WO2021152798A1 - Thermoacoustic device - Google Patents

Thermoacoustic device Download PDF

Info

Publication number
WO2021152798A1
WO2021152798A1 PCT/JP2020/003549 JP2020003549W WO2021152798A1 WO 2021152798 A1 WO2021152798 A1 WO 2021152798A1 JP 2020003549 W JP2020003549 W JP 2020003549W WO 2021152798 A1 WO2021152798 A1 WO 2021152798A1
Authority
WO
WIPO (PCT)
Prior art keywords
high temperature
fins
gas
temperature portion
grid
Prior art date
Application number
PCT/JP2020/003549
Other languages
French (fr)
Japanese (ja)
Inventor
西村 道明
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to PCT/JP2020/003549 priority Critical patent/WO2021152798A1/en
Priority to PCT/JP2020/031854 priority patent/WO2021084868A1/en
Priority to JP2021554106A priority patent/JPWO2021084868A1/ja
Publication of WO2021152798A1 publication Critical patent/WO2021152798A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Definitions

  • the disclosed embodiment relates to a thermoacoustic device.
  • thermoacoustic device that converts thermal energy into acoustic energy by the thermoacoustic effect, which is an interaction between heat and sound waves, and converts acoustic energy into other energy such as electric energy.
  • thermoacoustic generator in which a generator that generates heat in response to a traveling wave and a thermoacoustic generator that takes out cold heat by reversing a heat radiating unit and a heating unit are provided in a loop tube (see, for example, Patent Document 1). ).
  • the efficiency of converting thermal energy into acoustic energy may be low.
  • the efficiency of converting thermal energy into sound energy is low, and the sound waves are self-excited. It becomes difficult for vibration to be established.
  • thermoacoustic device that improves the efficiency of converting thermal energy into acoustic energy.
  • the thermoacoustic device includes a loop-shaped waveguide and a heat exchanger.
  • the loop-shaped waveguide is filled with a medium.
  • the heat exchanger is provided in the waveguide and is provided in the low temperature part, the high temperature part, and between the low temperature part and the high temperature part, and holds the temperature gradient generated between the low temperature part and the high temperature part.
  • the temperature gradient holder includes a plurality of linear thermal conductors.
  • the efficiency of converting thermal energy into sound energy can be improved.
  • FIG. 1 is a diagram showing an example of a thermoacoustic device according to an embodiment.
  • FIG. 2 is a diagram showing an example of a heat exchanger included in a thermoacoustic device.
  • FIG. 3 is a diagram showing an example of a temperature gradient holding portion included in the heat exchanger.
  • FIG. 4 is a diagram showing an example of a temperature gradient holding portion included in the heat exchanger.
  • FIG. 5 is a diagram showing an example of each of a plurality of linear heat conductors included in the temperature gradient holding portion.
  • FIG. 6 is a diagram showing an example of a first high temperature portion included in the high temperature portion included in the heat exchanger.
  • FIG. 7A is a diagram showing an example of a first high temperature portion included in the high temperature portion included in the heat exchanger.
  • FIG. 7B is a diagram showing an example of joining a first high temperature portion included in the high temperature portion included in the heat exchanger and a plurality of linear heat conductors included in the temperature gradient holding portion.
  • FIG. 8 is a diagram showing an example of a second high temperature portion included in the high temperature portion included in the heat exchanger.
  • FIG. 9 is a diagram showing an example of a second high temperature portion included in the high temperature portion included in the heat exchanger.
  • FIG. 10 is a diagram showing an example of a third high temperature portion included in the high temperature portion included in the heat exchanger.
  • FIG. 11 is a diagram showing an example of a third high temperature portion included in the high temperature portion included in the heat exchanger.
  • FIG. 12 shows an example of joining the temperature gradient holding portion included in the heat exchanger and the first high temperature portion, the second high temperature portion, and the third high temperature portion included in the high temperature portion included in the heat exchanger. It is a figure.
  • thermoacoustic apparatus disclosed in the present application will be described in detail with reference to the attached drawings.
  • the present invention is not limited to the embodiments shown below.
  • FIG. 1 is a diagram showing an example of a thermoacoustic device 1 according to an embodiment.
  • the front side is the positive direction in the Z-axis direction in the direction orthogonal to the paper surface
  • the longitudinal direction and the lateral direction of the thermoacoustic device 1 are the X-axis direction and the Y-axis direction, respectively. Shows a three-dimensional Cartesian coordinate system.
  • thermoacoustic device 1 converts thermal energy into acoustic energy of sound waves by thermoacoustic effect, converts acoustic energy of sound waves into other energy such as electric energy, or cools heat from acoustic energy of generated sound waves. It is a device to take out.
  • the thermoacoustic effect is the interaction between heat and sound waves.
  • the thermoacoustic device 1 includes a waveguide 2, a heat exchanger 3, an exciter 7, and a converter 8.
  • the waveguide 2 is filled with gas G.
  • the gas G is, for example, air, nitrogen (N 2 ), helium (He), argon (Ar), hydrogen (H 2 ), carbon dioxide (CO 2 ), or the like.
  • the waveguide 2 is configured to seal the gas G inside.
  • the pressure of the gas G filled in the waveguide 2 is, for example, 1 atm (1013.25 hPa) or more and less than 100 atm (101325 hPa).
  • the pressure of the gas G filled in the waveguide 2 is 1 atm, it is not necessary to improve the airtightness of the waveguide 2.
  • the waveguide 2 is a loop-shaped waveguide without a reflective wall.
  • the waveguide 2 has, for example, the shape of a single loop as shown in FIG.
  • the waveguide 2 can change the resonance frequency of the sound wave generated in the gas G by changing its length.
  • the phase of the temperature change of the gas G caused by the heat conduction between the heat exchanger 3 and the gas G is set with respect to the phase of the movement (transfer) of the gas G by the sound wave generated in the gas G. It is delayed by the amount corresponding to the rate of temperature rise or fall of the medium. Accordingly, the phase of the pressure change of the sound wave of the gas G is delayed by 0 ° to 90 ° from the phase of the pressure change of the gas G when there is no temperature change.
  • thermoacoustic device 1 when the waveguide 2 has a reflective wall, the resonance of the sound wave having the phase delay of the pressure is hindered by interposing the temperature change generated in the gas G, and the amplitude of the sound wave generated in the gas G. Will be reduced.
  • the waveguide 2 has the shape of a loop without a reflection wall, so that the resonance of the sound wave generated in the gas G can be stabilized. Accordingly, the thermoacoustic device 1 can improve the output of the acoustic energy of the sound wave.
  • the length of the waveguide 2 is an integral multiple of the resonance wavelength of the sound wave generated in the gas G.
  • the length of the waveguide 2 is set so that, for example, in the case of a small system, the resonance wavelength of the sound wave generated in the gas G is 1 m or less.
  • the waveguide 2 is, for example, a hollow waveguide having a circular or square cross section. By increasing the diameter of the cross section of the waveguide 2, the output of sound wave acoustic energy can be increased.
  • the waveguide 2 is formed of, for example, a metal such as stainless steel (SUS) or a plastic such as vinyl chloride.
  • SUS stainless steel
  • plastic such as vinyl chloride.
  • the heat exchanger 3 transfers heat to the gas G filled in the waveguide 2.
  • the heat exchanger 3 heats / cools the gas G according to the phase of advection of sound waves.
  • the length of the heat exchanger 3 in the direction in which the waveguide 2 extends (X-axis direction) is preferably, for example, greater than or equal to the amplitude of the sound wave generated in the gas G and not more than 1/20 of the wavelength of the sound wave, for example, 1 to 5 cm.
  • the heat exchanger 3 is provided in the waveguide 2.
  • the heat exchanger 3 includes a low temperature section 4, a high temperature section 5, and a temperature gradient holding section 6.
  • the low temperature section 4 is a member contained in the heat exchanger 3 that maintains a relatively low temperature.
  • the high temperature section 5 is a member included in the heat exchanger 3 that maintains a relatively high temperature.
  • the relatively low temperature and the relatively high temperature are based on the contrast between the temperature of the low temperature portion 4 and the temperature of the high temperature portion 5. That is, the temperature of the high temperature portion 5 is higher than the temperature of the low temperature portion 4.
  • a temperature gradient is generated between the low temperature portion 4 and the high temperature portion 5.
  • the acoustic energy of sound waves converted from thermal energy by increasing the difference between the temperature of the low temperature section 4 and the temperature of the high temperature section 5, that is, by increasing the temperature gradient between the low temperature section 4 and the high temperature section 5. Can be increased.
  • the low temperature section 4 and the high temperature section 5 are connected to a heat source having a relatively low temperature and a heat source having a relatively high temperature, respectively.
  • the heat source at a relatively low temperature may be, for example, a refrigerant such as water supplied to the pipe.
  • the heat source at a relatively high temperature may be a heating medium such as hot water supplied to the pipe.
  • One of the relatively low temperature heat source and the relatively high temperature heat source may be, for example, air at room temperature.
  • the temperature gradient holding portion 6 is a member that holds the temperature gradient generated between the low temperature portion 4 and the high temperature portion 5.
  • the temperature gradient holding portion 6 is provided between the low temperature portion 4 and the high temperature portion 5.
  • the temperature gradient holding unit 6 generates and amplifies sound waves in the gas G by the temperature gradient generated between the low temperature unit 4 and the high temperature unit 5.
  • the exciter 7 generates a sound wave in the gas G at a predetermined frequency.
  • the exciter 7 is provided in the waveguide 2 so as to seal the gas G.
  • the pressure of the gas G is caused by the reciprocating motion of the piston inserted in the cylinder provided so as not to change the acoustic impedance of the waveguide 2. Is configured to vibrate.
  • the converter 8 converts the acoustic energy of the sound wave generated in the gas G into a predetermined energy and extracts the predetermined energy.
  • the converter 8 may be, for example, a generator that generates electricity by converting the acoustic energy of sound waves generated in the gas G into electrical energy.
  • the thermoacoustic device 1 can generate electricity by using, for example, the heat supplied from the heat source to the heat exchanger 3.
  • the converter 8 is, for example, a cooler (heat exchanger for cooling) that lowers the temperature of the medium in contact with the converter 8 by converting the acoustic energy of the sound wave generated in the gas G into the heat energy of cooling.
  • the thermoacoustic device 1 can cool the medium by using, for example, the heat supplied from the heat source to the heat exchanger 3.
  • thermoacoustic device 1 for example, the gas G filled in the waveguide 2 is vibrated at a predetermined resonance frequency by the exciter 7.
  • the vibrating gas G moves from the low temperature side to the high temperature side of the temperature gradient holding portion 6 in the heat exchanger 3.
  • the gas G is heated and expanded by the temperature gradient held by the temperature gradient holding unit 6.
  • the vibrating gas G moves from the high temperature side to the low temperature side of the temperature gradient holding unit 6 in the heat exchanger 3.
  • the gas G is cooled and contracted by the temperature gradient held by the temperature gradient holding unit 6.
  • the sound wave of the gas G filled in the waveguide 2 is amplified by the repeated expansion and contraction of the gas G in the heat exchanger 3, and the heat energy is converted into the sound energy of the sound wave of the gas G.
  • the sound wave generated in the gas G filled in the waveguide 2 by the exciter 7 can be excited at a predetermined resonance frequency.
  • the sound wave generated in the gas G is amplified and resonates in the waveguide 2 by the heat exchanger 3.
  • the converter 8 converts the acoustic energy of the sound wave generated in the gas G into a predetermined energy and extracts the predetermined energy.
  • FIG. 2 is a diagram showing an example of a heat exchanger 3 included in the thermoacoustic device 1.
  • the heat exchanger 3 includes, for example, a low temperature portion 4, a high temperature portion 5, a temperature gradient holding portion 6, a first heat conductive member 11, and a second heat conductive member 12.
  • the low temperature section 4 includes, for example, a first low temperature section 4a, a second low temperature section 4b, and a third low temperature section 4c.
  • the high temperature section 5 includes, for example, a first high temperature section 5a, a second high temperature section 5b, and a third high temperature section 5c.
  • the configuration of the temperature gradient holding unit 6 will be described later.
  • a third low temperature section 4c, a second low temperature section 4b, a first low temperature section 4a, a temperature gradient holding section 6, a first high temperature section 5a, a second high temperature section 5b, and a third The high temperature part 5c of the above is joined.
  • the first heat conductive member 11 is joined to the third low temperature portion 4c.
  • the second heat conductive member 12 is joined to the third high temperature portion 5c.
  • the low temperature part 4 has the same or similar structure as the high temperature part 5. Specifically, the structure of the first low temperature portion 4a has the same or similar structure as the structure of the first high temperature portion 5a. The structure of the second low temperature portion 4b has the same or similar structure as the structure of the second high temperature portion 5b. The structure of the third low temperature portion 4c has the same or similar structure as the structure of the third high temperature portion 5c. The configuration of the first high temperature portion 5a, the configuration of the second high temperature portion 5b, and the configuration of the third high temperature portion 5c will be described later.
  • Each of the first heat conductive members 11 is connected to a heat source having a relatively low temperature as described above.
  • the first heat conductive member 11 is joined to a portion including the central portion of the third low temperature portion 4c to change the temperature of the third low temperature portion 4c.
  • the first heat conductive member 11 sets the temperature of the third low temperature portion 4c, the second low temperature portion 4b, and the first low temperature portion 4a, that is, the temperature of the low temperature portion 4 relatively low. Keep in.
  • the second heat conductive member 12 is connected to a heat source having a relatively high temperature as described above.
  • the second heat conductive member 12 is joined to a portion including the central portion of the third high temperature portion 5c to change the temperature of the third high temperature portion 5c.
  • the second heat conductive member 12 raises the temperature of the third high temperature portion 5c, the second high temperature portion 5b, and the first high temperature portion 5a, that is, the temperature of the high temperature portion 5 to a relatively high temperature. Maintain to.
  • the first heat conductive member 11 is made of metal, for example. In this case, the thermal conductivity of the first heat conductive member 11 can be improved.
  • the metal forming the first heat conductive member 11 is, for example, copper. In this case, the cost of the first heat conductive member 11 can be reduced, and the amount of heat conduction can be increased.
  • the second heat conductive member 12 has the same or similar structure as the structure of the first heat conductive member 11. When each of the first heat conductive member 11 and the second heat conductive member 12 is made of metal, the joining of the first heat conductive member 11 to the third low temperature portion 4c and the third high temperature portion A solder or a laser may be used to join the second heat conductive member 12 to 5c.
  • the temperature gradient holding portion of the heat exchanger usually has a honeycomb shape having a plurality of pores or a lattice shape having a plurality of pores.
  • Each of the low temperature part and the high temperature part of the heat exchanger has a honeycomb shape having a plurality of pores or a lattice shape having a plurality of pores, which is equivalent to the honeycomb shape or the lattice shape of the temperature gradient holding part. ..
  • the honeycomb-shaped or lattice-shaped pores of the temperature gradient holding part and the honeycomb-shaped or lattice-shaped pores of the low-temperature part and the high-temperature part overlap each other. Is placed in.
  • the gas passes through the low temperature part, the temperature gradient holding part, and the high temperature part of the heat exchanger, the gas is formed in the pores of the low temperature part, the pores of the temperature gradient holding part, and the high temperature part. It will pass through the pores. As a result, the dynamic viscous resistance of the gas increases.
  • the temperature gradient retainer is typically manufactured by extrusion so as to have a honeycomb shape with a plurality of pores or a grid shape with a plurality of pores.
  • a temperature gradient holding portion is formed by stacking thin metal plates punched out from honeycomb-shaped or lattice-shaped pores.
  • the surface forming the honeycomb-shaped pores or the lattice-shaped pores of the temperature gradient holding part is usually formed. It has a relatively large surface roughness. As a result, the dynamic viscous resistance of the gas is further increased.
  • a metal thin plate having punched out honeycomb-shaped or lattice-shaped pores is stacked to form a temperature gradient holding portion, the thermal conductivity of the temperature gradient holding portion becomes high, and it is difficult to maintain an appropriate temperature gradient. Met.
  • the heat exchanger in a place where the velocity of the gas is relatively high in the waveguide, but as described above, the dynamic viscous resistance of the gas increases, so that heat is generated. It may be difficult to move the gas efficiently in the exchanger and the energy loss due to the dynamic viscous resistance may be large. There is also a problem that the temperature gradient cannot be kept high.
  • the efficiency of converting thermal energy into acoustic energy of sound waves may be low.
  • the efficiency of converting thermal energy into acoustic energy of sound waves may be low.
  • the loss due to viscous resistance becomes relatively large, and the temperature gradient becomes low and the efficiency is low. May become.
  • the index relating to the dynamic viscous resistance of the gas G is ⁇ ⁇ (d / 2) 2 / 2 ⁇ , which kinematic viscosity resistance decreases when more than about several tens of large, the amplitude of vibration of the gas G is The reduction is suppressed.
  • This index can be calculated using equation (1).
  • is the kinematic viscosity coefficient of the gas G, and is defined by the ratio of the viscosity coefficient ⁇ of the gas G to the density ⁇ , ⁇ / ⁇ .
  • the Prandtl number is about 0.6 to 0.7 regardless of the type of gas G, and is 0.67 in the case of air. Therefore, when the heat conductor forms honeycomb-shaped pores or lattice-shaped pores, the index related to the dynamic viscous resistance is about 5 from the equation (3), and ⁇ is kept at the optimum value. It can be seen that a large dynamic viscous resistance is generated in the state of being.
  • the index of equation (3) is derived from the theoretical equation of the fluid in which the gas G has a velocity of 0 on the wall of the heat conductor. Since the surface forming the honeycomb-shaped pores or the lattice-shaped pores of the conventional temperature gradient holding portion has a relatively large surface roughness, it is close to the situation considered by the theoretical formula, but this roughness is reduced. If the gas G can be made to slide on the surface of the pores by taking measures such as the above and the viscosity coefficient ⁇ of the gas G can be effectively reduced, the index related to the dynamic viscous resistance can be increased.
  • the temperature gradient is maintained even if the index related to the dynamic viscous resistance represented by the formula (3) is about 5.
  • the effective dynamic viscous resistance changes depending on the pores such as the honeycomb shape and the parallel flat plate fins constituting the portion, and the amplitude of the vibration of the gas G differs. According to the result derived from the theoretical formula of the fluid, when this index is about 1, the relative amplitude of the sound wave is 0.2 in the case of pores such as honeycomb shape, but the viscous resistance is relatively low. In the case of parallel flat plate fins, which is considered to be, it increases to about 0.5.
  • the heat conductor of the temperature gradient holding portion is formed by the honeycomb-shaped pores or the lattice-shaped pores
  • the optimum ⁇ is about 0.32
  • the heat conductor is composed of parallel flat plate fins. If it is, it is about 0.79. That is, when k in the case of pores is 1, and the Prandtl number of air is 0.67, the effective index related to the dynamic viscous resistance of the pores in the case of air is given by the equation (4). ) To 4.7. In the case of parallel flat plate fins, k is set to 3 and the effective index related to the dynamic viscous resistance of air is calculated to be about 5.7.
  • the heat conductor of the temperature gradient holding portion has honeycomb-shaped pores.
  • the temperature gradient holding portion composed of thin wires could be about 8 to 10 times larger.
  • ⁇ when the temperature gradient holding portion is composed of thin lines is 0.32 or more, which is the value of ⁇ when the temperature gradient holding portion is composed of pores, and the temperature gradient is maintained by the parallel flat plate fins. It was also confirmed that the value of ⁇ when the part was composed was 0.79 or less. From these, it was confirmed that when the temperature gradient holding portion is composed of a thin wire thermal conductor, the index related to the effective dynamic viscous resistance of the equation (4) is about several tens, and the equation (4). It was shown that the dynamic viscous resistance can be further reduced by the k / ⁇ portion of.
  • thermoacoustic device 1 it is assumed that the temperature gradient holding portion 6 included in the heat exchanger 3 is composed of a linear heat conductor, and k is increased, and the linear heat is increased.
  • the effective viscous resistance ⁇ is lowered, and by using the optimum ⁇ suitable for the structure of the temperature gradient holding portion 6, the phase velocity ⁇ of the sound wave and the temperature rise / fall rate of the gas are used. Is made to correspond based on the equation (1), thereby effectively lowering the dynamic viscous resistance and increasing the efficiency of converting heat energy into sound energy.
  • FIGS. 3 and 4 are diagrams showing an example of the temperature gradient holding unit 6 included in the heat exchanger 3.
  • FIG. 4 shows a cross section of the temperature gradient holding portion 6 along the line AA in FIG.
  • the temperature gradient holding portion 6 has a substantially cylindrical shape, for example, when the cross section of the waveguide 2 is circular.
  • the temperature gradient holding portion 6 includes a frame body 65 having a substantially cylindrical shape.
