanger 72 for cooling the object 70 is provided between the refrigerant pump 62 and the refrigerant supply port 64.
  • the heat exchanger 72 is connected to the middle of the refrigerant supply pipe 63a.
  • the heat exchanger 72 may be connected to the middle of the refrigerant discharge pipe 63 b between the refrigerant discharge port 66 and the refrigerant pump 62.
  • the object 70 is thermally connected to the heat exchanger 72. By flowing the cooled refrigerant to the heat exchanger 72, the object 70 is cooled.
  • the distance between the first heat exchange surface 46 of the first heat transfer block 28 and the second heat exchange surface 48 of the second heat transfer block 30 is constant.
  • the flow passage width of the refrigerant passage 68 is constant throughout the refrigerant passage 68. However, this is not essential, and as will be described later, the distance between the first heat exchange surface 46 and the second heat exchange surface 48 may be different depending on the place.
  • the first heat exchange surface 46 includes a first base surface 74 and at least one first fin 76 extending from the first base surface 74.
  • the first base surface 74 forms a plane substantially parallel to the expansion chamber bottom surface 34a, and is axially opposite to the expansion chamber bottom surface 34a.
  • the first base surface 74 can also be referred to as the upper surface of the refrigerant passage 68.
  • the first fin 76 comprises a first fin tip 76a.
  • the first heat transfer block 28 includes one first fin 76, but may include a plurality of first fins 76.
  • the outer peripheral portion of the first heat transfer block 28 can also be regarded as another first fin 76.
  • the second heat exchange surface 48 includes a second base surface 78 and at least one second fin 80 extending from the second base surface 78.
  • the second base surface 78 forms a plane substantially parallel to the first base surface 74.
  • the second base surface 78 can also be referred to as the lower surface of the refrigerant passage 68.
  • the second fin 80 extends along the first fin 76.
  • the second fin 80 includes a second fin tip 80a.
  • the second heat transfer block 30 includes two second fins 80, but the number of second fins 80 may be one, or three or more.
  • the second base surface 78 forms a recess for receiving the first fin 76 between two adjacent second fins 80. Further, in the case where the plurality of first fins 76 are provided in the first heat transfer block 28, the first base surface 74 has a recess for receiving the second fin 80 between two adjacent first fins 76. Form.
  • the first fin tip 76a is disposed closer to the second base surface 78 than the second fin tip 80a.
  • the second fin tip 80a is disposed closer to the first base surface 74 than the first fin tip 76a.
  • the first fins 76 are inserted between two adjacent second fins 80 so that the first fins 76 and the second fins 80 are alternately arranged.
  • a meandering refrigerant passage 68 is formed.
  • the first fins 76 and the second fins 80 extend in the axial direction.
  • the first fins 76 and the second fins 80 have fin heights in the axial direction.
  • the height (distance from the first base surface 74 to the first fin tip 76a) H1 of the first fin 76 is larger than the distance G1 between the first base surface 74 and the second fin tip 80a.
  • the height (distance from the second base surface 78 to the second fin tip 80a) H2 of the second fin 80 is larger than the distance G2 between the second base surface 78 and the first fin tip 76a.
  • the height H1 of the first fin 76 and the height H2 of the second fin 80 are equal. If desired, the height H1 and the height H2 may be different.
  • the distance G1 between the first base surface 74 and the second fin tip 80a and the distance G2 between the second base surface 78 and the first fin tip 76a are equal.
  • the intervals G1 and G2 may be different.
  • the refrigerant passage 68 includes a first cross passage 82, a second cross passage 84, and an inter-fin passage 86.
  • the first transverse passage 82 is formed between the first fin tip 76 a and the second base surface 78 so that the coolant traverses the first fin 76.
  • the second transverse passage 84 is formed between the second fin tip 80 a and the first base surface 74 so that the refrigerant traverses the second fin 80.
  • the inter-fin passage 86 is formed between the first fin 76 and the second fin 80.
  • the inter-fin passage 86 communicates the first transverse passage 82 with the second transverse passage 84.
  • a plurality of inter-fin passages 86 are formed.
  • One inter-fin passage 86 is formed between one of the two adjacent second fins 80 and the first fin 76, and another inter-fin passage 86 between the other second fin 80 and the first fin 76. Is formed.
  • the two inter-fin passages 86 are in communication by the first cross passage 82.
  • the widths W1, W2, W3 of the inter-fin passages 86 are equal.
  • the widths W1, W2, and W3 may be equal to the above-described intervals G1 and G2.
  • the refrigerant flows along the first fin tip 76 a by the coolant flowing through the first transverse passage 82.
  • the refrigerant flows through the second transverse passage 84, so that the refrigerant traverses the second fin 80 along the second fin tip 80a.
  • the inter-fin passage 86 guides the refrigerant from the first transverse passage 82 to the second transverse passage 84 or from the second transverse passage 84 to the first transverse passage 82.
  • the second heat transfer block 30, as shown in FIG. 2, forms a concentric ring structure 90 in which the second fin 80 is combined with the first fin 76 to be coaxially arranged with the central axis 92 of the cryogenic refrigerator 10.
  • the concentric ring structure 90 is easy to apply to the cryogenic refrigerator 10 as compared to other structures.
  • the first fins 76 have a ring shape centered on the central axis 92 of the cryogenic refrigerator 10.
  • the second fins 80 also have a ring shape centered on the central axis 92 of the cryogenic refrigerator 10. However, the second fin 80 has a diameter different from that of the first fin 76.
  • the first and second fins 76 and 80 extend circumferentially around the central axis 92 of the cryogenic refrigerator 10.
  • the first fins 76 and the second fins 80 have a fin thickness in the radial direction of the cryogenic refrigerator 10 and a fin length in the circumferential direction.
  • the fin length corresponds to the circumferential length of the ring.
  • the fin height and fin length are greater than the fin thickness.
  • the fin length is larger than the fin height.
  • the fin length may be smaller than the fin height.
  • the concentric ring structure 90 has an inner portion of the cooling stage 26 so that the fin height direction, fin thickness direction, and fin length direction coincide with the axial direction, radial direction, and circumferential direction of the cryogenic refrigerator 10, respectively.
  • the arrangement of such concentric ring structure 90 is not essential.
  • the concentric ring structure 90 may be arranged at any position and orientation inside the cooling stage 26, in which case the fin height direction, the fin thickness direction, and the fin length direction of the cryogenic refrigerator 10 are It does not necessarily coincide with the axial direction, the radial direction, and the circumferential direction.
  • the first fin 76 and the second fin 80 are continuous all around. Therefore, the first transverse passage 82, the second transverse passage 84, and the inter-fin passage 86 are also continuous along the entire circumference. That is, the first fin tip 76a is separated from the second base surface 78 all around. The second fin tip 80a is spaced from the first base surface 74 all around. In addition, the first fins 76 and the second fins 80 are separated from each other over the entire circumference.
  • first transverse passage 82 may be divided into a plurality of sections by the first fin tip 76 a being in partial contact with the second base surface 78.
  • the second transverse passage 84 may be divided into a plurality of sections by the second fin tip 80 a being in partial contact with the first base surface 74.
  • the inter-fin passage 86 may be divided into a plurality of areas by partial contact between the first fin 76 and the second fin 80.
  • the first cross passage 82, the second cross passage 84, and the inter-fin passage 86 may be circumferentially divided, for example.
  • the first fins 76 and the second fins 80 may be circumferentially divided.
  • the gap between the segments of the divided first fins 76 (or the second fins 80) may be part of the coolant passage 68.
  • One of the second fins 80 is formed on the central axis 92 of the cryogenic refrigerator 10, and the second fins 80 have a rod-like shape.
  • the first fins 76 may be formed on the central axis 92 of the cryogenic refrigerator 10 and have a rod-like shape.
  • the refrigerant passage 68 includes an outlet passage 88 communicating the refrigerant outlet 66 with the refrigerant passage 68.
  • the outlet passage 88 extends through the second heat transfer block 30 along the central axis 92 of the cryogenic refrigerator 10. Since the second fin 80 is formed on the central axis 92 of the cryogenic refrigerator 10, the outlet passage 88 penetrates the second fin 80 in its height direction, and the second transverse passage 84 is the refrigerant outlet hole 66a. Connected to When the first fin 76 is formed on the central axis 92 of the cryogenic refrigerator 10, the outlet passage 88 is a second base facing the first fin 76 disposed on the central axis 92. The surface 78 may penetrate the second heat transfer block 30 and be connected to the refrigerant outlet 66.
  • the refrigerant supply port 64 is disposed on the cooling stage 26 so as to supply the refrigerant to the outer peripheral portion of the concentric ring structure 90.
  • the refrigerant passage 68 is configured to guide the refrigerant from the outer periphery of the concentric ring structure 90 to the center of the concentric ring structure 90.
  • the refrigerant discharge port 66 is disposed on the cooling stage 26 so as to discharge the refrigerant from the center of the concentric ring structure 90.
  • the refrigerant passage 68 is configured to allow the refrigerant to flow radially from the outer peripheral portion to the central portion of the cooling stage 26.
  • the refrigerant flows from the refrigerant supply port 64 into the outer periphery of the concentric ring structure 90, and the second cross passage 84, the inter fin passage 86, the first cross passage 82, the inter fin passage 86, the second cross passage 84, the outlet passage It flows vertically and horizontally to 88.
  • the refrigerant is discharged from the center of the concentric ring structure 90 to the refrigerant outlet 66.
  • the direction in which the refrigerant flows is indicated by arrows in FIG. 1 for the purpose of understanding.
  • the refrigerant passage 68 acts as a heat exchanger integrated with the cooling stage 26 for cooling the refrigerant by the cooling stage 26.
  • the refrigerant flow in the refrigerant passage 68 contacts the first heat exchange surface 46 and is cooled by heat exchange with the first heat exchange surface 46.
  • the refrigerant flow in the refrigerant passage 68 contacts the second heat exchange surface 48 and is cooled by heat exchange with the second heat exchange surface 48.
  • the object 70 By flowing the refrigerant thus cooled to the heat exchanger 72, the object 70 can be cooled.
  • the refrigerant heated by heat exchange with the object 70 is recooled by the cooling stage 26 by flowing through the refrigerant passage 68.
  • the recooled refrigerant is again used to cool the object 70.
  • the heat exchanger for cooling the refrigerant is integrated in the inside of the cooling stage 26. More specifically, the refrigerant passage 68 includes the first heat exchange surface 46 and the refrigerant passage 68 so that the refrigerant flows from the refrigerant supply port 64 to the refrigerant discharge port 66 along the first heat exchange surface 46 and the second heat exchange surface 48. It is formed between the second heat exchange surface 48.
  • thermal contact between the cryogenic refrigerator 10 and the refrigerant can be made even more reliably as compared with the external heat exchange configuration in which the refrigerant pipe is joined to the outer surface of the conventional cooling stage. Can be Therefore, the cryogenic refrigerator 10 can cool the refrigerant more efficiently.
  • a serpentine refrigerant passage 68 is formed by a combination of the first fins 76 and the second fins 80.
  • the contact area between the refrigerant and the heat exchange surface can be increased as compared to the case where two opposing heat exchange surfaces are both flat without providing such a fin.
  • the cryogenic refrigerator 10 has an improved heat exchange efficiency.
  • the temperature at the central portion is slightly lower than that at the outer peripheral portion of the cooling stage 26.
  • the refrigerant supply port 64 is disposed at the outer peripheral portion of the cooling stage 26, and the refrigerant discharge port 66 is disposed at the central portion of the cooling stage 26.
  • the temperature of the refrigerant at the refrigerant supply port 64 is relatively high because the refrigerant is heated by the object 70.
  • FIG. 3 is a schematic view showing another example of the first heat transfer block 28 according to the first embodiment.
  • the first heat transfer block 28 may be formed of a plurality of sub blocks. A plurality of sub blocks may be joined by brazing or welding to form the first heat transfer block 28.
  • the second heat transfer block 30 may be formed of a plurality of sub blocks.
  • the first heat transfer block 28 includes an expansion chamber forming sub block 28 a and a first fin sub block 28 b.
  • An expansion chamber bottom surface 34a is provided in the expansion chamber forming sub-block 28a, and a first fin 76 is provided in the first fin sub block 28b.
  • the first fin sub block 28 b is bonded to the expansion chamber forming sub block 28 a via a bonding layer 94 such as a brazing layer.
  • the expansion chamber forming sub block 28a has a flat bonding surface 94a
  • the first fin sub block 28b has a flat bonding surface 94b, and these two bonding surfaces 94a and 94b are bonded by the bonding layer 94.
  • the bonding surfaces 94a, 94b may be flat surfaces parallel to the expansion chamber bottom surface 34a. Such bonding between flat surfaces is easier to perform stronger bonding than when a conventional external heat exchanger is bonded to the outer surface of the cooling stage.
  • the outer peripheral portion of the first heat transfer block 28 is an annular flat surface
  • the outer peripheral portion of the second heat transfer block 30 is also an annular flat surface, and these two annular flat surfaces are joined by brazing or welding It is also good.
  • FIG. 4 is a schematic view showing another example of the cooling stage 26 according to the first embodiment. As illustrated, the distance between the first heat exchange surface 46 and the second heat exchange surface 48 in the outer peripheral portion of the concentric ring structure 90 is the same as that in the central portion of the concentric ring structure 90. The distance between the heat exchange surfaces 48 may be smaller.
  • the cross-sectional area of the inter-fin passage 86 (perpendicular to the central axis 92) The area of the cross section by the plane becomes larger toward the outer periphery of the concentric ring structure 90. This is because the diameter of the inter-fin passage 86 located outside is larger than that of the inter-fin passage 86 located inside the concentric ring-like structure 90.
  • the larger the flow path cross-sectional area the smaller the flow path resistance. That is, in the concentric ring-like structure 90 shown in FIG. 2, the flow path resistance at the outer peripheral portion is relatively small, and the flow path resistance at the central portion is relatively large. The more uniform flow path resistance results in better heat exchange efficiency in the concentric ring structure 90.
  • This evaluation index indicates that the performance of the heat exchanger is good when the value is large. Since the temperature difference between the refrigerant and the cooling stage 26 is large near the refrigerant supply port 64, the amount of heat exchange is large. Therefore, even if the flow path is narrow in the vicinity of the refrigerant supply port 64 and the pressure loss is large, this evaluation index has a certain size. On the other hand, since the refrigerant is already cooled near the refrigerant outlet 66, the temperature difference between the refrigerant and the cooling stage 26 is small, and hence the amount of heat exchange is also small. Therefore, if the pressure loss is large in the vicinity of the refrigerant outlet 66, the above-mentioned evaluation index becomes significantly small, which is not desirable.
  • the refrigerant passage 68 is relatively narrow at the outer periphery of the concentric ring structure 90, and the refrigerant passage 68 is relatively wide at the center of the concentric ring structure 90.
  • the width W 1 of the outer inter-fin passage 86 is narrower than the width W 2 of the middle inter-fin passage 86.
  • the width W2 of the middle inter-fin passage 86 is narrower than the width W3 of the inner inter-fin passage 86. In this way, both the flow path resistance in the refrigerant passage 68 and the evaluation index can be made more uniform.
  • the first transverse passage 82 and the second transverse passage 84 are formed all around the concentric ring structure 90, and the refrigerant flow in the inter-fin passage 86 is induced in the fin height direction.
  • the present invention is not limited to this. Such an example is described next.
  • FIG. 5 is a view schematically showing the main part of the cryogenic refrigerator 10 according to the second embodiment.
  • 6 is a schematic view showing a cross section BB of the cryogenic refrigerator 10 shown in FIG.
  • the cooling stage 26 and its surrounding structure are shown in FIG. 5 and the concentric ring 90 is shown in FIG.
  • the cryogenic refrigerator 10 according to the second embodiment is different from the first embodiment in the refrigerant passage 68.
  • the first transverse passage 82 is locally formed between the first fin tip 76 a and the second base surface 78, and the second transverse passage 84 is between the second fin tip 80 a and the first base surface 74. It is formed locally.
  • One first transverse passage 82 is formed in one first fin 76, and one second transverse passage 84 is formed in one second fin 80.
  • first fin tips 76a are in contact with the second base surface 78, and the first fin tips 76a have a single recess at a specific site in the circumferential direction, and this recess forms a first cross passage 82.
  • Most of the second fin tip 80a is in contact with the first base surface 74, and the second fin tip 80a has a single recess at a specific location in the circumferential direction, and the recess forms a second cross passage 84.
  • the arrangement of the first transverse passage 82 and the second transverse passage 84 is determined such that the refrigerant flow in the inter-fin passage 86 is directed in a direction at an angle to the fin height direction.
  • the first transverse passage 82 and the second transverse passage 84 are disposed at circumferentially different places. More specifically, the first cross passage 82 and the second cross passage 84 are disposed opposite to each other with respect to the central axis 92. Therefore, the refrigerant flow in the inter-fin passage 86 is induced in a direction oblique to or circumferentially with respect to the fin height direction (i.e., the axial direction).
  • Only one refrigerant supply port 64 is provided.
  • FIGS. 5 and 6 the directions in which the refrigerant flows are indicated by arrows, and the corresponding arrows in FIGS. 5 and 6 have the same reference numerals D1 to D4.
  • the refrigerant flows from the refrigerant supply port 64 through the outer first cross passage 82 into the outer inter-fin passage 86 (arrow D1).
  • the refrigerant bifurcates from the outer inter-fin passage 86, flows half a circumference, joins (arrow E1), and flows from the outer second cross passage 84 into the middle inter-fin passage 86 (arrow D2).
  • the refrigerant branches into the middle inter-fin passage 86 again to flow half a circumference, merges (arrow E2), and flows from the inner first cross passage 82 into the inner inter-fin passage 86 (arrow D3).
  • the refrigerant branches again to the inner inter-fin passage 86 and flows half a circumference respectively to join (arrow E3), and from the inner second cross passage 84 to exit the refrigerant outlet 66 through the outlet passage 88 (arrow D4) ).
  • the refrigerant flow in the inter-fin passage 86 is induced in a direction making an angle with the fin height direction.
  • the refrigerant flow in the inter-fin passage 86 is generally directed in the circumferential direction.
  • the refrigerant passage 68 is longer than in the case where the refrigerant flow in the inter-fin passage 86 is induced in the fin height direction as in the first embodiment. In this way, the contact area between the refrigerant and the heat exchange surface can be increased, so that the heat exchange efficiency of the cryogenic refrigerator 10 is improved.
  • first transverse passage 82 and the second transverse passage 84 are disposed at different locations in the fin height direction.
  • the first cross passage 82 is located below, whereas the second cross passage 84 is located above. Therefore, the flow passage length from the first transverse passage 82 to the second transverse passage 84 is longer than when the first transverse passage 82 and the second transverse passage 84 are at the same height. This also helps to increase the contact area between the refrigerant and the heat exchange surface.
  • one refrigerant supply port 64 and one refrigerant discharge port 66 also help to make the refrigerant passage 68 longer.
  • one first fin 76 may be provided with a plurality of first transverse passages 82.
  • the plurality of first transverse passages 82 may be circumferentially equiangularly spaced.
  • a plurality of second transverse passages 84 may be provided in one second fin 80.
  • the plurality of second transverse passages 84 may be provided at equal angular intervals in the circumferential direction.
  • FIG. 7 is a view schematically showing the main part of the cryogenic refrigerator 10 according to the third embodiment.
  • the expansion chamber bottom surface 34 a includes a ring-shaped convex portion 96 coaxially disposed with the displacer 20. Also, the displacer bottom 20 a includes a ring-shaped recess 98 that receives the ring-shaped protrusion 96.
  • the fin type heat exchanger may be provided not only in the refrigerant passage 68 but also in the expansion chamber 34. Since the heat exchange area between the working gas of the cryogenic refrigerator 10 and the cooling stage 26 is increased, the heat exchange efficiency of the cryogenic refrigerator 10 is improved.
  • the ring-shaped convex portion 96 is hollow so as to receive the second fin 80 from the side opposite to the expansion chamber bottom surface 34 a. In this way, the thermal coupling between the expansion chamber 34 and the refrigerant passage 68 can be further improved. Further, since the second fin 80 can be accommodated in the ring-shaped convex portion 96, the axial length of the cooling stage 26 can be shortened.
  • the displacer 20 is provided with a displacer bottom fin 100 extending toward the expansion chamber bottom 34 a.
  • the first heat transfer block 28 is formed with a cavity 102 which is formed on the expansion chamber bottom surface 34 a to receive the displacer bottom fin 100 and which makes the first fin 76 hollow. In this way, the thermal coupling between the expansion chamber 34 and the refrigerant passage 68 can be further improved.
  • the displacer bottom fin 100 can be accommodated in the hollow portion 102 of the first fin 76, the axial length of the cooling stage 26 can be shortened.
  • FIG. 8 is a view schematically showing the main part of the cryogenic refrigerator 10 according to the fourth embodiment.
  • FIG. 9 is a schematic view showing a cross section CC of the cryogenic refrigerator 10 shown in FIG.
  • the refrigerant passage 68 has a single hierarchy, but is not limited to this.
  • the refrigerant passage 68 is divided into a plurality of layers.
  • the plurality of layers are arranged at different locations in the axial direction.
  • the plurality of layers are connected to one another so that the refrigerant flows in order.
  • the individual layers can also be referred to as sub-passages in the sense that they form part of the coolant passage 68.
  • the refrigerant passage 68 is divided into a first level 104 and a second level 106.
  • the first level 104 is disposed at the axially lower portion
  • the second level 106 is disposed at the axially upper portion.
  • the first layer 104 and the second layer 106 are axially adjacent to each other.
  • the second heat transfer block 30 of the cooling stage 26 is disposed to surround the first heat transfer block 28.
  • the second heat transfer block 30 includes a second heat transfer block bottom portion 30a and a second heat transfer block side cylindrical portion 30b.
  • the second heat transfer block bottom portion 30a is axially adjacent to the first heat transfer block 28, and the second heat transfer block side cylindrical portion 30b extends axially upward from the second heat transfer block bottom portion 30a. The whole circumference of the heat block 28 is enclosed.
  • the refrigerant supply port 64 is installed in the second heat transfer block side cylindrical portion 30 b so as to supply the refrigerant to the second layer 106 of the refrigerant passage 68.
  • the second level 106 is formed between the first heat exchange surface 46 and the second heat exchange surface 48. More specifically, the second layer 106 is a circumferential flow passage formed between the outer peripheral surface of the first heat transfer block 28 and the inner peripheral surface of the second heat transfer block side cylindrical portion 30 b.
  • the first level 104 of the refrigerant passage 68 is formed between the first heat transfer block 28 and the second heat transfer block bottom 30 a.
  • the first hierarchical level 104 is a serpentine flow path formed by opposing fins as in the second embodiment described above.
  • the first hierarchical layer 104 may be a serpentine channel as in the first embodiment or the third embodiment.
  • the refrigerant discharge port 66 is disposed at the second heat transfer block bottom 30 a so as to discharge the refrigerant from the first floor 104.
  • the refrigerant passage 68 also has a communication passage 108 that connects the first level 104 and the second level 106.
  • the communication passage 108 is formed between the outer peripheral surface of the first heat transfer block 28 and the inner peripheral surface of the second heat transfer block side cylindrical portion 30 b and extends in the axial direction from the first level 104 to the second level 106. ing.
  • the communication passage 108 is provided on the opposite side of the central axis 92 to the refrigerant supply port 64.
  • the refrigerant supply port 64 is shown in broken lines in FIG.
  • the cross-sectional shape of the communication passage 108 is an elongated rectangle curved along the circumference, but is not limited thereto.
  • the cross-sectional shape of the communication passage 108 may be circular, oval, or any other shape.
  • the refrigerant passage 68 flows from the refrigerant supply port 64 to the refrigerant discharge port 66 along the first heat exchange surface 46 and the second heat exchange surface 48 so that the first heat transfer block 28 and the second heat transfer It is formed between the block 30.
  • the refrigerant flows from the refrigerant supply port 64 into the second hierarchical layer 106, branches to the second hierarchical layer 106 for two hands, flows half a circumference around each other, joins, and flows into the communication passage 108.
  • the refrigerant flows from the communication passage 108 into the first layer 104, passes through the outlet passage 88, and exits from the refrigerant outlet 66.
  • the refrigerant passage 68 is divided into a plurality of layers in the axial direction. The plurality of layers are connected to one another so that the refrigerant flows in order.
  • the refrigerant passage 68 can be expanded axially upward it can. Therefore, in the fourth embodiment, the flow passage length of the refrigerant passage 68 can be increased, and heat exchange between the refrigerant and the heat exchange surface can be promoted. Thus, the heat exchange efficiency of the cryogenic refrigerator 10 is improved.
  • the refrigerant passage 68 has two layers, but is not limited thereto.
  • the refrigerant passages 68 may be divided into three or more levels.
  • FIGS. 10A and 10B are schematic views showing another example of the communication passage 108 in the cryogenic refrigerator 10 according to the fourth embodiment.
  • 10 (a) and 10 (b) show cross sections perpendicular to the central axis 92.
  • FIG. 8 and 9 the communication passage 108 is provided at one place, it is not limited thereto.
  • a plurality of communication passages 108 may be provided.
  • the plurality of communication paths 108 are formed between the first heat transfer block 28 and the second heat transfer block 30.
  • the communication passage 108 may be a groove formed on the outer peripheral surface of the first heat transfer block 28 or may be a groove formed on the inner peripheral surface of the second heat transfer block 30.
  • the communication passage 108 may be a through hole formed in either the first heat transfer block 28 or the second heat transfer block 30.
  • the plurality of communication paths 108 are arranged at equal angular intervals along a circumference centered on the central axis 92 except for the vicinity of the refrigerant supply port 64.
  • seven communication passages 108 are disposed at 45 degree intervals, and one communication passage 108 is provided on the opposite side of the central shaft 92 to the coolant supply port 64.
  • the flow passage cross-sectional areas (cross-sectional areas perpendicular to the axial direction) of the plurality of communication passages 108 are equal.
  • the cross-sectional shape of the communication passage 108 is, for example, an elliptical shape, but is not limited thereto.
  • the flow passage cross-sectional areas of the plurality of communication passages 108 may be different from one another.
  • the flow passage cross-sectional area of the communication passage 108 may be smaller as it is closer to the refrigerant supply port 64 and larger as it is farther from the refrigerant supply port 64. Therefore, the communication passage 108 a provided on the opposite side of the central shaft 92 to the refrigerant supply port 64 has the largest flow passage cross-sectional area. In the case shown in FIG.
  • the flow rate of the refrigerant passing through the communication passage 108 (for example, on the opposite side) far from the refrigerant supply port 64 is smaller than the flow rate of the refrigerant passing through the communication passage 108 near the refrigerant supply port 64.
  • heat exchange in the communication passage 108 far from the refrigerant supply port 64 may be insufficient.
  • the flow rate of the refrigerant passing through the plurality of communication paths 108 can be made uniform, and the reams far from the refrigerant supply port 64 The heat exchange area in the passage 108 can be effectively utilized.
  • FIG. 11 is a view schematically showing another example of the cryogenic refrigerator 10 according to the fourth embodiment.
  • the present invention is not limited thereto.
  • the flow passage cross-sectional area A1 of the refrigerant inflow hole 64a of the refrigerant supply port 64 may be larger than the flow passage cross-sectional area A2 of the refrigerant outflow hole 66a of the refrigerant discharge port 66.
  • the diameter of the refrigerant inflow holes 64a may be larger than the diameter of the refrigerant outflow holes 66a.
  • the refrigerant flowing in in the radial direction from the refrigerant inflow holes 64 a is bent in the circumferential direction in the second layer 106.
  • Such a sudden change in the flow direction leads to an increase in flow path resistance.
  • the refrigerant flowing out from the refrigerant passage 68 to the refrigerant discharge port 66 linearly flows in the axial direction, the flow path resistance is relatively small.
  • the flow passage resistance at the refrigerant supply port 64 is equal to the flow passage resistance at the refrigerant discharge port 66. Or can be smaller. Excessive flow path resistance at the refrigerant supply port 64 can be avoided. This helps to improve the heat exchange efficiency between the cooling stage 26 and the refrigerant.
  • the cross-sectional area A1 of the refrigerant supply port 64 is the same as the flow path of the refrigerant outlet 66 in the same manner. It may be larger than the cross-sectional area A2.
  • FIG. 12 is a view schematically showing another example of the cryogenic refrigerator 10 according to the fourth embodiment.
  • the second level 106 of the refrigerant passage 68 may have a proximity area 110a and a remote area 110b.
  • the proximity area 110a is an area closer to the communication passage 108 than the remote area 110b.
  • the proximity area 110a and the remote area 110b form one flow path communicating with each other.
  • the proximity area 110a is located axially below the second layer 106, and the remote area 110b is located axially upward.
  • the flow passage cross-sectional area (the cross-sectional area perpendicular to the circumferential direction) of the proximity region 110a is larger than the flow passage cross-sectional area of the remote region 110b.
  • the radial width of the proximity region 110a may be larger than the radial width of the remote region 110b. In this way, the flow passage cross-sectional area of the region where the flow of the refrigerant is easily concentrated is relatively large.
  • the flow rate of the refrigerant passing through the axially upper area far from the communication passage 108 in the second layer 106 is higher than the flow rate of the refrigerant flowing in the lower axial region near the communication path 108 in the second layer 106.
  • the proximity area 110 a and the remote area 110 b may be provided only in the vicinity of the communication passage 108 in the second layer 106. Alternatively, the proximity area 110 a and the remote area 110 b may be provided on the entire second layer 106 (that is, around the entire circumference of the cooling stage 26).
  • At least one level (e.g., the first level 104) of the refrigerant passages 68 may have the proximity area 110a and the remote area 110b.
  • the heat exchange efficiency between the cooling stage 26 and the refrigerant in the vicinity of the communication passage 108 in at least one hierarchy (for example, the first hierarchy 104) of the refrigerant passage 68 can be improved.
  • the shapes of the first fins 76 and the second fins 80 are not limited to the ring shape.
  • the fin shape may be a cylindrical or rectangular plate shape, or a rod shape.
  • the refrigerant passage 68 be serpentine.
  • the first heat exchange surface 46 may not have the first fins 76.
  • the second heat exchange surface 48 may not have the second fin 80.
  • At least one of the first heat exchange surface 46 and the second heat exchange surface 48 may be a flat surface. Even in this case, heat exchange between the refrigerant and the heat exchange surface is possible.
  • the various embodiments described in connection with the first embodiment are also applicable to the second to fourth embodiments.
  • the heat transfer block configuration shown in FIG. 3 may be applied to the second to fourth embodiments.
  • the configuration of the refrigerant passage 68 shown in FIG. 4 may be applied to the second to fourth embodiments.
  • the hierarchical channel structure of the fourth embodiment may be applied to the first to third embodiments.
  • the new embodiments resulting from the combination combine the effects of each of the combined embodiments.
  • cryogenic refrigerator 20 displacer, 26 cooling stage, 28 first heat transfer block, 30 second heat transfer block, 34 expansion chamber, 46 first heat exchange surface, 48 second heat exchange surface, 64 refrigerant supply port, 66 refrigerant outlet, 68 refrigerant passage, 74 first base surface, 76 first fin, 76a first fin tip, 78 second base surface, 80 second fin, 80a second fin tip, 82 first transverse passage, 84 Second transverse passage, 86 inter-fin passage, 90 concentric ring-shaped structure, 92 central axis, 96 ring-shaped convex portion, 98 ring-shaped concave portion, 104 first layer, 106 second layer.
  • the invention can be used in the field of cryogenic refrigerators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

