JP2015021671A - Accumulator and accumulator manufacturing method - Google Patents

Accumulator and accumulator manufacturing method Download PDF

Info

Publication number
JP2015021671A
JP2015021671A JP2013150381A JP2013150381A JP2015021671A JP 2015021671 A JP2015021671 A JP 2015021671A JP 2013150381 A JP2013150381 A JP 2013150381A JP 2013150381 A JP2013150381 A JP 2013150381A JP 2015021671 A JP2015021671 A JP 2015021671A
Authority
JP
Japan
Prior art keywords
heat exchanger
column tube
air column
accumulator
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013150381A
Other languages
Japanese (ja)
Other versions
JP6205936B2 (en
Inventor
阿部 誠
Makoto Abe
阿部  誠
博文 黒澤
Hirofumi Kurosawa
博文 黒澤
山本 康
Yasushi Yamamoto
康 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013150381A priority Critical patent/JP6205936B2/en
Publication of JP2015021671A publication Critical patent/JP2015021671A/en
Application granted granted Critical
Publication of JP6205936B2 publication Critical patent/JP6205936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an accumulator capable of reducing dead space and a manufacturing method therefor.SOLUTION: An accumulator 100 arranged between a heating heat exchanger 102 and a cooling heat exchanger 103 within an air-column pipe 101 so as to generate thermal acoustic self-excited vibration in a working fluid loaded in the air-column pipe 101, comprises: a plurality of fine holes 107 formed along an axial direction of the air-column pipe 101; and gaps 108 formed by crossing the fine holes 107. A method of manufacturing the accumulator 100 arranged between the heating heat exchanger 102 and the cooling heat exchanger 103 within the air-column pipe 101 so as to generate thermal acoustic self-excited vibration in a working fluid loaded in the air-column pipe 101, comprises the steps of: etching end portions of accumulator main bodies 109 each including fine holes 107 formed along an axial direction of the air-column pipe 101 so as to leave an outer frame 110; and coupling the accumulator main bodies 109.

Description

本発明は、気柱管に封入された作動流体に熱音響自励振動を発生させるために、気柱管の内部であって加熱側熱交換器と冷却側熱交換器との間に配置される蓄熱器及びその製造方法に関する。   The present invention is disposed inside the air column tube and between the heating side heat exchanger and the cooling side heat exchanger in order to generate thermoacoustic self-excited vibration in the working fluid sealed in the air column tube. The present invention relates to a heat accumulator and a manufacturing method thereof.

熱エネルギと音エネルギとを相互変換する熱音響現象を利用し、これまで無駄になっていた低温廃熱の再利用を可能とする廃熱回生デバイスの開発が進められている。この廃熱回生デバイスとしては、熱音響エンジンや熱音響冷凍器等の熱音響デバイスが知られている。   Development of a waste heat regeneration device that uses a thermoacoustic phenomenon in which heat energy and sound energy are mutually converted to enable reuse of low-temperature waste heat that has been wasted has been advanced. Thermoelectric devices such as thermoacoustic engines and thermoacoustic refrigerators are known as this waste heat regeneration device.

図3に示すように、熱音響デバイス300は、作動流体が封入された気柱管301と、気柱管301の内部に配置された加熱側熱交換器302及び冷却側熱交換器303と、気柱管301の内部であって加熱側熱交換器302と冷却側熱交換器303との間に配置された蓄熱器304と、を備えている。   As shown in FIG. 3, the thermoacoustic device 300 includes an air column tube 301 in which a working fluid is sealed, a heating side heat exchanger 302 and a cooling side heat exchanger 303 arranged inside the air column tube 301, A heat accumulator 304 disposed inside the air column tube 301 and disposed between the heating side heat exchanger 302 and the cooling side heat exchanger 303 is provided.

図4に示すように、加熱側熱交換器302及び冷却側熱交換器303は、作動流体の往復流を阻害しないように十分に広い間隔で積層された複数の板401を外枠402に固定した構造となっている。ここで、板401としては、高効率な熱交換を実現するために熱伝導性に優れた厚板が使用されている。   As shown in FIG. 4, the heating-side heat exchanger 302 and the cooling-side heat exchanger 303 fix a plurality of plates 401 stacked at a sufficiently wide interval to the outer frame 402 so as not to hinder the reciprocating flow of the working fluid. It has a structure. Here, as the plate 401, a thick plate having excellent thermal conductivity is used in order to realize highly efficient heat exchange.