  • the temperature gradient holding portion 6 includes a plurality of linear heat conductors 60.
  • the plurality of linear thermal conductors 60 are, for example, between both ends of the temperature gradient holding portion 6 so as to be parallel to each other in a direction parallel to the direction of the central axis (X-axis direction) of the temperature gradient holding portion 6. It is stretched.
  • Each of the plurality of linear thermal conductors 60 has a surface orthogonal to the direction of the central axis (X-axis direction) of the temperature gradient holding portion 6, and is in contact with the gas G on this surface.
  • the temperature gradient holding portion 6 includes the plurality of linear thermal conductors 60
  • the gas G when the gas G passes through the temperature gradient holding portion 6, the gas G is a plurality of. It passes through the gap between the linear thermal conductors 60.
  • the dynamic viscous resistance of the gas G in the temperature gradient holding portion 6 is controlled by the conventional honeycomb-shaped or lattice-shaped temperature gradient holding portion having a plurality of pores, or the temperature gradient composed of a plurality of parallel flat plate fins. It can be reduced as compared with the holding portion. As a result, it is possible to reduce a decrease in the speed of the gas G passing through the temperature gradient holding unit 6.
  • thermoacoustic device 1 can efficiently move the gas G in the temperature gradient holding unit 6. Accordingly, the thermoacoustic device 1 can improve the efficiency of converting thermal energy into acoustic energy of sound waves.
  • thermoacoustic device 1 even when a heat source at room temperature and a heat source having a temperature of 100 ° C. or lower are connected to the low temperature section 4 and the high temperature section 5, respectively, the temperature provided between the low temperature section 4 and the high temperature section 5 is provided.
  • the dynamic viscous resistance of the gas G in the gradient holding portion 6 can be reduced. Therefore, the thermoacoustic device 1 can efficiently utilize heat from a heat source having a temperature of 100 ° C. or lower, for example, waste heat, for example, for power generation or cooling.
  • the distance d (60) between the plurality of linear heat conductors 60 as shown in FIG. 3 is 1.0 mm or less in order to improve the heat conduction from the plurality of linear heat conductors 60 to the gas G. be.
  • the distance d (60) between the plurality of linear thermal conductors 60 is preferably 0.2 mm or more and 0.4 mm or less, for example, about 0.3 mm.
  • the diameter r (60) of each of the plurality of linear thermal conductors 60 as shown in FIG. 3 is 0.1 mm or less, for example, about 0.08 mm.
  • the length w (60) of each of the plurality of linear thermal conductors 60 in the direction of the central axis (X-axis direction) of the temperature gradient holding portion 6 as shown in FIG. 4 is 7 mm or more and 20 mm or less, for example, about 10 mm. Is. In this case, by obtaining the amplitude of the effective magnitude of the sound wave, it is possible to obtain the effective output of the acoustic energy of the sound wave converted from the thermal energy of the temperature gradient holding unit 6.
  • the frame body 65 is integrated with the frame body 55a of the first high temperature portion 5a described later.
  • the length w'(60) of the portion where the linear thermal conductor 60 of the temperature gradient holding portion 6 protrudes from the frame 65 in the direction of the central axis of the temperature gradient holding portion 6 (X-axis direction) is 1.0 mm or more. It is 3.0 mm or less, for example, about 2.0 mm.
  • a portion where the linear heat conductor 60 of the temperature gradient holding portion 6 protrudes from the frame body 65, and as will be described later, the plurality of linear heat conductors 60 are a plurality of plate-shaped fins 50a of the first high temperature portion 5a. Is joined with.
  • each of the plurality of linear thermal conductors 60 is located at one end in the direction of the central axis (X-axis direction) of the temperature gradient holding portion 6. , which will be described later, is joined to the first high temperature portion 5a, and at the other end, it is joined to the first low temperature portion 4a.
  • Each of the plurality of linear thermal conductors 60 is formed of, for example, a metal material having a low thermal conductivity and easy linear shape processing.
  • the thermal conductivity of the material forming each of the plurality of linear thermal conductors 60 is, for example, 5 Wm -1 ⁇ K -1 or more and 30 Wm -1 ⁇ K -1 or less. In this case, the thermal conductivity of each of the plurality of linear thermal conductors 60 can be reduced. Therefore, it is possible to suppress the reduction of the temperature gradient in the temperature gradient holding unit 6. Accordingly, the temperature gradient holding section 6 can satisfactorily hold the temperature gradient generated between the low temperature section 4 and the high temperature section 5.
  • the metal forming each of the plurality of linear thermal conductors 60 is represented by, for example, a nickel-chromium alloy.
  • heat conduction in the direction of the central axis (X-axis direction) in each of the plurality of linear heat conductors 60 is performed. It can be reduced satisfactorily. Therefore, the temperature gradient holding unit 6 can improve the heat transfer from the plurality of linear heat conductors 60 to the gas G. Accordingly, the temperature gradient holding section 6 can easily hold a desired temperature gradient between the low temperature section 4 and the high temperature section 5.
  • FIG. 5 is a diagram showing an example of each of the plurality of linear heat conductors 60 included in the temperature gradient holding unit 6.
  • each of the plurality of linear thermal conductors 60 has a sharp end 61.
  • each of the plurality of linear thermal conductors 60 has sharp ends 61 at both ends in the direction of the central axis (X-axis direction) of the temperature gradient holding portion 6.
  • the sharp end portion 61 is an end portion having an apex in a cross section perpendicular to the surface of each of the plurality of linear thermal conductors 60 in contact with the gas G.
  • each of the plurality of linear heat conductors 60 has a sharp end portion 61
  • the gas G is a plurality of linear heat conductors 60. It passes through a sharp end 61 near each end.
  • the gas G and the linear heat conductor 60 become slippery on the surface of each of the linear heat conductors 60 in contact with the gas G, so that the dynamic viscous resistance of the gas G in the temperature gradient holding portion 6 is increased. It can be further reduced.
  • thermoacoustic device 1 can efficiently move the gas G near each end of the plurality of linear thermal conductors 60. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
  • the surface of the plurality of linear thermal conductors 60 perpendicular to the direction of the central axis (X-axis direction) has a mirror surface 62.
  • each of the plurality of linear thermal conductors 60 has a mirror surface 62 on a surface orthogonal to the direction of the central axis (X-axis direction) of the temperature gradient holding portion 6, that is, a surface in contact with the gas G.
  • the mirror surface 62 is a surface having a surface roughness (arithmetic mean roughness Sa) of, for example, 0.02 ⁇ m or less.
  • thermoacoustic device 1 when each of the plurality of linear heat conductors 60 has a mirror surface 62, when the gas G passes through the temperature gradient holding portion 6, the gas G has a plurality of linear heats. It passes between the mirror surfaces 62 included in the conductor 60. As a result, the gas G can be slid and passed near the surface of each of the plurality of linear thermal conductors 60 in contact with the gas G. As a result, the dynamic viscous resistance of the gas G in the temperature gradient holding portion 6 can be further reduced.
  • thermoacoustic device 1 can efficiently move the gas G near the surface of each of the plurality of linear thermal conductors 60 included in the temperature gradient holding unit 6. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
  • FIGS. 6 and 7A are diagrams showing an example of a first high temperature portion 5a included in the high temperature portion 5 included in the heat exchanger 3.
  • FIG. 7A shows a cross section of the first high temperature portion 5a along the line AA in FIG.
  • the first high temperature portion 5a has, for example, a substantially cylindrical shape having a substantially circular cross section.
  • the first high temperature portion 5a includes a frame body 55a having a substantially cylindrical shape.
  • the first high temperature portion 5a includes a plurality of plate-shaped fins 50a. As will be described later, the plurality of plate-shaped fins 50a are joined to the plurality of linear heat conductors 60 included in the temperature gradient holding portion 6.
  • the plurality of plate-shaped fins 50a have, for example, surfaces having normals in a direction (Y-axis direction) orthogonal to the direction of the central axis (X-axis direction) of the first high-temperature portion 5a and parallel to each other. ..
  • Each of the plurality of plate-shaped fins 50a has a surface in contact with the gas G having a normal in a direction (Y-axis direction) orthogonal to the direction of the central axis (X-axis direction) of the first high temperature portion 5a.
  • the distance d (50a) of the plurality of plate-shaped fins 50a as shown in FIG. 6 is larger than the distance d (60) of the plurality of linear thermal conductors 60 included in the temperature gradient holding portion 6.
  • the distance d (50a) between the plurality of plate-shaped fins 50a is three times or more and five times or less the distance d (60) between the plurality of linear heat conductors 60, for example, about 1.6 mm.
  • the gas G is the first.
  • the gas G passes through the gaps between the plurality of plate-shaped fins 50a, which are larger than the gaps between the plurality of linear heat conductors 60.
  • the gas G passes through the first high temperature portion 5a rather than the gas G passing through the temperature gradient holding portion 6.
  • the decrease in the velocity of the gas G can be reduced.
  • the dynamic viscous resistance of the gas G when the gas G passes through the first high temperature portion 5a is reduced as compared with the dynamic viscous resistance of the gas G when the gas G passes through the temperature gradient holding portion 6.
  • the dynamic viscous resistance of the gas G when the gas G passes through the first high temperature portion 5a is substantially inversely proportional to the square of the distance d (50a) of the plurality of plate-shaped fins 50a.
  • thermoacoustic device 1 can efficiently move the gas G in the first high temperature portion 5a. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
  • the thickness t (50a) of each of the plurality of plate-shaped fins 50a as shown in FIG. 6 is larger than the diameter t (60) of each of the plurality of linear heat conductors 60 included in the temperature gradient holding portion 6. big.
  • the thickness t (50a) of each of the plurality of plate-shaped fins 50a is twice or more and three times or less, for example, about 0.2 mm of the diameter t (60) of each of the plurality of linear thermal conductors 60. ..
  • the first The thermal conductivity of the high temperature portion 5a of 1 can be improved.
  • the temperature distribution at the end of the first high temperature portion 5a on the side of the temperature gradient holding portion 6 can be made more uniform.
  • the thermal conductivity from the first high temperature portion 5a to the temperature gradient holding portion 6 can be improved. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
  • each of the plurality of plate-shaped fins 50a is larger than the diameter t (60) of each of the plurality of linear heat conductors 60 included in the temperature gradient holding portion 6, a plurality of them.
  • the plate-shaped fins 50a can more reliably hold the plurality of linear thermal conductors 60 joined to the plurality of plate-shaped fins 50a.
  • the first high temperature portion 5a can more reliably hold the temperature gradient holding portion 6.
  • the length w (50a) of each of the plurality of plate-shaped fins 50a in the direction of the central axis (X-axis direction) of the first high temperature portion 5a as shown in FIG. 7A is 3 mm or more and 5 mm or less, for example, about 4 mm. Is.
  • the frame body 55a is integrated with the frame body 65 of the temperature gradient holding portion 6.
  • each of the plurality of plate-shaped fins 50a has a convex portion protruding from the frame body 55a of the first high temperature portion 5a in the direction of the central axis (X-axis direction) of the first high temperature portion 5a.
  • the length w'(55a) of the convex portion protruding from the frame body 55a of the first high temperature portion 5a in the direction of the central axis (X-axis direction) of the first high temperature portion 5a is 2 mm or more and 4 mm or less, for example, 2 mm. Degree.
  • the convex portion of the first high temperature portion 5a protruding from the frame body 55a is joined to the second high temperature portion 5b as described later.
  • each of the plurality of plate-shaped fins 50a is one end portion in the direction of the central axis (X-axis direction) of the first high temperature portion 5a. In, it is joined to the second high temperature portion 5b described later, and is joined to the temperature gradient holding portion 6 at the other end portion.
  • the plurality of plate-shaped fins 50a have a plurality of connecting portions 51a for joining at least a part of the plurality of linear thermal conductors 60 included in the temperature gradient holding portion 6.
  • Each of the plurality of connecting portions 51a included in the plurality of plate-shaped fins 50a is provided so as to connect the portion of length w'(60) from the end of the temperature gradient holding portion 6 as shown in FIG.
  • the length w (51a) of the connecting portion 51a in the direction of the central axis (X-axis direction) of the first high temperature portion 5a as shown in FIGS. 7A and 7B is the temperature gradient holding portion 6 as shown in FIG. It is substantially equal to the length w'(60) of the convex portion protruding from the frame body 65 of the temperature gradient holding portion 6 in the direction of the central axis (X-axis direction).
  • thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
  • a solder or a laser may be used for joining the plurality of linear thermal conductors 60 and the connecting portion 51a.
  • the plurality of plate-shaped fins 50a can more reliably hold the plurality of linear heat conductors 60 joined to the plurality of plate-shaped fins 50a.
  • the first high temperature portion 5a can more reliably hold the temperature gradient holding portion 6.
  • Each of the plurality of plate-shaped fins 50a preferably has a sharp end.
  • each of the plurality of plate-shaped fins 50a has sharp ends at both ends in the direction of the central axis (X-axis direction) of the first high temperature portion 5a.
  • the sharp end is an end having an apex in a cross section perpendicular to the surface in contact with the gas G in each of the plurality of plate-shaped fins 50a.
  • each of the plurality of plate-shaped fins 50a has a sharp end
  • the gas G passes through the first high temperature portion 5a
  • the gas G is a member of each of the plurality of plate-shaped fins 50a. It passes through a sharp end near the end.
  • it is possible to reduce a decrease in the velocity of the gas G in the vicinity of each end of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a.
  • the dynamic viscous resistance of the gas G in the first high temperature portion 5a can be further reduced.
  • thermoacoustic device 1 can efficiently move the gas G near each end of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
  • FIGS. 8 and 9 are diagrams showing an example of a second high temperature portion 5b included in the high temperature portion 5 included in the heat exchanger 3.
  • FIG. 9 shows a cross section of the second high temperature portion 5b along the line AA in FIG.
  • the second high temperature portion 5b has, for example, a substantially cylindrical shape.
  • the second high temperature portion 5b includes a frame body 55b having a substantially cylindrical shape.
  • the second high temperature portion 5b includes a plurality of first lattice-shaped fins 50b.
  • the plurality of first lattice-shaped fins 50b are joined to the plurality of plate-shaped fins 50a included in the first high temperature portion 5a, as will be described later.
  • the plurality of first grid-like fins 50b are, for example, in a direction (approximately 45 ° with respect to the Y-axis or Z-axis) orthogonal to the direction of the central axis (X-axis direction) of the second high-temperature portion 5b.
  • Each of the plurality of first grid-shaped fins 50b is in a direction (approximately 45 ° with respect to the Y-axis or Z-axis) orthogonal to the direction of the central axis (X-axis direction) of the second high temperature portion 5b.
  • each of the plurality of first lattice-shaped fins 50b in contact with the gas G is approximately 45 ° with the surface of each of the plurality of plate-shaped fins 50a contained in the first high temperature portion 5a in contact with the gas G. Has an angle of. Since the lattices in the plurality of first lattice-shaped fins 50b are arranged in a direction of approximately 45 ° with respect to the plates in each of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a, a plurality of plates are arranged. The morphology of the first lattice-shaped fins 50b and the plurality of plate-shaped fins 50a joined to the plurality of first lattice-shaped fins 50b can be more reliably held.
  • the distance d (50b) of the plurality of first lattice-shaped fins 50b as shown in FIG. 8 is larger than the distance d (50a) of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a.
  • the distance d (50b) between the plurality of first lattice-shaped fins 50b is, for example, twice or more and three times or less, for example, about 4.5 mm with respect to the distance d (50a) between the plurality of plate-shaped fins 50a.
  • the gas G is produced.
  • the gas G passes through the gaps between the plurality of first grid-like fins 50b, which are larger than the gaps between the plurality of plate-shaped fins 50a.
  • the spacing d (50b) of the plurality of first lattice-shaped fins 50b may be set so that the dynamic viscous resistance of the gas G when the gas G passes through the second high temperature portion 5b can be ignored. can.
  • thermoacoustic device 1 can efficiently move the gas G in the second high temperature portion 5b. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
  • the thickness t (50b) of each of the plurality of first lattice-shaped fins 50b as shown in FIG. 8 is the thickness t (50b) of each of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a. Greater than 50a).
  • the thickness t (50b) of each of the plurality of first lattice-shaped fins 50b is, for example, twice or more and three times or less, for example, 0, respectively, as the thickness t (50a) of each of the plurality of plate-shaped fins 50a. It is about 0.6 mm.
  • the thermal conductivity of the second high temperature portion 5b can be improved even if the fin spacing of the first lattice-shaped fins 50b is increased.
  • the temperature distribution at the end of the second high temperature portion 5b on the side of the first high temperature portion 5a can be made more uniform.
  • the thermal conductivity from the second high temperature portion 5b to the first high temperature portion 5a can be improved. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
  • each of the plurality of first lattice-shaped fins 50b is larger than the thickness t (50a) of each of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a.
  • the plurality of first grid-shaped fins 50b can more reliably hold the plurality of plate-shaped fins 50a joined to the plurality of first grid-shaped fins 50b.
  • the second high temperature portion 5b can more reliably hold the first high temperature portion 5a.
  • the length w (50b) of each of the plurality of first lattice-shaped fins 50b in the direction of the central axis (X-axis direction) of the second high temperature portion 5b as shown in FIG. 9 is 4 mm or more and 6 mm or less, for example. It is about 5 mm.
  • each of the plurality of first lattice-shaped fins 50b is in the direction of the central axis of the second high temperature portion 5b (X-axis direction). ), It has a convex portion protruding from the frame body 55b of the second high temperature portion 5b.
  • the length w'(55b) of the convex portion protruding from the frame body 55b of the second high temperature portion 5b in the direction of the central axis of the second high temperature portion 5b (X-axis direction) is 3 mm or more and 4 mm or less, for example, 3 mm. Degree.
  • the convex portion of the second high temperature portion 5b protruding from the frame body 55b is joined to the third high temperature portion 5c as described later.
  • each of the plurality of first lattice-shaped fins 50b is one of the directions of the central axis (X-axis direction) of the second high temperature portion 5b. At the end of the above, it is joined to the third high temperature portion 5c described later, and at the other end, it is joined to the first high temperature portion 5a.
  • the plurality of first lattice-shaped fins 50b have a plurality of first recesses 51b accommodating at least a part of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a.
  • Each of the plurality of first recesses 51b included in the plurality of first lattice-shaped fins 50b accommodates a convex portion protruding from the frame body 55a of the first high temperature portion 5a as shown in FIG. 7A.
  • 9 is the length w (51b) of the first high temperature portion 5a as shown in FIG. 7A. It is equal to the length w'(50a) of the convex portion protruding from the frame body 55a of the first high temperature portion 5a in the direction of the central axis (X-axis direction).
  • the plurality of first lattice-shaped fins 50b When the plurality of first lattice-shaped fins 50b have a plurality of first recesses 51b accommodating at least a part of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a, the plurality of first lattice-shaped fins 50b may be present.
  • the first lattice-shaped fins 50b can be joined to a plurality of plate-shaped fins 50a.
  • the thermal conductivity from the second high temperature portion 5b to the first high temperature portion 5a can be improved. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
  • the plurality of first lattice-shaped fins 50b can more reliably hold the plurality of plate-shaped fins 50a joined to the plurality of first lattice-shaped fins 50b.
  • the second high temperature portion 5b can more reliably hold the first high temperature portion 5a.
  • FIGS. 10 and 11 are diagrams showing an example of a third high temperature portion 5c included in the high temperature portion 5 included in the heat exchanger 3.
  • FIG. 11 shows a cross section of the third high temperature portion 5c along the line AA in FIG.
  • the third high temperature portion 5c has, for example, a substantially cylindrical shape.
  • the third high temperature portion 5c includes a frame body 55c having a substantially cylindrical shape.
  • the third high temperature portion 5c includes a plurality of second lattice-shaped fins 50c.
  • the plurality of second grid-like fins 50c are joined to the plurality of first grid-like fins 50b included in the second high temperature portion 5b, as will be described later.
  • the plurality of second grid-shaped fins 50c form a plurality of grids in a direction (Y-axis direction or Z-axis direction) orthogonal to the direction of the central axis (X-axis direction) of the third high-temperature portion 5c, for example.
  • Each of the plurality of second grid-shaped fins 50c contacts the gas G in a direction (Y-axis direction or Z-axis direction) orthogonal to the direction of the central axis (X-axis direction) of the third high-temperature portion 5c.
  • the surface in contact with the gas G in each of the plurality of second grid-like fins 50c is substantially 45 with the surface in contact with the gas G in the plurality of first grid-like fins 50b included in the second high temperature portion 5b. Has an angle of °. Because the grids in the plurality of second grid-like fins 50c are arranged in a direction of approximately 45 ° with respect to the grids in each of the plurality of first grid-like fins 50b included in the second high temperature portion 5b. , The plurality of second grid-like fins 50c can more reliably retain the form of the plurality of first grid-like fins 50b joined to the plurality of second grid-like fins 50c.