A cryogenic refrigerator 10 comprising: an expansion chamber 34; a cooling stage 26 thermally coupled to the expansion chamber 34, said cooling stage 26 comprising a first heat transfer block 28 having a surface exposed to the expansion chamber 34 and a first heat exchange surface 46 arranged on the outside of the expansion chamber 34, and a second heat transfer block 30 having a second heat exchange surface 48 facing the first heat exchange surface 46; a refrigerant supply opening 64 installed in the cooling stage 26 on the outside of the expansion chamber 34; a refrigerant discharge opening 66 installed in the cooling stage 26 on the outside of the expansion chamber 34; and a refrigerant passage 68 fluidically separated from the expansion chamber 34, said refrigerant passage 68 being formed between the first heat transfer block 28 and the second heat transfer block 30 such that the refrigerant flows along the first heat exchange surface 46 and the second heat exchange surface 48 from the refrigerant supply opening 64 to the refrigerant discharge opening 66.

Description

極低温冷凍機Cryogenic refrigerator
 本発明は、極低温冷凍機に関する。 The present invention relates to a cryogenic refrigerator.
 ギフォード・マクマホン(Gifford-McMahon;GM)冷凍機に代表される極低温冷凍機は、作動ガスの膨張室と熱的に結合された冷却ステージを有する。膨張室の容積変化と圧力変化とを適切に同期させることによって、極低温冷凍機は冷却ステージを所望の極低温に冷却することができる。冷却されるべき対象物は、冷却ステージに熱的に結合され、冷却ステージにより冷却される。このような冷却ステージは、スターリング冷凍機、パルス管冷凍機などその他の極低温冷凍機にも備えられている。 Cryogenic refrigerators, represented by Gifford-McMahon (GM) refrigerators, have a cooling stage thermally coupled to an expansion chamber of a working gas. By properly synchronizing the expansion chamber volume change and the pressure change, the cryogenic refrigerator can cool the cooling stage to a desired cryogenic temperature. The objects to be cooled are thermally coupled to the cooling stage and cooled by the cooling stage. Such a cooling stage is also provided to other cryogenic refrigerators such as Stirling refrigerator and pulse tube refrigerator.
特開2001-248930号公報JP 2001-248930 A 特開平10-122683号公報Unexamined-Japanese-Patent No. 10-122683
 極低温冷凍機はしばしば、液体窒素、気体または液体のヘリウムなど種々の冷媒流体(以下、冷媒ともいう)を冷却するために利用される。冷却された冷媒は、超伝導装置や計測機器など低温環境を要する各種の装置を冷却するために使用される。ある典型的な構成においては、冷媒を流すための冷媒管が、極低温冷凍機の冷却ステージの外面に溶接やろう付けなどの接合手段により接合され、冷却ステージに熱的に結合される。冷却ステージによって冷媒管が冷却され、冷媒管によって冷媒が冷却される。冷媒管と冷却ステージ外面との接合状態は、極低温冷凍機による冷媒の冷却性能に影響する。冷媒管の接合不良は冷媒管と冷却ステージの間に大きな熱抵抗を発生させるので、冷媒が冷えにくくなる。 Cryogenic refrigerators are often used to cool various refrigerant fluids (hereinafter also referred to as refrigerants) such as liquid nitrogen, gaseous or liquid helium. Cooled refrigerants are used to cool various devices that require a low temperature environment, such as superconducting devices and instrumentation. In one typical arrangement, a refrigerant tube for flowing the refrigerant is joined to the outer surface of the cooling stage of the cryogenic refrigerator by joining means such as welding or brazing and thermally coupled to the cooling stage. The cooling pipe cools the refrigerant pipe, and the refrigerant pipe cools the refrigerant. The bonding state of the refrigerant pipe and the outer surface of the cooling stage affects the cooling performance of the refrigerant by the cryogenic refrigerator. Since the joint failure of the refrigerant pipe generates a large thermal resistance between the refrigerant pipe and the cooling stage, the refrigerant becomes difficult to cool.
 本発明のある態様の例示的な目的のひとつは、極低温冷凍機の冷却性能を向上する技術を提供することにある。 One of the exemplary objects of an aspect of the present invention is to provide a technique for improving the cooling performance of a cryogenic refrigerator.
 本発明のある態様によると、極低温冷凍機は、膨張室と、前記膨張室に熱的に結合された冷却ステージであって、前記膨張室への露出面と前記膨張室の外に配置された第1熱交換面とを備える第1伝熱ブロックと、前記第1熱交換面に対向する第2熱交換面を備える第2伝熱ブロックと、を備える冷却ステージと、前記膨張室の外であって前記冷却ステージに設置された冷媒供給口と、前記膨張室の外であって前記冷却ステージに設置された冷媒排出口と、前記膨張室から流体的に隔離された冷媒通路であって、冷媒が前記冷媒供給口から前記冷媒排出口へと前記第1熱交換面および前記第2熱交換面に沿って流れるよう前記第1伝熱ブロックと前記第2伝熱ブロックとの間に形成された冷媒通路と、を備える。 According to an aspect of the present invention, the cryogenic refrigerator is an expansion chamber and a cooling stage thermally coupled to the expansion chamber, the cryogenic refrigerator being disposed outside the expansion chamber and the exposed surface to the expansion chamber. A first heat transfer block having a first heat exchange surface, and a second heat transfer block having a second heat exchange surface facing the first heat exchange surface, and the outside of the expansion chamber A refrigerant supply port installed in the cooling stage, a refrigerant discharge port installed outside the expansion chamber and installed in the cooling stage, and a refrigerant passage fluidly isolated from the expansion chamber, Forming between the first heat transfer block and the second heat transfer block such that the refrigerant flows along the first heat exchange surface and the second heat exchange surface from the refrigerant supply port to the refrigerant discharge port And a refrigerant passage.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It is to be noted that any combination of the above-described constituent elements, or one in which the constituent elements and expressions of the present invention are mutually replaced among methods, apparatuses, systems, etc. is also effective as an aspect of the present invention.
 本発明によれば、極低温冷凍機の冷却性能を向上する技術を提供することにある。 An object of the present invention is to provide a technique for improving the cooling performance of a cryogenic refrigerator.
第1実施形態に係る極低温冷凍機を概略的に示す図である。It is a figure showing roughly the cryogenic refrigerator concerning a 1st embodiment. 図1に示される極低温冷凍機のA-A断面を示す概略図である。FIG. 2 is a schematic view showing an AA cross section of the cryogenic refrigerator shown in FIG. 1; 第1実施形態に係る第1伝熱ブロックの他の例を示す概略図である。It is the schematic which shows the other example of the 1st heat-transfer block which concerns on 1st Embodiment. 第1実施形態に係る冷却ステージの他の例を示す概略図である。It is the schematic which shows the other example of the cooling stage which concerns on 1st Embodiment. 第2実施形態に係る極低温冷凍機の要部を概略的に示す図である。It is a figure showing roughly the important section of the cryogenic refrigerator concerning a 2nd embodiment. 図5に示される極低温冷凍機のB-B断面を示す概略図である。FIG. 6 is a schematic view showing a cross section BB of the cryogenic refrigerator shown in FIG. 5; 第3実施形態に係る極低温冷凍機の要部を概略的に示す図である。It is a figure showing roughly the important section of the cryogenic refrigerator concerning a 3rd embodiment. 第4実施形態に係る極低温冷凍機の要部を概略的に示す図である。It is a figure showing roughly the important section of the cryogenic refrigerator concerning a 4th embodiment. 図8に示される極低温冷凍機のC-C断面を示す概略図である。FIG. 9 is a schematic view showing a cross section CC of the cryogenic refrigerator shown in FIG. 8; 図10(a)および図10(b)は、第4実施形態に係る極低温冷凍機における連通路の他の例を示す概略図である。FIG. 10A and FIG. 10B are schematic views showing another example of the communication passage in the cryogenic refrigerator according to the fourth embodiment. 第4実施形態に係る極低温冷凍機の他の例を概略的に示す図である。It is a figure showing roughly other examples of the cryogenic refrigerator concerning a 4th embodiment. 第4実施形態に係る極低温冷凍機の他の例を概略的に示す図である。It is a figure showing roughly other examples of the cryogenic refrigerator concerning a 4th embodiment.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。また、以下の説明において参照する図面において、各構成部材の大きさや厚みは説明の便宜上のものであり、必ずしも実際の寸法や比率を示すものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the description, the same elements will be denoted by the same reference signs, and overlapping descriptions will be omitted as appropriate. Further, the configurations described below are exemplifications and do not limit the scope of the present invention. Further, in the drawings referred to in the following description, the size and thickness of each component are for convenience of description, and do not necessarily indicate actual dimensions and ratios.
(第1実施形態)
 図1は、第1実施形態に係る極低温冷凍機10を概略的に示す図である。図2は、図1に示される極低温冷凍機10のA-A断面を示す概略図である。
First Embodiment
FIG. 1 is a view schematically showing a cryogenic refrigerator 10 according to the first embodiment. FIG. 2 is a schematic view showing an AA cross section of the cryogenic refrigerator 10 shown in FIG.
 極低温冷凍機10は、作動ガス(例えばヘリウムガス)を圧縮する圧縮機12と、作動ガスを断熱膨張により冷却するコールドヘッド14と、を備える。圧縮機12は、圧縮機吐出口12aおよび圧縮機吸入口12bを有する。コールドヘッド14は膨張機とも呼ばれる。図示される極低温冷凍機10は、単段式のGM冷凍機である。 The cryogenic refrigerator 10 includes a compressor 12 that compresses a working gas (e.g., helium gas) and a cold head 14 that cools the working gas by adiabatic expansion. The compressor 12 has a compressor discharge port 12a and a compressor suction port 12b. The cold head 14 is also called an expander. The illustrated cryogenic refrigerator 10 is a single-stage GM refrigerator.
 詳しくは後述するように、圧縮機12は、圧縮機吐出口12aからコールドヘッド14に高圧(PH)の作動ガスを供給する。コールドヘッド14には作動ガスを予冷する蓄冷器15が備えられている。予冷された作動ガスは、コールドヘッド14内での膨張によって更に冷却される。作動ガスは蓄冷器15を通じて圧縮機吸入口12bに回収される。作動ガスは蓄冷器15を通るとき蓄冷器15を冷却する。圧縮機12は、回収した低圧(PL)の作動ガスを圧縮し、再びコールドヘッド14に供給する。一般に高圧(PH)及び低圧(PL)はともに大気圧よりかなり高い。通例、高圧(PH)は例えば2~3MPaであり、低圧(PL)は例えば0.5~1.5MPaである。 As described in detail later, the compressor 12 supplies a high pressure (PH) working gas from the compressor discharge port 12 a to the cold head 14. The cold head 14 is provided with a regenerator 15 for precooling the working gas. The precooled working gas is further cooled by expansion in the cold head 14. The working gas is recovered through the regenerator 15 to the compressor suction port 12b. The working gas cools the regenerator 15 as it passes through the regenerator 15. The compressor 12 compresses the recovered low pressure (PL) working gas and supplies it to the cold head 14 again. Generally, both high pressure (PH) and low pressure (PL) are much higher than atmospheric pressure. Typically, the high pressure (PH) is for example 2 to 3 MPa and the low pressure (PL) is for example 0.5 to 1.5 MPa.
 コールドヘッド14は、軸方向(図1において上下方向、矢印Cで示す)に往復動可能なディスプレーサ20と、ディスプレーサ20を収容するシリンダ22と、ディスプレーサ駆動機構16と、を備える。ディスプレーサ駆動機構16は、ディスプレーサ20に同軸に連結された連結ロッド24を備える。シリンダ22は、作動ガスの圧力容器の一部として構成されている。 The cold head 14 includes a displacer 20 capable of reciprocating in an axial direction (vertical direction in FIG. 1 and indicated by an arrow C), a cylinder 22 accommodating the displacer 20, and a displacer drive mechanism 16. The displacer drive mechanism 16 comprises a connecting rod 24 coaxially connected to the displacer 20. The cylinder 22 is configured as part of a pressure vessel for working gas.
 ディスプレーサ駆動機構16は、種々の公知の構成を採用しうる。例えば、モータ駆動型GM冷凍機の場合、ディスプレーサ駆動機構16は、スコッチヨーク機構およびモータを備える。ディスプレーサ20は、連結ロッド24およびスコッチヨーク機構を介してモータに機械的に連結され、モータによって駆動される。ガス駆動型GM冷凍機の場合、ディスプレーサ20は、連結ロッド24を介してディスプレーサ駆動ピストンに連結され、ディスプレーサ駆動ピストンに作用するガス圧によって駆動される。 The displacer drive mechanism 16 can adopt various known configurations. For example, in the case of a motor driven GM refrigerator, the displacer drive mechanism 16 includes a scotch yoke mechanism and a motor. The displacer 20 is mechanically connected to the motor via the connecting rod 24 and the scotch yoke mechanism and driven by the motor. In the case of a gas-driven GM refrigerator, the displacer 20 is connected to the displacer drive piston via a connecting rod 24 and is driven by the gas pressure acting on the displacer drive piston.
 ディスプレーサ20の軸方向往復動は、シリンダ22によって案内される。通例、ディスプレーサ20およびシリンダ22はそれぞれ軸方向に延在する円筒状の部材であり、シリンダ22の内径はディスプレーサ20の外径に一致するか又はわずかに大きい。ディスプレーサ20およびシリンダ22の中心軸が極低温冷凍機10の中心軸92に相当する(図2参照)。連結ロッド24はディスプレーサ20よりも小径である。 The axial reciprocation of the displacer 20 is guided by the cylinder 22. Typically, the displacer 20 and the cylinder 22 are each an axially extending cylindrical member, the inner diameter of the cylinder 22 corresponding to or slightly larger than the outer diameter of the displacer 20. The central axes of the displacer 20 and the cylinder 22 correspond to the central axis 92 of the cryogenic refrigerator 10 (see FIG. 2). The connecting rod 24 is smaller in diameter than the displacer 20.
 シリンダ22は、ディスプレーサ20によって膨張室34と室温室36に仕切られている。膨張室34は、極低温冷凍機10の作動ガスの膨張空間を画定する。ディスプレーサ20は、軸方向一端にてシリンダ22との間に膨張室34を形成し、軸方向他端にてシリンダ22との間に室温室36を形成する。膨張室34は下死点LP側に配置され、室温室36は上死点UP側に配置されている。連結ロッド24は、室温室36を通ってディスプレーサ20の上蓋部まで延びている。 The cylinder 22 is partitioned by the displacer 20 into an expansion chamber 34 and a room temperature chamber 36. The expansion chamber 34 defines an expansion space for the working gas of the cryogenic refrigerator 10. The displacer 20 forms an expansion chamber 34 with the cylinder 22 at one axial end, and forms a room temperature chamber 36 with the cylinder 22 at the other axial end. The expansion chamber 34 is disposed on the bottom dead center LP side, and the room temperature chamber 36 is disposed on the top dead center UP side. The connecting rod 24 extends through the room temperature chamber 36 to the upper lid of the displacer 20.
 コールドヘッド14には、膨張室34を外包するようシリンダ22に固着された冷却ステージ26が設けられている。冷却ステージ26は、膨張室34に熱的に結合されている。冷却ステージ26は、例えばろう付けや溶接によりシリンダ22に接合されている。冷却ステージ26の詳細は後述する。 The cold head 14 is provided with a cooling stage 26 fixed to the cylinder 22 so as to enclose the expansion chamber 34. Cooling stage 26 is thermally coupled to expansion chamber 34. The cooling stage 26 is joined to the cylinder 22 by brazing or welding, for example. The details of the cooling stage 26 will be described later.
 蓄冷器15はディスプレーサ20に内蔵されている。ディスプレーサ20はその上蓋部に、蓄冷器15を室温室36に連通する入口流路40を有する。また、ディスプレーサ20はその筒部に、蓄冷器15を膨張室34に連通する出口流路42を有する。あるいは、出口流路42は、ディスプレーサ20の下蓋部に設けられていてもよい。加えて、蓄冷器15は、上蓋部に内接する入口リテーナ41と、下蓋部に内接する出口リテーナ43と、両リテーナに挟持された蓄冷材と、を備える。図1において蓄冷材は、入口リテーナ41と出口リテーナ43に挟まれた、ドットを付した領域として図示されている。蓄冷材は、たとえば銅製の金網でもよい。リテーナは蓄冷材よりも粗い金網でもよい。 The regenerator 15 is built in the displacer 20. The displacer 20 has an inlet channel 40 in the upper lid thereof, which connects the regenerator 15 to the room temperature chamber 36. Further, the displacer 20 has an outlet flow passage 42 communicating the regenerator 15 with the expansion chamber 34 in the cylindrical portion thereof. Alternatively, the outlet channel 42 may be provided in the lower lid of the displacer 20. In addition, the regenerator 15 includes an inlet retainer 41 inscribed in the upper lid portion, an outlet retainer 43 inscribed in the lower lid portion, and a regenerator material sandwiched between the two retainers. In FIG. 1, the cool storage material is illustrated as a dotted area sandwiched by the inlet retainer 41 and the outlet retainer 43. The cold storage material may be, for example, a copper wire mesh. The retainer may be a wire mesh coarser than the regenerator material.
 シール部44が、ディスプレーサ20とシリンダ22の間に設けられている。シール部44は、例えばスリッパーシールであり、ディスプレーサ20の筒部または上蓋部に装着されている。ディスプレーサ20とシリンダ22とのクリアランスがシール部44によって封じられているので、室温室36と膨張室34との直接のガス流通(つまり蓄冷器15を迂回するガス流れ)はない。 A seal portion 44 is provided between the displacer 20 and the cylinder 22. The seal portion 44 is, for example, a slipper seal, and is attached to the cylindrical portion or the upper lid portion of the displacer 20. Since the clearance between the displacer 20 and the cylinder 22 is sealed by the seal portion 44, there is no direct gas flow between the room temperature chamber 36 and the expansion chamber 34 (that is, the gas flow bypassing the regenerator 15).
 ディスプレーサ20が軸方向に動くとき、膨張室34および室温室36は相補的に容積を増減させる。すなわち、ディスプレーサ20が下動するとき、膨張室34は狭くなり室温室36は広くなる。逆も同様である。 As the displacer 20 moves axially, the expansion chamber 34 and the room temperature chamber 36 complementarily increase or decrease in volume. That is, when the displacer 20 moves downward, the expansion chamber 34 narrows and the room temperature chamber 36 widens. The reverse is also true.
 作動ガスは、室温室36から入口流路40を通じて蓄冷器15に流入する。より正確には、作動ガスは、入口流路40から入口リテーナ41を通って蓄冷器15に流入する。作動ガスは、蓄冷器15から出口リテーナ43および出口流路42を経由して膨張室34に流入する。作動ガスが膨張室34から室温室36に戻るときは逆の経路を通る。つまり、作動ガスは、膨張室34から、出口流路42、蓄冷器15、および入口流路40を通って室温室36に戻る。蓄冷器15を迂回してクリアランスを流れようとする作動ガスはシール部44によって遮断される。 The working gas flows from the room temperature chamber 36 into the regenerator 15 through the inlet channel 40. More precisely, the working gas flows from the inlet channel 40 into the regenerator 15 through the inlet retainer 41. The working gas flows from the regenerator 15 into the expansion chamber 34 via the outlet retainer 43 and the outlet channel 42. When the working gas returns from the expansion chamber 34 to the room temperature chamber 36, it passes the reverse path. That is, the working gas returns from the expansion chamber 34 to the room temperature chamber 36 through the outlet channel 42, the regenerator 15, and the inlet channel 40. The working gas that bypasses the regenerator 15 and tries to flow through the clearance is shut off by the seal portion 44.
 さらに、極低温冷凍機10は、圧縮機12をコールドヘッド14に接続する作動ガス回路52を備える。作動ガス回路52は、膨張室34の圧力を制御するよう構成されたバルブユニット54を備える。バルブユニット54は、吸気開閉バルブV1と排気開閉バルブV2とを有する。バルブユニット54は、ロータリーバルブ方式など種々の公知の構成を採用することができる。 Further, the cryogenic refrigerator 10 includes a working gas circuit 52 connecting the compressor 12 to the cold head 14. The working gas circuit 52 comprises a valve unit 54 configured to control the pressure of the expansion chamber 34. The valve unit 54 has an intake on-off valve V1 and an exhaust on-off valve V2. The valve unit 54 can adopt various known configurations such as a rotary valve system.