これに対して、蓄熱器304は、作動流体の流動損失を低減し、熱音響デバイスの性能を向上させるために、気柱管301の軸方向に沿って複数の微細孔403が形成された構造(例えば、ハニカム構造)となっている。   In contrast, the heat accumulator 304 has a structure in which a plurality of fine holes 403 are formed along the axial direction of the air column tube 301 in order to reduce the flow loss of the working fluid and improve the performance of the thermoacoustic device. (For example, a honeycomb structure).

特開2004−028389号公報JP 2004-028389 A 特開2004−198020号公報JP 2004-188020 A 特開2005−233037号公報JP 2005-233037 A 特開2006−002599号公報JP 2006-002599 A

そのため、加熱側熱交換器302と冷却側熱交換器303との間に蓄熱器304を配置すると、図5に示すように、一部の微細孔403の両端が板401の端面で塞がれて作動流体が通過することのできない空間が発生する虞がある。この空間は、蓄熱器304として機能しないデッドスペース501(図示梨地模様部分)を形成し、蓄熱器304の性能を著しく悪化させる。   Therefore, when the heat accumulator 304 is disposed between the heating side heat exchanger 302 and the cooling side heat exchanger 303, both ends of some of the fine holes 403 are blocked by the end surfaces of the plate 401 as shown in FIG. 5. Therefore, there is a risk of generating a space through which the working fluid cannot pass. This space forms a dead space 501 that does not function as the heat accumulator 304 (illustrated satin pattern portion), and the performance of the heat accumulator 304 is significantly deteriorated.

そこで、本発明の目的は、デッドスペースを減少させることが可能な蓄熱器及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a heat accumulator capable of reducing dead space and a method for manufacturing the same.

この目的を達成するために創案された本発明は、気柱管に封入された作動流体に熱音響自励振動を発生させるために、前記気柱管の内部であって加熱側熱交換器と冷却側熱交換器との間に配置される蓄熱器において、前記気柱管の軸方向に沿って形成された複数の微細孔と、複数の前記微細孔を横断して形成された間隙と、を備える蓄熱器である。   The present invention, which has been created to achieve this object, includes a heating-side heat exchanger inside the air column tube and a heating side heat exchanger in order to generate thermoacoustic self-excited vibration in the working fluid sealed in the air column tube. In the heat accumulator arranged between the cooling side heat exchanger, a plurality of micro holes formed along the axial direction of the air column tube, and a gap formed across the plurality of micro holes, It is a heat accumulator provided with.

前記間隙は、前記気柱管の軸方向に沿って断続的に複数箇所に形成されていると良い。   The gap may be formed at a plurality of locations intermittently along the axial direction of the air column tube.

前記間隙は、前記気柱管の軸方向に所定の幅を有し、その幅が前記微細孔の開口サイズの1/3倍から1倍の大きさに形成されていると良い。   The gap may have a predetermined width in the axial direction of the air column tube, and the width may be formed to be 1/3 times to 1 time the opening size of the fine hole.

また、本発明は、気柱管に封入された作動流体に熱音響自励振動を発生させるために、前記気柱管の内部であって加熱側熱交換器と冷却側熱交換器との間に配置される蓄熱器の製造方法において、前記気柱管の軸方向に沿って形成された複数の微細孔を有する蓄熱器本体の端部を外枠を残してエッチングするステップと、複数の前記蓄熱器本体を連結するステップと、を備える蓄熱器の製造方法である。   Further, the present invention provides a thermoacoustic self-excited vibration in the working fluid sealed in the air column tube, and is located inside the air column tube and between the heating side heat exchanger and the cooling side heat exchanger. In the manufacturing method of the regenerator arranged in the step, etching the end of the regenerator main body having a plurality of fine holes formed along the axial direction of the air column tube leaving an outer frame, and a plurality of the above A step of connecting the main body of the regenerator.

本発明によれば、デッドスペースを減少させることが可能な蓄熱器及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat storage device which can reduce a dead space, and its manufacturing method can be provided.