  • the distance d (50c) of the plurality of second grid-like fins 50c as shown in FIG. 10 is larger than the distance d (50b) of the plurality of first grid-like fins 50b included in the second high temperature portion 5b. Is also big.
  • the distance d (50c) between the plurality of second grid-like fins 50c is, for example, twice or more and three times or less, for example, about 12.8 mm as the distance d (50b) between the plurality of first grid-like fins 50b. Is.
  • the gas G passes through the third high temperature portion 5c, the gas G has a gap between the plurality of second grid-like fins 50c that is larger than the gap between the plurality of first grid-like fins 50b. Pass through.
  • the interval d (50c) of the plurality of second lattice-shaped fins 50c may be set so that the dynamic viscous resistance of the gas G when the gas G passes through the third high temperature portion 5c can be ignored. can.
  • thermoacoustic device 1 can efficiently move the gas G in the third high temperature portion 5c. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
  • the thickness t (50c) of each of the plurality of second grid-like fins 50c as shown in FIG. 10 is the thickness of each of the plurality of first grid-like fins 50b included in the second high temperature portion 5b. Is greater than t (50b).
  • the thickness t (50c) of each of the plurality of second grid-like fins 50c is, for example, twice or more and three times or less the thickness t (50b) of each of the plurality of first grid-like fins 50b. For example, it is about 1.6 mm.
  • the thickness t (50c) of each of the plurality of second grid-like fins 50c is higher than the thickness t (50b) of each of the plurality of first grid-like fins 50b contained in the second high temperature portion 5b. If it is also large, the thermal conductivity of the third high temperature portion 5c can be improved even if the distance between the second lattice-shaped fins 50c is large. For example, the temperature distribution at the end of the third high temperature portion 5c on the side of the second high temperature portion 5b can be made more uniform. As a result, the thermal conductivity from the third high temperature portion 5c to the second high temperature portion 5b can be improved. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
  • the thickness t (50c) of each of the plurality of second grid-like fins 50c is higher than the thickness t (50b) of each of the plurality of first grid-like fins 50b contained in the second high temperature portion 5b. If also large, the plurality of second grid-like fins 50c may more reliably hold the plurality of first grid-like fins 50b joined to the plurality of second grid-like fins 50c. can. As a result, the third high temperature portion 5c can more reliably hold the second high temperature portion 5b.
  • the length w (50c) of each of the plurality of second lattice-shaped fins 50c in the direction of the central axis (X-axis direction) of the third high temperature portion 5c as shown in FIG. 11 is 5 mm or more and 6 mm or less, for example. It is about 5 mm.
  • each of the plurality of second lattice-shaped fins 50c has a third in the direction of the central axis (X-axis direction) of the third high temperature portion 5c. It does not have a convex portion protruding from the frame body 55c of the high temperature portion 5c.
  • each of the plurality of second lattice-shaped fins 50c is one of the directions of the central axis (X-axis direction) of the third high temperature portion 5c. At the end of the, it is joined to the second high temperature part 5b.
  • the plurality of second grid-like fins 50c accommodates at least a part of the plurality of first grid-like fins 50b contained in the second high temperature portion 5b. It has a recess 51c.
  • Each of the plurality of second recesses 51c included in the plurality of second lattice-shaped fins 50c accommodates a convex portion protruding from the frame body 55b of the second high temperature portion 5b as shown in FIG. Provided.
  • the length w (51c) of the second recess 51c in the direction of the central axis (X-axis direction) of the third high temperature portion 5c as shown in FIG. 11 is the length w (51c) of the second high temperature portion 5b as shown in FIG.
  • the length obtained by subtracting the length w (51c) of the second recess 51c from the length w (50c) of each of the plurality of second lattice-shaped fins 50c. Is represented by w'(50c).
  • thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
  • the plurality of second grid-like fins 50c can more reliably hold the plurality of first grid-like fins 50b joined to the plurality of second grid-like fins 50c.
  • the third high temperature portion 5c can more reliably hold the second high temperature portion 5b.
  • Each of the plurality of plate-shaped fins 50a, the plurality of first grid-shaped fins 50b, and the plurality of second grid-shaped fins 50c is formed of, for example, metal.
  • the thermal conductivity of each of the plurality of plate-shaped fins 50a, the plurality of first grid-shaped fins 50b, and the plurality of second grid-shaped fins 50c can be improved.
  • the metal forming each of the plurality of plate-shaped fins 50a, the plurality of first lattice-shaped fins 50b, and the plurality of second lattice-shaped fins 50c is, for example, copper. In this case, the cost of each of the plurality of plate-shaped fins 50a, the plurality of first grid-shaped fins 50b, and the plurality of second grid-shaped fins 50c can be reduced.
  • FIG. 12 shows a first high temperature portion 5a, a second high temperature portion 5b, and a third high temperature portion included in the temperature gradient holding portion 6 included in the heat exchanger 3 and the high temperature portion 5 included in the heat exchanger 3. It is a figure which shows an example of the junction of 5c.
  • a plurality of plate-shaped fins 50a including a portion of the temperature gradient holding portion 6 having a length w'(60) from the end of the plurality of linear heat conductors 60 in the first high temperature portion 5a.
  • the temperature gradient holding portion 6 is joined to the first high temperature portion 5a by joining to the plurality of connecting portions 51a included in the above.
  • the convex portion of the first high temperature portion 5a protruding from the frame body 55a into the plurality of first concave portions 51b included in the plurality of first lattice-shaped fins 50b included in the second high temperature portion 5b.
  • the first high temperature portion 5a is joined to the second high temperature portion 5b.
  • each of the plurality of plate-shaped fins 50a, the plurality of first grid-shaped fins 50b, and the plurality of second grid-shaped fins 50c are made of metal
  • the plurality of plate-shaped fins 50a , A solder or a laser may be used to join the plurality of first grid-like fins 50b and the plurality of second grid-like fins 50c.
  • the plurality of second plate-shaped fins 50a, the plurality of first grid-shaped fins 50b, and the plurality of second grid-shaped fins 50c can be more reliably joined.
  • the temperature gradient holding portion 6, the first high temperature portion 5a, the second high temperature portion 5b, and the third high temperature portion 5c can be joined.
  • the lengths of the temperature gradient holding portion 6, the first high temperature portion 5a, the second high temperature portion 5b, and the third high temperature portion 5c in the direction of the central axis (X-axis direction) of the heat exchanger 3 are w. (60) + w'(50a) + w'(50b) + w'(50c).
  • the waveguide 2 is filled with the gas G, but the waveguide 2 may be filled with a medium other than the gas G.
  • the waveguide 2 may be filled with a liquid in a range in which sound waves are effectively generated and amplified.
  • the waveguide 2 has the shape of a single loop, but the waveguide 2 may have the shape of a plurality of loops connected by at least one tube, for example. ..
  • the thermoacoustic device 1 may include a plurality of heat exchangers 3 and a plurality of converters 8 in the same loop or different loops of the waveguide 2.
  • thermoacoustic device 1 the gas G filled in the waveguide 2 is vibrated or excited by the exciter 7, but the thermoacoustic device 1 may not include the exciter 7.
  • thermoacoustic device 1 uses, for example, the thermal energy supplied to the heat exchanger 3 as the acoustic energy of the sound sound generated in the gas G. Can be converted.
  • the low temperature section 4 is composed of three low temperature sections such as the first low temperature section 4a, the second low temperature section 4b, and the third low temperature section 4c, and the high temperature section 5 is the first. Although it is assumed that it is composed of three high-temperature parts such as the high-temperature part 5a, the second high-temperature part 5b, and the third high-temperature part 5c of 1, the low-temperature part 4 and the high-temperature part 5 are each one or two. , Or 4 or more low temperature parts and 1, 2, or 4 or more high temperature parts.
  • thermoacoustic device 1 the frame 65 of the temperature gradient holding portion 6, the frame 55a of the first high temperature portion 5a, the frame 55b of the second high temperature portion 5b, and the frame 55c of the third high temperature portion 5c.
  • the configuration of the high temperature section 5 was described with reference to. Since each of the first high temperature portion 5a, the second high temperature portion 5b, and the third high temperature portion 5c in the high temperature portion 5 is securely held by the joint described above, the frame body 55a, the frame body 55b, and the frame Body 55c may be absent.
  • the plurality of linear heat conductors 60 and the plurality of plate-shaped fins 50a are joined via a connecting portion 51a by soldering or a laser, and the rigidity of the plurality of linear heat conductors 60 is sufficient. If there is, it can be omitted.

Abstract

This thermoacoustic device comprises a loop-shaped waveguide and a heat exchanger. The loop-shaped waveguide is filled with a medium. The heat exchanger is provided in the waveguide and includes a low-temperature part, a high-temperature part, and a temperature gradient maintenance part that is provided between the low-temperature part and the high-temperature part and that maintains the temperature gradient generated between the low-temperature part and the high-temperature part. The temperature gradient maintenance part includes a plurality of linear thermal conductors.

Description

熱音響装置Thermoacoustic device
 開示の実施形態は、熱音響装置に関する。 The disclosed embodiment relates to a thermoacoustic device.
 従来、熱と音波との間の相互作用である熱音響効果によって熱エネルギーを音響エネルギーに変換し、音響エネルギーを電気エネルギーのような他のエネルギーに変換する熱音響装置が知られている。 Conventionally, there is known a thermoacoustic device that converts thermal energy into acoustic energy by the thermoacoustic effect, which is an interaction between heat and sound waves, and converts acoustic energy into other energy such as electric energy.
 例えば、気体を充填したループ管に、放熱部と加熱部に挟まれて温度勾配を生じさせる蓄熱部が配設され、蓄熱部内に生じた温度勾配によって気体の振動を励振させ、圧力振動によって生じた進行波に応動して発電を行う発電機や放熱部と加熱部を逆にして冷熱を取り出す冷熱機がループ管に設けられた熱音響発電機が開示されている(例えば、特許文献1参照)。 For example, a heat storage section that is sandwiched between a heat dissipation section and a heating section to generate a temperature gradient is arranged in a loop tube filled with gas, and the temperature gradient generated in the heat storage section excites the vibration of the gas, which is generated by the pressure vibration. A thermoacoustic generator is disclosed in which a generator that generates heat in response to a traveling wave and a thermoacoustic generator that takes out cold heat by reversing a heat radiating unit and a heating unit are provided in a loop tube (see, for example, Patent Document 1). ).
特開2003-324932号公報Japanese Unexamined Patent Publication No. 2003-324932
 しかしながら、従来の技術においては、熱エネルギーを音響エネルギーに変換する効率が低いことがある。例えば、従来の技術においては、100℃以下の熱源の温度と室温との間の温度勾配によって気体に音波を発生させる場合には、熱エネルギーを音響エネルギーに変換する効率が低く、音波の自励振動が成立し難くなる。 However, in the conventional technology, the efficiency of converting thermal energy into acoustic energy may be low. For example, in the conventional technique, when sound waves are generated in a gas by a temperature gradient between a heat source temperature of 100 ° C. or lower and room temperature, the efficiency of converting thermal energy into sound energy is low, and the sound waves are self-excited. It becomes difficult for vibration to be established.
 実施形態の一態様は、熱エネルギーを音響エネルギーに変換する効率を改善する熱音響装置を提供することを目的とする。 One aspect of the embodiment is to provide a thermoacoustic device that improves the efficiency of converting thermal energy into acoustic energy.
 実施形態の一態様に係る熱音響装置は、ループ状の導波管と、熱交換器と、を備える。ループ状の導波管は、媒体が充填される。熱交換器は、導波管内に設けられ、低温部、高温部、および低温部と高温部との間に設けられ、低温部と高温部との間に生じた温度勾配を保持する温度勾配保持部を含む。温度勾配保持部は、複数の線状熱伝導体を含む。 The thermoacoustic device according to one aspect of the embodiment includes a loop-shaped waveguide and a heat exchanger. The loop-shaped waveguide is filled with a medium. The heat exchanger is provided in the waveguide and is provided in the low temperature part, the high temperature part, and between the low temperature part and the high temperature part, and holds the temperature gradient generated between the low temperature part and the high temperature part. Including part. The temperature gradient holder includes a plurality of linear thermal conductors.
 実施形態の一態様によれば、熱エネルギーを音響エネルギーに変換する効率を改善することができる。 According to one aspect of the embodiment, the efficiency of converting thermal energy into sound energy can be improved.
図1は、実施形態に係る熱音響装置の一例を示す図である。FIG. 1 is a diagram showing an example of a thermoacoustic device according to an embodiment. 図2は、熱音響装置に含まれる熱交換器の一例を示す図である。FIG. 2 is a diagram showing an example of a heat exchanger included in a thermoacoustic device. 図3は、熱交換器に含まれる温度勾配保持部の一例を示す図である。FIG. 3 is a diagram showing an example of a temperature gradient holding portion included in the heat exchanger. 図4は、熱交換器に含まれる温度勾配保持部の一例を示す図である。FIG. 4 is a diagram showing an example of a temperature gradient holding portion included in the heat exchanger. 図5は、温度勾配保持部に含まれる複数の線状熱伝導体の各々の一例を示す図である。FIG. 5 is a diagram showing an example of each of a plurality of linear heat conductors included in the temperature gradient holding portion. 図6は、熱交換器に含まれる高温部に含まれる第1の高温部の一例を示す図である。FIG. 6 is a diagram showing an example of a first high temperature portion included in the high temperature portion included in the heat exchanger. 図7Aは、熱交換器に含まれる高温部に含まれる第1の高温部の一例を示す図である。FIG. 7A is a diagram showing an example of a first high temperature portion included in the high temperature portion included in the heat exchanger. 図7Bは、熱交換器に含まれる高温部に含まれる第1の高温部と温度勾配保持部に含まれる複数の線状熱伝導体との接合の一例を示す図である。FIG. 7B is a diagram showing an example of joining a first high temperature portion included in the high temperature portion included in the heat exchanger and a plurality of linear heat conductors included in the temperature gradient holding portion. 図8は、熱交換器に含まれる高温部に含まれる第2の高温部の一例を示す図である。FIG. 8 is a diagram showing an example of a second high temperature portion included in the high temperature portion included in the heat exchanger. 図9は、熱交換器に含まれる高温部に含まれる第2の高温部の一例を示す図である。FIG. 9 is a diagram showing an example of a second high temperature portion included in the high temperature portion included in the heat exchanger. 図10は、熱交換器に含まれる高温部に含まれる第3の高温部の一例を示す図である。FIG. 10 is a diagram showing an example of a third high temperature portion included in the high temperature portion included in the heat exchanger. 図11は、熱交換器に含まれる高温部に含まれる第3の高温部の一例を示す図である。FIG. 11 is a diagram showing an example of a third high temperature portion included in the high temperature portion included in the heat exchanger. 図12は、熱交換器に含まれる温度勾配保持部および熱交換器に含まれる高温部に含まれる第1の高温部、第2の高温部、および第3の高温部の接合の一例を示す図である。FIG. 12 shows an example of joining the temperature gradient holding portion included in the heat exchanger and the first high temperature portion, the second high temperature portion, and the third high temperature portion included in the high temperature portion included in the heat exchanger. It is a figure.
 以下、添付図面を参照して、本願の開示する熱音響装置の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of the thermoacoustic apparatus disclosed in the present application will be described in detail with reference to the attached drawings. The present invention is not limited to the embodiments shown below.
 図1は、実施形態に係る熱音響装置1の一例を示す図である。図1を含む複数の図において、紙面に対して直交する方向において手前側がZ軸方向の正方向であると共に熱音響装置1の長手方向および短手方向がそれぞれX軸方向およびY軸方向である三次元の直交座標系を示す。 FIG. 1 is a diagram showing an example of a thermoacoustic device 1 according to an embodiment. In a plurality of drawings including FIG. 1, the front side is the positive direction in the Z-axis direction in the direction orthogonal to the paper surface, and the longitudinal direction and the lateral direction of the thermoacoustic device 1 are the X-axis direction and the Y-axis direction, respectively. Shows a three-dimensional Cartesian coordinate system.
 熱音響装置1は、熱音響効果によって、熱エネルギーを音波の音響エネルギーに変換し、音波の音響エネルギーを電気エネルギーのような他のエネルギーに変換する、或いは生成された音波の音響エネルギーから冷熱を取り出す装置である。ここで、熱音響効果は、熱と音波との間の相互作用である。図1に示すように、熱音響装置1は、導波管2と、熱交換器3と、励振器7と、変換器8とを備える。 The thermoacoustic device 1 converts thermal energy into acoustic energy of sound waves by thermoacoustic effect, converts acoustic energy of sound waves into other energy such as electric energy, or cools heat from acoustic energy of generated sound waves. It is a device to take out. Here, the thermoacoustic effect is the interaction between heat and sound waves. As shown in FIG. 1, the thermoacoustic device 1 includes a waveguide 2, a heat exchanger 3, an exciter 7, and a converter 8.
 導波管2には、気体Gが充填される。気体Gは、例えば、空気、窒素(N)、ヘリウム(He)、アルゴン(Ar)、水素(H)、または二酸化炭素(CO)などである。導波管2は、その内部に気体Gを密閉するように構成される。 The waveguide 2 is filled with gas G. The gas G is, for example, air, nitrogen (N 2 ), helium (He), argon (Ar), hydrogen (H 2 ), carbon dioxide (CO 2 ), or the like. The waveguide 2 is configured to seal the gas G inside.
 導波管2に充填される気体Gの圧力は、例えば、1気圧(1013.25hPa)以上100気圧(101325hPa)未満である。導波管2に充填される気体Gの圧力を増加させることによって、変換された音波の音響エネルギーを増大させることができる。一方、導波管2に充填される気体Gの圧力が1気圧である場合には、導波管2の気密性を向上させる必要がない。 The pressure of the gas G filled in the waveguide 2 is, for example, 1 atm (1013.25 hPa) or more and less than 100 atm (101325 hPa). By increasing the pressure of the gas G filled in the waveguide 2, the sound energy of the converted sound wave can be increased. On the other hand, when the pressure of the gas G filled in the waveguide 2 is 1 atm, it is not necessary to improve the airtightness of the waveguide 2.
 導波管2は、反射壁の無いループ状の導波管である。導波管2は、例えば、図1に示すような単一のループの形状を有する。導波管2は、その長さを変えることによって気体Gに生じる音波の共振周波数を変化させることができる。熱音響装置1においては、気体Gに生じる音波による気体Gの移動(移流)の位相に対して、熱交換器3と気体Gとの間の熱伝導によって生じる気体Gの温度変化の位相は、媒体の昇温または降温速度に対応する分だけ遅延する。それに応じて、気体Gの音波の圧力変化の位相は、温度変化のない場合の気体Gの圧力変化の位相より0°~90°遅延する。 The waveguide 2 is a loop-shaped waveguide without a reflective wall. The waveguide 2 has, for example, the shape of a single loop as shown in FIG. The waveguide 2 can change the resonance frequency of the sound wave generated in the gas G by changing its length. In the thermoacoustic device 1, the phase of the temperature change of the gas G caused by the heat conduction between the heat exchanger 3 and the gas G is set with respect to the phase of the movement (transfer) of the gas G by the sound wave generated in the gas G. It is delayed by the amount corresponding to the rate of temperature rise or fall of the medium. Accordingly, the phase of the pressure change of the sound wave of the gas G is delayed by 0 ° to 90 ° from the phase of the pressure change of the gas G when there is no temperature change.
 よって、例えば、導波管2が反射壁を有する場合には、気体Gに生じる温度変化を介在して圧力の位相の遅れを持った音波の共振を阻害して、気体Gに生じる音波の振幅を低減してしまう。熱音響装置1においては、導波管2が反射壁の無いループの形状を有することによって、気体Gに生じる音波の共振を安定化することができる。それに応じて、熱音響装置1は、音波の音響エネルギーの出力を向上させることができる。 Therefore, for example, when the waveguide 2 has a reflective wall, the resonance of the sound wave having the phase delay of the pressure is hindered by interposing the temperature change generated in the gas G, and the amplitude of the sound wave generated in the gas G. Will be reduced. In the thermoacoustic device 1, the waveguide 2 has the shape of a loop without a reflection wall, so that the resonance of the sound wave generated in the gas G can be stabilized. Accordingly, the thermoacoustic device 1 can improve the output of the acoustic energy of the sound wave.
 導波管2の長さは、気体Gに生じる音波の共振波長の整数倍である。導波管2の長さは、例えば、小型のシステムの場合、気体Gに生じる音波の共振波長が1m以下であるように、設定される。導波管2は、例えば、円形または方形の断面を有する中空導波管である。導波管2の断面の径を増加させることによって、音波の音響エネルギーの出力を増加させることができる。 The length of the waveguide 2 is an integral multiple of the resonance wavelength of the sound wave generated in the gas G. The length of the waveguide 2 is set so that, for example, in the case of a small system, the resonance wavelength of the sound wave generated in the gas G is 1 m or less. The waveguide 2 is, for example, a hollow waveguide having a circular or square cross section. By increasing the diameter of the cross section of the waveguide 2, the output of sound wave acoustic energy can be increased.