 吸気開閉バルブV1が開いているとき排気開閉バルブV2は閉じられる。圧縮機吐出口12aから吸気開閉バルブV1を通じてシリンダ22に高圧の作動ガスが供給される。一方、排気開閉バルブV2が開いているとき吸気開閉バルブV1は閉じられる。シリンダ22から排気開閉バルブV2を通じて圧縮機吸入口12bに作動ガスが回収され、シリンダ22は減圧される。なお吸気開閉バルブV1および排気開閉バルブV2が一時的にともに閉じられてもよい。このようにして、シリンダ22は、圧縮機吐出口12aおよび圧縮機吸入口12bと交互に接続される。 When the intake on-off valve V1 is open, the exhaust on-off valve V2 is closed. A high pressure working gas is supplied to the cylinder 22 from the compressor discharge port 12a through the intake on-off valve V1. On the other hand, when the exhaust on / off valve V2 is open, the intake on / off valve V1 is closed. Working gas is recovered from the cylinder 22 to the compressor suction port 12b through the exhaust on-off valve V2, and the cylinder 22 is depressurized. The intake on-off valve V1 and the exhaust on-off valve V2 may be temporarily closed together. Thus, the cylinders 22 are alternately connected to the compressor discharge port 12a and the compressor suction port 12b.
 極低温冷凍機10の例示的な動作を説明する。作動ガス供給工程のある時点においてディスプレーサ20はシリンダ22内で下死点LPに位置する。それと同時、またはわずかにずれたタイミングで吸気開閉バルブV1を開くと、高圧の作動ガスが圧縮機12からシリンダ22に供給される。作動ガスは蓄冷器15により冷却されながら膨張室34に供給される。 An exemplary operation of the cryogenic refrigerator 10 is described. At some point in the working gas supply process, the displacer 20 is located in the cylinder 22 at the bottom dead center LP. At the same time, or when the intake valve is opened at a timing shifted slightly, high-pressure working gas is supplied from the compressor 12 to the cylinder 22. The working gas is supplied to the expansion chamber 34 while being cooled by the regenerator 15.
 膨張室34が高圧の作動ガスで満たされると、吸気開閉バルブV1は閉じられる。この時、ディスプレーサ20はシリンダ22内で上死点UPに位置する。それと同時、またはわずかにずれたタイミングで排気開閉バルブV2を開くと、膨張室34の作動ガスは減圧され膨張する。膨張により作動ガスは低温となり、冷却ステージ26から熱を吸収する。 When the expansion chamber 34 is filled with the high pressure working gas, the intake on-off valve V1 is closed. At this time, the displacer 20 is located in the cylinder 22 at the top dead center UP. At the same time or when the exhaust on-off valve V2 is opened at a timing shifted slightly, the working gas of the expansion chamber 34 is decompressed and expanded. The expansion brings the working gas to a low temperature and absorbs heat from the cooling stage 26.
 ディスプレーサ20は下死点LPに向けて移動し、膨張室34の容積は減少する。膨張室34内の作動ガスは、蓄冷器15を通過しながら蓄冷材を冷却し、圧縮機12に回収される。以上の工程を1サイクルとし、極低温冷凍機10はこの冷却サイクルを繰り返すことで、冷却ステージ26を所望の極低温に冷却する。 The displacer 20 moves toward the bottom dead center LP, and the volume of the expansion chamber 34 decreases. The working gas in the expansion chamber 34 cools the regenerator material while passing through the regenerator 15, and is recovered by the compressor 12. The above steps constitute one cycle, and the cryogenic refrigerator 10 cools the cooling stage 26 to a desired cryogenic temperature by repeating this cooling cycle.
 冷却ステージ26は、第1伝熱ブロック28および第2伝熱ブロック30を備える。シリンダ22、第1伝熱ブロック28、および第2伝熱ブロック30は、この記載の順に軸方向に配置されている。シリンダ22は、第1伝熱ブロック28から軸方向に延出している。冷却ステージ26は、シリンダ22よりも若干大径の円筒状に形成されている。第1伝熱ブロック28および第2伝熱ブロック30は組み合わされて円筒状の形状をなすように形成されている。 The cooling stage 26 includes a first heat transfer block 28 and a second heat transfer block 30. The cylinder 22, the first heat transfer block 28, and the second heat transfer block 30 are axially arranged in this order of description. The cylinder 22 extends in the axial direction from the first heat transfer block 28. The cooling stage 26 is formed in a cylindrical shape slightly larger in diameter than the cylinder 22. The first heat transfer block 28 and the second heat transfer block 30 are formed in combination to form a cylindrical shape.
 第1伝熱ブロック28および第2伝熱ブロック30は、例えば銅などの比較的高い熱伝導率をもつ金属またはその他の熱伝導材料で形成されている。第1伝熱ブロック28と第2伝熱ブロック30は通例同じ材料で形成されるが、異なる材料で形成されてもよい。第1伝熱ブロック28は、例えば、ひとかたまりの材料から切削などの機械加工によって形成される。同様に、第2伝熱ブロック30も、ひとかたまりの材料から切削などの機械加工によって形成される。 The first heat transfer block 28 and the second heat transfer block 30 are formed of, for example, a metal or other heat conductive material having a relatively high thermal conductivity, such as copper. The first heat transfer block 28 and the second heat transfer block 30 are typically formed of the same material, but may be formed of different materials. The first heat transfer block 28 is formed, for example, by machining such as cutting from a block of material. Similarly, the second heat transfer block 30 is also formed by machining, such as cutting, from a block of material.
 第1伝熱ブロック28は、膨張室34を囲むよう配置され、膨張室34に熱的に結合されている。第1伝熱ブロック28は、ディスプレーサ底部20aとの間に膨張室34を形成する。第1伝熱ブロック28は、膨張室34への露出面を有し、この露出面は、ディスプレーサ底部20aに対向する膨張室底面34aを含む。膨張室底面34aは、極低温冷凍機10の中心軸92と概ね垂直な平面を形成する。第1伝熱ブロック28は、膨張室34の外に配置された第1熱交換面46を備える。第1熱交換面46は、軸方向において膨張室底面34aと反対側に向けられている。 The first heat transfer block 28 is disposed to surround the expansion chamber 34 and is thermally coupled to the expansion chamber 34. The first heat transfer block 28 forms an expansion chamber 34 with the displacer bottom 20 a. The first heat transfer block 28 has an exposed surface to the expansion chamber 34, and the exposed surface includes an expansion chamber bottom surface 34a opposite to the displacer bottom 20a. The expansion chamber bottom surface 34 a forms a plane substantially perpendicular to the central axis 92 of the cryogenic refrigerator 10. The first heat transfer block 28 includes a first heat exchange surface 46 disposed outside the expansion chamber 34. The first heat exchange surface 46 is directed in the axial direction opposite to the expansion chamber bottom surface 34 a.
 また、第2伝熱ブロック30は、第1伝熱ブロック28に隣接して配置され、第1伝熱ブロック28を介して膨張室34に熱的に結合されている。第2伝熱ブロック30は、例えばろう付けや溶接により第1伝熱ブロック28に接合されている。第2伝熱ブロック30の外周部が第1伝熱ブロック28の外周部と接合されている。第2伝熱ブロック30は、膨張室34の外に配置され、膨張室34への露出面は有しない。第2伝熱ブロック30は、第1熱交換面46に対向する第2熱交換面48を備える。 The second heat transfer block 30 is disposed adjacent to the first heat transfer block 28 and thermally coupled to the expansion chamber 34 via the first heat transfer block 28. The second heat transfer block 30 is joined to the first heat transfer block 28 by brazing or welding, for example. The outer peripheral portion of the second heat transfer block 30 is joined to the outer peripheral portion of the first heat transfer block 28. The second heat transfer block 30 is disposed outside the expansion chamber 34 and has no exposed surface to the expansion chamber 34. The second heat transfer block 30 includes a second heat exchange surface 48 facing the first heat exchange surface 46.
 極低温冷凍機10は、冷媒を流す冷媒回路60を備える。冷媒回路60は、作動ガス回路52から流体的に隔離されている。冷媒回路60は、作動ガス回路52とは別系統として設けられ、両者は分離されている。冷媒回路60を流れる冷媒は、作動ガス回路52を流れる作動ガスと混ざることは無い。冷媒は、作動ガスと同種(例えばヘリウムガス)であってもよい。冷媒は、作動ガスとは異種(例えば液体窒素)であってもよい。いずれにしても、冷媒回路60における冷媒の圧力は通例、作動ガス回路52における作動ガスの圧力より低く、例えば大気圧程度である。 The cryogenic refrigerator 10 includes a refrigerant circuit 60 for flowing a refrigerant. The refrigerant circuit 60 is fluidly isolated from the working gas circuit 52. The refrigerant circuit 60 is provided as a separate system from the working gas circuit 52, and both are separated. The refrigerant flowing through the refrigerant circuit 60 is not mixed with the working gas flowing through the working gas circuit 52. The refrigerant may be the same kind as the working gas (for example, helium gas). The refrigerant may be different (e.g., liquid nitrogen) from the working gas. In any case, the pressure of the refrigerant in the refrigerant circuit 60 is generally lower than the pressure of the working gas in the working gas circuit 52, for example, about atmospheric pressure.
 冷媒回路60は、冷媒ポンプ62、冷媒供給口64、冷媒排出口66、および冷媒通路68を備える。 The refrigerant circuit 60 includes a refrigerant pump 62, a refrigerant supply port 64, a refrigerant discharge port 66, and a refrigerant passage 68.
 冷媒ポンプ62は、冷媒を冷媒回路60で循環させるために設けられている。冷媒ポンプ62は、冷媒排出口66から排出された冷媒を冷媒供給口64へと送出するように、冷媒供給口64および冷媒排出口66に接続されている。冷媒ポンプ62の吐出口が冷媒供給口64と冷媒供給管63aで接続され、冷媒ポンプ62の回収口が冷媒排出口66と冷媒排出管63bで接続されている。冷媒ポンプ62、冷媒供給管63aおよび冷媒排出管63bは、極低温冷凍機10の一部を構成するとはみなされなくてもよい。冷媒供給管63aおよび冷媒排出管63bは、極低温冷凍機10の製造業者とは別の製造業者によって製造され、極低温冷凍機10の使用者によって用意されてもよい。 The refrigerant pump 62 is provided to circulate the refrigerant in the refrigerant circuit 60. The refrigerant pump 62 is connected to the refrigerant supply port 64 and the refrigerant discharge port 66 so as to deliver the refrigerant discharged from the refrigerant discharge port 66 to the refrigerant supply port 64. The discharge port of the refrigerant pump 62 is connected to the refrigerant supply port 64 by a refrigerant supply pipe 63a, and the recovery port of the refrigerant pump 62 is connected to the refrigerant discharge port 66 by a refrigerant discharge pipe 63b. The refrigerant pump 62, the refrigerant supply pipe 63a, and the refrigerant discharge pipe 63b may not be considered to constitute a part of the cryogenic refrigerator 10. The refrigerant supply pipe 63 a and the refrigerant discharge pipe 63 b may be manufactured by a manufacturer different from the manufacturer of the cryogenic refrigerator 10 and may be prepared by the user of the cryogenic refrigerator 10.
 冷媒供給口64および冷媒排出口66は、極低温冷凍機10の一部として、冷却ステージ26の外面に設置されている。よって、冷媒供給口64および冷媒排出口66は、膨張室34の外に配置されている。冷媒供給口64は、冷却ステージ26の内部に、具体的には冷媒通路68に、冷媒を流入させる冷媒流入孔64aを備える。冷媒流入孔64aは、冷媒供給管63aを冷媒通路68に接続する。冷媒排出口66は、冷却ステージ26の内部から、具体的には冷媒通路68から、冷媒を流出させる冷媒流出孔66aを備える。冷媒流出孔66aは、冷媒通路68を冷媒排出管63bに接続する。冷媒は、冷媒ポンプ62から冷媒供給口64を通じて冷媒通路68に供給される。また、冷媒は、冷媒通路68から冷媒排出口66を通じて冷媒ポンプ62に排出される。 The refrigerant supply port 64 and the refrigerant discharge port 66 are disposed on the outer surface of the cooling stage 26 as a part of the cryogenic refrigerator 10. Therefore, the refrigerant supply port 64 and the refrigerant discharge port 66 are disposed outside the expansion chamber 34. The refrigerant supply port 64 is provided with a refrigerant inflow hole 64 a which allows the refrigerant to flow into the cooling stage 26, specifically to the refrigerant passage 68. The refrigerant inflow hole 64 a connects the refrigerant supply pipe 63 a to the refrigerant passage 68. The refrigerant discharge port 66 includes a refrigerant outflow hole 66 a which causes the refrigerant to flow out from the inside of the cooling stage 26, specifically, from the refrigerant passage 68. The refrigerant outflow hole 66a connects the refrigerant passage 68 to the refrigerant discharge pipe 63b. The refrigerant is supplied from the refrigerant pump 62 to the refrigerant passage 68 through the refrigerant supply port 64. In addition, the refrigerant is discharged from the refrigerant passage 68 to the refrigerant pump 62 through the refrigerant outlet 66.
 冷却ステージ26の外面における冷媒供給口64の位置および数は任意であるが、ここでは、複数の冷媒供給口64が冷却ステージ26の外周面において周方向に等間隔に配置されている。冷媒供給口64は、第1伝熱ブロック28と第2伝熱ブロック30の境界部に設けられているが、これに限られない。冷媒供給口64は1つであってもよい。1つの冷媒排出口66は、第2熱交換面48と反対側の第2伝熱ブロック30の端面中心部に設けられているが、これに限られない。複数の冷媒排出口66が設けられてもよい。 Although the positions and the number of the refrigerant supply ports 64 on the outer surface of the cooling stage 26 are arbitrary, a plurality of refrigerant supply ports 64 are arranged at equal intervals in the circumferential direction on the outer peripheral surface of the cooling stage 26 here. The refrigerant supply port 64 is provided at the boundary between the first heat transfer block 28 and the second heat transfer block 30, but is not limited thereto. The refrigerant supply port 64 may be one. Although one refrigerant | coolant discharge port 66 is provided in the end surface center part of the 2nd heat-transfer block 30 on the opposite side to the 2nd heat exchange surface 48, it is not restricted to this. A plurality of refrigerant outlets 66 may be provided.
 冷媒通路68は、膨張室34から流体的に隔離されている。冷媒通路68は、冷却ステージ26の内部に形成され、冷却ステージ26を貫通している。冷却ステージ26において冷媒通路68と膨張室34は互いに分離されている。冷媒通路68に膨張室34から作動ガスが流入することはない。冷媒通路68から膨張室34に冷媒が漏れ出ることも無い。 The refrigerant passage 68 is fluidly isolated from the expansion chamber 34. The refrigerant passage 68 is formed inside the cooling stage 26 and penetrates the cooling stage 26. In the cooling stage 26, the refrigerant passage 68 and the expansion chamber 34 are separated from each other. The working gas does not flow into the refrigerant passage 68 from the expansion chamber 34. The refrigerant does not leak from the refrigerant passage 68 to the expansion chamber 34.
 冷媒通路68は、冷媒が冷媒供給口64から冷媒排出口66へと第1熱交換面46および第2熱交換面48に沿って流れるよう第1伝熱ブロック28と第2伝熱ブロック30との間に形成されている。冷媒通路68は、第1熱交換面46と第2熱交換面48との間に形成されている。 The refrigerant passage 68 has a first heat transfer block 28 and a second heat transfer block 30 so that the refrigerant flows from the refrigerant supply port 64 to the refrigerant discharge port 66 along the first heat exchange surface 46 and the second heat exchange surface 48. It is formed between. The refrigerant passage 68 is formed between the first heat exchange surface 46 and the second heat exchange surface 48.
 対象物70を冷却するための熱交換器72が冷媒ポンプ62と冷媒供給口64の間に設けられている。熱交換器72は、冷媒供給管63aの中途に接続されている。熱交換器72は、冷媒排出口66と冷媒ポンプ62の間で冷媒排出管63bの中途に接続されていてもよい。対象物70は、熱交換器72に熱的に接続されている。冷却された冷媒を熱交換器72に流すことによって、対象物70が冷却される。 A heat exchanger 72 for cooling the object 70 is provided between the refrigerant pump 62 and the refrigerant supply port 64. The heat exchanger 72 is connected to the middle of the refrigerant supply pipe 63a. The heat exchanger 72 may be connected to the middle of the refrigerant discharge pipe 63 b between the refrigerant discharge port 66 and the refrigerant pump 62. The object 70 is thermally connected to the heat exchanger 72. By flowing the cooled refrigerant to the heat exchanger 72, the object 70 is cooled.
 第1伝熱ブロック28の第1熱交換面46と第2伝熱ブロック30の第2熱交換面48との間隔は一定である。冷媒通路68の流路幅は、冷媒通路68の全体で一定となっている。ただし、これは必須ではなく、後述するように、第1熱交換面46と第2熱交換面48の間隔が場所によって異なっていてもよい。 The distance between the first heat exchange surface 46 of the first heat transfer block 28 and the second heat exchange surface 48 of the second heat transfer block 30 is constant. The flow passage width of the refrigerant passage 68 is constant throughout the refrigerant passage 68. However, this is not essential, and as will be described later, the distance between the first heat exchange surface 46 and the second heat exchange surface 48 may be different depending on the place.
 第1熱交換面46は、第1ベース面74と、第1ベース面74から延出する少なくとも1つの第1フィン76と、を備える。第1ベース面74は、膨張室底面34aと概ね平行な平面を形成し、膨張室底面34aとは軸方向に反対側に向けられている。第1ベース面74は、冷媒通路68の上面とも言える。第1フィン76は、第1フィン先端76aを備える。第1伝熱ブロック28は、1つの第1フィン76を備えるが、複数の第1フィン76を備えてもよい。第1伝熱ブロック28の外周部がもう1つの第1フィン76であるとみなすこともできる。 The first heat exchange surface 46 includes a first base surface 74 and at least one first fin 76 extending from the first base surface 74. The first base surface 74 forms a plane substantially parallel to the expansion chamber bottom surface 34a, and is axially opposite to the expansion chamber bottom surface 34a. The first base surface 74 can also be referred to as the upper surface of the refrigerant passage 68. The first fin 76 comprises a first fin tip 76a. The first heat transfer block 28 includes one first fin 76, but may include a plurality of first fins 76. The outer peripheral portion of the first heat transfer block 28 can also be regarded as another first fin 76.
 第2熱交換面48は、第2ベース面78と、第2ベース面78から延出する少なくとも1つの第2フィン80と、を備える。第2ベース面78は、第1ベース面74と概ね平行な平面を形成する。第2ベース面78は、冷媒通路68の下面とも言える。第2フィン80は、第1フィン76に沿って延びている。第2フィン80は、第2フィン先端80aを備える。第2伝熱ブロック30は、2つの第2フィン80を備えるが、第2フィン80は1つであってもよいし、3つ以上であってもよい。 The second heat exchange surface 48 includes a second base surface 78 and at least one second fin 80 extending from the second base surface 78. The second base surface 78 forms a plane substantially parallel to the first base surface 74. The second base surface 78 can also be referred to as the lower surface of the refrigerant passage 68. The second fin 80 extends along the first fin 76. The second fin 80 includes a second fin tip 80a. The second heat transfer block 30 includes two second fins 80, but the number of second fins 80 may be one, or three or more.
 第2ベース面78は、隣り合う2つの第2フィン80の間に第1フィン76を受け入れる凹部を形成する。また、第1伝熱ブロック28に複数の第1フィン76が設けられている場合には、第1ベース面74は、隣り合う2つの第1フィン76の間に第2フィン80を受け入れる凹部を形成する。 The second base surface 78 forms a recess for receiving the first fin 76 between two adjacent second fins 80. Further, in the case where the plurality of first fins 76 are provided in the first heat transfer block 28, the first base surface 74 has a recess for receiving the second fin 80 between two adjacent first fins 76. Form.
 第1フィン先端76aは、第2フィン先端80aよりも第2ベース面78に近接して配置されている。第2フィン先端80aは、第1フィン先端76aよりも第1ベース面74に近接して配置されている。このようにして、第1フィン76と第2フィン80が交互に配置されるように、第1フィン76が隣り合う2つの第2フィン80の間へと挿入されている。それにより蛇行状の冷媒通路68が形成されている。 The first fin tip 76a is disposed closer to the second base surface 78 than the second fin tip 80a. The second fin tip 80a is disposed closer to the first base surface 74 than the first fin tip 76a. Thus, the first fins 76 are inserted between two adjacent second fins 80 so that the first fins 76 and the second fins 80 are alternately arranged. Thus, a meandering refrigerant passage 68 is formed.