本発明に係る蓄熱器を使用した熱音響デバイスを示す図であり、(a)は図3のA−A線と同位置における断面図、(b)は(a)の一部拡大図である。It is a figure which shows the thermoacoustic device using the thermal accumulator which concerns on this invention, (a) is sectional drawing in the same position as the AA line of FIG. 3, (b) is a partially expanded view of (a). . (a)及び(b)は本発明に係る蓄熱器の製造方法を説明する図である。(A) And (b) is a figure explaining the manufacturing method of the heat storage apparatus which concerns on this invention. 熱音響デバイスを示す概略図である。It is the schematic which shows a thermoacoustic device. 加熱側熱交換器、冷却側熱交換器、及び蓄熱器の断面構造を示す概略図である。It is the schematic which shows the cross-section of a heating side heat exchanger, a cooling side heat exchanger, and a thermal storage. 従来技術に係る蓄熱器を使用した熱音響デバイスを示す図3のA−A線断面図である。It is the sectional view on the AA line of FIG. 3 which shows the thermoacoustic device using the thermal accumulator which concerns on a prior art.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

図1(a)に示すように、本実施の形態に係る蓄熱器100は、気柱管101に封入された作動流体に熱音響自励振動を発生させるために、気柱管101の内部であって加熱側熱交換器102と冷却側熱交換器103との間に配置される。   As shown in FIG. 1A, the heat accumulator 100 according to the present exemplary embodiment has an internal structure of the air column tube 101 in order to generate thermoacoustic self-excited vibration in the working fluid sealed in the air column tube 101. Therefore, it is disposed between the heating side heat exchanger 102 and the cooling side heat exchanger 103.

これらは熱音響デバイス104を構成する。ここでは、熱音響デバイス104が熱音響エンジンである場合を例として説明する。   These constitute the thermoacoustic device 104. Here, a case where the thermoacoustic device 104 is a thermoacoustic engine will be described as an example.

気柱管101には、窒素やヘリウム等の不活性ガスが作動流体として封入されている。加熱側熱交換器102及び冷却側熱交換器103は、所定の積層間隔で積層された複数の板105を外枠106に固定した構造となっている。加熱側熱交換器102は、内燃機関から排出ガスと共に外気中に排出される廃熱を熱源として熱交換を行い、また冷却側熱交換器103は、内燃機関を流れる冷却水や外気等を冷熱源として熱交換を行う。これらの構造は、従来技術と何ら変わるところが無いので説明を省略する。   The air column tube 101 is filled with an inert gas such as nitrogen or helium as a working fluid. The heating side heat exchanger 102 and the cooling side heat exchanger 103 have a structure in which a plurality of plates 105 stacked at a predetermined stacking interval are fixed to the outer frame 106. The heating side heat exchanger 102 performs heat exchange using waste heat discharged from the internal combustion engine together with the exhaust gas into the outside air as a heat source, and the cooling side heat exchanger 103 cools cooling water and outside air flowing through the internal combustion engine. Heat exchange is performed as a source. Since these structures are not different from the prior art, description thereof will be omitted.

この熱音響デバイス104では、加熱側熱交換器102と冷却側熱交換器103とを使用して蓄熱器100に温度勾配を持たせることで、作動流体に「圧縮→加熱→膨張→冷却」という熱力学的サイクルを発生させる。これにより、回収した廃熱を動力として使用することが可能となる。   In this thermoacoustic device 104, the working fluid is referred to as “compression → heating → expansion → cooling” by using the heating side heat exchanger 102 and the cooling side heat exchanger 103 to give a temperature gradient to the heat accumulator 100. Generate a thermodynamic cycle. Thereby, the recovered waste heat can be used as power.

さて、本実施の形態に係る蓄熱器100は、気柱管101の軸方向に沿って形成された複数の微細孔107と、複数の微細孔107を横断して形成された間隙108と、を備えている。   Now, the heat accumulator 100 according to the present embodiment includes a plurality of micro holes 107 formed along the axial direction of the air column tube 101, and a gap 108 formed across the plurality of micro holes 107. I have.

微細孔107は、セラミックス等からなる蓄熱器本体109に高密度で形成されており、蓄熱器本体109は、外枠110を残してハニカム構造等の多孔構造となっている。図1(a)の部分Pを拡大した図1(b)に示すように、微細孔107の開口サイズD1は、板105の積層間隔D2よりも十分に小さく形成されており、作動流体の流動損失を低減して熱音響デバイス104の性能を十分に発揮できるようにされている。   The fine holes 107 are formed at a high density in a heat accumulator body 109 made of ceramics or the like, and the heat accumulator body 109 has a porous structure such as a honeycomb structure with the outer frame 110 remaining. As shown in FIG. 1B in which the portion P in FIG. 1A is enlarged, the opening size D1 of the fine holes 107 is formed sufficiently smaller than the stacking interval D2 of the plates 105, and the flow of the working fluid Loss is reduced so that the performance of the thermoacoustic device 104 can be fully exhibited.