 導波管2は、例えば、ステンレス鋼(SUS)のような金属または塩化ビニルのようなプラスチックで形成される。導波管2がプラスチックで形成される場合には、ループ状の導波管2を容易に製造することができるため、導波管2のコストを低減することができる。 The waveguide 2 is formed of, for example, a metal such as stainless steel (SUS) or a plastic such as vinyl chloride. When the waveguide 2 is made of plastic, the loop-shaped waveguide 2 can be easily manufactured, so that the cost of the waveguide 2 can be reduced.
 熱交換器3は、導波管2に充填された気体Gに対して熱を移動させる。熱交換器3は、気体Gを音波の移流の位相に従って加熱/冷却する。導波管2が延びる方向(X軸方向)における熱交換器3の長さは、例えば、気体Gに生じる音波の振幅以上音波の波長の1/20以下、例えば、1~5cmが望ましい。熱交換器3は、導波管2内に設けられる。熱交換器3は、低温部4と、高温部5と、温度勾配保持部6とを含む。 The heat exchanger 3 transfers heat to the gas G filled in the waveguide 2. The heat exchanger 3 heats / cools the gas G according to the phase of advection of sound waves. The length of the heat exchanger 3 in the direction in which the waveguide 2 extends (X-axis direction) is preferably, for example, greater than or equal to the amplitude of the sound wave generated in the gas G and not more than 1/20 of the wavelength of the sound wave, for example, 1 to 5 cm. The heat exchanger 3 is provided in the waveguide 2. The heat exchanger 3 includes a low temperature section 4, a high temperature section 5, and a temperature gradient holding section 6.
 低温部4は、熱交換器3に含まれる相対的に低い温度を保持する部材である。高温部5は、熱交換器3に含まれる相対的に高い温度を保持する部材である。ここで、相対的に低い温度および相対的に高い温度は、低温部4の温度および高温部5の温度の間の対比に基づいたものである。すなわち、高温部5の温度は、低温部4の温度よりも高い。熱交換器3において、低温部4と高温部5との間には温度勾配が生じる。低温部4の温度と高温部5の温度との差を増加させること、すなわち、低温部4と高温部5との間における温度勾配を増加させることによって、熱エネルギーから変換される音波の音響エネルギーを増加させることができる。 The low temperature section 4 is a member contained in the heat exchanger 3 that maintains a relatively low temperature. The high temperature section 5 is a member included in the heat exchanger 3 that maintains a relatively high temperature. Here, the relatively low temperature and the relatively high temperature are based on the contrast between the temperature of the low temperature portion 4 and the temperature of the high temperature portion 5. That is, the temperature of the high temperature portion 5 is higher than the temperature of the low temperature portion 4. In the heat exchanger 3, a temperature gradient is generated between the low temperature portion 4 and the high temperature portion 5. The acoustic energy of sound waves converted from thermal energy by increasing the difference between the temperature of the low temperature section 4 and the temperature of the high temperature section 5, that is, by increasing the temperature gradient between the low temperature section 4 and the high temperature section 5. Can be increased.
 低温部4および高温部5は、それぞれ、相対的に低い温度の熱源および相対的に高い温度の熱源に接続される。相対的に低い温度の熱源は、例えば、管に供給される水のような冷媒であってもよい。相対的に高い温度の熱源は、管に供給される熱湯のような加熱媒体であってもよい。相対的に低い温度の熱源および相対的に高い温度の熱源の一方は、例えば、室温における空気であってもよい。 The low temperature section 4 and the high temperature section 5 are connected to a heat source having a relatively low temperature and a heat source having a relatively high temperature, respectively. The heat source at a relatively low temperature may be, for example, a refrigerant such as water supplied to the pipe. The heat source at a relatively high temperature may be a heating medium such as hot water supplied to the pipe. One of the relatively low temperature heat source and the relatively high temperature heat source may be, for example, air at room temperature.
 温度勾配保持部6は、低温部4と高温部5との間に生じた温度勾配を保持する部材である。温度勾配保持部6は、低温部4と高温部5との間に設けられる。温度勾配保持部6は、低温部4と高温部5との間に生じた温度勾配によって気体Gに音波を生じ、増幅させる。 The temperature gradient holding portion 6 is a member that holds the temperature gradient generated between the low temperature portion 4 and the high temperature portion 5. The temperature gradient holding portion 6 is provided between the low temperature portion 4 and the high temperature portion 5. The temperature gradient holding unit 6 generates and amplifies sound waves in the gas G by the temperature gradient generated between the low temperature unit 4 and the high temperature unit 5.
 励振器7は、所定の周波数で気体Gに音波を生じさせる。励振器7は、気体Gを密閉するように、導波管2に設けられる。励振器7は、共振音波の圧力振幅が大きい箇所に設けられる場合には、導波管2の音響インピーダンスを変化させないように設けたシリンダに挿入されたピストンが往復運動することによって気体Gの圧力を振動させるように構成される。 The exciter 7 generates a sound wave in the gas G at a predetermined frequency. The exciter 7 is provided in the waveguide 2 so as to seal the gas G. When the exciter 7 is provided in a place where the pressure amplitude of the resonant sound wave is large, the pressure of the gas G is caused by the reciprocating motion of the piston inserted in the cylinder provided so as not to change the acoustic impedance of the waveguide 2. Is configured to vibrate.
 変換器8は、気体Gに生じた音波の音響エネルギーを所定のエネルギーに変換すると共に所定のエネルギーを取り出す。変換器8は、例えば、気体Gに生じた音波の音響エネルギーを電気エネルギーに変換することによって電気を発生させる発電機であってもよい。この場合には、熱音響装置1は、例えば、熱源から熱交換器3に供給される熱を用いて発電することができる。 The converter 8 converts the acoustic energy of the sound wave generated in the gas G into a predetermined energy and extracts the predetermined energy. The converter 8 may be, for example, a generator that generates electricity by converting the acoustic energy of sound waves generated in the gas G into electrical energy. In this case, the thermoacoustic device 1 can generate electricity by using, for example, the heat supplied from the heat source to the heat exchanger 3.
 あるいは、変換器8は、例えば、気体Gに生じた音波の音響エネルギーを冷却の熱エネルギーに変換することによって変換器8に接触する媒体の温度を下げる冷却器(冷却用の熱交換器)であってもよい。この場合には、熱音響装置1は、例えば、熱源から熱交換器3に供給される熱を用いて媒体を冷却することができる。 Alternatively, the converter 8 is, for example, a cooler (heat exchanger for cooling) that lowers the temperature of the medium in contact with the converter 8 by converting the acoustic energy of the sound wave generated in the gas G into the heat energy of cooling. There may be. In this case, the thermoacoustic device 1 can cool the medium by using, for example, the heat supplied from the heat source to the heat exchanger 3.
 熱音響装置1において、例えば、励振器7によって導波管2に充填された気体Gを所定の共振周波数で振動させる。例えば、振動する気体Gが、熱交換器3において温度勾配保持部6の低温側から高温側へ移動する。ここで、気体Gは、温度勾配保持部6によって保持された温度勾配によって加熱されて膨張する。 In the thermoacoustic device 1, for example, the gas G filled in the waveguide 2 is vibrated at a predetermined resonance frequency by the exciter 7. For example, the vibrating gas G moves from the low temperature side to the high temperature side of the temperature gradient holding portion 6 in the heat exchanger 3. Here, the gas G is heated and expanded by the temperature gradient held by the temperature gradient holding unit 6.
 次に、振動する気体Gは、熱交換器3において温度勾配保持部6の高温側から低温側へ移動する。ここで、気体Gは、温度勾配保持部6によって保持された温度勾配によって冷却されて収縮する。このように、熱交換器3における気体Gの膨張および収縮の繰り返しによって導波管2に充填された気体Gの音波が増幅されて、熱エネルギーが気体Gの音波の音響エネルギーに変換される。 Next, the vibrating gas G moves from the high temperature side to the low temperature side of the temperature gradient holding unit 6 in the heat exchanger 3. Here, the gas G is cooled and contracted by the temperature gradient held by the temperature gradient holding unit 6. In this way, the sound wave of the gas G filled in the waveguide 2 is amplified by the repeated expansion and contraction of the gas G in the heat exchanger 3, and the heat energy is converted into the sound energy of the sound wave of the gas G.
 ここで、例えば、励振器7によって導波管2に充填された気体Gに生じる音波を所定の共振周波数で励振させることができる。気体Gに生じる音波は、導波管2内において熱交換器3のよって増幅され共振する。気体Gに生じた音波が変換器8に到達すると、変換器8は、気体Gに生じた音波の音響エネルギーを所定のエネルギーに変換すると共にその所定のエネルギーを取り出す。 Here, for example, the sound wave generated in the gas G filled in the waveguide 2 by the exciter 7 can be excited at a predetermined resonance frequency. The sound wave generated in the gas G is amplified and resonates in the waveguide 2 by the heat exchanger 3. When the sound wave generated in the gas G reaches the converter 8, the converter 8 converts the acoustic energy of the sound wave generated in the gas G into a predetermined energy and extracts the predetermined energy.
 図2は、熱音響装置1に含まれる熱交換器3の一例を示す図である。図2に示すように、熱交換器3は、例えば、低温部4と、高温部5と、温度勾配保持部6と、第1の熱伝導部材11と、第2の熱伝導部材12とを含む。低温部4は、例えば、第1の低温部4aと、第2の低温部4bと、第3の低温部4cとを含む。高温部5は、例えば、第1の高温部5aと、第2の高温部5bと、第3の高温部5cとを含む。温度勾配保持部6の構成については後述する。 FIG. 2 is a diagram showing an example of a heat exchanger 3 included in the thermoacoustic device 1. As shown in FIG. 2, the heat exchanger 3 includes, for example, a low temperature portion 4, a high temperature portion 5, a temperature gradient holding portion 6, a first heat conductive member 11, and a second heat conductive member 12. include. The low temperature section 4 includes, for example, a first low temperature section 4a, a second low temperature section 4b, and a third low temperature section 4c. The high temperature section 5 includes, for example, a first high temperature section 5a, a second high temperature section 5b, and a third high temperature section 5c. The configuration of the temperature gradient holding unit 6 will be described later.
 図2に示すように、第3の低温部4c、第2の低温部4b、第1の低温部4a、温度勾配保持部6、第1の高温部5a、第2の高温部5b、第3の高温部5cは、接合される。第1の熱伝導部材11は、第3の低温部4cに接合される。第2の熱伝導部材12は、第3の高温部5cに接合される。 As shown in FIG. 2, a third low temperature section 4c, a second low temperature section 4b, a first low temperature section 4a, a temperature gradient holding section 6, a first high temperature section 5a, a second high temperature section 5b, and a third The high temperature part 5c of the above is joined. The first heat conductive member 11 is joined to the third low temperature portion 4c. The second heat conductive member 12 is joined to the third high temperature portion 5c.
 低温部4は、高温部5の構造と同一または類似の構造を有する。具体的には、第1の低温部4aの構造は、第1の高温部5aの構造と同一または類似の構造を有する。第2の低温部4bの構造は、第2の高温部5bの構造と同一または類似の構造を有する。第3の低温部4cの構造は、第3の高温部5cの構造と同一または類似の構造を有する。第1の高温部5aの構成、第2の高温部5bの構成、および第3の高温部5cの構成については後述する。 The low temperature part 4 has the same or similar structure as the high temperature part 5. Specifically, the structure of the first low temperature portion 4a has the same or similar structure as the structure of the first high temperature portion 5a. The structure of the second low temperature portion 4b has the same or similar structure as the structure of the second high temperature portion 5b. The structure of the third low temperature portion 4c has the same or similar structure as the structure of the third high temperature portion 5c. The configuration of the first high temperature portion 5a, the configuration of the second high temperature portion 5b, and the configuration of the third high temperature portion 5c will be described later.
 第1の熱伝導部材11は、それぞれ、上述したような相対的に低い温度の熱源に接続される。第1の熱伝導部材11は、第3の低温部4cの中央部を含む部位に接合され、第3の低温部4cの温度を変化させる。それに応じて、第1の熱伝導部材11は、第3の低温部4c、第2の低温部4b、および第1の低温部4aの温度、すなわち、低温部4の温度を相対的に低い温度に維持する。 Each of the first heat conductive members 11 is connected to a heat source having a relatively low temperature as described above. The first heat conductive member 11 is joined to a portion including the central portion of the third low temperature portion 4c to change the temperature of the third low temperature portion 4c. Correspondingly, the first heat conductive member 11 sets the temperature of the third low temperature portion 4c, the second low temperature portion 4b, and the first low temperature portion 4a, that is, the temperature of the low temperature portion 4 relatively low. Keep in.
 第2の熱伝導部材12は、上述したような相対的に高い温度の熱源に接続される。第2の熱伝導部材12は、第3の高温部5cの中央部を含む部位に接合され、第3の高温部5cの温度を変化させる。それに応じて、第2の熱伝導部材12は、第3の高温部5c、第2の高温部5b、および第1の高温部5aの温度、すなわち、高温部5の温度を相対的に高い温度に維持する。 The second heat conductive member 12 is connected to a heat source having a relatively high temperature as described above. The second heat conductive member 12 is joined to a portion including the central portion of the third high temperature portion 5c to change the temperature of the third high temperature portion 5c. Correspondingly, the second heat conductive member 12 raises the temperature of the third high temperature portion 5c, the second high temperature portion 5b, and the first high temperature portion 5a, that is, the temperature of the high temperature portion 5 to a relatively high temperature. Maintain to.
 第1の熱伝導部材11は、例えば、金属で形成される。この場合には、第1の熱伝導部材11の熱伝導率を向上させることができる。第1の熱伝導部材11を形成する金属は、例えば、銅である。この場合には、第1の熱伝導部材11のコストを低減することができ、熱伝導量も大きくできる。第2の熱伝導部材12は、第1の熱伝導部材11の構造と同一または類似の構造を有する。第1の熱伝導部材11および第2の熱伝導部材12の各々が、金属で形成される場合には、第3の低温部4cに対する第1の熱伝導部材11の接合および第3の高温部5cに対する第2の熱伝導部材12の接合に半田またはレーザを用いてもよい。 The first heat conductive member 11 is made of metal, for example. In this case, the thermal conductivity of the first heat conductive member 11 can be improved. The metal forming the first heat conductive member 11 is, for example, copper. In this case, the cost of the first heat conductive member 11 can be reduced, and the amount of heat conduction can be increased. The second heat conductive member 12 has the same or similar structure as the structure of the first heat conductive member 11. When each of the first heat conductive member 11 and the second heat conductive member 12 is made of metal, the joining of the first heat conductive member 11 to the third low temperature portion 4c and the third high temperature portion A solder or a laser may be used to join the second heat conductive member 12 to 5c.
 従来の技術においては、熱交換器の温度勾配保持部は、通常、複数の細孔を備えたハニカム形状または複数の細孔を備えた格子形状を有する。熱交換器の低温部および高温部の各々は、温度勾配保持部のハニカム形状または格子形状と同等なものである複数の細孔を備えたハニカム形状または複数の細孔を備えた格子形状を有する。熱交換器の温度勾配保持部、低温部、および高温部は、温度勾配保持部のハニカム形状または格子形状の細孔と低温部および高温部の各々のハニカム形状または格子形状の細孔が重なるように、配置される。 In the conventional technique, the temperature gradient holding portion of the heat exchanger usually has a honeycomb shape having a plurality of pores or a lattice shape having a plurality of pores. Each of the low temperature part and the high temperature part of the heat exchanger has a honeycomb shape having a plurality of pores or a lattice shape having a plurality of pores, which is equivalent to the honeycomb shape or the lattice shape of the temperature gradient holding part. .. In the temperature gradient holding part, the low temperature part, and the high temperature part of the heat exchanger, the honeycomb-shaped or lattice-shaped pores of the temperature gradient holding part and the honeycomb-shaped or lattice-shaped pores of the low-temperature part and the high-temperature part overlap each other. Is placed in.
 従来の技術においては、気体が熱交換器の低温部、温度勾配保持部、および高温部を通過する際に、気体は、低温部の細孔、温度勾配保持部の細孔、および高温部の細孔を通過することになる。その結果、気体の動的粘性抵抗が増加する。 In the conventional technique, when the gas passes through the low temperature part, the temperature gradient holding part, and the high temperature part of the heat exchanger, the gas is formed in the pores of the low temperature part, the pores of the temperature gradient holding part, and the high temperature part. It will pass through the pores. As a result, the dynamic viscous resistance of the gas increases.
 従来の技術においては、温度勾配保持部は、複数の細孔を備えたハニカム形状または複数の細孔を備えた格子形状を有するように、典型的には、押出し成形によって製造される。ハニカム形状や格子形状の細孔を打ち抜いた金属薄板を重ねて温度勾配保持部を作製する場合もある。温度勾配保持部が押出し成形や細孔を打ち抜いた金属薄板を重ねることによって形成される場合には、温度勾配保持部のハニカム形状の細孔または格子形状の細孔を形成する表面は、通常、比較的大きな表面粗さを有する。その結果、気体の動的粘性抵抗が更に増加する。また、ハニカム形状や格子形状の細孔を打ち抜いた金属薄板を重ねて温度勾配保持部を作製する場合には温度勾配保持部の熱伝導性が高くなり、適切な温度勾配を維持することが困難であった。 In the prior art, the temperature gradient retainer is typically manufactured by extrusion so as to have a honeycomb shape with a plurality of pores or a grid shape with a plurality of pores. In some cases, a temperature gradient holding portion is formed by stacking thin metal plates punched out from honeycomb-shaped or lattice-shaped pores. When the temperature gradient holding part is formed by extrusion molding or stacking metal thin plates with punched pores, the surface forming the honeycomb-shaped pores or the lattice-shaped pores of the temperature gradient holding part is usually formed. It has a relatively large surface roughness. As a result, the dynamic viscous resistance of the gas is further increased. Further, when a metal thin plate having punched out honeycomb-shaped or lattice-shaped pores is stacked to form a temperature gradient holding portion, the thermal conductivity of the temperature gradient holding portion becomes high, and it is difficult to maintain an appropriate temperature gradient. Met.
 このように、従来の技術においては、導波管における気体の速度が比較的大きい場所に熱交換器を配置することが好ましいが、上述したように気体の動的粘性抵抗が増加するため、熱交換器において効率的に気体を移動させることが困難であることがあり、動的粘性抵抗によるエネルギー損失が大きくなることがある。また、温度勾配が高く保てない問題もあった。 As described above, in the conventional technique, it is preferable to arrange the heat exchanger in a place where the velocity of the gas is relatively high in the waveguide, but as described above, the dynamic viscous resistance of the gas increases, so that heat is generated. It may be difficult to move the gas efficiently in the exchanger and the energy loss due to the dynamic viscous resistance may be large. There is also a problem that the temperature gradient cannot be kept high.
 よって、従来の技術においては、熱エネルギーを音波の音響エネルギーに変換する効率が低いことがある。例えば、100℃以下の熱源の温度と室温との温度勾配によって熱エネルギーを音波の音響エネルギーに変換する場合には、粘性抵抗による損失が相対的に大きくなると共に、温度勾配が低くなり効率が低くなることがある。 Therefore, in the conventional technology, the efficiency of converting thermal energy into acoustic energy of sound waves may be low. For example, when heat energy is converted into sound sound energy by a temperature gradient between a heat source temperature of 100 ° C. or lower and room temperature, the loss due to viscous resistance becomes relatively large, and the temperature gradient becomes low and the efficiency is low. May become.
 熱交換器3における気体Gの膨張および収縮の繰り返しによって導波管2に充填された気体Gの音波が増幅されて、熱エネルギーが気体Gの音波の音響エネルギーに効率よく変換されるためには、音波の位相速度ωと気体Gの熱拡散係数αと温度勾配保持部の気体Gに熱を伝える複数の熱伝導体の間の距離dによって、
 2α/{ω×(d/2)}=δ ・・・・・(1)
の関係が成立することが望ましい。ここでδは略1であり、δの最適値は熱伝導体の形状や配置によって変化する。熱伝導体がハニカム形状の細孔または格子形状の細孔を形成する場合には0.32、熱伝導体が並行平板フィンで形成されている場合には、0.79程度である。熱拡散係数αは気体Gの密度ρ、定圧比熱C、熱伝導率κを用いて次のように書ける。
 α=κ/(ρ×C) ・・・・・(2)
In order for the sound wave of the gas G filled in the waveguide 2 to be amplified by repeated expansion and contraction of the gas G in the heat exchanger 3 and the heat energy to be efficiently converted into the acoustic energy of the sound of the gas G. , The phase velocity ω of the sound wave, the thermal diffusion coefficient α of the gas G, and the distance d between the plurality of heat conductors that transfer heat to the gas G of the temperature gradient holding portion.