 第1フィン76および第2フィン80は軸方向に延びている。よって、第1フィン76および第2フィン80は軸方向にフィン高さを有する。第1フィン76の高さ(第1ベース面74から第1フィン先端76aまでの距離)H1が、第1ベース面74と第2フィン先端80aの間隔G1より大きい。第2フィン80の高さ(第2ベース面78から第2フィン先端80aまでの距離)H2が、第2ベース面78と第1フィン先端76aの間隔G2より大きい。第1フィン76の高さH1と第2フィン80の高さH2は等しい。必要とされる場合には、高さH1と高さH2は異なってもよい。第1ベース面74と第2フィン先端80aの間隔G1と第2ベース面78と第1フィン先端76aの間隔G2は等しい。間隔G1と間隔G2は異なってもよい。 The first fins 76 and the second fins 80 extend in the axial direction. Thus, the first fins 76 and the second fins 80 have fin heights in the axial direction. The height (distance from the first base surface 74 to the first fin tip 76a) H1 of the first fin 76 is larger than the distance G1 between the first base surface 74 and the second fin tip 80a. The height (distance from the second base surface 78 to the second fin tip 80a) H2 of the second fin 80 is larger than the distance G2 between the second base surface 78 and the first fin tip 76a. The height H1 of the first fin 76 and the height H2 of the second fin 80 are equal. If desired, the height H1 and the height H2 may be different. The distance G1 between the first base surface 74 and the second fin tip 80a and the distance G2 between the second base surface 78 and the first fin tip 76a are equal. The intervals G1 and G2 may be different.
 冷媒通路68は、第1横断通路82、第2横断通路84、およびフィン間通路86を備える。第1横断通路82は、冷媒が第1フィン76を横断するよう第1フィン先端76aと第2ベース面78との間に形成されている。第2横断通路84は、冷媒が第2フィン80を横断するよう第2フィン先端80aと第1ベース面74との間に形成されている。フィン間通路86は、第1フィン76と第2フィン80との間に形成されている。フィン間通路86は、第1横断通路82を第2横断通路84に連通する。 The refrigerant passage 68 includes a first cross passage 82, a second cross passage 84, and an inter-fin passage 86. The first transverse passage 82 is formed between the first fin tip 76 a and the second base surface 78 so that the coolant traverses the first fin 76. The second transverse passage 84 is formed between the second fin tip 80 a and the first base surface 74 so that the refrigerant traverses the second fin 80. The inter-fin passage 86 is formed between the first fin 76 and the second fin 80. The inter-fin passage 86 communicates the first transverse passage 82 with the second transverse passage 84.
 複数のフィン間通路86が形成されている。隣り合う2つの第2フィン80のうち一方と第1フィン76の間に1つのフィン間通路86が形成され、他方の第2フィン80と第1フィン76の間にもう1つのフィン間通路86が形成されている。2つのフィン間通路86は、第1横断通路82によって連通されている。図2に示されるように、フィン間通路86の幅W1、W2、W3は、等しい。なお、幅W1、W2、W3は、上述の間隔G1、G2と等しくてもよい。 A plurality of inter-fin passages 86 are formed. One inter-fin passage 86 is formed between one of the two adjacent second fins 80 and the first fin 76, and another inter-fin passage 86 between the other second fin 80 and the first fin 76. Is formed. The two inter-fin passages 86 are in communication by the first cross passage 82. As shown in FIG. 2, the widths W1, W2, W3 of the inter-fin passages 86 are equal. The widths W1, W2, and W3 may be equal to the above-described intervals G1 and G2.
 図1に示されるように、第1横断通路82を冷媒が流れることによって、冷媒は第1フィン先端76aに沿って第1フィン76を横断する。第2横断通路84を冷媒が流れることによって、冷媒は第2フィン先端80aに沿って第2フィン80を横断する。フィン間通路86は、第1横断通路82から第2横断通路84へと、または、第2横断通路84から第1横断通路82へと、冷媒を導く。 As shown in FIG. 1, the refrigerant flows along the first fin tip 76 a by the coolant flowing through the first transverse passage 82. The refrigerant flows through the second transverse passage 84, so that the refrigerant traverses the second fin 80 along the second fin tip 80a. The inter-fin passage 86 guides the refrigerant from the first transverse passage 82 to the second transverse passage 84 or from the second transverse passage 84 to the first transverse passage 82.
 第2伝熱ブロック30は、図2に示されるように、第2フィン80が第1フィン76と組み合わされて極低温冷凍機10の中心軸92と同軸配置された同心リング状構造90を形成するように、第1伝熱ブロック28に固着されている。たいていの極低温冷凍機10は概ね軸対称の構造をもつ。そのため、同心リング状構造90は、その他の構造に比べて、極低温冷凍機10への適用が容易である。 The second heat transfer block 30, as shown in FIG. 2, forms a concentric ring structure 90 in which the second fin 80 is combined with the first fin 76 to be coaxially arranged with the central axis 92 of the cryogenic refrigerator 10. To be fixed to the first heat transfer block 28. Most cryogenic refrigerators 10 have a generally axisymmetric structure. Therefore, the concentric ring structure 90 is easy to apply to the cryogenic refrigerator 10 as compared to other structures.
 第1フィン76は、極低温冷凍機10の中心軸92を中心とするリング状形状を有する。第2フィン80も、極低温冷凍機10の中心軸92を中心とするリング状形状を有する。ただし、第2フィン80は、第1フィン76と異なる径をもつ。第1フィン76および第2フィン80は、極低温冷凍機10の中心軸92まわりに周方向に延びている。 The first fins 76 have a ring shape centered on the central axis 92 of the cryogenic refrigerator 10. The second fins 80 also have a ring shape centered on the central axis 92 of the cryogenic refrigerator 10. However, the second fin 80 has a diameter different from that of the first fin 76. The first and second fins 76 and 80 extend circumferentially around the central axis 92 of the cryogenic refrigerator 10.
 第1フィン76および第2フィン80は、極低温冷凍機10の径方向にフィン厚さを有し、周方向にフィン長さを有する。リング状形状の場合、フィン長さはリングの円周長に相当する。フィン高さおよびフィン長さはフィン厚さよりも大きい。また、フィン高さよりもフィン長さが大きい。逆に、フィン高さよりもフィン長さが小さくてもよい。 The first fins 76 and the second fins 80 have a fin thickness in the radial direction of the cryogenic refrigerator 10 and a fin length in the circumferential direction. In the case of a ring shape, the fin length corresponds to the circumferential length of the ring. The fin height and fin length are greater than the fin thickness. Also, the fin length is larger than the fin height. Conversely, the fin length may be smaller than the fin height.
 同心リング状構造90は、フィン高さ方向、フィン厚さ方向、およびフィン長さ方向がそれぞれ極低温冷凍機10の軸方向、径方向、および周方向に一致するように、冷却ステージ26の内部に設けられている。しかし、このような同心リング状構造90の配置は必須ではない。同心リング状構造90は冷却ステージ26の内部で任意の位置および向きで配置されていてもよく、その場合、フィン高さ方向、フィン厚さ方向、およびフィン長さ方向が極低温冷凍機10の軸方向、径方向、および周方向と一致するとは限らない。 The concentric ring structure 90 has an inner portion of the cooling stage 26 so that the fin height direction, fin thickness direction, and fin length direction coincide with the axial direction, radial direction, and circumferential direction of the cryogenic refrigerator 10, respectively. Provided in However, the arrangement of such concentric ring structure 90 is not essential. The concentric ring structure 90 may be arranged at any position and orientation inside the cooling stage 26, in which case the fin height direction, the fin thickness direction, and the fin length direction of the cryogenic refrigerator 10 are It does not necessarily coincide with the axial direction, the radial direction, and the circumferential direction.
 第1フィン76および第2フィン80は、全周に連続している。そのため、第1横断通路82、第2横断通路84、およびフィン間通路86も、全周に連続している。すなわち、第1フィン先端76aは全周にわたり第2ベース面78から離れている。第2フィン先端80aは全周にわたり第1ベース面74から離れている。また、第1フィン76と第2フィン80は全周にわたり互いに離れている。 The first fin 76 and the second fin 80 are continuous all around. Therefore, the first transverse passage 82, the second transverse passage 84, and the inter-fin passage 86 are also continuous along the entire circumference. That is, the first fin tip 76a is separated from the second base surface 78 all around. The second fin tip 80a is spaced from the first base surface 74 all around. In addition, the first fins 76 and the second fins 80 are separated from each other over the entire circumference.
 しかし、第1横断通路82は、第1フィン先端76aが第2ベース面78と部分的に接触することによって、複数の区域に分割されていてもよい。第2横断通路84は、第2フィン先端80aが第1ベース面74と部分的に接触することによって、複数の区域に分割されていてもよい。同様に、フィン間通路86は、第1フィン76と第2フィン80が部分的に接触することによって、複数の区域に分割されていてもよい。このようにして、第1横断通路82、第2横断通路84、およびフィン間通路86は、例えば周方向に分割されていてもよい。 However, the first transverse passage 82 may be divided into a plurality of sections by the first fin tip 76 a being in partial contact with the second base surface 78. The second transverse passage 84 may be divided into a plurality of sections by the second fin tip 80 a being in partial contact with the first base surface 74. Similarly, the inter-fin passage 86 may be divided into a plurality of areas by partial contact between the first fin 76 and the second fin 80. Thus, the first cross passage 82, the second cross passage 84, and the inter-fin passage 86 may be circumferentially divided, for example.
 第1フィン76および第2フィン80が周方向に分割されていてもよい。分割された第1フィン76(または第2フィン80)のセグメント間の隙間が冷媒通路68の一部となってもよい。第2フィン80の1つが極低温冷凍機10の中心軸92上に形成されており、この第2フィン80は棒状の形状を有する。なお、第1フィン76が極低温冷凍機10の中心軸92上に形成され棒状の形状を有してもよい。 The first fins 76 and the second fins 80 may be circumferentially divided. The gap between the segments of the divided first fins 76 (or the second fins 80) may be part of the coolant passage 68. One of the second fins 80 is formed on the central axis 92 of the cryogenic refrigerator 10, and the second fins 80 have a rod-like shape. The first fins 76 may be formed on the central axis 92 of the cryogenic refrigerator 10 and have a rod-like shape.
 また、冷媒通路68は、冷媒排出口66を冷媒通路68に連通する出口通路88を備える。出口通路88は、極低温冷凍機10の中心軸92に沿って第2伝熱ブロック30を貫通している。極低温冷凍機10の中心軸92上に第2フィン80が形成されているので、出口通路88は、第2フィン80をその高さ方向に貫通し、第2横断通路84を冷媒流出孔66aに接続している。なお、第1フィン76が極低温冷凍機10の中心軸92上に形成されている場合には、出口通路88は、中心軸92上に配置された当該第1フィン76に対向する第2ベース面78から第2伝熱ブロック30を貫通して、冷媒排出口66に接続されていてもよい。 In addition, the refrigerant passage 68 includes an outlet passage 88 communicating the refrigerant outlet 66 with the refrigerant passage 68. The outlet passage 88 extends through the second heat transfer block 30 along the central axis 92 of the cryogenic refrigerator 10. Since the second fin 80 is formed on the central axis 92 of the cryogenic refrigerator 10, the outlet passage 88 penetrates the second fin 80 in its height direction, and the second transverse passage 84 is the refrigerant outlet hole 66a. Connected to When the first fin 76 is formed on the central axis 92 of the cryogenic refrigerator 10, the outlet passage 88 is a second base facing the first fin 76 disposed on the central axis 92. The surface 78 may penetrate the second heat transfer block 30 and be connected to the refrigerant outlet 66.
 冷媒供給口64は、冷媒を同心リング状構造90の外周部に供給するよう冷却ステージ26に設置されている。冷媒通路68は、冷媒を同心リング状構造90の外周部から同心リング状構造90の中心部に導くよう構成されている。冷媒排出口66は、冷媒を同心リング状構造90の中心部から排出するよう冷却ステージ26に設置されている。 The refrigerant supply port 64 is disposed on the cooling stage 26 so as to supply the refrigerant to the outer peripheral portion of the concentric ring structure 90. The refrigerant passage 68 is configured to guide the refrigerant from the outer periphery of the concentric ring structure 90 to the center of the concentric ring structure 90. The refrigerant discharge port 66 is disposed on the cooling stage 26 so as to discharge the refrigerant from the center of the concentric ring structure 90.
 このように、冷媒通路68は、冷却ステージ26の外周部から中心部へと冷媒を放射状に流すように構成されている。冷媒は、冷媒供給口64から同心リング状構造90の外周部に流入し、第2横断通路84、フィン間通路86、第1横断通路82、フィン間通路86、第2横断通路84、出口通路88へと縦横に流れる。こうして、冷媒は、同心リング状構造90の中心部から冷媒排出口66へと排出される。理解のために図1に冷媒が流れる方向を矢印で示す。 As described above, the refrigerant passage 68 is configured to allow the refrigerant to flow radially from the outer peripheral portion to the central portion of the cooling stage 26. The refrigerant flows from the refrigerant supply port 64 into the outer periphery of the concentric ring structure 90, and the second cross passage 84, the inter fin passage 86, the first cross passage 82, the inter fin passage 86, the second cross passage 84, the outlet passage It flows vertically and horizontally to 88. Thus, the refrigerant is discharged from the center of the concentric ring structure 90 to the refrigerant outlet 66. The direction in which the refrigerant flows is indicated by arrows in FIG. 1 for the purpose of understanding.
 冷媒通路68は、冷却ステージ26によって冷媒を冷却するための、冷却ステージ26と一体化された熱交換器として働く。冷媒通路68における冷媒流れは第1熱交換面46と接触し、第1熱交換面46との熱交換により冷却される。また、冷媒通路68における冷媒流れは第2熱交換面48と接触し、第2熱交換面48との熱交換により冷却される。 The refrigerant passage 68 acts as a heat exchanger integrated with the cooling stage 26 for cooling the refrigerant by the cooling stage 26. The refrigerant flow in the refrigerant passage 68 contacts the first heat exchange surface 46 and is cooled by heat exchange with the first heat exchange surface 46. In addition, the refrigerant flow in the refrigerant passage 68 contacts the second heat exchange surface 48 and is cooled by heat exchange with the second heat exchange surface 48.
 こうして冷却された冷媒を熱交換器72に流すことによって、対象物70を冷却することができる。対象物70との熱交換により加熱された冷媒は、冷媒通路68を流れることで冷却ステージ26によって再冷却される。再冷却された冷媒は対象物70の冷却に再び利用される。 By flowing the refrigerant thus cooled to the heat exchanger 72, the object 70 can be cooled. The refrigerant heated by heat exchange with the object 70 is recooled by the cooling stage 26 by flowing through the refrigerant passage 68. The recooled refrigerant is again used to cool the object 70.
 第1実施形態に係る極低温冷凍機10によると、冷媒を冷却する熱交換器が冷却ステージ26の内部に一体化されている。より具体的には、冷媒が冷媒供給口64から冷媒排出口66へと第1熱交換面46および第2熱交換面48に沿って流れるように、冷媒通路68が第1熱交換面46と第2熱交換面48との間に形成されている。このように熱交換器を一体化したことにより、従来の冷却ステージ外面に冷媒管を接合するといった外付け式の熱交換構成に比べて、極低温冷凍機10と冷媒の熱的接触をより確実にすることができる。よって、極低温冷凍機10は、冷媒をより効率よく冷却することができる。 According to the cryogenic refrigerator 10 according to the first embodiment, the heat exchanger for cooling the refrigerant is integrated in the inside of the cooling stage 26. More specifically, the refrigerant passage 68 includes the first heat exchange surface 46 and the refrigerant passage 68 so that the refrigerant flows from the refrigerant supply port 64 to the refrigerant discharge port 66 along the first heat exchange surface 46 and the second heat exchange surface 48. It is formed between the second heat exchange surface 48. By integrating the heat exchanger in this manner, thermal contact between the cryogenic refrigerator 10 and the refrigerant can be made even more reliably as compared with the external heat exchange configuration in which the refrigerant pipe is joined to the outer surface of the conventional cooling stage. Can be Therefore, the cryogenic refrigerator 10 can cool the refrigerant more efficiently.
 極低温冷凍機10においては第1フィン76と第2フィン80の組み合わせによって蛇行状の冷媒通路68が形成されている。このようなフィンが設けられずに2つの対向する熱交換面がともに平面である場合に比べて、冷媒と熱交換面との接触面積を大きくすることができる。よって、極低温冷凍機10は熱交換効率が向上される。 In the cryogenic refrigerator 10, a serpentine refrigerant passage 68 is formed by a combination of the first fins 76 and the second fins 80. The contact area between the refrigerant and the heat exchange surface can be increased as compared to the case where two opposing heat exchange surfaces are both flat without providing such a fin. Thus, the cryogenic refrigerator 10 has an improved heat exchange efficiency.
 また、極低温冷凍機10が概ね軸対称の構造をもつ場合、冷却ステージ26の外周部に比べて中心部のほうが若干低温となる。冷媒供給口64は冷却ステージ26の外周部に配置され、冷媒排出口66は冷却ステージ26の中心部に配置されている。冷媒供給口64における冷媒の温度は、冷媒が対象物70によって加熱されているから比較的高い。冷却ステージ26において比較的高温の部位に冷媒供給口64を配置することにより、冷媒供給口64での冷媒と冷却ステージ26との温度差を小さくすることができる。温度差が小さければ熱交換効率が高まる。これも、極低温冷凍機10の熱交換効率の向上に役立つ。 In addition, when the cryogenic refrigerator 10 has a generally axisymmetric structure, the temperature at the central portion is slightly lower than that at the outer peripheral portion of the cooling stage 26. The refrigerant supply port 64 is disposed at the outer peripheral portion of the cooling stage 26, and the refrigerant discharge port 66 is disposed at the central portion of the cooling stage 26. The temperature of the refrigerant at the refrigerant supply port 64 is relatively high because the refrigerant is heated by the object 70. By disposing the refrigerant supply port 64 at a relatively high temperature site in the cooling stage 26, the temperature difference between the refrigerant at the refrigerant supply port 64 and the cooling stage 26 can be reduced. The smaller the temperature difference, the higher the heat exchange efficiency. This also helps to improve the heat exchange efficiency of the cryogenic refrigerator 10.
 図3は、第1実施形態に係る第1伝熱ブロック28の他の例を示す概略図である。上述の実施形態においては第1伝熱ブロック28がひとかたまりの材料から形成されているが、本発明はこれに限られない。第1伝熱ブロック28は、複数のサブブロックから形成されていてもよい。複数のサブブロックがろう付けや溶接により接合され第1伝熱ブロック28を形成してもよい。第2伝熱ブロック30についても同様に複数のサブブロックから形成されていてもよい。 FIG. 3 is a schematic view showing another example of the first heat transfer block 28 according to the first embodiment. In the above-mentioned embodiment, although the 1st heat transfer block 28 is formed from a block of material, the present invention is not limited to this. The first heat transfer block 28 may be formed of a plurality of sub blocks. A plurality of sub blocks may be joined by brazing or welding to form the first heat transfer block 28. Similarly, the second heat transfer block 30 may be formed of a plurality of sub blocks.
 図3に示されるように、第1伝熱ブロック28は、膨張室形成サブブロック28aと第1フィンサブブロック28bを備える。膨張室形成サブブロック28aに膨張室底面34aが設けられ、第1フィンサブブロック28bに第1フィン76が設けられている。第1フィンサブブロック28bは、ろう付け層などの接合層94を介して膨張室形成サブブロック28aに接合されている。膨張室形成サブブロック28aは、平坦な接合面94aを有し、第1フィンサブブロック28bは、平坦な接合面94bを有し、これら2つの接合面94a、94bが接合層94により接合されている。接合面94a、94bは、膨張室底面34aと平行な平面であってもよい。このような平坦面どうしの接合は、従来典型的な外付け式熱交換器を冷却ステージ外面に接合する場合に比べて、より強固な接合が容易である。 As shown in FIG. 3, the first heat transfer block 28 includes an expansion chamber forming sub block 28 a and a first fin sub block 28 b. An expansion chamber bottom surface 34a is provided in the expansion chamber forming sub-block 28a, and a first fin 76 is provided in the first fin sub block 28b. The first fin sub block 28 b is bonded to the expansion chamber forming sub block 28 a via a bonding layer 94 such as a brazing layer. The expansion chamber forming sub block 28a has a flat bonding surface 94a, and the first fin sub block 28b has a flat bonding surface 94b, and these two bonding surfaces 94a and 94b are bonded by the bonding layer 94. There is. The bonding surfaces 94a, 94b may be flat surfaces parallel to the expansion chamber bottom surface 34a. Such bonding between flat surfaces is easier to perform stronger bonding than when a conventional external heat exchanger is bonded to the outer surface of the cooling stage.
 なお第1伝熱ブロック28と第2伝熱ブロック30の接合においても、平坦な接合面で接合されることが好ましい。よって、第1伝熱ブロック28の外周部は環状平坦面とされ、第2伝熱ブロック30の外周部も環状平坦面とされ、これら2つの環状平坦面どうしがろう付けや溶接により接合されてもよい。 Also in the bonding of the first heat transfer block 28 and the second heat transfer block 30, it is preferable to be bonded at a flat bonding surface. Therefore, the outer peripheral portion of the first heat transfer block 28 is an annular flat surface, and the outer peripheral portion of the second heat transfer block 30 is also an annular flat surface, and these two annular flat surfaces are joined by brazing or welding It is also good.