間隙108は、複数の微細孔107を連通する通気流路を成しており、デッドスペース111を減少させるのに寄与している。この間隙108は、気柱管101の軸方向に沿って断続的に複数箇所に形成されていることが好ましい。間隙108が少なくとも2箇所に形成されていることにより、加熱側熱交換器102から流入する作動流体、及び冷却側熱交換器103から流入する作動流体のそれぞれが間隙108を通じてデッドスペース111となっていた微細孔107に流れ込み、再び元の微細孔107を通じて流出する迂回流路112が形成されるため、デッドスペース111となっていた微細孔107の大部分を蓄熱器100として機能させることが可能となるからである。   The gap 108 forms a ventilation channel that communicates the plurality of fine holes 107, and contributes to reducing the dead space 111. The gap 108 is preferably formed at a plurality of locations intermittently along the axial direction of the air column tube 101. Since the gap 108 is formed in at least two places, each of the working fluid flowing from the heating side heat exchanger 102 and the working fluid flowing from the cooling side heat exchanger 103 becomes the dead space 111 through the gap 108. Since the detour channel 112 that flows into the fine hole 107 and flows out again through the original fine hole 107 is formed, most of the fine hole 107 that has become the dead space 111 can function as the heat accumulator 100. Because it becomes.

なお、加熱側熱交換器102と蓄熱器100との境界、及び冷却側熱交換器103と蓄熱器100との境界に間隙108を形成することにより、デッドスペース111を完全に無くすことが可能となる。   In addition, it is possible to completely eliminate the dead space 111 by forming the gap 108 at the boundary between the heating side heat exchanger 102 and the regenerator 100 and the boundary between the cooling side heat exchanger 103 and the regenerator 100. Become.

また、間隙108は、気柱管101の軸方向に所定の幅Wを有し、その幅Wが微細孔107の開口サイズD1の1/3倍から1倍の大きさに形成されていることが好ましい。下限を1/3倍としたのは、幅Wが開口サイズD1の1/3倍未満になると、作動流体が間隙108を通じてデッドスペース111となっていた微細孔107に流れ込み難くなり、デッドスペース111を減少させるという目的を達成できない可能性があるからである。また、上限を1倍としたのは、間隙108が形成された部分は蓄熱器100として機能しないことから、幅Wが開口サイズD1の1倍を超えると、蓄熱器100として機能しない部分が過度に増加して熱音響デバイス104の性能の低下を生じる可能性があるからである。   The gap 108 has a predetermined width W in the axial direction of the air column tube 101, and the width W is formed to be 1/3 times to 1 time the opening size D1 of the microhole 107. Is preferred. The reason why the lower limit is set to 1/3 is that when the width W is less than 1/3 times the opening size D1, it becomes difficult for the working fluid to flow through the gap 108 into the fine hole 107 that has become the dead space 111. This is because it may not be possible to achieve the purpose of reducing the amount of energy. Further, the upper limit is set to 1 time because the portion where the gap 108 is formed does not function as the heat accumulator 100. Therefore, if the width W exceeds 1 time the opening size D1, the portion that does not function as the heat accumulator 100 is excessive. This is because the performance of the thermoacoustic device 104 may be reduced.

この蓄熱器100を製造する際には、図2(a)に示すように、先ず、気柱管101の軸方向に沿って形成された複数の微細孔107を有する蓄熱器本体109の端部を外枠110を残してエッチングする。これにより、複数の微細孔107が形成された部分が外枠110に対して蓄熱器本体109の内側にオフセットされることになる。その後、図2(b)に示すように、複数の蓄熱器本体109を連結することにより、エッチングされてオフセットされた部分が間隙108を形成することとなる。この他にも、蓄熱器本体109とスペーサとを交互に連結することにより、間隙108を形成するようにしても構わない。   When manufacturing the regenerator 100, first, as shown in FIG. 2A, first, an end of the regenerator main body 109 having a plurality of fine holes 107 formed along the axial direction of the air column tube 101. Is etched leaving the outer frame 110. As a result, the portion in which the plurality of fine holes 107 are formed is offset inside the heat accumulator body 109 with respect to the outer frame 110. Thereafter, as shown in FIG. 2B, by connecting a plurality of heat accumulator bodies 109, the etched and offset portions form gaps 108. In addition, the gap 108 may be formed by alternately connecting the regenerator body 109 and the spacer.