2α / {ω × (d / 2) 2 } = δ ・ ・ ・ ・ ・ (1)
It is desirable that the relationship of Here, δ is approximately 1, and the optimum value of δ changes depending on the shape and arrangement of the heat conductor. It is about 0.32 when the heat conductor forms honeycomb-shaped pores or lattice-shaped pores, and about 0.79 when the heat conductor is formed of parallel flat plate fins. The thermal diffusivity α can be written as follows using the density ρ of the gas G, the constant pressure specific heat C, and the thermal conductivity κ.
α = κ / (ρ × C) ・ ・ ・ ・ ・ (2)
 一方で、気体Gの動的粘性抵抗に関わる指標はω×(d/2)/2νであり、これが数10程度以上の大きい場合に動粘性抵抗は小さくなり、気体Gの振動の振幅が低減することが抑えられる。この指標は、式(1)を用いると、
 ω×(d/2)/2ν=(1/δ)×α/ν=1/(δ×σ) ・・・・・(3)
と書ける。νは気体Gの動粘性係数で、気体Gの粘性係数μと密度ρの比、μ/ρで定義されている。動粘性係数νと熱拡散係数αの比、σ(=ν/α=C×μ/κ)はプラントル数であり、温度に若干依存するだけの物理定数である。プラントル数は気体Gの種類にあまりよらず0.6~0.7程度であり、空気の場合は0.67である。従って、熱伝導体がハニカム形状の細孔または格子形状の細孔を形成する場合には、動的粘性抵抗に関わる指標は式(3)から略5程度になり、δを最適な値に留めた状態では大きな動的粘性抵抗を生むことがわかる。
On the other hand, the index relating to the dynamic viscous resistance of the gas G is ω × (d / 2) 2 / 2ν, which kinematic viscosity resistance decreases when more than about several tens of large, the amplitude of vibration of the gas G is The reduction is suppressed. This index can be calculated using equation (1).
ω × (d / 2) 2 / 2ν = (1 / δ) × α / ν = 1 / (δ × σ) ····· (3)
Can be written. ν is the kinematic viscosity coefficient of the gas G, and is defined by the ratio of the viscosity coefficient μ of the gas G to the density ρ, μ / ρ. The ratio of the kinematic viscosity coefficient ν to the thermal diffusivity α, σ (= ν / α = C × μ / κ), is the Prandtl number, which is a physical constant that depends slightly on the temperature. The Prandtl number is about 0.6 to 0.7 regardless of the type of gas G, and is 0.67 in the case of air. Therefore, when the heat conductor forms honeycomb-shaped pores or lattice-shaped pores, the index related to the dynamic viscous resistance is about 5 from the equation (3), and δ is kept at the optimum value. It can be seen that a large dynamic viscous resistance is generated in the state of being.
 一方で、式(3)の指標は気体Gが熱伝導体の壁において速度が0になるものとした流体の理論式から導いたものである。従来の温度勾配保持部のハニカム形状の細孔または格子形状の細孔を形成する表面は、比較的大きな表面粗さを有するため、理論式による考察の状況に近いが、この粗さを低減するなどの対策を行って気体Gが細孔表面で滑るようにし、気体Gの粘性係数μを実効的に小さくできれば動的粘性抵抗に関わる指標を大きくできる。 On the other hand, the index of equation (3) is derived from the theoretical equation of the fluid in which the gas G has a velocity of 0 on the wall of the heat conductor. Since the surface forming the honeycomb-shaped pores or the lattice-shaped pores of the conventional temperature gradient holding portion has a relatively large surface roughness, it is close to the situation considered by the theoretical formula, but this roughness is reduced. If the gas G can be made to slide on the surface of the pores by taking measures such as the above and the viscosity coefficient μ of the gas G can be effectively reduced, the index related to the dynamic viscous resistance can be increased.
 また、熱伝導体がハニカム形状の細孔または格子形状の細孔を形成する場合に、式(3)で表される動的粘性抵抗に関わる指標が略5程度ではあっても、温度勾配保持部を構成している、ハニカム形状等の細孔や、並行平板フィン等によっても実効的な動的粘性抵抗は変化し気体Gの振動の振幅は異なる。流体の理論式から導かれた結果によると、この指標が1程度の場合において、ハニカム形状等の細孔の場合では相対的な音波の振幅が0.2であるが、比較的粘性抵抗が低いと考えられる並行平板フィンでは0.5程度に大きくなる。式(3)の指標による音波の振幅への依存性を調べた結果、細孔から並行平板フィンに構造変更した指標への影響係数は3倍程度であった。この構造による影響係数をkとして式(3)の構造影響を入れた実効的指標は
 k/(δ×σ) = k/(δ×μ)×(κ/C) ・・・・・(4)
と書ける。従って、温度勾配保持部のハニカム形状や並行平板フィン等の熱伝導体の構造を、粘性抵抗が低い構造に変えることによりkを大きくして、式(4)の動的粘性抵抗の実効的指標を更に大きくすることができ、最適なδを保ちつつ動的粘性抵抗を低くできる。
Further, when the heat conductor forms honeycomb-shaped pores or lattice-shaped pores, the temperature gradient is maintained even if the index related to the dynamic viscous resistance represented by the formula (3) is about 5. The effective dynamic viscous resistance changes depending on the pores such as the honeycomb shape and the parallel flat plate fins constituting the portion, and the amplitude of the vibration of the gas G differs. According to the result derived from the theoretical formula of the fluid, when this index is about 1, the relative amplitude of the sound wave is 0.2 in the case of pores such as honeycomb shape, but the viscous resistance is relatively low. In the case of parallel flat plate fins, which is considered to be, it increases to about 0.5. As a result of investigating the dependence of the sound wave on the amplitude by the index of the formula (3), the influence coefficient on the index in which the structure was changed from the pores to the parallel flat plate fin was about 3 times. The effective index that puts the structural influence of Eq. (3) with the influence coefficient of this structure as k is k / (δ × σ) = k / (δ × μ) × (κ / C) ・ ・ ・ ・ ・ (4) )
Can be written. Therefore, by changing the structure of the heat conductor such as the honeycomb shape of the temperature gradient holding portion and the parallel flat plate fins to a structure having a low viscous resistance, k is increased and an effective index of the dynamic viscous resistance of the equation (4). Can be further increased, and the dynamic viscous resistance can be lowered while maintaining the optimum δ.
 一方で、ハニカム形状の細孔または格子形状の細孔で温度勾配保持部の熱伝導体が形成されている場合の最適なδは0.32程度であり、並行平板フィンで熱伝導体が構成されている場合には0.79程度である。即ち、細孔の場合のkを1とした場合、空気のプラントル数が0.67であることを用いると、空気の場合の細孔の動的粘性抵抗に関わる実効的指標は、式(4)から4.7程度である。並行平板フィンの場合には、kを3として同様に、空気の動的粘性抵抗に関わる実効的指標が5.7程度と算出される。従って、細孔と並行平板フィンの温度勾配保持部の場合ではこれらの数値は略同等であり、動的粘性抵抗に関わる指標を上げるには、気体が並行平板フィン等の表面を滑るようにすることで実効的な粘性係数μを下げることだけが効果があると期待できる。 On the other hand, when the heat conductor of the temperature gradient holding portion is formed by the honeycomb-shaped pores or the lattice-shaped pores, the optimum δ is about 0.32, and the heat conductor is composed of parallel flat plate fins. If it is, it is about 0.79. That is, when k in the case of pores is 1, and the Prandtl number of air is 0.67, the effective index related to the dynamic viscous resistance of the pores in the case of air is given by the equation (4). ) To 4.7. In the case of parallel flat plate fins, k is set to 3 and the effective index related to the dynamic viscous resistance of air is calculated to be about 5.7. Therefore, in the case of the temperature gradient holding portion of the pores and the parallel plate fins, these values are substantially the same, and in order to raise the index related to the dynamic viscous resistance, the gas should slide on the surface of the parallel plate fins or the like. Therefore, it can be expected that only lowering the effective viscosity coefficient μ is effective.
 簡易的に、温度勾配保持部の導波管2が延びる方向(X軸方向)に垂直な断面において幾何学的な評価を行うことによって、温度勾配保持部の熱伝導体がハニカム形状の細孔または格子形状の細孔を形成する場合、並行平板フィンで構成されている場合、および細線で構成されている場合の比較を行った結果、上記のkにおいて、細線で構成された温度勾配保持部の場合は並行平板フィンで構成された温度勾配保持部の8~10倍程度になる可能性を確認した。一方で、温度勾配保持部が細線で構成されている場合のδは、細孔で温度勾配保持部が構成されている場合のδの数値である0.32以上、並行平板フィンで温度勾配保持部が構成されている場合のδの数値である0.79以下になることも確認した。これらから、温度勾配保持部が細線の熱伝導体で構成された場合では、式(4)の実効的な動的粘性抵抗に関わる指標が数10程度になることが確認され、式(4)のk/δの部分による動的粘性抵抗の更なる低減が可能であることを示した。 By simply performing a geometrical evaluation in a cross section perpendicular to the direction in which the waveguide 2 of the temperature gradient holding portion extends (X-axis direction), the heat conductor of the temperature gradient holding portion has honeycomb-shaped pores. Alternatively, as a result of comparison between the case of forming lattice-shaped pores, the case of being composed of parallel flat plate fins, and the case of being composed of fine wires, in the above k, the temperature gradient holding portion composed of thin wires. In the case of, it was confirmed that the temperature gradient holding portion composed of parallel flat plate fins could be about 8 to 10 times larger. On the other hand, δ when the temperature gradient holding portion is composed of thin lines is 0.32 or more, which is the value of δ when the temperature gradient holding portion is composed of pores, and the temperature gradient is maintained by the parallel flat plate fins. It was also confirmed that the value of δ when the part was composed was 0.79 or less. From these, it was confirmed that when the temperature gradient holding portion is composed of a thin wire thermal conductor, the index related to the effective dynamic viscous resistance of the equation (4) is about several tens, and the equation (4). It was shown that the dynamic viscous resistance can be further reduced by the k / δ portion of.
 本実施形態に係る熱音響装置1は、以上のことから、熱交換器3に含まれる温度勾配保持部6は線状熱伝導体で構成されているものとしてkを大きくし、および線状熱伝導体の表面を滑らかにすることによって実効的な粘性抵抗μを下げると共に、温度勾配保持部6の構造に適した最適なδを用いて、音波の位相速度ωと気体の昇温・降温速度を式(1)に基づいて対応させることによって、動的粘性抵抗を効果的に下げ、熱エネルギーを音響エネルギーに変換する効率を上げるものである。 From the above, in the thermoacoustic device 1 according to the present embodiment, it is assumed that the temperature gradient holding portion 6 included in the heat exchanger 3 is composed of a linear heat conductor, and k is increased, and the linear heat is increased. By smoothing the surface of the conductor, the effective viscous resistance μ is lowered, and by using the optimum δ suitable for the structure of the temperature gradient holding portion 6, the phase velocity ω of the sound wave and the temperature rise / fall rate of the gas are used. Is made to correspond based on the equation (1), thereby effectively lowering the dynamic viscous resistance and increasing the efficiency of converting heat energy into sound energy.
 図3および図4は、熱交換器3に含まれる温度勾配保持部6の一例を示す図である。図4は、図3における線A-Aに沿った温度勾配保持部6の断面を示す。図3および図4に示すように、温度勾配保持部6は、例えば、導波管2の断面が円形の場合には、略円筒の形状を有する。例えば、温度勾配保持部6は、略円筒の形状を備えた枠体65を含む。 3 and 4 are diagrams showing an example of the temperature gradient holding unit 6 included in the heat exchanger 3. FIG. 4 shows a cross section of the temperature gradient holding portion 6 along the line AA in FIG. As shown in FIGS. 3 and 4, the temperature gradient holding portion 6 has a substantially cylindrical shape, for example, when the cross section of the waveguide 2 is circular. For example, the temperature gradient holding portion 6 includes a frame body 65 having a substantially cylindrical shape.
 図3および図4に示すように、温度勾配保持部6は、複数の線状熱伝導体60を含む。複数の線状熱伝導体60は、例えば、温度勾配保持部6の中心軸の方向(X軸方向)に対して平行な方向に、互いに平行になるように温度勾配保持部6の両端間に張られている。複数の線状熱伝導体60の各々は、温度勾配保持部6の中心軸の方向(X軸方向)に対して直交する表面を持ち、この表面で気体Gと接触する。 As shown in FIGS. 3 and 4, the temperature gradient holding portion 6 includes a plurality of linear heat conductors 60. The plurality of linear thermal conductors 60 are, for example, between both ends of the temperature gradient holding portion 6 so as to be parallel to each other in a direction parallel to the direction of the central axis (X-axis direction) of the temperature gradient holding portion 6. It is stretched. Each of the plurality of linear thermal conductors 60 has a surface orthogonal to the direction of the central axis (X-axis direction) of the temperature gradient holding portion 6, and is in contact with the gas G on this surface.
 実施形態に係る熱音響装置1においては、温度勾配保持部6が、複数の線状熱伝導体60を含むため、気体Gが温度勾配保持部6を通過する際に、気体Gは、複数の線状熱伝導体60の間の間隙を通過する。これにより、温度勾配保持部6における気体Gの動的粘性抵抗を、従来のハニカム形状または複数の細孔を備えた格子形状の温度勾配保持部や、複数の並行平板フィンで構成された温度勾配保持部に比べて減少させることができる。その結果、温度勾配保持部6を通過する気体Gの速度の低下を低減することができる。 In the thermoacoustic device 1 according to the embodiment, since the temperature gradient holding portion 6 includes the plurality of linear thermal conductors 60, when the gas G passes through the temperature gradient holding portion 6, the gas G is a plurality of. It passes through the gap between the linear thermal conductors 60. As a result, the dynamic viscous resistance of the gas G in the temperature gradient holding portion 6 is controlled by the conventional honeycomb-shaped or lattice-shaped temperature gradient holding portion having a plurality of pores, or the temperature gradient composed of a plurality of parallel flat plate fins. It can be reduced as compared with the holding portion. As a result, it is possible to reduce a decrease in the speed of the gas G passing through the temperature gradient holding unit 6.
 よって、熱音響装置1は、温度勾配保持部6において効率的に気体Gを移動させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率を改善することができる。 Therefore, the thermoacoustic device 1 can efficiently move the gas G in the temperature gradient holding unit 6. Accordingly, the thermoacoustic device 1 can improve the efficiency of converting thermal energy into acoustic energy of sound waves.
 例えば、熱音響装置1は、低温部4および高温部5にそれぞれ室温の熱源および100℃以下の温度の熱源を接続する場合にも、低温部4と高温部5との間に設けられた温度勾配保持部6における気体Gの動的粘性抵抗を減少させることができる。よって、熱音響装置1は、100℃以下の温度の熱源からの熱、例えば、廃熱を、例えば、発電または冷却に、効率良く利用することができる。 For example, in the thermoacoustic device 1, even when a heat source at room temperature and a heat source having a temperature of 100 ° C. or lower are connected to the low temperature section 4 and the high temperature section 5, respectively, the temperature provided between the low temperature section 4 and the high temperature section 5 is provided. The dynamic viscous resistance of the gas G in the gradient holding portion 6 can be reduced. Therefore, the thermoacoustic device 1 can efficiently utilize heat from a heat source having a temperature of 100 ° C. or lower, for example, waste heat, for example, for power generation or cooling.
 図3に示すような複数の線状熱伝導体60の間の間隔d(60)は、複数の線状熱伝導体60から気体Gへの熱伝導を向上させるために、1.0mm以下である。複数の線状熱伝導体60の間の間隔d(60)は、好ましくは、0.2mm以上0.4mm以下、例えば、0.3mm程度である。図3に示すような複数の線状熱伝導体60の各々の直径r(60)は、0.1mm以下、例えば、0.08mm程度である。 The distance d (60) between the plurality of linear heat conductors 60 as shown in FIG. 3 is 1.0 mm or less in order to improve the heat conduction from the plurality of linear heat conductors 60 to the gas G. be. The distance d (60) between the plurality of linear thermal conductors 60 is preferably 0.2 mm or more and 0.4 mm or less, for example, about 0.3 mm. The diameter r (60) of each of the plurality of linear thermal conductors 60 as shown in FIG. 3 is 0.1 mm or less, for example, about 0.08 mm.
 図4に示すような温度勾配保持部6の中心軸の方向(X軸方向)における複数の線状熱伝導体60の各々の長さw(60)は、7mm以上20mm以下、例えば、10mm程度である。この場合には、音波の有効な大きさの振幅を得ることによって、温度勾配保持部6の熱エネルギーから変換された、音波の音響エネルギーの有効な出力を得ることができる。 The length w (60) of each of the plurality of linear thermal conductors 60 in the direction of the central axis (X-axis direction) of the temperature gradient holding portion 6 as shown in FIG. 4 is 7 mm or more and 20 mm or less, for example, about 10 mm. Is. In this case, by obtaining the amplitude of the effective magnitude of the sound wave, it is possible to obtain the effective output of the acoustic energy of the sound wave converted from the thermal energy of the temperature gradient holding unit 6.
 図4に示すように、温度勾配保持部6が枠体65を有する場合、枠体65は後述する第1の高温部5aの枠体55aと一体化される。温度勾配保持部6の中心軸の方向(X軸方向)における温度勾配保持部6の線状熱伝導体60が枠体65から突出する部分の長さw’(60)は、1.0mm以上3.0mm以下、例えば、2.0mm程度である。温度勾配保持部6の線状熱伝導体60が枠体65から突出する部分で、後述するように、複数の線状熱伝導体60が第1の高温部5aの複数の板状のフィン50aと接合される。なお、温度勾配保持部6における枠体65の有無に関わらず、複数の線状熱伝導体60の各々は、温度勾配保持部6の中心軸の方向(X軸方向)の一方の端部において、後述の第1の高温部5aに接合され、他方の端部において、第1の低温部4aに接合される。 As shown in FIG. 4, when the temperature gradient holding portion 6 has the frame body 65, the frame body 65 is integrated with the frame body 55a of the first high temperature portion 5a described later. The length w'(60) of the portion where the linear thermal conductor 60 of the temperature gradient holding portion 6 protrudes from the frame 65 in the direction of the central axis of the temperature gradient holding portion 6 (X-axis direction) is 1.0 mm or more. It is 3.0 mm or less, for example, about 2.0 mm. A portion where the linear heat conductor 60 of the temperature gradient holding portion 6 protrudes from the frame body 65, and as will be described later, the plurality of linear heat conductors 60 are a plurality of plate-shaped fins 50a of the first high temperature portion 5a. Is joined with. Regardless of the presence or absence of the frame body 65 in the temperature gradient holding portion 6, each of the plurality of linear thermal conductors 60 is located at one end in the direction of the central axis (X-axis direction) of the temperature gradient holding portion 6. , Which will be described later, is joined to the first high temperature portion 5a, and at the other end, it is joined to the first low temperature portion 4a.
 複数の線状熱伝導体60の各々は、例えば、熱伝導率が低く線状形状加工の容易な金属材料で形成される。複数の線状熱伝導体60の各々を形成する材料の熱伝導率は、例えば、5Wm-1・K-1以上30Wm-1・K-1以下である。この場合には、複数の線状熱伝導体60の各々の熱伝導率を低減することができる。よって、温度勾配保持部6における温度勾配の低減を抑制することができる。それに応じて、温度勾配保持部6は、低温部4と高温部5との間に生じた温度勾配を良好に保持することができる。 Each of the plurality of linear thermal conductors 60 is formed of, for example, a metal material having a low thermal conductivity and easy linear shape processing. The thermal conductivity of the material forming each of the plurality of linear thermal conductors 60 is, for example, 5 Wm -1 · K -1 or more and 30 Wm -1 · K -1 or less. In this case, the thermal conductivity of each of the plurality of linear thermal conductors 60 can be reduced. Therefore, it is possible to suppress the reduction of the temperature gradient in the temperature gradient holding unit 6. Accordingly, the temperature gradient holding section 6 can satisfactorily hold the temperature gradient generated between the low temperature section 4 and the high temperature section 5.