 図4は、第1実施形態に係る冷却ステージ26の他の例を示す概略図である。図示されるように、同心リング状構造90の外周部における第1熱交換面46と第2熱交換面48の間隔が、同心リング状構造90の中心部における第1熱交換面46と第2熱交換面48の間隔よりも狭くてもよい。 FIG. 4 is a schematic view showing another example of the cooling stage 26 according to the first embodiment. As illustrated, the distance between the first heat exchange surface 46 and the second heat exchange surface 48 in the outer peripheral portion of the concentric ring structure 90 is the same as that in the central portion of the concentric ring structure 90. The distance between the heat exchange surfaces 48 may be smaller.
 図2に示される実施形態のように、第1熱交換面46と第2熱交換面48の間隔が均一である場合には、フィン間通路86の流路断面積(中心軸92に垂直な平面による断面の面積)は、同心リング状構造90の外周部ほど大きくなる。なぜなら、同心リング状構造90の内側に位置するフィン間通路86に比べて、外側に位置するフィン間通路86のほうが径が大きいからである。流路断面積が大きければ流路抵抗は小さくなる。すなわち、図2に示される同心リング状構造90においては、外周部での流路抵抗が比較的小さく、中心部での流路抵抗が比較的大きい。流路抵抗がより均一であるほうが、同心リング状構造90での熱交換効率がよくなる。 As in the embodiment shown in FIG. 2, when the distance between the first heat exchange surface 46 and the second heat exchange surface 48 is uniform, the cross-sectional area of the inter-fin passage 86 (perpendicular to the central axis 92) The area of the cross section by the plane becomes larger toward the outer periphery of the concentric ring structure 90. This is because the diameter of the inter-fin passage 86 located outside is larger than that of the inter-fin passage 86 located inside the concentric ring-like structure 90. The larger the flow path cross-sectional area, the smaller the flow path resistance. That is, in the concentric ring-like structure 90 shown in FIG. 2, the flow path resistance at the outer peripheral portion is relatively small, and the flow path resistance at the central portion is relatively large. The more uniform flow path resistance results in better heat exchange efficiency in the concentric ring structure 90.
 また、熱交換器の1つの評価指標として、熱交換量の圧損に対する比(=熱交換量/圧損)が考慮される。この評価指標は値が大きい場合に熱交換器の性能がよいことを表す。冷媒供給口64の近傍では冷媒と冷却ステージ26の温度差が大きいので熱交換量は大きい。そのため、冷媒供給口64の近傍では流路が狭く圧損が大きくても、この評価指標はある程度の大きさをもつ。これに対し、冷媒排出口66の近傍では、冷媒が既に冷却されているから、冷媒と冷却ステージ26の温度差が小さく、故に熱交換量も小さい。よって、冷媒排出口66の近傍で圧損が大きければ、上記の評価指標は顕著に小さくなり望ましくない。 Further, as one evaluation index of the heat exchanger, the ratio of heat exchange amount to pressure loss (= heat exchange amount / pressure loss) is considered. This evaluation index indicates that the performance of the heat exchanger is good when the value is large. Since the temperature difference between the refrigerant and the cooling stage 26 is large near the refrigerant supply port 64, the amount of heat exchange is large. Therefore, even if the flow path is narrow in the vicinity of the refrigerant supply port 64 and the pressure loss is large, this evaluation index has a certain size. On the other hand, since the refrigerant is already cooled near the refrigerant outlet 66, the temperature difference between the refrigerant and the cooling stage 26 is small, and hence the amount of heat exchange is also small. Therefore, if the pressure loss is large in the vicinity of the refrigerant outlet 66, the above-mentioned evaluation index becomes significantly small, which is not desirable.
 よって、図4に示されるように、同心リング状構造90の外周部では冷媒通路68を比較的狭くし、同心リング状構造90の中心部では冷媒通路68を比較的広い。外側のフィン間通路86の幅W1が中間のフィン間通路86の幅W2より狭い。また、中間のフィン間通路86の幅W2が内側のフィン間通路86の幅W3より狭い。このようにして、冷媒通路68における流路抵抗および上記評価指標をともに、より均一化することができる。 Thus, as shown in FIG. 4, the refrigerant passage 68 is relatively narrow at the outer periphery of the concentric ring structure 90, and the refrigerant passage 68 is relatively wide at the center of the concentric ring structure 90. The width W 1 of the outer inter-fin passage 86 is narrower than the width W 2 of the middle inter-fin passage 86. Further, the width W2 of the middle inter-fin passage 86 is narrower than the width W3 of the inner inter-fin passage 86. In this way, both the flow path resistance in the refrigerant passage 68 and the evaluation index can be made more uniform.
 第1実施形態においては上述のように、第1横断通路82および第2横断通路84が同心リング状構造90の全周にわたり形成され、フィン間通路86における冷媒流れがフィン高さ方向に誘導されている。しかし、本発明はこれに限られない。そのような例を次に説明する。 In the first embodiment, as described above, the first transverse passage 82 and the second transverse passage 84 are formed all around the concentric ring structure 90, and the refrigerant flow in the inter-fin passage 86 is induced in the fin height direction. ing. However, the present invention is not limited to this. Such an example is described next.
(第2実施形態)
 図5は、第2実施形態に係る極低温冷凍機10の要部を概略的に示す図である。図6は、図5に示される極低温冷凍機10のB-B断面を示す概略図である。図5には冷却ステージ26およびその周辺構造が示され、図6には同心リング状構造90が示されている。第2実施形態に係る極低温冷凍機10は、冷媒通路68に関して第1実施形態と異なる。
Second Embodiment
FIG. 5 is a view schematically showing the main part of the cryogenic refrigerator 10 according to the second embodiment. 6 is a schematic view showing a cross section BB of the cryogenic refrigerator 10 shown in FIG. The cooling stage 26 and its surrounding structure are shown in FIG. 5 and the concentric ring 90 is shown in FIG. The cryogenic refrigerator 10 according to the second embodiment is different from the first embodiment in the refrigerant passage 68.
 第1横断通路82は、第1フィン先端76aと第2ベース面78との間で局所的に形成され、第2横断通路84は、第2フィン先端80aと第1ベース面74との間で局所的に形成される。1つの第1フィン76に1つの第1横断通路82が形成され、1つの第2フィン80に1つの第2横断通路84が形成されている。 The first transverse passage 82 is locally formed between the first fin tip 76 a and the second base surface 78, and the second transverse passage 84 is between the second fin tip 80 a and the first base surface 74. It is formed locally. One first transverse passage 82 is formed in one first fin 76, and one second transverse passage 84 is formed in one second fin 80.
 第1フィン先端76aの大半が第2ベース面78と接触しており、第1フィン先端76aは周方向において特定部位に1つの窪みを有し、この窪みが第1横断通路82を形成する。第2フィン先端80aの大半が第1ベース面74と接触しており、第2フィン先端80aは周方向において特定部位に1つの窪みを有し、この窪みが第2横断通路84を形成する。 Most of the first fin tips 76a are in contact with the second base surface 78, and the first fin tips 76a have a single recess at a specific site in the circumferential direction, and this recess forms a first cross passage 82. Most of the second fin tip 80a is in contact with the first base surface 74, and the second fin tip 80a has a single recess at a specific location in the circumferential direction, and the recess forms a second cross passage 84.
 フィン間通路86における冷媒流れがフィン高さ方向と角度をなす方向に誘導されるように、第1横断通路82および第2横断通路84の配置が定められている。第1横断通路82と第2横断通路84は、周方向に異なる場所に配置されている。より具体的には、第1横断通路82と第2横断通路84は、中心軸92に対し互いに反対側に配置されている。よって、フィン間通路86における冷媒流れは、フィン高さ方向(すなわち軸方向)に対し斜めの方向または周方向に誘導される。 The arrangement of the first transverse passage 82 and the second transverse passage 84 is determined such that the refrigerant flow in the inter-fin passage 86 is directed in a direction at an angle to the fin height direction. The first transverse passage 82 and the second transverse passage 84 are disposed at circumferentially different places. More specifically, the first cross passage 82 and the second cross passage 84 are disposed opposite to each other with respect to the central axis 92. Therefore, the refrigerant flow in the inter-fin passage 86 is induced in a direction oblique to or circumferentially with respect to the fin height direction (i.e., the axial direction).
 冷媒供給口64は1つだけ設けられている。 Only one refrigerant supply port 64 is provided.
 理解のために、図5および図6には冷媒が流れる方向を矢印で示し、図5と図6で対応する矢印に同じ符号D1からD4を付してある。冷媒は、冷媒供給口64から外側の第1横断通路82を通り外側のフィン間通路86に流入する(矢印D1)。冷媒は、外側のフィン間通路86を二手に分岐してそれぞれ半周流れて合流し(矢印E1)、外側の第2横断通路84から中間のフィン間通路86に流入する(矢印D2)。冷媒は、中間のフィン間通路86を再び二手に分岐してそれぞれ半周流れて合流し(矢印E2)、内側の第1横断通路82から内側のフィン間通路86に流入する(矢印D3)。冷媒は、内側のフィン間通路86を再び二手に分岐してそれぞれ半周流れて合流し(矢印E3)、内側の第2横断通路84から出口通路88を通って冷媒排出口66から出る(矢印D4)。 For the purpose of understanding, in FIGS. 5 and 6, the directions in which the refrigerant flows are indicated by arrows, and the corresponding arrows in FIGS. 5 and 6 have the same reference numerals D1 to D4. The refrigerant flows from the refrigerant supply port 64 through the outer first cross passage 82 into the outer inter-fin passage 86 (arrow D1). The refrigerant bifurcates from the outer inter-fin passage 86, flows half a circumference, joins (arrow E1), and flows from the outer second cross passage 84 into the middle inter-fin passage 86 (arrow D2). The refrigerant branches into the middle inter-fin passage 86 again to flow half a circumference, merges (arrow E2), and flows from the inner first cross passage 82 into the inner inter-fin passage 86 (arrow D3). The refrigerant branches again to the inner inter-fin passage 86 and flows half a circumference respectively to join (arrow E3), and from the inner second cross passage 84 to exit the refrigerant outlet 66 through the outlet passage 88 (arrow D4) ).
 第2実施形態によると、フィン間通路86における冷媒流れがフィン高さ方向と角度をなす方向に誘導される。フィン間通路86における冷媒流れは概ね周方向に向けられている。第1実施形態のようにフィン間通路86における冷媒流れがフィン高さ方向に誘導される場合に比べて、冷媒通路68が長くなる。このようにして、冷媒と熱交換面との接触面積を大きくすることができるので、極低温冷凍機10の熱交換効率が向上される。 According to the second embodiment, the refrigerant flow in the inter-fin passage 86 is induced in a direction making an angle with the fin height direction. The refrigerant flow in the inter-fin passage 86 is generally directed in the circumferential direction. The refrigerant passage 68 is longer than in the case where the refrigerant flow in the inter-fin passage 86 is induced in the fin height direction as in the first embodiment. In this way, the contact area between the refrigerant and the heat exchange surface can be increased, so that the heat exchange efficiency of the cryogenic refrigerator 10 is improved.
 第1横断通路82と第2横断通路84がフィン高さ方向に異なる場所に配置されていることにも留意されたい。第1横断通路82は下方に位置するのに対し、第2横断通路84は上方に位置する。よって、第1横断通路82から第2横断通路84への流路長さは、第1横断通路82と第2横断通路84が同じ高さにある場合に比べて長くなる。これも、冷媒と熱交換面との接触面積の増加に役立つ。 It should also be noted that the first transverse passage 82 and the second transverse passage 84 are disposed at different locations in the fin height direction. The first cross passage 82 is located below, whereas the second cross passage 84 is located above. Therefore, the flow passage length from the first transverse passage 82 to the second transverse passage 84 is longer than when the first transverse passage 82 and the second transverse passage 84 are at the same height. This also helps to increase the contact area between the refrigerant and the heat exchange surface.
 また、冷媒供給口64と冷媒排出口66が1つずつであることも、冷媒通路68を長くすることに役立っている。 Further, one refrigerant supply port 64 and one refrigerant discharge port 66 also help to make the refrigerant passage 68 longer.
 なお、第1横断通路82および第2横断通路84の位置および数は任意である。例えば、1つの第1フィン76に複数の第1横断通路82が設けられてもよい。複数の第1横断通路82は周方向に等角度間隔に配置されてもよい。同様に、1つの第2フィン80に複数の第2横断通路84が設けられてもよい。複数の第2横断通路84は周方向に等角度間隔に設けられてもよい。 In addition, the position and number of the 1st crossing passage 82 and the 2nd crossing passage 84 are arbitrary. For example, one first fin 76 may be provided with a plurality of first transverse passages 82. The plurality of first transverse passages 82 may be circumferentially equiangularly spaced. Similarly, a plurality of second transverse passages 84 may be provided in one second fin 80. The plurality of second transverse passages 84 may be provided at equal angular intervals in the circumferential direction.
(第3実施形態)
 図7は、第3実施形態に係る極低温冷凍機10の要部を概略的に示す図である。
Third Embodiment
FIG. 7 is a view schematically showing the main part of the cryogenic refrigerator 10 according to the third embodiment.
 膨張室底面34aは、ディスプレーサ20と同軸配置されたリング状凸部96を備える。また、ディスプレーサ底部20aは、リング状凸部96を受け入れるリング状凹部98を備える。このようにして、フィン式の熱交換器が、冷媒通路68だけでなく、膨張室34にも設けられてもよい。極低温冷凍機10の作動ガスと冷却ステージ26との間の熱交換面積が増加するので、極低温冷凍機10の熱交換効率が向上する。 The expansion chamber bottom surface 34 a includes a ring-shaped convex portion 96 coaxially disposed with the displacer 20. Also, the displacer bottom 20 a includes a ring-shaped recess 98 that receives the ring-shaped protrusion 96. Thus, the fin type heat exchanger may be provided not only in the refrigerant passage 68 but also in the expansion chamber 34. Since the heat exchange area between the working gas of the cryogenic refrigerator 10 and the cooling stage 26 is increased, the heat exchange efficiency of the cryogenic refrigerator 10 is improved.
 また、リング状凸部96は、膨張室底面34aと反対側から第2フィン80を受け入れるよう中空とされている。このようにすれば、膨張室34と冷媒通路68の熱的な結合をより改善することができる。また、第2フィン80をリング状凸部96に収容することができるので、冷却ステージ26の軸方向長さを短縮することもできる。 In addition, the ring-shaped convex portion 96 is hollow so as to receive the second fin 80 from the side opposite to the expansion chamber bottom surface 34 a. In this way, the thermal coupling between the expansion chamber 34 and the refrigerant passage 68 can be further improved. Further, since the second fin 80 can be accommodated in the ring-shaped convex portion 96, the axial length of the cooling stage 26 can be shortened.
 言い換えれば、ディスプレーサ20には、膨張室底面34aに向けて延出するディスプレーサ底部フィン100が設けられている。第1伝熱ブロック28には、ディスプレーサ底部フィン100を受け入れるよう膨張室底面34aに形成されかつ第1フィン76を中空とする空洞部102が形成されている。このようにすれば、膨張室34と冷媒通路68の熱的な結合をより改善することができる。また、ディスプレーサ底部フィン100を第1フィン76の空洞部102に収容することができるので、冷却ステージ26の軸方向長さを短縮することもできる。 In other words, the displacer 20 is provided with a displacer bottom fin 100 extending toward the expansion chamber bottom 34 a. The first heat transfer block 28 is formed with a cavity 102 which is formed on the expansion chamber bottom surface 34 a to receive the displacer bottom fin 100 and which makes the first fin 76 hollow. In this way, the thermal coupling between the expansion chamber 34 and the refrigerant passage 68 can be further improved. In addition, since the displacer bottom fin 100 can be accommodated in the hollow portion 102 of the first fin 76, the axial length of the cooling stage 26 can be shortened.
(第4実施形態)
 図8は、第4実施形態に係る極低温冷凍機10の要部を概略的に示す図である。図9は、図8に示される極低温冷凍機10のC-C断面を示す概略図である。上述の各実施形態では冷媒通路68は単一の階層を有するが、これに限られない。
Fourth Embodiment
FIG. 8 is a view schematically showing the main part of the cryogenic refrigerator 10 according to the fourth embodiment. FIG. 9 is a schematic view showing a cross section CC of the cryogenic refrigerator 10 shown in FIG. In each of the embodiments described above, the refrigerant passage 68 has a single hierarchy, but is not limited to this.
 冷媒通路68は、複数の階層に区分けされている。複数の階層はそれぞれ軸方向に異なる場所に配置されている。複数の階層は冷媒が順番に流れるように互いに接続されている。冷媒通路68の一部分を構成するという意味で、個々の階層をサブ通路と呼ぶこともできる。 The refrigerant passage 68 is divided into a plurality of layers. The plurality of layers are arranged at different locations in the axial direction. The plurality of layers are connected to one another so that the refrigerant flows in order. The individual layers can also be referred to as sub-passages in the sense that they form part of the coolant passage 68.
 図8に示されるように、冷媒通路68は、第1階層104と第2階層106とに区分けされている。冷却ステージ26において、第1階層104は軸方向下部に配置され、第2階層106は軸方向上部に配置されている。このように、第1階層104と第2階層106は、軸方向に隣り合っている。 As shown in FIG. 8, the refrigerant passage 68 is divided into a first level 104 and a second level 106. In the cooling stage 26, the first level 104 is disposed at the axially lower portion, and the second level 106 is disposed at the axially upper portion. Thus, the first layer 104 and the second layer 106 are axially adjacent to each other.
 冷却ステージ26の第2伝熱ブロック30は、第1伝熱ブロック28を囲むよう配置されている。第2伝熱ブロック30は、第2伝熱ブロック底部30aと、第2伝熱ブロック側筒部30bとを備える。第2伝熱ブロック底部30aは、第1伝熱ブロック28と軸方向に隣接し、第2伝熱ブロック側筒部30bは、第2伝熱ブロック底部30aから軸方向上方に延出し第1伝熱ブロック28の全周を囲む。 The second heat transfer block 30 of the cooling stage 26 is disposed to surround the first heat transfer block 28. The second heat transfer block 30 includes a second heat transfer block bottom portion 30a and a second heat transfer block side cylindrical portion 30b. The second heat transfer block bottom portion 30a is axially adjacent to the first heat transfer block 28, and the second heat transfer block side cylindrical portion 30b extends axially upward from the second heat transfer block bottom portion 30a. The whole circumference of the heat block 28 is enclosed.
 冷媒供給口64は、冷媒通路68の第2階層106に冷媒を供給するよう第2伝熱ブロック側筒部30bに設置されている。第2階層106は、第1熱交換面46と第2熱交換面48との間に形成されている。より具体的に言えば、第2階層106は、第1伝熱ブロック28の外周面と第2伝熱ブロック側筒部30bの内周面との間に形成された周方向流路である。冷媒通路68の第1階層104は、第1伝熱ブロック28と第2伝熱ブロック底部30aとの間に形成されている。一例として、第1階層104は、上述の第2実施形態と同様に対向するフィンにより形成された蛇行状流路である。第1階層104は、第1実施形態または第3実施形態と同様の蛇行状流路であってもよい。冷媒排出口66は、第1階層104から冷媒を排出するよう第2伝熱ブロック底部30aに設置されている。 The refrigerant supply port 64 is installed in the second heat transfer block side cylindrical portion 30 b so as to supply the refrigerant to the second layer 106 of the refrigerant passage 68. The second level 106 is formed between the first heat exchange surface 46 and the second heat exchange surface 48. More specifically, the second layer 106 is a circumferential flow passage formed between the outer peripheral surface of the first heat transfer block 28 and the inner peripheral surface of the second heat transfer block side cylindrical portion 30 b. The first level 104 of the refrigerant passage 68 is formed between the first heat transfer block 28 and the second heat transfer block bottom 30 a. As an example, the first hierarchical level 104 is a serpentine flow path formed by opposing fins as in the second embodiment described above. The first hierarchical layer 104 may be a serpentine channel as in the first embodiment or the third embodiment. The refrigerant discharge port 66 is disposed at the second heat transfer block bottom 30 a so as to discharge the refrigerant from the first floor 104.