これまで説明してきたように、本実施の形態に係る蓄熱器100によれば、複数の微細孔107を横断して形成された間隙108を備えており、作動流体が間隙108を通じてデッドスペース111となっていた微細孔107に流れ込む迂回流路112が形成されることから、デッドスペース111を減少させることが可能となる。   As described above, according to the heat accumulator 100 according to the present embodiment, the heat accumulator 100 includes the gap 108 formed across the plurality of fine holes 107, and the working fluid passes through the gap 108 and the dead space 111. Since the detour channel 112 that flows into the fine hole 107 that has been formed is formed, the dead space 111 can be reduced.

本発明に係る蓄熱器は、熱音響エンジンや熱音響冷凍器の他にもスターリングエンジン等の再生器としても使用することができる。   The heat accumulator according to the present invention can be used as a regenerator such as a Stirling engine in addition to a thermoacoustic engine and a thermoacoustic refrigerator.

100 蓄熱器
101 気柱管
102 加熱側熱交換器
103 冷却側熱交換器
104 熱音響デバイス
105 板
106 外枠
107 微細孔
108 間隙
109 蓄熱器本体
110 外枠
111 デッドスペース
112 迂回流路
DESCRIPTION OF SYMBOLS 100 Heat accumulator 101 Air column tube 102 Heating side heat exchanger 103 Cooling side heat exchanger 104 Thermoacoustic device 105 Plate 106 Outer frame 107 Fine hole 108 Gap 109 Regenerator body 110 Outer frame 111 Dead space 112 Detour flow path

Claims (4)

気柱管に封入された作動流体に熱音響自励振動を発生させるために、前記気柱管の内部であって加熱側熱交換器と冷却側熱交換器との間に配置される蓄熱器において、
前記気柱管の軸方向に沿って形成された複数の微細孔と、
複数の前記微細孔を横断して形成された間隙と、
を備えることを特徴とする蓄熱器。
In order to generate thermoacoustic self-excited vibration in the working fluid sealed in the air column tube, the regenerator is disposed inside the air column tube and between the heating side heat exchanger and the cooling side heat exchanger. In
A plurality of micropores formed along the axial direction of the air column tube;
A gap formed across the plurality of micropores;
A heat accumulator characterized by comprising.
前記間隙は、前記気柱管の軸方向に沿って断続的に複数箇所に形成されている請求項1に記載の蓄熱器。   The regenerator according to claim 1, wherein the gap is formed at a plurality of locations intermittently along the axial direction of the air column tube. 前記間隙は、前記気柱管の軸方向に所定の幅を有し、その幅が前記微細孔の開口サイズの1/3倍から1倍の大きさに形成されている請求項1又は2に記載の蓄熱器。   3. The gap according to claim 1, wherein the gap has a predetermined width in the axial direction of the air column tube, and the width is formed to be 1/3 times to 1 time the opening size of the fine hole. The regenerator described. 気柱管に封入された作動流体に熱音響自励振動を発生させるために、前記気柱管の内部であって加熱側熱交換器と冷却側熱交換器との間に配置される蓄熱器の製造方法において、
前記気柱管の軸方向に沿って形成された複数の微細孔を有する蓄熱器本体の端部を外枠を残してエッチングするステップと、
複数の前記蓄熱器本体を連結するステップと、
を備えることを特徴とする蓄熱器の製造方法。
In order to generate thermoacoustic self-excited vibration in the working fluid sealed in the air column tube, the regenerator is disposed inside the air column tube and between the heating side heat exchanger and the cooling side heat exchanger. In the manufacturing method of
Etching the end of the regenerator body having a plurality of fine holes formed along the axial direction of the air column tube leaving an outer frame;
Connecting a plurality of the regenerator bodies;
A method for manufacturing a heat accumulator, comprising:
JP2013150381A 2013-07-19 2013-07-19 Heat accumulator Active JP6205936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013150381A JP6205936B2 (en) 2013-07-19 2013-07-19 Heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013150381A JP6205936B2 (en) 2013-07-19 2013-07-19 Heat accumulator

Publications (2)

Publication Number Publication Date
JP2015021671A true JP2015021671A (en) 2015-02-02
JP6205936B2 JP6205936B2 (en) 2017-10-04

Family

ID=52486283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013150381A Active JP6205936B2 (en) 2013-07-19 2013-07-19 Heat accumulator

Country Status (1)