 複数の線状熱伝導体60の各々を形成する金属は、例えば、ニッケルクロム合金に代表されるものである。この場合には、複数の線状熱伝導体60の各々から気体Gへの熱伝達に対して複数の線状熱伝導体60の各々における中心軸の方向(X軸方向)への熱伝導を良好に低減することができる。よって、温度勾配保持部6は、複数の線状熱伝導体60から気体Gへの熱伝達を向上させることができる。それに応じて、温度勾配保持部6は、低温部4と高温部5との間に所望の温度勾配を容易に保持することができる。 The metal forming each of the plurality of linear thermal conductors 60 is represented by, for example, a nickel-chromium alloy. In this case, for heat transfer from each of the plurality of linear heat conductors 60 to the gas G, heat conduction in the direction of the central axis (X-axis direction) in each of the plurality of linear heat conductors 60 is performed. It can be reduced satisfactorily. Therefore, the temperature gradient holding unit 6 can improve the heat transfer from the plurality of linear heat conductors 60 to the gas G. Accordingly, the temperature gradient holding section 6 can easily hold a desired temperature gradient between the low temperature section 4 and the high temperature section 5.
 図5は、温度勾配保持部6に含まれる複数の線状熱伝導体60の各々の一例を示す図である。 FIG. 5 is a diagram showing an example of each of the plurality of linear heat conductors 60 included in the temperature gradient holding unit 6.
 図5に示すように、複数の線状熱伝導体60の各々は、尖鋭な端部61を有する。例えば、複数の線状熱伝導体60の各々は、温度勾配保持部6の中心軸の方向(X軸方向)における両端に尖鋭な端部61を有する。ここで、尖鋭な端部61は、複数の線状熱伝導体60の各々における気体Gと接触する表面に垂直な断面において頂点を有する端部である。 As shown in FIG. 5, each of the plurality of linear thermal conductors 60 has a sharp end 61. For example, each of the plurality of linear thermal conductors 60 has sharp ends 61 at both ends in the direction of the central axis (X-axis direction) of the temperature gradient holding portion 6. Here, the sharp end portion 61 is an end portion having an apex in a cross section perpendicular to the surface of each of the plurality of linear thermal conductors 60 in contact with the gas G.
 複数の線状熱伝導体60の各々が、尖鋭な端部61を有する場合には、気体Gが温度勾配保持部6を通過する際に、気体Gは、複数の線状熱伝導体60の各々の端部付近において尖鋭な端部61を通過する。その結果、複数の線状熱伝導体60の各々の端部付近における気体Gの速度の低下を低減することができる。これにより、線状熱伝導体60の各々における気体Gと接触する表面において、気体Gと線状熱伝導体60とが滑りやすくなることで温度勾配保持部6における気体Gの動的粘性抵抗をさらに減少させることができる。 When each of the plurality of linear heat conductors 60 has a sharp end portion 61, when the gas G passes through the temperature gradient holding portion 6, the gas G is a plurality of linear heat conductors 60. It passes through a sharp end 61 near each end. As a result, it is possible to reduce the decrease in the velocity of the gas G in the vicinity of each end of the plurality of linear thermal conductors 60. As a result, the gas G and the linear heat conductor 60 become slippery on the surface of each of the linear heat conductors 60 in contact with the gas G, so that the dynamic viscous resistance of the gas G in the temperature gradient holding portion 6 is increased. It can be further reduced.
 よって、熱音響装置1は、複数の線状熱伝導体60の各々の端部付近において効率的に気体Gを移動させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率をさらに改善することができる。 Therefore, the thermoacoustic device 1 can efficiently move the gas G near each end of the plurality of linear thermal conductors 60. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
 図5に示すように、複数の線状熱伝導体60の各々の中心軸の方向(X軸方向)に垂直な表面は、鏡面62を有する。例えば、複数の線状熱伝導体60の各々は、温度勾配保持部6の中心軸の方向(X軸方向)に対して直交する表面、すなわち、気体Gと接触する表面に鏡面62を有する。ここで、鏡面62は、例えば0.02μm以下の表面粗さ(算術平均粗さSa)を備えた面である。 As shown in FIG. 5, the surface of the plurality of linear thermal conductors 60 perpendicular to the direction of the central axis (X-axis direction) has a mirror surface 62. For example, each of the plurality of linear thermal conductors 60 has a mirror surface 62 on a surface orthogonal to the direction of the central axis (X-axis direction) of the temperature gradient holding portion 6, that is, a surface in contact with the gas G. Here, the mirror surface 62 is a surface having a surface roughness (arithmetic mean roughness Sa) of, for example, 0.02 μm or less.
 熱音響装置1においては、複数の線状熱伝導体60の各々が、鏡面62を有する場合には、気体Gが温度勾配保持部6を通過する際に、気体Gは、複数の線状熱伝導体60に含まれる鏡面62の間を通過する。その結果、複数の線状熱伝導体60の各々における気体Gと接触する表面付近において気体Gを滑らせて通過させることができる。これにより、温度勾配保持部6における気体Gの動的粘性抵抗をさらに減少させることができる。 In the thermoacoustic device 1, when each of the plurality of linear heat conductors 60 has a mirror surface 62, when the gas G passes through the temperature gradient holding portion 6, the gas G has a plurality of linear heats. It passes between the mirror surfaces 62 included in the conductor 60. As a result, the gas G can be slid and passed near the surface of each of the plurality of linear thermal conductors 60 in contact with the gas G. As a result, the dynamic viscous resistance of the gas G in the temperature gradient holding portion 6 can be further reduced.
 よって、熱音響装置1は、温度勾配保持部6に含まれる複数の線状熱伝導体60の各々の表面付近において効率的に気体Gを移動させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率をさらに改善することができる。 Therefore, the thermoacoustic device 1 can efficiently move the gas G near the surface of each of the plurality of linear thermal conductors 60 included in the temperature gradient holding unit 6. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
 図6および図7Aは、熱交換器3に含まれる高温部5に含まれる第1の高温部5aの一例を示す図である。図7Aは、図6における線A-Aに沿った第1の高温部5aの断面を示す。図6および図7Aに示すように、第1の高温部5aは、例えば、断面が略円形である略円筒の形状を有する。例えば、第1の高温部5aは、略円筒の形状を備えた枠体55aを含む。 6 and 7A are diagrams showing an example of a first high temperature portion 5a included in the high temperature portion 5 included in the heat exchanger 3. FIG. 7A shows a cross section of the first high temperature portion 5a along the line AA in FIG. As shown in FIGS. 6 and 7A, the first high temperature portion 5a has, for example, a substantially cylindrical shape having a substantially circular cross section. For example, the first high temperature portion 5a includes a frame body 55a having a substantially cylindrical shape.
 図6および図7Aに示すように、第1の高温部5aは、複数の板状のフィン50aを含む。複数の板状のフィン50aは、後述するように、温度勾配保持部6に含まれる複数の線状熱伝導体60と接合される。 As shown in FIGS. 6 and 7A, the first high temperature portion 5a includes a plurality of plate-shaped fins 50a. As will be described later, the plurality of plate-shaped fins 50a are joined to the plurality of linear heat conductors 60 included in the temperature gradient holding portion 6.
 複数の板状のフィン50aは、例えば、第1の高温部5aの中心軸の方向(X軸方向)に対して直交する方向(Y軸方向)に法線をもち互いに平行である表面を有する。複数の板状のフィン50aの各々は、第1の高温部5aの中心軸の方向(X軸方向)に対して直交する方向(Y軸方向)に法線をもつ気体Gと接触する表面を有する。 The plurality of plate-shaped fins 50a have, for example, surfaces having normals in a direction (Y-axis direction) orthogonal to the direction of the central axis (X-axis direction) of the first high-temperature portion 5a and parallel to each other. .. Each of the plurality of plate-shaped fins 50a has a surface in contact with the gas G having a normal in a direction (Y-axis direction) orthogonal to the direction of the central axis (X-axis direction) of the first high temperature portion 5a. Have.
 図6に示すような複数の板状のフィン50aの間隔d(50a)は、温度勾配保持部6に含まれる複数の線状熱伝導体60の間隔d(60)よりも大きい。複数の板状のフィン50aの間隔d(50a)は、複数の線状熱伝導体60の間隔d(60)の3倍以上5倍以下、例えば、1.6mm程度である。 The distance d (50a) of the plurality of plate-shaped fins 50a as shown in FIG. 6 is larger than the distance d (60) of the plurality of linear thermal conductors 60 included in the temperature gradient holding portion 6. The distance d (50a) between the plurality of plate-shaped fins 50a is three times or more and five times or less the distance d (60) between the plurality of linear heat conductors 60, for example, about 1.6 mm.
 複数の板状のフィン50aの間隔d(50a)が、温度勾配保持部6に含まれる複数の線状熱伝導体60の間隔d(60)よりも大きい場合には、気体Gが第1の高温部5aを通過する際に、気体Gは、複数の線状熱伝導体60の間の間隙よりも大きい複数の板状のフィン50aの間の間隙を通過する。 When the distance d (50a) of the plurality of plate-shaped fins 50a is larger than the distance d (60) of the plurality of linear heat conductors 60 included in the temperature gradient holding portion 6, the gas G is the first. When passing through the high temperature portion 5a, the gas G passes through the gaps between the plurality of plate-shaped fins 50a, which are larger than the gaps between the plurality of linear heat conductors 60.
 このように複数の板状のフィン50aの間隔を複数の線状熱伝導体60の間隙より大きくすることで、温度勾配保持部6を通過する気体Gよりも第1の高温部5aを通過する気体Gの速度の低下を低減することができる。これにより、気体Gが第1の高温部5aを通過する際の気体Gの動的粘性抵抗を気体Gが温度勾配保持部6を通過する際の気体Gの動的粘性抵抗よりも低減することができる。気体Gが第1の高温部5aを通過する際の気体Gの動的粘性抵抗は、複数の板状のフィン50aの間隔d(50a)の二乗に概ね反比例する。 By making the distance between the plurality of plate-shaped fins 50a larger than the gap between the plurality of linear heat conductors 60 in this way, the gas G passes through the first high temperature portion 5a rather than the gas G passing through the temperature gradient holding portion 6. The decrease in the velocity of the gas G can be reduced. As a result, the dynamic viscous resistance of the gas G when the gas G passes through the first high temperature portion 5a is reduced as compared with the dynamic viscous resistance of the gas G when the gas G passes through the temperature gradient holding portion 6. Can be done. The dynamic viscous resistance of the gas G when the gas G passes through the first high temperature portion 5a is substantially inversely proportional to the square of the distance d (50a) of the plurality of plate-shaped fins 50a.
 よって、熱音響装置1は、第1の高温部5aにおいて効率的に気体Gを移動させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率をさらに改善することができる。 Therefore, the thermoacoustic device 1 can efficiently move the gas G in the first high temperature portion 5a. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
 図6に示すような複数の板状のフィン50aの各々の厚さt(50a)は、温度勾配保持部6に含まれる複数の線状熱伝導体60の各々の直径t(60)よりも大きい。複数の板状のフィン50aの各々の厚さt(50a)は、複数の線状熱伝導体60の各々の直径t(60)の2倍以上3倍以下、例えば、0.2mm程度である。 The thickness t (50a) of each of the plurality of plate-shaped fins 50a as shown in FIG. 6 is larger than the diameter t (60) of each of the plurality of linear heat conductors 60 included in the temperature gradient holding portion 6. big. The thickness t (50a) of each of the plurality of plate-shaped fins 50a is twice or more and three times or less, for example, about 0.2 mm of the diameter t (60) of each of the plurality of linear thermal conductors 60. ..
 複数の板状のフィン50aの各々の厚さt(50a)が、温度勾配保持部6に含まれる複数の線状熱伝導体60の各々の直径r(60)よりも大きい場合には、第1の高温部5aの熱伝導性を向上させることができる。例えば、温度勾配保持部6の側における第1の高温部5aの端部における温度の分布をより均一にすることができる。その結果、第1の高温部5aから温度勾配保持部6への熱伝導性を向上させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率をさらに改善することができる。 When the thickness t (50a) of each of the plurality of plate-shaped fins 50a is larger than the diameter r (60) of each of the plurality of linear heat conductors 60 included in the temperature gradient holding portion 6, the first The thermal conductivity of the high temperature portion 5a of 1 can be improved. For example, the temperature distribution at the end of the first high temperature portion 5a on the side of the temperature gradient holding portion 6 can be made more uniform. As a result, the thermal conductivity from the first high temperature portion 5a to the temperature gradient holding portion 6 can be improved. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
 複数の板状のフィン50aの各々の厚さt(50a)が、温度勾配保持部6に含まれる複数の線状熱伝導体60の各々の直径t(60)よりも大きい場合には、複数の板状のフィン50aは、複数の板状のフィン50aに接合される複数の線状熱伝導体60をより確実に保持することができる。それにより、第1の高温部5aは、温度勾配保持部6をより確実に保持することができる。 When the thickness t (50a) of each of the plurality of plate-shaped fins 50a is larger than the diameter t (60) of each of the plurality of linear heat conductors 60 included in the temperature gradient holding portion 6, a plurality of them. The plate-shaped fins 50a can more reliably hold the plurality of linear thermal conductors 60 joined to the plurality of plate-shaped fins 50a. As a result, the first high temperature portion 5a can more reliably hold the temperature gradient holding portion 6.
 図7Aに示すような第1の高温部5aの中心軸の方向(X軸方向)における複数の板状のフィン50aの各々の長さw(50a)は、3mm以上5mm以下、例えば、4mm程度である。第1の高温部5aが枠体55aを有する場合、枠体55aは温度勾配保持部6の枠体65と一体化される。図7Aに示すように、複数の板状のフィン50aの各々は、第1の高温部5aの中心軸の方向(X軸方向)において第1の高温部5aの枠体55aから突出する凸部を有する。第1の高温部5aの中心軸の方向(X軸方向)における第1の高温部5aの枠体55aから突出する凸部の長さw’(55a)は、2mm以上4mm以下、例えば、2mm程度である。第1の高温部5aの枠体55aから突出する凸部は、後述するように、第2の高温部5bに接合される。なお、第1の高温部5aにおける枠体55aの有無に関わらず、複数の板状のフィン50aの各々は、第1の高温部5aの中心軸の方向(X軸方向)の一方の端部において、後述の第2の高温部5bに接合され、他方の端部において、温度勾配保持部6に接合される。 The length w (50a) of each of the plurality of plate-shaped fins 50a in the direction of the central axis (X-axis direction) of the first high temperature portion 5a as shown in FIG. 7A is 3 mm or more and 5 mm or less, for example, about 4 mm. Is. When the first high temperature portion 5a has the frame body 55a, the frame body 55a is integrated with the frame body 65 of the temperature gradient holding portion 6. As shown in FIG. 7A, each of the plurality of plate-shaped fins 50a has a convex portion protruding from the frame body 55a of the first high temperature portion 5a in the direction of the central axis (X-axis direction) of the first high temperature portion 5a. Has. The length w'(55a) of the convex portion protruding from the frame body 55a of the first high temperature portion 5a in the direction of the central axis (X-axis direction) of the first high temperature portion 5a is 2 mm or more and 4 mm or less, for example, 2 mm. Degree. The convex portion of the first high temperature portion 5a protruding from the frame body 55a is joined to the second high temperature portion 5b as described later. Regardless of the presence or absence of the frame body 55a in the first high temperature portion 5a, each of the plurality of plate-shaped fins 50a is one end portion in the direction of the central axis (X-axis direction) of the first high temperature portion 5a. In, it is joined to the second high temperature portion 5b described later, and is joined to the temperature gradient holding portion 6 at the other end portion.
 図7Aおよび図7Bに示すように、複数の板状のフィン50aは、温度勾配保持部6に含まれる複数の線状熱伝導体60の少なくとも一部を接合する複数の接続部51aを有する。複数の板状のフィン50aに含まれる複数の接続部51aの各々は、図4に示すような温度勾配保持部6の端から長さw’(60)の部分を接続するように設けられる。図7Aおよび図7Bに示すような第1の高温部5aの中心軸の方向(X軸方向)における接続部51aの長さw(51a)は、図4に示すような温度勾配保持部6の中心軸の方向(X軸方向)における温度勾配保持部6の枠体65から突出する凸部の長さw’(60)に略等しい。 As shown in FIGS. 7A and 7B, the plurality of plate-shaped fins 50a have a plurality of connecting portions 51a for joining at least a part of the plurality of linear thermal conductors 60 included in the temperature gradient holding portion 6. Each of the plurality of connecting portions 51a included in the plurality of plate-shaped fins 50a is provided so as to connect the portion of length w'(60) from the end of the temperature gradient holding portion 6 as shown in FIG. The length w (51a) of the connecting portion 51a in the direction of the central axis (X-axis direction) of the first high temperature portion 5a as shown in FIGS. 7A and 7B is the temperature gradient holding portion 6 as shown in FIG. It is substantially equal to the length w'(60) of the convex portion protruding from the frame body 65 of the temperature gradient holding portion 6 in the direction of the central axis (X-axis direction).
 複数の板状のフィン50aが、温度勾配保持部6に含まれる複数の線状熱伝導体60の少なくとも一部を接続する長さw(51a)をもった複数の接続部51aを有する場合には、複数の板状のフィン50aを複数の線状熱伝導体60に接合することができる。その結果、第1の高温部5aから温度勾配保持部6への熱伝導性を向上させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率をさらに改善することができる。複数の線状熱伝導体60と接続部51aの接合には半田またはレーザを用いてもよい。 When the plurality of plate-shaped fins 50a have a plurality of connecting portions 51a having a length w (51a) for connecting at least a part of the plurality of linear thermal conductors 60 included in the temperature gradient holding portion 6. Can join a plurality of plate-shaped fins 50a to a plurality of linear thermal conductors 60. As a result, the thermal conductivity from the first high temperature portion 5a to the temperature gradient holding portion 6 can be improved. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves. A solder or a laser may be used for joining the plurality of linear thermal conductors 60 and the connecting portion 51a.
 また、複数の板状のフィン50aは、複数の板状のフィン50aに接合される複数の線状熱伝導体60をより確実に保持することができる。それにより、第1の高温部5aは、温度勾配保持部6をより確実に保持することができる。 Further, the plurality of plate-shaped fins 50a can more reliably hold the plurality of linear heat conductors 60 joined to the plurality of plate-shaped fins 50a. As a result, the first high temperature portion 5a can more reliably hold the temperature gradient holding portion 6.
 複数の板状のフィン50aの各々は、好ましくは、尖鋭な端部を有する。例えば、複数の板状のフィン50aの各々は、第1の高温部5aの中心軸の方向(X軸方向)における両端に尖鋭な端部を有する。ここで、尖鋭な端部は、複数の板状のフィン50aの各々における気体Gと接触する表面に垂直な断面において頂点を有する端部である。 Each of the plurality of plate-shaped fins 50a preferably has a sharp end. For example, each of the plurality of plate-shaped fins 50a has sharp ends at both ends in the direction of the central axis (X-axis direction) of the first high temperature portion 5a. Here, the sharp end is an end having an apex in a cross section perpendicular to the surface in contact with the gas G in each of the plurality of plate-shaped fins 50a.
 複数の板状のフィン50aの各々が、尖鋭な端部を有する場合には、気体Gが第1の高温部5aを通過する際に、気体Gは、複数の板状のフィン50aの各々の端部付近において尖鋭な端部を通過する。その結果、第1の高温部5aに含まれる複数の板状のフィン50aの各々の端部付近における気体Gの速度の低下を低減することができる。これにより、第1の高温部5aにおける気体Gの動的粘性抵抗をさらに減少させることができる。 When each of the plurality of plate-shaped fins 50a has a sharp end, when the gas G passes through the first high temperature portion 5a, the gas G is a member of each of the plurality of plate-shaped fins 50a. It passes through a sharp end near the end. As a result, it is possible to reduce a decrease in the velocity of the gas G in the vicinity of each end of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a. Thereby, the dynamic viscous resistance of the gas G in the first high temperature portion 5a can be further reduced.
 よって、熱音響装置1は、第1の高温部5aに含まれる複数の板状のフィン50aの各々の端部付近において効率的に気体Gを移動させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率をさらに改善することができる。 Therefore, the thermoacoustic device 1 can efficiently move the gas G near each end of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
 図8および図9は、熱交換器3に含まれる高温部5に含まれる第2の高温部5bの一例を示す図である。図9は、図8における線A-Aに沿った第2の高温部5bの断面を示す。図8および図9に示すように、第2の高温部5bは、例えば、略円筒の形状を有する。例えば、第2の高温部5bは、略円筒の形状を備えた枠体55bを含む。 8 and 9 are diagrams showing an example of a second high temperature portion 5b included in the high temperature portion 5 included in the heat exchanger 3. FIG. 9 shows a cross section of the second high temperature portion 5b along the line AA in FIG. As shown in FIGS. 8 and 9, the second high temperature portion 5b has, for example, a substantially cylindrical shape. For example, the second high temperature portion 5b includes a frame body 55b having a substantially cylindrical shape.
 図8および図9に示すように、第2の高温部5bは、複数の第1の格子状のフィン50bを含む。複数の第1の格子状のフィン50bは、後述するように、第1の高温部5aに含まれる複数の板状のフィン50aと接合される。 As shown in FIGS. 8 and 9, the second high temperature portion 5b includes a plurality of first lattice-shaped fins 50b. The plurality of first lattice-shaped fins 50b are joined to the plurality of plate-shaped fins 50a included in the first high temperature portion 5a, as will be described later.