 また、冷媒通路68は、第1階層104と第2階層106とを接続する連通路108を有する。連通路108は、第1伝熱ブロック28の外周面と第2伝熱ブロック側筒部30bの内周面との間に形成され、第1階層104から第2階層106へと軸方向に延びている。図9に示されるように、連通路108は、中心軸92に対して冷媒供給口64とは反対側に設けられている。理解のために、図9には、冷媒供給口64を破線で示す。一例として、連通路108の断面形状は、円周に沿って湾曲した細長い矩形であるが、これに限られない。連通路108の断面形状は、円形、楕円形、またはその他任意の形状であってもよい。 The refrigerant passage 68 also has a communication passage 108 that connects the first level 104 and the second level 106. The communication passage 108 is formed between the outer peripheral surface of the first heat transfer block 28 and the inner peripheral surface of the second heat transfer block side cylindrical portion 30 b and extends in the axial direction from the first level 104 to the second level 106. ing. As shown in FIG. 9, the communication passage 108 is provided on the opposite side of the central axis 92 to the refrigerant supply port 64. For the sake of understanding, the refrigerant supply port 64 is shown in broken lines in FIG. As an example, the cross-sectional shape of the communication passage 108 is an elongated rectangle curved along the circumference, but is not limited thereto. The cross-sectional shape of the communication passage 108 may be circular, oval, or any other shape.
 このようにして、冷媒通路68は、冷媒供給口64から冷媒排出口66へと第1熱交換面46および第2熱交換面48に沿って流れるよう第1伝熱ブロック28と第2伝熱ブロック30との間に形成されている。冷媒は、冷媒供給口64から第2階層106へと流入し、第2階層106を二手に分岐してそれぞれ半周流れて合流し、連通路108に流入する。冷媒は、連通路108から第1階層104に流入し、出口通路88を通って冷媒排出口66から出る。 In this manner, the refrigerant passage 68 flows from the refrigerant supply port 64 to the refrigerant discharge port 66 along the first heat exchange surface 46 and the second heat exchange surface 48 so that the first heat transfer block 28 and the second heat transfer It is formed between the block 30. The refrigerant flows from the refrigerant supply port 64 into the second hierarchical layer 106, branches to the second hierarchical layer 106 for two hands, flows half a circumference around each other, joins, and flows into the communication passage 108. The refrigerant flows from the communication passage 108 into the first layer 104, passes through the outlet passage 88, and exits from the refrigerant outlet 66.
 第4実施形態によると、冷媒通路68は、軸方向に複数の階層に区分けされている。複数の階層は冷媒が順番に流れるように互いに接続されている。このようにして、第1実施形態から第3実施形態では冷媒通路68が冷却ステージ26の底部に収められているのに対し、第4実施形態では、冷媒通路68を軸方向上方に広げることができる。したがって、第4実施形態では、冷媒通路68の流路長さを長くすることができ、冷媒と熱交換面との熱交換を促進することができる。よって、極低温冷凍機10の熱交換効率が向上される。 According to the fourth embodiment, the refrigerant passage 68 is divided into a plurality of layers in the axial direction. The plurality of layers are connected to one another so that the refrigerant flows in order. Thus, while the refrigerant passage 68 is accommodated in the bottom of the cooling stage 26 in the first to third embodiments, in the fourth embodiment, the refrigerant passage 68 can be expanded axially upward it can. Therefore, in the fourth embodiment, the flow passage length of the refrigerant passage 68 can be increased, and heat exchange between the refrigerant and the heat exchange surface can be promoted. Thus, the heat exchange efficiency of the cryogenic refrigerator 10 is improved.
 上述の例では、冷媒通路68は、2つの階層を有するが、これに限られない。冷媒通路68は、3つまたはそれより多数の階層に区分けされてもよい。 In the above-described example, the refrigerant passage 68 has two layers, but is not limited thereto. The refrigerant passages 68 may be divided into three or more levels.
 図10(a)および図10(b)は、第4実施形態に係る極低温冷凍機10における連通路108の他の例を示す概略図である。図10(a)および図10(b)には、中心軸92に垂直な断面が示されている。図8および図9を参照して説明した実施形態では連通路108は一箇所に設けられているが、これに限られない。 FIGS. 10A and 10B are schematic views showing another example of the communication passage 108 in the cryogenic refrigerator 10 according to the fourth embodiment. 10 (a) and 10 (b) show cross sections perpendicular to the central axis 92. FIG. Although in the embodiment described with reference to FIGS. 8 and 9 the communication passage 108 is provided at one place, it is not limited thereto.
 図10(a)に示されるように、複数の連通路108が設けられてもよい。複数の連通路108は、第1伝熱ブロック28と第2伝熱ブロック30との間に形成されている。連通路108は、第1伝熱ブロック28の外周面に形成された溝であってもよいし、第2伝熱ブロック30の内周面に形成された溝であってもよい。連通路108は、第1伝熱ブロック28と第2伝熱ブロック30のいずれかに形成された貫通穴であってもよい。 As shown in FIG. 10 (a), a plurality of communication passages 108 may be provided. The plurality of communication paths 108 are formed between the first heat transfer block 28 and the second heat transfer block 30. The communication passage 108 may be a groove formed on the outer peripheral surface of the first heat transfer block 28 or may be a groove formed on the inner peripheral surface of the second heat transfer block 30. The communication passage 108 may be a through hole formed in either the first heat transfer block 28 or the second heat transfer block 30.
 複数の連通路108は、冷媒供給口64の近傍を除いて、中心軸92を中心とする円周に沿って等角度間隔に配置されている。一例として、7つの連通路108が45度間隔に配置され、そのうち1つの連通路108が中心軸92に対して冷媒供給口64とは反対側に設けられている。複数の連通路108の流路断面積(軸方向に垂直な断面積)は等しい。連通路108の断面形状は、例えば楕円状であるが、これに限られない。 The plurality of communication paths 108 are arranged at equal angular intervals along a circumference centered on the central axis 92 except for the vicinity of the refrigerant supply port 64. As an example, seven communication passages 108 are disposed at 45 degree intervals, and one communication passage 108 is provided on the opposite side of the central shaft 92 to the coolant supply port 64. The flow passage cross-sectional areas (cross-sectional areas perpendicular to the axial direction) of the plurality of communication passages 108 are equal. The cross-sectional shape of the communication passage 108 is, for example, an elliptical shape, but is not limited thereto.
 また、図10(b)に示されるように、複数の連通路108の流路断面積は、互いに異なっていてもよい。連通路108の流路断面積は、冷媒供給口64に近いほど小さく、冷媒供給口64から遠いほど大きくてもよい。そのため、中心軸92に対して冷媒供給口64とは反対側に設けられた連通路108aが最大の流路断面積を有する。図10(a)に示される場合には、冷媒供給口64から遠い(例えば反対側の)連通路108を通る冷媒流量が、冷媒供給口64に近い連通路108を通る冷媒流量よりも少なくなり、その結果、冷媒供給口64から遠い連通路108での熱交換が不十分となりうる。図10(b)に示される構成によれば、図10(a)に示される場合と比べて、複数の連通路108を通る冷媒流量を均一化することができ、冷媒供給口64から遠い連通路108での熱交換面積を有効に利用することができる。 Further, as shown in FIG. 10 (b), the flow passage cross-sectional areas of the plurality of communication passages 108 may be different from one another. The flow passage cross-sectional area of the communication passage 108 may be smaller as it is closer to the refrigerant supply port 64 and larger as it is farther from the refrigerant supply port 64. Therefore, the communication passage 108 a provided on the opposite side of the central shaft 92 to the refrigerant supply port 64 has the largest flow passage cross-sectional area. In the case shown in FIG. 10A, the flow rate of the refrigerant passing through the communication passage 108 (for example, on the opposite side) far from the refrigerant supply port 64 is smaller than the flow rate of the refrigerant passing through the communication passage 108 near the refrigerant supply port 64. As a result, heat exchange in the communication passage 108 far from the refrigerant supply port 64 may be insufficient. According to the configuration shown in FIG. 10B, compared to the case shown in FIG. 10A, the flow rate of the refrigerant passing through the plurality of communication paths 108 can be made uniform, and the reams far from the refrigerant supply port 64 The heat exchange area in the passage 108 can be effectively utilized.
 図11は、第4実施形態に係る極低温冷凍機10の他の例を概略的に示す図である。図8および図9を参照して説明した実施形態では冷媒供給口64と冷媒排出口66で流路断面積が等しいが、これに限られない。 FIG. 11 is a view schematically showing another example of the cryogenic refrigerator 10 according to the fourth embodiment. In the embodiment described with reference to FIGS. 8 and 9, although the flow path cross-sectional areas of the refrigerant supply port 64 and the refrigerant discharge port 66 are equal, the present invention is not limited thereto.
 冷媒供給口64の冷媒流入孔64aの流路断面積A1は、冷媒排出口66の冷媒流出孔66aの流路断面積A2より大きくてもよい。冷媒流入孔64aおよび冷媒流出孔66aがともに円形である場合、冷媒流入孔64aの径が冷媒流出孔66aの径より大きくてもよい。冷媒供給口64から冷媒通路68に流入する冷媒は、冷媒流入孔64aから第2階層106に入るときに流れ方向が大きく変わる。すなわち、冷媒流入孔64aから径方向に流入する冷媒が、第2階層106で周方向に曲げられる。このような流れ方向の急変は流路抵抗の増加を招く。これに対して、冷媒通路68から冷媒排出口66へと流出する冷媒は直線的に軸方向に流れるので、流路抵抗は比較的小さい。 The flow passage cross-sectional area A1 of the refrigerant inflow hole 64a of the refrigerant supply port 64 may be larger than the flow passage cross-sectional area A2 of the refrigerant outflow hole 66a of the refrigerant discharge port 66. When both the refrigerant inflow holes 64a and the refrigerant outflow holes 66a are circular, the diameter of the refrigerant inflow holes 64a may be larger than the diameter of the refrigerant outflow holes 66a. The refrigerant flowing from the refrigerant supply port 64 into the refrigerant passage 68 largely changes in flow direction when it enters the second layer 106 from the refrigerant inflow hole 64 a. That is, the refrigerant flowing in in the radial direction from the refrigerant inflow holes 64 a is bent in the circumferential direction in the second layer 106. Such a sudden change in the flow direction leads to an increase in flow path resistance. On the other hand, since the refrigerant flowing out from the refrigerant passage 68 to the refrigerant discharge port 66 linearly flows in the axial direction, the flow path resistance is relatively small.
 したがって、冷媒供給口64の流路断面積A1を冷媒排出口66の流路断面積A2より大きくすることにより、冷媒供給口64での流路抵抗を冷媒排出口66での流路抵抗と等しく、または小さくすることができる。冷媒供給口64での流路抵抗が過剰となることを回避できる。これは、冷却ステージ26と冷媒との熱交換効率を向上することに役立つ。 Therefore, by making the flow passage cross sectional area A1 of the refrigerant supply port 64 larger than the flow passage cross sectional area A2 of the refrigerant discharge port 66, the flow passage resistance at the refrigerant supply port 64 is equal to the flow passage resistance at the refrigerant discharge port 66. Or can be smaller. Excessive flow path resistance at the refrigerant supply port 64 can be avoided. This helps to improve the heat exchange efficiency between the cooling stage 26 and the refrigerant.
 なお、第1実施形態から第3実施形態のように冷媒通路68が複数の階層を有しない場合においても、同様に、冷媒供給口64の流路断面積A1が、冷媒排出口66の流路断面積A2より大きくてもよい。 Even when the refrigerant passage 68 does not have a plurality of layers as in the first to third embodiments, the cross-sectional area A1 of the refrigerant supply port 64 is the same as the flow path of the refrigerant outlet 66 in the same manner. It may be larger than the cross-sectional area A2.
 図12は、第4実施形態に係る極低温冷凍機10の他の例を概略的に示す図である。図12に示されるように、冷媒通路68の第2階層106は、近接領域110aと遠隔領域110bを有してもよい。近接領域110aは、遠隔領域110bに比べて、連通路108に近い領域である。近接領域110aと遠隔領域110bは互いに連通するひとつの流路を形成している。近接領域110aが第2階層106のうち軸方向下方に位置し、遠隔領域110bが軸方向上方に位置する。 FIG. 12 is a view schematically showing another example of the cryogenic refrigerator 10 according to the fourth embodiment. As shown in FIG. 12, the second level 106 of the refrigerant passage 68 may have a proximity area 110a and a remote area 110b. The proximity area 110a is an area closer to the communication passage 108 than the remote area 110b. The proximity area 110a and the remote area 110b form one flow path communicating with each other. The proximity area 110a is located axially below the second layer 106, and the remote area 110b is located axially upward.
 近接領域110aの流路断面積(周方向に垂直な断面積)は、遠隔領域110bの流路断面積より大きい。例えば、近接領域110aの径方向幅は、遠隔領域110bの径方向幅より大きくてもよい。このようにして、冷媒の流れが集中しやすい領域の流路断面積が比較的大きくなっている。図8に示される場合には、第2階層106において連通路108から遠い軸方向上方の領域を通る冷媒流量は、第2階層106において連通路108に近い軸方向下方の領域を通る冷媒流量よりも少なくなり、その結果、連通路108から遠い軸方向上方の領域での熱交換が不十分となりうる。図12に示される構成によれば、冷媒の流れが集中しやすい近接領域110aの流路断面積が比較的大きくなっている。第2階層106における連通路108の近傍での冷却ステージ26と冷媒との熱交換効率が向上されうる。 The flow passage cross-sectional area (the cross-sectional area perpendicular to the circumferential direction) of the proximity region 110a is larger than the flow passage cross-sectional area of the remote region 110b. For example, the radial width of the proximity region 110a may be larger than the radial width of the remote region 110b. In this way, the flow passage cross-sectional area of the region where the flow of the refrigerant is easily concentrated is relatively large. In the case shown in FIG. 8, the flow rate of the refrigerant passing through the axially upper area far from the communication passage 108 in the second layer 106 is higher than the flow rate of the refrigerant flowing in the lower axial region near the communication path 108 in the second layer 106. As a result, heat exchange in the axially upper region far from the communication passage 108 may be insufficient. According to the configuration shown in FIG. 12, the flow passage cross-sectional area of the proximity region 110a where the flow of the refrigerant tends to be concentrated is relatively large. The heat exchange efficiency between the cooling stage 26 and the refrigerant in the vicinity of the communication passage 108 in the second layer 106 can be improved.
 なお、近接領域110aおよび遠隔領域110bは、第2階層106における連通路108の近傍にのみ設けられていてもよい。あるいは、近接領域110aおよび遠隔領域110bは、第2階層106全体に(つまり冷却ステージ26の全周にわたって)設けられていてもよい。 The proximity area 110 a and the remote area 110 b may be provided only in the vicinity of the communication passage 108 in the second layer 106. Alternatively, the proximity area 110 a and the remote area 110 b may be provided on the entire second layer 106 (that is, around the entire circumference of the cooling stage 26).
 同様にして、冷媒通路68の少なくとも1つの階層(例えば第1階層104)が、近接領域110aおよび遠隔領域110bを有してもよい。冷媒通路68の少なくとも1つの階層(例えば第1階層104)における連通路108の近傍での冷却ステージ26と冷媒との熱交換効率が向上されうる。 Similarly, at least one level (e.g., the first level 104) of the refrigerant passages 68 may have the proximity area 110a and the remote area 110b. The heat exchange efficiency between the cooling stage 26 and the refrigerant in the vicinity of the communication passage 108 in at least one hierarchy (for example, the first hierarchy 104) of the refrigerant passage 68 can be improved.
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。 The present invention has been described above based on the embodiments. It is understood by those skilled in the art that the present invention is not limited to the above embodiment, and various design changes are possible, and various modifications are possible, and such modifications are also within the scope of the present invention. It is a place.
 第1フィン76および第2フィン80の形状は、リング状には限られない。フィン形状は、筒状または矩形状のプレート形状、または棒状であってもよい。 The shapes of the first fins 76 and the second fins 80 are not limited to the ring shape. The fin shape may be a cylindrical or rectangular plate shape, or a rod shape.
 冷媒通路68が蛇行状であることは、必須ではない。第1熱交換面46は、第1フィン76を有しなくてもよい。第2熱交換面48は、第2フィン80を有しなくてもよい。第1熱交換面46と第2熱交換面48の少なくとも一方が平坦面であってもよい。このようにしても、冷媒と熱交換面との熱交換は可能である。 It is not essential that the refrigerant passage 68 be serpentine. The first heat exchange surface 46 may not have the first fins 76. The second heat exchange surface 48 may not have the second fin 80. At least one of the first heat exchange surface 46 and the second heat exchange surface 48 may be a flat surface. Even in this case, heat exchange between the refrigerant and the heat exchange surface is possible.
 第1実施形態に関連して説明した種々の実施形態は、第2実施形態から第4実施形態にも適用可能である。例えば、図3に示される伝熱ブロック構成は、第2実施形態から第4実施形態にも適用されてもよい。図4に示される冷媒通路68の構成は、第2実施形態から第4実施形態にも適用されてもよい。第4実施形態の階層流路構造は、第1実施形態から第3実施形態にも適用されてもよい。組合せによって生じる新たな実施の形態は、組み合わされる実施の形態それぞれの効果をあわせもつ。 The various embodiments described in connection with the first embodiment are also applicable to the second to fourth embodiments. For example, the heat transfer block configuration shown in FIG. 3 may be applied to the second to fourth embodiments. The configuration of the refrigerant passage 68 shown in FIG. 4 may be applied to the second to fourth embodiments. The hierarchical channel structure of the fourth embodiment may be applied to the first to third embodiments. The new embodiments resulting from the combination combine the effects of each of the combined embodiments.
 上述の実施形態は、単段式の極低温冷凍機10を例として説明したが、多段式の極低温冷凍機10にも適用可能である。また、上述の実施形態は、GM冷凍機を例として説明したが、スターリング冷凍機、パルス管冷凍機などその他の極低温冷凍機にも適用可能である。 The above-described embodiment has been described using the single-stage cryogenic refrigerator 10 as an example, but is applicable to the multistage cryogenic refrigerator 10 as well. Moreover, although the above-mentioned embodiment was described taking GM refrigerator as an example, it is applicable also to other cryogenic refrigerators, such as a Stirling refrigerator and a pulse tube refrigerator.
 10 極低温冷凍機、 20 ディスプレーサ、 26 冷却ステージ、 28 第1伝熱ブロック、 30 第2伝熱ブロック、 34 膨張室、 46 第1熱交換面、 48 第2熱交換面、 64 冷媒供給口、 66 冷媒排出口、 68 冷媒通路、 74 第1ベース面、 76 第1フィン、 76a 第1フィン先端、 78 第2ベース面、 80 第2フィン、 80a 第2フィン先端、 82 第1横断通路、 84 第2横断通路、 86 フィン間通路、 90 同心リング状構造、 92 中心軸、 96 リング状凸部、 98 リング状凹部、 104 第1階層、 106 第2階層。 10 cryogenic refrigerator, 20 displacer, 26 cooling stage, 28 first heat transfer block, 30 second heat transfer block, 34 expansion chamber, 46 first heat exchange surface, 48 second heat exchange surface, 64 refrigerant supply port, 66 refrigerant outlet, 68 refrigerant passage, 74 first base surface, 76 first fin, 76a first fin tip, 78 second base surface, 80 second fin, 80a second fin tip, 82 first transverse passage, 84 Second transverse passage, 86 inter-fin passage, 90 concentric ring-shaped structure, 92 central axis, 96 ring-shaped convex portion, 98 ring-shaped concave portion, 104 first layer, 106 second layer.
 本発明は、極低温冷凍機の分野における利用が可能である。 The invention can be used in the field of cryogenic refrigerators.