Country Link
JP (1) JP6205936B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158232A (en) * 2018-03-13 2019-09-19 三菱重工業株式会社 Excitation source and heat acoustic device
WO2021084868A1 (en) * 2019-11-01 2021-05-06 京セラ株式会社 Thermoacoustic device
WO2021152798A1 (en) * 2020-01-30 2021-08-05 京セラ株式会社 Thermoacoustic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068556A (en) * 1996-08-27 1998-03-10 Sharp Corp Thermoacoustic refrigerator
JPH11281272A (en) * 1998-03-31 1999-10-15 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Heat exchanger and manufacture thereof
JP2004028389A (en) * 2002-06-24 2004-01-29 Sanyo Electric Co Ltd Acoustic cooling device, temperature gradient generating unit and manufacturing method
JP2004198020A (en) * 2002-12-18 2004-07-15 Tech Res & Dev Inst Of Japan Def Agency Heat storage type heat exchanger
JP2005233037A (en) * 2004-02-18 2005-09-02 Toyota Motor Corp Thermoacoustic engine
JP2006002599A (en) * 2004-06-15 2006-01-05 Toyota Motor Corp Thermal acoustic engine
JP2006017421A (en) * 2004-07-05 2006-01-19 Fuji Electric Holdings Co Ltd Heat exchanger for refrigerator
JP2012237289A (en) * 2011-05-13 2012-12-06 Nippon Telegr & Teleph Corp <Ntt> Stack for thermoacoustic device and method for manufacturing stack for thermoacoustic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068556A (en) * 1996-08-27 1998-03-10 Sharp Corp Thermoacoustic refrigerator
JPH11281272A (en) * 1998-03-31 1999-10-15 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Heat exchanger and manufacture thereof
JP2004028389A (en) * 2002-06-24 2004-01-29 Sanyo Electric Co Ltd Acoustic cooling device, temperature gradient generating unit and manufacturing method
JP2004198020A (en) * 2002-12-18 2004-07-15 Tech Res & Dev Inst Of Japan Def Agency Heat storage type heat exchanger
JP2005233037A (en) * 2004-02-18 2005-09-02 Toyota Motor Corp Thermoacoustic engine
JP2006002599A (en) * 2004-06-15 2006-01-05 Toyota Motor Corp Thermal acoustic engine
JP2006017421A (en) * 2004-07-05 2006-01-19 Fuji Electric Holdings Co Ltd Heat exchanger for refrigerator
JP2012237289A (en) * 2011-05-13 2012-12-06 Nippon Telegr & Teleph Corp <Ntt> Stack for thermoacoustic device and method for manufacturing stack for thermoacoustic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158232A (en) * 2018-03-13 2019-09-19 三菱重工業株式会社 Excitation source and heat acoustic device
JP7019468B2 (en) 2018-03-13 2022-02-15 三菱重工業株式会社 Excitation source and thermoacoustic device
WO2021084868A1 (en) * 2019-11-01 2021-05-06 京セラ株式会社 Thermoacoustic device
JPWO2021084868A1 (en) * 2019-11-01 2021-05-06
WO2021152798A1 (en) * 2020-01-30 2021-08-05 京セラ株式会社 Thermoacoustic device

Also Published As

Publication number Publication date
JP6205936B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP5423531B2 (en) Thermoacoustic engine
JP2005522664A5 (en)
JP7169923B2 (en) Heat exchanger
JP6205936B2 (en) Heat accumulator
WO2017212871A1 (en) Thermoacoustic engine, and method for designing thermoacoustic engine
CN104500262B (en) Free piston stirling generator
JP6884491B2 (en) Thermoacoustic engine
US9763015B2 (en) Method of manufacturing thermoacoustic energy converting element part, thermoacoustic energy converting element part, and thermoacoustic energy converter
JP5453950B2 (en) Thermoacoustic engine
US10808968B2 (en) Thermoacoustic cooling device
JP6376895B2 (en) Thermoacoustic device
JP5434680B2 (en) Thermoacoustic engine
JP5862250B2 (en) Thermoacoustic refrigeration equipment
JP5655313B2 (en) Thermoacoustic engine
JP2013117325A (en) Thermoacoustic refrigeration device
JP2011122567A (en) Thermoacoustic engine and alpha-type stirling engine
JP5532959B2 (en) Thermoacoustic engine
JP2010025411A (en) Heat exchanger and pulse tube refrigerating machine
JP2008286507A (en) Pulse tube refrigerator
JP5434613B2 (en) Thermoacoustic engine
JP6299186B2 (en) Heat exchange module for thermoacoustic engine and thermoacoustic engine
JP2006145176A (en) Thermoacoustic engine
JP2006078003A (en) Pulse tube refrigerating machine
JP5446498B2 (en) Thermoacoustic engine
JP2006017421A (en) Heat exchanger for refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6205936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150