 複数の第1の格子状のフィン50bは、例えば、第2の高温部5bの中心軸の方向(X軸方向)に対して直交する方向(Y軸またはZ軸に対して略45°の方向)において複数の格子を有する。複数の第1の格子状のフィン50bの各々は、第2の高温部5bの中心軸の方向(X軸方向)に対して直交する方向(Y軸またはZ軸に対して略45°の方向)において気体Gと接触する表面を有する。 The plurality of first grid-like fins 50b are, for example, in a direction (approximately 45 ° with respect to the Y-axis or Z-axis) orthogonal to the direction of the central axis (X-axis direction) of the second high-temperature portion 5b. ) Has a plurality of lattices. Each of the plurality of first grid-shaped fins 50b is in a direction (approximately 45 ° with respect to the Y-axis or Z-axis) orthogonal to the direction of the central axis (X-axis direction) of the second high temperature portion 5b. ) Has a surface in contact with the gas G.
 複数の第1の格子状のフィン50bの各々における気体Gと接触する表面は、第1の高温部5aに含まれる複数の板状のフィン50aの各々における気体Gと接触する表面と略45°の角度を有する。複数の第1の格子状のフィン50bにおける格子が、第1の高温部5aに含まれる複数の板状のフィン50aの各々における板に対して略45°の方向に配列されるため、複数の第1の格子状のフィン50bと、複数の第1の格子状のフィン50bに接合する複数の板状のフィン50aの形態をより確実に保持することができる。 The surface of each of the plurality of first lattice-shaped fins 50b in contact with the gas G is approximately 45 ° with the surface of each of the plurality of plate-shaped fins 50a contained in the first high temperature portion 5a in contact with the gas G. Has an angle of. Since the lattices in the plurality of first lattice-shaped fins 50b are arranged in a direction of approximately 45 ° with respect to the plates in each of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a, a plurality of plates are arranged. The morphology of the first lattice-shaped fins 50b and the plurality of plate-shaped fins 50a joined to the plurality of first lattice-shaped fins 50b can be more reliably held.
 図8に示すような複数の第1の格子状のフィン50bの間隔d(50b)は、第1の高温部5aに含まれる複数の板状のフィン50aの間隔d(50a)よりも大きい。複数の第1の格子状のフィン50bの間隔d(50b)は、例えば、複数の板状のフィン50aの間隔d(50a)の2倍以上3倍以下、例えば、4.5mm程度である。 The distance d (50b) of the plurality of first lattice-shaped fins 50b as shown in FIG. 8 is larger than the distance d (50a) of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a. The distance d (50b) between the plurality of first lattice-shaped fins 50b is, for example, twice or more and three times or less, for example, about 4.5 mm with respect to the distance d (50a) between the plurality of plate-shaped fins 50a.
 複数の第1の格子状のフィン50bの間隔d(50b)が、第1の高温部5aに含まれる複数の板状のフィン50aの間隔d(50a)よりも大きい場合には、気体Gが第2の高温部5bを通過する際に、気体Gは、複数の板状のフィン50aの間の間隙よりも大きい複数の第1の格子状のフィン50bの間の間隙を通過する。 When the distance d (50b) between the plurality of first lattice-shaped fins 50b is larger than the distance d (50a) between the plurality of plate-shaped fins 50a included in the first high temperature portion 5a, the gas G is produced. When passing through the second high temperature portion 5b, the gas G passes through the gaps between the plurality of first grid-like fins 50b, which are larger than the gaps between the plurality of plate-shaped fins 50a.
 その結果、第1の高温部5aを通過する気体Gよりも第2の高温部5bを通過する気体Gの速度の低下を低減することができる。これにより、気体Gが第2の高温部5bを通過する際の気体Gの動的粘性抵抗を気体Gが第1の高温部5aを通過する際の気体Gの動的粘性抵抗よりも低減することができる。例えば、気体Gが第2の高温部5bを通過する際の気体Gの動的粘性抵抗が無視できるように、複数の第1の格子状のフィン50bの間隔d(50b)を設定することができる。 As a result, it is possible to reduce the decrease in the velocity of the gas G passing through the second high temperature portion 5b as compared with the gas G passing through the first high temperature portion 5a. As a result, the dynamic viscous resistance of the gas G when the gas G passes through the second high temperature portion 5b is reduced as compared with the dynamic viscous resistance of the gas G when the gas G passes through the first high temperature portion 5a. be able to. For example, the spacing d (50b) of the plurality of first lattice-shaped fins 50b may be set so that the dynamic viscous resistance of the gas G when the gas G passes through the second high temperature portion 5b can be ignored. can.
 よって、熱音響装置1は、第2の高温部5bにおいて効率的に気体Gを移動させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率をさらに改善することができる。 Therefore, the thermoacoustic device 1 can efficiently move the gas G in the second high temperature portion 5b. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
 図8に示すような複数の第1の格子状のフィン50bの各々の厚さt(50b)は、第1の高温部5aに含まれる複数の板状のフィン50aの各々の厚さt(50a)よりも大きい。複数の第1の格子状のフィン50bの各々の厚さt(50b)は、例えば、複数の板状のフィン50aの各々の厚さt(50a)の2倍以上3倍以下、例えば、0.6mm程度である。 The thickness t (50b) of each of the plurality of first lattice-shaped fins 50b as shown in FIG. 8 is the thickness t (50b) of each of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a. Greater than 50a). The thickness t (50b) of each of the plurality of first lattice-shaped fins 50b is, for example, twice or more and three times or less, for example, 0, respectively, as the thickness t (50a) of each of the plurality of plate-shaped fins 50a. It is about 0.6 mm.
 複数の第1の格子状のフィン50bの各々の厚さt(50b)が、第1の高温部5aに含まれる複数の板状のフィン50aの各々の厚さt(50a)よりも大きい場合には、第1の格子状のフィン50bのフィン間隔が大きくなっても第2の高温部5bの熱伝導性を向上させることができる。例えば、第1の高温部5aの側における第2の高温部5bの端部における温度の分布をより均一にすることができる。その結果、第2の高温部5bから第1の高温部5aへの熱伝導性を向上させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率をさらに改善することができる。 When the thickness t (50b) of each of the plurality of first lattice-shaped fins 50b is larger than the thickness t (50a) of each of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a. In addition, the thermal conductivity of the second high temperature portion 5b can be improved even if the fin spacing of the first lattice-shaped fins 50b is increased. For example, the temperature distribution at the end of the second high temperature portion 5b on the side of the first high temperature portion 5a can be made more uniform. As a result, the thermal conductivity from the second high temperature portion 5b to the first high temperature portion 5a can be improved. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
 複数の第1の格子状のフィン50bの各々の厚さt(50b)が、第1の高温部5aに含まれる複数の板状のフィン50aの各々の厚さt(50a)よりも大きい場合には、複数の第1の格子状のフィン50bは、複数の第1の格子状のフィン50bに接合される複数の板状のフィン50aをより確実に保持することができる。それにより、第2の高温部5bは、第1の高温部5aをより確実に保持することができる。 When the thickness t (50b) of each of the plurality of first lattice-shaped fins 50b is larger than the thickness t (50a) of each of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a. The plurality of first grid-shaped fins 50b can more reliably hold the plurality of plate-shaped fins 50a joined to the plurality of first grid-shaped fins 50b. As a result, the second high temperature portion 5b can more reliably hold the first high temperature portion 5a.
 図9に示すような第2の高温部5bの中心軸の方向(X軸方向)における複数の第1の格子状のフィン50bの各々の長さw(50b)は、4mm以上6mm以下、例えば、5mm程度である。第2の高温部5bが枠体55bを有する場合、図9に示すように、複数の第1の格子状のフィン50bの各々は、第2の高温部5bの中心軸の方向(X軸方向)において第2の高温部5bの枠体55bから突出する凸部を有する。第2の高温部5bの中心軸の方向(X軸方向)における第2の高温部5bの枠体55bから突出する凸部の長さw’(55b)は、3mm以上4mm以下、例えば、3mm程度である。第2の高温部5bの枠体55bから突出する凸部は、後述するように、第3の高温部5cに接合される。なお、第2の高温部5bにおける枠体55bの有無に関わらず、複数の第1の格子状のフィン50bの各々は、第2の高温部5bの中心軸の方向(X軸方向)の一方の端部において、後述の第3の高温部5cに接合され、他方の端部において、第1の高温部5aに接合される。 The length w (50b) of each of the plurality of first lattice-shaped fins 50b in the direction of the central axis (X-axis direction) of the second high temperature portion 5b as shown in FIG. 9 is 4 mm or more and 6 mm or less, for example. It is about 5 mm. When the second high temperature portion 5b has the frame body 55b, as shown in FIG. 9, each of the plurality of first lattice-shaped fins 50b is in the direction of the central axis of the second high temperature portion 5b (X-axis direction). ), It has a convex portion protruding from the frame body 55b of the second high temperature portion 5b. The length w'(55b) of the convex portion protruding from the frame body 55b of the second high temperature portion 5b in the direction of the central axis of the second high temperature portion 5b (X-axis direction) is 3 mm or more and 4 mm or less, for example, 3 mm. Degree. The convex portion of the second high temperature portion 5b protruding from the frame body 55b is joined to the third high temperature portion 5c as described later. Regardless of the presence or absence of the frame body 55b in the second high temperature portion 5b, each of the plurality of first lattice-shaped fins 50b is one of the directions of the central axis (X-axis direction) of the second high temperature portion 5b. At the end of the above, it is joined to the third high temperature portion 5c described later, and at the other end, it is joined to the first high temperature portion 5a.
 図9に示すように、複数の第1の格子状のフィン50bは、第1の高温部5aに含まれる複数の板状のフィン50aの少なくとも一部を収容する複数の第1の凹部51bを有する。複数の第1の格子状のフィン50bに含まれる複数の第1の凹部51bの各々は、図7Aに示すような第1の高温部5aの枠体55aから突出する凸部を収容するように設けられる。図9に示すような第2の高温部5bの中心軸の方向(X軸方向)における第1の凹部51bの長さw(51b)は、図7Aに示すような第1の高温部5aの中心軸の方向(X軸方向)における第1の高温部5aの枠体55aから突出する凸部の長さw’(50a)に等しい。 As shown in FIG. 9, the plurality of first lattice-shaped fins 50b have a plurality of first recesses 51b accommodating at least a part of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a. Have. Each of the plurality of first recesses 51b included in the plurality of first lattice-shaped fins 50b accommodates a convex portion protruding from the frame body 55a of the first high temperature portion 5a as shown in FIG. 7A. Provided. The length w (51b) of the first recess 51b in the direction of the central axis (X-axis direction) of the second high temperature portion 5b as shown in FIG. 9 is the length w (51b) of the first high temperature portion 5a as shown in FIG. 7A. It is equal to the length w'(50a) of the convex portion protruding from the frame body 55a of the first high temperature portion 5a in the direction of the central axis (X-axis direction).
 複数の第1の格子状のフィン50bが、第1の高温部5aに含まれる複数の板状のフィン50aの少なくとも一部を収容する複数の第1の凹部51bを有する場合には、複数の第1の格子状のフィン50bを複数の板状のフィン50aに接合することができる。その結果、第2の高温部5bから第1の高温部5aへの熱伝導性を向上させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率をさらに改善することができる。 When the plurality of first lattice-shaped fins 50b have a plurality of first recesses 51b accommodating at least a part of the plurality of plate-shaped fins 50a included in the first high temperature portion 5a, the plurality of first lattice-shaped fins 50b may be present. The first lattice-shaped fins 50b can be joined to a plurality of plate-shaped fins 50a. As a result, the thermal conductivity from the second high temperature portion 5b to the first high temperature portion 5a can be improved. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
 また、複数の第1の格子状のフィン50bは、複数の第1の格子状のフィン50bに接合される複数の板状のフィン50aをより確実に保持することができる。それにより、第2の高温部5bは、第1の高温部5aをより確実に保持することができる。 Further, the plurality of first lattice-shaped fins 50b can more reliably hold the plurality of plate-shaped fins 50a joined to the plurality of first lattice-shaped fins 50b. As a result, the second high temperature portion 5b can more reliably hold the first high temperature portion 5a.
 図10および図11は、熱交換器3に含まれる高温部5に含まれる第3の高温部5cの一例を示す図である。図11は、図10における線A-Aに沿った第3の高温部5cの断面を示す。図10および図11に示すように、第3の高温部5cは、例えば、略円筒の形状を有する。例えば、第3の高温部5cは、略円筒の形状を備えた枠体55cを含む。 10 and 11 are diagrams showing an example of a third high temperature portion 5c included in the high temperature portion 5 included in the heat exchanger 3. FIG. 11 shows a cross section of the third high temperature portion 5c along the line AA in FIG. As shown in FIGS. 10 and 11, the third high temperature portion 5c has, for example, a substantially cylindrical shape. For example, the third high temperature portion 5c includes a frame body 55c having a substantially cylindrical shape.
 図10および図11に示すように、第3の高温部5cは、複数の第2の格子状のフィン50cを含む。複数の第2の格子状のフィン50cは、後述するように、第2の高温部5bに含まれる複数の第1の格子状のフィン50bと接合される。 As shown in FIGS. 10 and 11, the third high temperature portion 5c includes a plurality of second lattice-shaped fins 50c. The plurality of second grid-like fins 50c are joined to the plurality of first grid-like fins 50b included in the second high temperature portion 5b, as will be described later.
 複数の第2の格子状のフィン50cは、例えば、第3の高温部5cの中心軸の方向(X軸方向)に対して直交する方向(Y軸方向またはZ軸方向)において複数の格子を有する。複数の第2の格子状のフィン50cの各々は、第3の高温部5cの中心軸の方向(X軸方向)に対して直交する方向(Y軸方向またはZ軸方向)において気体Gと接触する表面を有する。 The plurality of second grid-shaped fins 50c form a plurality of grids in a direction (Y-axis direction or Z-axis direction) orthogonal to the direction of the central axis (X-axis direction) of the third high-temperature portion 5c, for example. Have. Each of the plurality of second grid-shaped fins 50c contacts the gas G in a direction (Y-axis direction or Z-axis direction) orthogonal to the direction of the central axis (X-axis direction) of the third high-temperature portion 5c. Has a surface to be.
 複数の第2の格子状のフィン50cの各々における気体Gと接触する表面は、第2の高温部5bに含まれる複数の第1の格子状のフィン50bにおける気体Gと接触する表面と略45°の角度を有する。複数の第2の格子状のフィン50cにおける格子が、第2の高温部5bに含まれる複数の第1の格子状のフィン50bの各々における格子に対して略45°の方向に配列されるため、複数の第2の格子状のフィン50cは、複数の第2の格子状のフィン50cに接合する複数の第1の格子状のフィン50bの形態をより確実に保持することができる。 The surface in contact with the gas G in each of the plurality of second grid-like fins 50c is substantially 45 with the surface in contact with the gas G in the plurality of first grid-like fins 50b included in the second high temperature portion 5b. Has an angle of °. Because the grids in the plurality of second grid-like fins 50c are arranged in a direction of approximately 45 ° with respect to the grids in each of the plurality of first grid-like fins 50b included in the second high temperature portion 5b. , The plurality of second grid-like fins 50c can more reliably retain the form of the plurality of first grid-like fins 50b joined to the plurality of second grid-like fins 50c.
 図10に示すような複数の第2の格子状のフィン50cの間隔d(50c)は、第2の高温部5bに含まれる複数の第1の格子状のフィン50bの間隔d(50b)よりも大きい。複数の第2の格子状のフィン50cの間隔d(50c)は、例えば、複数の第1の格子状のフィン50bの間隔d(50b)の2倍以上3倍以下、例えば、12.8mm程度である。 The distance d (50c) of the plurality of second grid-like fins 50c as shown in FIG. 10 is larger than the distance d (50b) of the plurality of first grid-like fins 50b included in the second high temperature portion 5b. Is also big. The distance d (50c) between the plurality of second grid-like fins 50c is, for example, twice or more and three times or less, for example, about 12.8 mm as the distance d (50b) between the plurality of first grid-like fins 50b. Is.
 複数の第2の格子状のフィン50cの間隔d(50c)が、第2の高温部5bに含まれる複数の第1の格子状のフィン50bの間隔d(50b)よりも大きい場合には、気体Gが第3の高温部5cを通過する際に、気体Gは、複数の第1の格子状のフィン50bの間の間隙よりも大きい複数の第2の格子状のフィン50cの間の間隙を通過する。 When the distance d (50c) of the plurality of second grid-like fins 50c is larger than the distance d (50b) of the plurality of first grid-like fins 50b included in the second high temperature portion 5b, When the gas G passes through the third high temperature portion 5c, the gas G has a gap between the plurality of second grid-like fins 50c that is larger than the gap between the plurality of first grid-like fins 50b. Pass through.
 その結果、第2の高温部5bを通過する気体Gよりも第3の高温部5cを通過する気体Gの速度の低下を低減することができる。これにより、気体Gが第3の高温部5cを通過する際の気体Gの動的粘性抵抗を気体Gが第2の高温部5bを通過する際の気体Gの動的粘性抵抗よりも低減することができる。例えば、気体Gが第3の高温部5cを通過する際の気体Gの動的粘性抵抗が無視できるように、複数の第2の格子状のフィン50cの間隔d(50c)を設定することができる。 As a result, it is possible to reduce the decrease in the velocity of the gas G passing through the third high temperature portion 5c as compared with the gas G passing through the second high temperature portion 5b. As a result, the dynamic viscous resistance of the gas G when the gas G passes through the third high temperature portion 5c is reduced as compared with the dynamic viscous resistance of the gas G when the gas G passes through the second high temperature portion 5b. be able to. For example, the interval d (50c) of the plurality of second lattice-shaped fins 50c may be set so that the dynamic viscous resistance of the gas G when the gas G passes through the third high temperature portion 5c can be ignored. can.
 よって、熱音響装置1は、第3の高温部5cにおいて効率的に気体Gを移動させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率をさらに改善することができる。 Therefore, the thermoacoustic device 1 can efficiently move the gas G in the third high temperature portion 5c. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
 図10に示すような複数の第2の格子状のフィン50cの各々の厚さt(50c)は、第2の高温部5bに含まれる複数の第1の格子状のフィン50bの各々の厚さt(50b)よりも大きい。複数の第2の格子状のフィン50cの各々の厚さt(50c)は、例えば、複数の第1の格子状のフィン50bの各々の厚さt(50b)の2倍以上3倍以下、例えば、1.6mm程度である。 The thickness t (50c) of each of the plurality of second grid-like fins 50c as shown in FIG. 10 is the thickness of each of the plurality of first grid-like fins 50b included in the second high temperature portion 5b. Is greater than t (50b). The thickness t (50c) of each of the plurality of second grid-like fins 50c is, for example, twice or more and three times or less the thickness t (50b) of each of the plurality of first grid-like fins 50b. For example, it is about 1.6 mm.
 複数の第2の格子状のフィン50cの各々の厚さt(50c)が、第2の高温部5bに含まれる複数の第1の格子状のフィン50bの各々の厚さt(50b)よりも大きい場合には、第2の格子状のフィン50cの間隔が大きくなっても第3の高温部5cの熱伝導性を向上させることができる。例えば、第2の高温部5bの側における第3の高温部5cの端部における温度の分布をより均一にすることができる。その結果、第3の高温部5cから第2の高温部5bへの熱伝導性を向上させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率をさらに改善することができる。 The thickness t (50c) of each of the plurality of second grid-like fins 50c is higher than the thickness t (50b) of each of the plurality of first grid-like fins 50b contained in the second high temperature portion 5b. If it is also large, the thermal conductivity of the third high temperature portion 5c can be improved even if the distance between the second lattice-shaped fins 50c is large. For example, the temperature distribution at the end of the third high temperature portion 5c on the side of the second high temperature portion 5b can be made more uniform. As a result, the thermal conductivity from the third high temperature portion 5c to the second high temperature portion 5b can be improved. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
 複数の第2の格子状のフィン50cの各々の厚さt(50c)が、第2の高温部5bに含まれる複数の第1の格子状のフィン50bの各々の厚さt(50b)よりも大きい場合には、複数の第2の格子状のフィン50cは、複数の第2の格子状のフィン50cに接合される複数の第1の格子状のフィン50bをより確実に保持することができる。それにより、第3の高温部5cは、第2の高温部5bをより確実に保持することができる。 The thickness t (50c) of each of the plurality of second grid-like fins 50c is higher than the thickness t (50b) of each of the plurality of first grid-like fins 50b contained in the second high temperature portion 5b. If also large, the plurality of second grid-like fins 50c may more reliably hold the plurality of first grid-like fins 50b joined to the plurality of second grid-like fins 50c. can. As a result, the third high temperature portion 5c can more reliably hold the second high temperature portion 5b.