Claims (12)

  1.  膨張室と、
     前記膨張室に熱的に結合された冷却ステージであって、前記膨張室への露出面と前記膨張室の外に配置された第1熱交換面とを備える第1伝熱ブロックと、前記第1熱交換面に対向する第2熱交換面を備える第2伝熱ブロックと、を備える冷却ステージと、
     前記膨張室の外であって前記冷却ステージに設置された冷媒供給口と、
     前記膨張室の外であって前記冷却ステージに設置された冷媒排出口と、
     前記膨張室から流体的に隔離された冷媒通路であって、冷媒が前記冷媒供給口から前記冷媒排出口へと前記第1熱交換面および前記第2熱交換面に沿って流れるよう前記第1伝熱ブロックと前記第2伝熱ブロックとの間に形成された冷媒通路と、を備えることを特徴とする極低温冷凍機。
    An expansion chamber,
    A cooling stage thermally coupled to the expansion chamber, the first heat transfer block including a surface exposed to the expansion chamber and a first heat exchange surface disposed outside the expansion chamber; A second heat transfer block comprising a second heat exchange surface facing the first heat exchange surface;
    A refrigerant supply port installed outside the expansion chamber and on the cooling stage;
    A refrigerant outlet provided outside the expansion chamber and installed on the cooling stage;
    A refrigerant passage fluidly isolated from the expansion chamber, the first flow path of the refrigerant along the first heat exchange surface and the second heat exchange surface from the refrigerant supply port to the refrigerant discharge port; A cryogenic refrigerator, comprising: a refrigerant passage formed between a heat transfer block and the second heat transfer block.
  2.  前記第1熱交換面は、第1ベース面と、前記第1ベース面から延出する少なくとも1つの第1フィンと、を備え、前記第1フィンは、第1フィン先端を備え、
     前記第2熱交換面は、第2ベース面と、前記第1フィンに沿って前記第2ベース面から延出する少なくとも1つの第2フィンと、を備え、前記第2フィンは、第2フィン先端を備え、
     前記第1フィン先端は、前記第2フィン先端よりも前記第2ベース面に近接して配置され、前記第2フィン先端は、前記第1フィン先端よりも前記第1ベース面に近接して配置され、
     前記冷媒通路は、
     前記冷媒が前記第1フィンを横断するよう前記第1フィン先端と前記第2ベース面との間に形成された第1横断通路と、
     前記冷媒が前記第2フィンを横断するよう前記第2フィン先端と前記第1ベース面との間に形成された第2横断通路と、
     前記第1横断通路を前記第2横断通路に連通するよう前記第1フィンと前記第2フィンとの間に形成されたフィン間通路と、を備えることを特徴とする請求項1に記載の極低温冷凍機。
    The first heat exchange surface includes a first base surface and at least one first fin extending from the first base surface, and the first fin includes a first fin tip.
    The second heat exchange surface includes a second base surface and at least one second fin extending from the second base surface along the first fin, and the second fin is a second fin. Equipped with a tip,
    The first fin tip is disposed closer to the second base surface than the second fin tip, and the second fin tip is disposed closer to the first base surface than the first fin tip. And
    The refrigerant passage is
    A first transverse passage formed between the tip of the first fin and the second base surface such that the coolant traverses the first fin;
    A second transverse passage formed between the tip of the second fin and the first base surface such that the coolant traverses the second fin;
    The pole according to claim 1, further comprising an inter-fin passage formed between the first fin and the second fin so as to connect the first cross passage to the second cross passage. Low temperature refrigerator.
  3.  前記第1横断通路は、前記第1フィン先端と前記第2ベース面との間で局所的に形成され、前記第2横断通路は、前記第2フィン先端と前記第1ベース面との間で局所的に形成され、
     前記フィン間通路における冷媒流れがフィン高さ方向と角度をなす方向に誘導されるように、前記第1横断通路および前記第2横断通路の配置が定められていることを特徴とする請求項2に記載の極低温冷凍機。
    The first transverse passage is locally formed between the first fin tip and the second base surface, and the second transverse passage is between the second fin tip and the first base surface. Locally formed,
    The arrangement of the first cross passage and the second cross passage may be determined such that the refrigerant flow in the inter-fin passage is guided in a direction making an angle with the fin height direction. Cryogenic refrigerator as described in.
  4.  前記冷却ステージとの間に前記膨張室を形成する軸方向往復動可能なディスプレーサをさらに備え、
     前記第1伝熱ブロックの前記膨張室への前記露出面は、前記ディスプレーサと同軸配置されたリング状凸部を備える前記膨張室の底面を含み、前記リング状凸部は、前記膨張室の底面と反対側から前記第2フィンを受け入れるよう中空とされ、
     前記ディスプレーサは、前記リング状凸部を受け入れるよう形成されたリング状凹部を備えることを特徴とする請求項2または3に記載の極低温冷凍機。
    It further comprises an axially reciprocable displacer that forms the expansion chamber with the cooling stage,
    The exposed surface of the first heat transfer block to the expansion chamber includes a bottom surface of the expansion chamber including a ring-shaped convex portion coaxially disposed with the displacer, and the ring-shaped convex portion is a bottom surface of the expansion chamber And is hollow to receive the second fin from the opposite side,
    The cryogenic refrigerator according to claim 2 or 3, wherein the displacer comprises a ring-shaped recess formed to receive the ring-shaped protrusion.
  5.  前記第1フィンは、極低温冷凍機の中心軸を中心とするリング状形状を有し、
     前記第2フィンは、前記第1フィンと異なる径をもつリング状形状を有し、
     前記第2伝熱ブロックは、前記第2フィンが前記第1フィンと組み合わされて前記極低温冷凍機の中心軸と同軸配置された同心リング状構造を形成するように、前記第1伝熱ブロックに固着されていることを特徴とする請求項2から4のいずれかに記載の極低温冷凍機。
    The first fin has a ring shape centered on the central axis of the cryogenic refrigerator,
    The second fin has a ring shape having a diameter different from that of the first fin,
    The second heat transfer block is formed such that the second fins form a concentric ring-like structure coaxially arranged with the central axis of the cryogenic refrigerator, in combination with the first fins. The cryogenic refrigerator according to any one of claims 2 to 4, which is fixed to
  6.  前記冷媒供給口は、前記冷媒を前記同心リング状構造の外周部に供給するよう前記冷却ステージに設置され、前記冷媒通路は、前記冷媒を前記同心リング状構造の前記外周部から前記同心リング状構造の中心部に導くよう構成され、前記冷媒排出口は、前記冷媒を前記同心リング状構造の前記中心部から排出するよう前記冷却ステージに設置されていることを特徴とする請求項5に記載の極低温冷凍機。 The refrigerant supply port is disposed on the cooling stage so as to supply the refrigerant to the outer peripheral portion of the concentric ring structure, and the refrigerant passage is arranged in the concentric ring shape from the outer peripheral portion of the concentric ring structure. 6. A system according to claim 5, characterized in that it is arranged to lead to a central part of the structure, said refrigerant outlet being arranged at said cooling stage to discharge said refrigerant from said central part of said concentric ring structure. Cryogenic refrigerator.
  7.  前記同心リング状構造の外周部における前記第1熱交換面と前記第2熱交換面の間隔が、前記同心リング状構造の中心部における前記第1熱交換面と前記第2熱交換面の間隔よりも狭いことを特徴とする請求項5または6に記載の極低温冷凍機。 The distance between the first heat exchange surface and the second heat exchange surface in the outer peripheral portion of the concentric ring structure is the distance between the first heat exchange surface and the second heat exchange surface in the central portion of the concentric ring structure 7. A cryogenic refrigerator according to claim 5 or 6, characterized in that it is narrower.
  8.  前記冷媒通路は、複数の階層に区分けされていることを特徴とする請求項1から7のいずれかに記載の極低温冷凍機。 The cryogenic refrigerator according to any one of claims 1 to 7, wherein the refrigerant passage is divided into a plurality of layers.
  9.  前記冷媒通路の前記複数の階層は、それぞれ軸方向に異なる場所に配置され、前記冷媒が順番に流れるように互いに接続されていることを特徴とする請求項8に記載の極低温冷凍機。 9. The cryogenic refrigerator according to claim 8, wherein the plurality of layers of the refrigerant passages are disposed at different locations in the axial direction, respectively, and are connected to each other so that the refrigerant flows in order.
  10.  前記冷媒通路の前記複数の階層は、軸方向に隣り合う第1階層と第2階層とを有し、前記冷媒通路は、前記第1階層と前記第2階層とを接続する複数の連通路を有することを特徴とする請求項8または9に記載の極低温冷凍機。 The plurality of layers of the refrigerant passage have a first layer and a second layer axially adjacent to each other, and the refrigerant passage includes a plurality of communication paths connecting the first layer and the second layer. The cryogenic refrigerator according to claim 8 or 9, characterized in that it comprises:
  11.  前記複数の連通路の流路断面積は、互いに異なっていることを特徴とする請求項10に記載の極低温冷凍機。 11. The cryogenic refrigerator according to claim 10, wherein flow passage cross-sectional areas of the plurality of communication passages are different from one another.
  12.  前記冷媒供給口は、前記冷媒排出口よりも大きい流路断面積を有することを特徴とする請求項1から11のいずれかに記載の極低温冷凍機。 The cryogenic refrigerator according to any one of claims 1 to 11, wherein the refrigerant supply port has a flow passage cross-sectional area larger than that of the refrigerant discharge port.
PCT/JP2018/022244 2017-07-07 2018-06-11 Cryogenic refrigerator WO2019009019A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880039686.1A CN110799796B (en) 2017-07-07 2018-06-11 Cryogenic refrigerator
US16/720,934 US11149993B2 (en) 2017-07-07 2019-12-19 Cryocooler with heat transfer blocks having fins

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017134039 2017-07-07
JP2017-134039 2017-07-07
JP2017205231A JP6975013B2 (en) 2017-07-07 2017-10-24 Cryogenic freezer
JP2017-205231 2017-10-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/720,934 Continuation US11149993B2 (en) 2017-07-07 2019-12-19 Cryocooler with heat transfer blocks having fins

Publications (1)

Publication Number Publication Date
WO2019009019A1 true WO2019009019A1 (en) 2019-01-10

Family

ID=64950028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022244 WO2019009019A1 (en) 2017-07-07 2018-06-11 Cryogenic refrigerator

Country Status (1)

Country Link
WO (1) WO2019009019A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110749115A (en) * 2019-11-11 2020-02-04 中国科学院上海技术物理研究所 Multi-functional low temperature vortex coil pipe precooling heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239200A (en) * 1991-08-21 1993-08-24 International Business Machines Corporation Apparatus for cooling integrated circuit chips
JPH0674584A (en) * 1992-08-28 1994-03-15 Toshiba Corp Cryogenic refrigerator and operating method thereof
JP2000502175A (en) * 1995-12-15 2000-02-22 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング Cryogenic refrigerator with refrigeration head and method for optimizing refrigeration head for desired temperature range
WO2013179011A1 (en) * 2012-06-01 2013-12-05 The Science And Technology Facilities Council Cryostat
JP2013257074A (en) * 2012-06-12 2013-12-26 Sumitomo Heavy Ind Ltd Cryogenic refrigerator and displacer
WO2016068039A1 (en) * 2014-10-30 2016-05-06 住友重機械工業株式会社 Cryogenic refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239200A (en) * 1991-08-21 1993-08-24 International Business Machines Corporation Apparatus for cooling integrated circuit chips
JPH0674584A (en) * 1992-08-28 1994-03-15 Toshiba Corp Cryogenic refrigerator and operating method thereof
JP2000502175A (en) * 1995-12-15 2000-02-22 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング Cryogenic refrigerator with refrigeration head and method for optimizing refrigeration head for desired temperature range
WO2013179011A1 (en) * 2012-06-01 2013-12-05 The Science And Technology Facilities Council Cryostat
JP2013257074A (en) * 2012-06-12 2013-12-26 Sumitomo Heavy Ind Ltd Cryogenic refrigerator and displacer
WO2016068039A1 (en) * 2014-10-30 2016-05-06 住友重機械工業株式会社 Cryogenic refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110749115A (en) * 2019-11-11 2020-02-04 中国科学院上海技术物理研究所 Multi-functional low temperature vortex coil pipe precooling heat exchanger
CN110749115B (en) * 2019-11-11 2023-12-26 中国科学院上海技术物理研究所 Multifunctional low-temperature vortex coil precooling heat exchanger

Similar Documents

Publication Publication Date Title
US4259844A (en) Stacked disc heat exchanger for refrigerator cold finger
US10274230B2 (en) Annular portions protruding from a displacer and expansion space of a cryocooler
US9423160B2 (en) Regenerative refrigerator
JP2016090061A (en) Cryogenic refrigerator
JP5714461B2 (en) Cryogenic refrigerator
JP5882110B2 (en) Regenerator type refrigerator, regenerator
WO2019009019A1 (en) Cryogenic refrigerator
KR20010083614A (en) Aftercooler and its manufacturing mathod for pulse tube refrigerator
JP3602823B2 (en) Pulsating tube refrigerator
JP6975013B2 (en) Cryogenic freezer
JP2013217516A (en) Regenerative refrigerator
US10976080B2 (en) Pulse tube cryocooler and method of manufacturing pulse tube cryocooler
KR102398432B1 (en) Heat station for cooling circulating cryogen
JP5415502B2 (en) Cryogenic refrigerator
CN103759451B (en) Close-coupled inertia cast high frequency coaxial pulse tube refrigerating machine and manufacture method
JP2002039639A (en) Pulse tube type freezer
JP4327717B2 (en) Refrigerator with heat exchanger
JPH07260269A (en) Pulse tube refrigerator
RU2273808C2 (en) Refrigeration machine with pulsating pipe
JP2003240373A (en) Jacket for heat-exchanger, and stirling refrigerating engine
JP3635904B2 (en) Gas cycle engine refrigerator
JPH102628A (en) Heat-exchanger for external combustion type heat gas engine
JP2006138568A (en) Heat exchanger for stirling refrigerating machine
JPS59176546A (en) Cryogenic refrigerator
JP2002250571A (en) Multiple-stage cold storage equipment type refrigerating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828971

Country of ref document: EP

Kind code of ref document: A1