 図11に示すような第3の高温部5cの中心軸の方向(X軸方向)における複数の第2の格子状のフィン50cの各々の長さw(50c)は、5mm以上6mm以下、例えば、5mm程度である。なお、第3の高温部5cが枠体55cを有する場合、複数の第2の格子状のフィン50cの各々は、第3の高温部5cの中心軸の方向(X軸方向)において第3の高温部5cの枠体55cから突出する凸部を有するものではない。また、第3の高温部5cにおける枠体55cの有無に関わらず、複数の第2の格子状のフィン50cの各々は、第3の高温部5cの中心軸の方向(X軸方向)の一方の端部において、第2の高温部5bに接合される。 The length w (50c) of each of the plurality of second lattice-shaped fins 50c in the direction of the central axis (X-axis direction) of the third high temperature portion 5c as shown in FIG. 11 is 5 mm or more and 6 mm or less, for example. It is about 5 mm. When the third high temperature portion 5c has the frame body 55c, each of the plurality of second lattice-shaped fins 50c has a third in the direction of the central axis (X-axis direction) of the third high temperature portion 5c. It does not have a convex portion protruding from the frame body 55c of the high temperature portion 5c. Further, regardless of the presence or absence of the frame body 55c in the third high temperature portion 5c, each of the plurality of second lattice-shaped fins 50c is one of the directions of the central axis (X-axis direction) of the third high temperature portion 5c. At the end of the, it is joined to the second high temperature part 5b.
 図11に示すように、複数の第2の格子状のフィン50cは、第2の高温部5bに含まれる複数の第1の格子状のフィン50bの少なくとも一部を収容する複数の第2の凹部51cを有する。複数の第2の格子状のフィン50cに含まれる複数の第2の凹部51cの各々は、図9に示すような第2の高温部5bの枠体55bから突出する凸部を収容するように設けられる。図11に示すような第3の高温部5cの中心軸の方向(X軸方向)における第2の凹部51cの長さw(51c)は、図9に示すような第2の高温部5bの中心軸の方向(X軸方向)における第2の高温部5bの枠体55bから突出する凸部の長さw’(50b)に等しい。なお、図11に示すように、複数の第2の格子状のフィン50cの各々の長さw(50c)から第2の凹部51cの長さw(51c)を減算することによって得られる長さをw’(50c)によって表す。 As shown in FIG. 11, the plurality of second grid-like fins 50c accommodates at least a part of the plurality of first grid-like fins 50b contained in the second high temperature portion 5b. It has a recess 51c. Each of the plurality of second recesses 51c included in the plurality of second lattice-shaped fins 50c accommodates a convex portion protruding from the frame body 55b of the second high temperature portion 5b as shown in FIG. Provided. The length w (51c) of the second recess 51c in the direction of the central axis (X-axis direction) of the third high temperature portion 5c as shown in FIG. 11 is the length w (51c) of the second high temperature portion 5b as shown in FIG. It is equal to the length w'(50b) of the convex portion protruding from the frame body 55b of the second high temperature portion 5b in the direction of the central axis (X-axis direction). As shown in FIG. 11, the length obtained by subtracting the length w (51c) of the second recess 51c from the length w (50c) of each of the plurality of second lattice-shaped fins 50c. Is represented by w'(50c).
 複数の第2の格子状のフィン50cが、第2の高温部5bに含まれる複数の第1の格子状のフィン50bの少なくとも一部を収容する複数の第2の凹部51cを有する場合には、複数の第2の格子状のフィン50cを複数の第1の格子状のフィン50bに接合することができる。その結果、第3の高温部5cから第2の高温部5bへの熱伝導性を向上させることができる。それに応じて、熱音響装置1は、熱エネルギーを音波の音響エネルギーに変換する効率をさらに改善することができる。 When the plurality of second grid-like fins 50c have a plurality of second recesses 51c accommodating at least a part of the plurality of first grid-like fins 50b included in the second high temperature portion 5b. , A plurality of second grid-like fins 50c can be joined to a plurality of first grid-like fins 50b. As a result, the thermal conductivity from the third high temperature portion 5c to the second high temperature portion 5b can be improved. Accordingly, the thermoacoustic device 1 can further improve the efficiency of converting thermal energy into acoustic energy of sound waves.
 また、複数の第2の格子状のフィン50cは、複数の第2の格子状のフィン50cに接合される複数の第1の格子状のフィン50bをより確実に保持することができる。それにより、第3の高温部5cは、第2の高温部5bをより確実に保持することができる。 Further, the plurality of second grid-like fins 50c can more reliably hold the plurality of first grid-like fins 50b joined to the plurality of second grid-like fins 50c. As a result, the third high temperature portion 5c can more reliably hold the second high temperature portion 5b.
 複数の板状のフィン50a、複数の第1の格子状のフィン50b、および複数の第2の格子状のフィン50cの各々は、例えば、金属で形成される。この場合には、複数の板状のフィン50a、複数の第1の格子状のフィン50b、および複数の第2の格子状のフィン50cの各々の熱伝導率を向上させることができる。複数の板状のフィン50a、複数の第1の格子状のフィン50b、および複数の第2の格子状のフィン50cの各々を形成する金属は、例えば、銅である。この場合には、複数の板状のフィン50a、複数の第1の格子状のフィン50b、および複数の第2の格子状のフィン50cの各々のコストを低減することができる。 Each of the plurality of plate-shaped fins 50a, the plurality of first grid-shaped fins 50b, and the plurality of second grid-shaped fins 50c is formed of, for example, metal. In this case, the thermal conductivity of each of the plurality of plate-shaped fins 50a, the plurality of first grid-shaped fins 50b, and the plurality of second grid-shaped fins 50c can be improved. The metal forming each of the plurality of plate-shaped fins 50a, the plurality of first lattice-shaped fins 50b, and the plurality of second lattice-shaped fins 50c is, for example, copper. In this case, the cost of each of the plurality of plate-shaped fins 50a, the plurality of first grid-shaped fins 50b, and the plurality of second grid-shaped fins 50c can be reduced.
 図12は、熱交換器3に含まれる温度勾配保持部6および熱交換器3に含まれる高温部5に含まれる第1の高温部5a、第2の高温部5b、および第3の高温部5cの接合の一例を示す図である。 FIG. 12 shows a first high temperature portion 5a, a second high temperature portion 5b, and a third high temperature portion included in the temperature gradient holding portion 6 included in the heat exchanger 3 and the high temperature portion 5 included in the heat exchanger 3. It is a figure which shows an example of the junction of 5c.
 図12に示すように、温度勾配保持部6の複数の線状熱伝導体60の端から長さw‘(60)の部分を第1の高温部5aに含まれる複数の板状のフィン50aに含まれる複数の接続部51aに接合することによって、温度勾配保持部6を第1の高温部5aに接合する。第1の高温部5aの枠体55aから突出する凸部を第2の高温部5bに含まれる複数の第1の格子状のフィン50bに含まれる複数の第1の凹部51bに挿入することによって、第1の高温部5aを第2の高温部5bに接合する。第2の高温部5bの枠体55bから突出する凸部を第3の高温部5cに含まれる複数の第2の格子状のフィン50cに含まれる複数の第2の凹部51cに挿入することによって、第2の高温部5bを第3の高温部5cに接合する。 As shown in FIG. 12, a plurality of plate-shaped fins 50a including a portion of the temperature gradient holding portion 6 having a length w'(60) from the end of the plurality of linear heat conductors 60 in the first high temperature portion 5a. The temperature gradient holding portion 6 is joined to the first high temperature portion 5a by joining to the plurality of connecting portions 51a included in the above. By inserting the convex portion of the first high temperature portion 5a protruding from the frame body 55a into the plurality of first concave portions 51b included in the plurality of first lattice-shaped fins 50b included in the second high temperature portion 5b. , The first high temperature portion 5a is joined to the second high temperature portion 5b. By inserting the convex portion of the second high temperature portion 5b protruding from the frame body 55b into the plurality of second concave portions 51c included in the plurality of second lattice-shaped fins 50c included in the third high temperature portion 5c. , The second high temperature portion 5b is joined to the third high temperature portion 5c.
 複数の板状のフィン50a、複数の第1の格子状のフィン50b、および複数の第2の格子状のフィン50cの各々が、金属で形成される場合には、複数の板状のフィン50a、複数の第1の格子状のフィン50b、および複数の第2の格子状のフィン50cの接合に半田またはレーザを用いてもよい。この場合には、複数の第2の板状のフィン50a、複数の第1の格子状のフィン50b、および複数の第2の格子状のフィン50cをより確実に接合することができる。 When each of the plurality of plate-shaped fins 50a, the plurality of first grid-shaped fins 50b, and the plurality of second grid-shaped fins 50c are made of metal, the plurality of plate-shaped fins 50a , A solder or a laser may be used to join the plurality of first grid-like fins 50b and the plurality of second grid-like fins 50c. In this case, the plurality of second plate-shaped fins 50a, the plurality of first grid-shaped fins 50b, and the plurality of second grid-shaped fins 50c can be more reliably joined.
 このように、温度勾配保持部6、第1の高温部5a、第2の高温部5b、および第3の高温部5cを接合することができる。なお、熱交換器3の中心軸の方向(X軸方向)における温度勾配保持部6、第1の高温部5a、第2の高温部5b、および第3の高温部5cの長さは、w(60)+w’(50a)+w’(50b)+w’(50c)である。 In this way, the temperature gradient holding portion 6, the first high temperature portion 5a, the second high temperature portion 5b, and the third high temperature portion 5c can be joined. The lengths of the temperature gradient holding portion 6, the first high temperature portion 5a, the second high temperature portion 5b, and the third high temperature portion 5c in the direction of the central axis (X-axis direction) of the heat exchanger 3 are w. (60) + w'(50a) + w'(50b) + w'(50c).
 熱音響装置1においては、導波管2は気体Gが充填されるとしたが、導波管2は、気体G以外の媒体が充填されるとしてもよい。例えば、導波管2は、音波が有効に生成、増幅される範囲において液体が充填されるとしてもよい。 In the thermoacoustic device 1, the waveguide 2 is filled with the gas G, but the waveguide 2 may be filled with a medium other than the gas G. For example, the waveguide 2 may be filled with a liquid in a range in which sound waves are effectively generated and amplified.
 熱音響装置1においては、導波管2が単一のループの形状を有するとしたが、導波管2は、例えば、少なくとも一つの管で連結された複数のループの形状を有するとしてもよい。この場合には、熱音響装置1は、導波管2の同一のループまたは異なるループに複数の熱交換器3や複数の変換器8を含むものであってもよい。 In the thermoacoustic device 1, the waveguide 2 has the shape of a single loop, but the waveguide 2 may have the shape of a plurality of loops connected by at least one tube, for example. .. In this case, the thermoacoustic device 1 may include a plurality of heat exchangers 3 and a plurality of converters 8 in the same loop or different loops of the waveguide 2.
 熱音響装置1においては、励振器7によって導波管2に充填された気体Gを振動または励振させるようにしたが、熱音響装置1は、励振器7を含まないものであってもよい。 In the thermoacoustic device 1, the gas G filled in the waveguide 2 is vibrated or excited by the exciter 7, but the thermoacoustic device 1 may not include the exciter 7.
 この場合には、熱交換器3の低温部4と高温部5との間に温度勾配が生じる際に、導波管2に存在する1/fノイズを音源として気体Gに音波が生じる。気体Gに生じる音波は、低温部4と高温部5との間に生じる温度勾配によって増幅されると共に導波管2内において安定して共振する。 In this case, when a temperature gradient is generated between the low temperature portion 4 and the high temperature portion 5 of the heat exchanger 3, sound waves are generated in the gas G using the 1 / f noise existing in the waveguide 2 as a sound source. The sound wave generated in the gas G is amplified by the temperature gradient generated between the low temperature portion 4 and the high temperature portion 5, and resonates stably in the waveguide 2.
 このように、熱音響装置1は、励振器7を含まない場合であっても、熱音響装置1は、例えば、熱交換器3に供給される熱エネルギーを気体Gに生じる音波の音響エネルギーに変換することができる。 As described above, even when the thermoacoustic device 1 does not include the exciter 7, the thermoacoustic device 1 uses, for example, the thermal energy supplied to the heat exchanger 3 as the acoustic energy of the sound sound generated in the gas G. Can be converted.
 熱音響装置1においては、低温部4が第1の低温部4a、第2の低温部4b、および第3の低温部4cのような3個の低温部で構成されると共に高温部5が第1の高温部5a、第2の高温部5b、および第3の高温部5cのような3個の高温部で構成されるとしたが、低温部4および高温部5をそれぞれ1個、2個、または4個以上の低温部および1個、2個、または4個以上の高温部で構成することができる。 In the thermoacoustic device 1, the low temperature section 4 is composed of three low temperature sections such as the first low temperature section 4a, the second low temperature section 4b, and the third low temperature section 4c, and the high temperature section 5 is the first. Although it is assumed that it is composed of three high-temperature parts such as the high-temperature part 5a, the second high-temperature part 5b, and the third high-temperature part 5c of 1, the low-temperature part 4 and the high-temperature part 5 are each one or two. , Or 4 or more low temperature parts and 1, 2, or 4 or more high temperature parts.
 熱音響装置1においては、温度勾配保持部6の枠体65、第1の高温部5aの枠体55a、第2の高温部5bの枠体55b、および第3の高温部5cの枠体55cを用いて高温部5の構成を説明した。高温部5における第1の高温部5a、第2の高温部5b、および第3の高温部5cの夫々は既に記載された接合により確実に保持されているため枠体55a、枠体55b及び枠体55cは無くてもよい。枠体65は、複数の線状熱伝導体60と複数の板状のフィン50aの接続部51aを介した接合が半田またはレーザで行われ、複数の線状熱伝導体60の剛性が十分であれば省略することも可能である。 In the thermoacoustic device 1, the frame 65 of the temperature gradient holding portion 6, the frame 55a of the first high temperature portion 5a, the frame 55b of the second high temperature portion 5b, and the frame 55c of the third high temperature portion 5c. The configuration of the high temperature section 5 was described with reference to. Since each of the first high temperature portion 5a, the second high temperature portion 5b, and the third high temperature portion 5c in the high temperature portion 5 is securely held by the joint described above, the frame body 55a, the frame body 55b, and the frame Body 55c may be absent. In the frame body 65, the plurality of linear heat conductors 60 and the plurality of plate-shaped fins 50a are joined via a connecting portion 51a by soldering or a laser, and the rigidity of the plurality of linear heat conductors 60 is sufficient. If there is, it can be omitted.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. For this reason, the broader aspects of the invention are not limited to the particular details and representative embodiments expressed and described as described above. Thus, various modifications can be made without departing from the spirit or scope of the general concept of the invention as defined by the appended claims and their equivalents.
 1  熱音響装置
 2  導波管
 3  熱交換器
 4  低温部
 5  高温部
 6  温度勾配保持部
 7  励振器
 8  変換器
 11  第1の熱伝導部材
 12  第2の熱伝導部材
 50a  板状のフィン
 51a  接続部
 50b  第1の格子状のフィン
 51b  第1の凹部
 50c  第2の格子状のフィン
 51c  第2の凹部
 55a,55b,55c  枠体
 60  線状熱伝導体
 61  尖鋭な端部
 62  鏡面
 65  枠体
 G  気体
1 Thermal acoustic device 2 waveguide 3 heat exchanger 4 low temperature part 5 high temperature part 6 temperature gradient holding part 7 exciter 8 converter 11 first heat conductive member 12 second heat conductive member 50a plate-shaped fin 51a connection Part 50b First grid-like fin 51b First recess 50c Second grid-like fin 51c Second recess 55a, 55b, 55c Frame 60 Linear heat conductor 61 Sharp end 62 Mirror surface 65 Frame G gas

Claims (15)

  1.  媒体が充填されるループ状の導波管と、
     前記導波管内に設けられ、低温部、高温部、および前記低温部と前記高温部との間に設けられ、前記低温部と前記高温部との間に生じた温度勾配を保持する温度勾配保持部を含む熱交換器と、
     を備え、
     前記温度勾配保持部は、複数の線状熱伝導体を含む、
     熱音響装置。
    A loop-shaped waveguide filled with a medium,
    A temperature gradient holding provided in the waveguide and provided between the low temperature portion, the high temperature portion, and the low temperature portion and the high temperature portion to hold the temperature gradient generated between the low temperature portion and the high temperature portion. With the heat exchanger including the part
    With
    The temperature gradient holding portion includes a plurality of linear heat conductors.
    Thermoacoustic device.
  2.  前記複数の線状熱伝導体の各々は、尖鋭な端部を有する、
     請求項1に記載の熱音響装置。
    Each of the plurality of linear thermal conductors has a sharp end.
    The thermoacoustic device according to claim 1.
  3.  前記複数の線状熱伝導体の各々の表面は、鏡面を有する、
     請求項1または2に記載の熱音響装置。
    Each surface of the plurality of linear thermal conductors has a mirror surface.
    The thermoacoustic device according to claim 1 or 2.
  4.  前記低温部および前記高温部の少なくとも一方は、前記複数の線状熱伝導体と接合される複数の板状のフィンを含む、
     請求項1から3のいずれか一項に記載の熱音響装置。
    At least one of the low temperature portion and the high temperature portion includes a plurality of plate-shaped fins bonded to the plurality of linear thermal conductors.
    The thermoacoustic device according to any one of claims 1 to 3.
  5.  前記複数の板状のフィンの間隔は、前記複数の線状熱伝導体の間隔よりも大きい、
     請求項4に記載の熱音響装置。
    The distance between the plurality of plate-shaped fins is larger than the distance between the plurality of linear thermal conductors.
    The thermoacoustic device according to claim 4.
  6.  前記複数の板状のフィンの各々の厚さは、前記複数の線状熱伝導体の各々の直径よりも大きい、
     請求項4または5に記載の熱音響装置。
    The thickness of each of the plurality of plate-shaped fins is larger than the diameter of each of the plurality of linear heat conductors.
    The thermoacoustic device according to claim 4 or 5.
  7.  前記複数の板状のフィンは、前記複数の線状熱伝導体の少なくとも一部を接合する複数の接続部を有する、
     請求項4から6のいずれか一項に記載の熱音響装置。
    The plurality of plate-shaped fins have a plurality of connecting portions for joining at least a part of the plurality of linear thermal conductors.
    The thermoacoustic apparatus according to any one of claims 4 to 6.
  8.  前記低温部および前記高温部の少なくとも一方は、前記複数の板状のフィンと接合される複数の第1の格子状のフィンを含む、
     請求項4から7のいずれか一項に記載の熱音響装置。
    At least one of the low temperature portion and the high temperature portion includes a plurality of first lattice-shaped fins joined to the plurality of plate-shaped fins.
    The thermoacoustic apparatus according to any one of claims 4 to 7.
  9.  前記複数の第1の格子状のフィンの間隔は、前記複数の板状のフィンの間隔よりも大きい、
     請求項8に記載の熱音響装置。
    The distance between the plurality of first grid-like fins is larger than the distance between the plurality of plate-like fins.
    The thermoacoustic device according to claim 8.
  10.  前記複数の第1の格子状のフィンの各々の厚さは、前記複数の板状のフィンの各々の厚さよりも大きい、
     請求項8または9に記載の熱音響装置。
    The thickness of each of the plurality of first lattice-shaped fins is larger than the thickness of each of the plurality of plate-shaped fins.
    The thermoacoustic device according to claim 8 or 9.
  11.  前記複数の第1の格子状のフィンは、前記複数の板状のフィンの少なくとも一部を収容する複数の第1の凹部を有する、
     請求項8から10のいずれか一項に記載の熱音響装置。
    The plurality of first lattice-shaped fins have a plurality of first recesses accommodating at least a part of the plurality of plate-shaped fins.
    The thermoacoustic apparatus according to any one of claims 8 to 10.
  12.  前記低温部および前記高温部の少なくとも一方は、前記複数の第1の格子状のフィンと接合される複数の第2の格子状のフィンを含む、
     請求項8から11のいずれか一項に記載の熱音響装置。
    At least one of the low temperature portion and the high temperature portion includes a plurality of second grid-like fins joined to the plurality of first grid-like fins.
    The thermoacoustic apparatus according to any one of claims 8 to 11.
  13.  前記複数の第2の格子状のフィンの間隔は、前記複数の第1の格子状のフィンの間隔よりも大きい、
     請求項12に記載の熱音響装置。
    The distance between the plurality of second grid-like fins is larger than the distance between the plurality of first grid-like fins.
    The thermoacoustic device according to claim 12.
  14.  前記複数の第2の格子状のフィンの各々の厚さは、前記複数の第1の格子状のフィンの各々の厚さよりも大きい、
     請求項12または13に記載の熱音響装置。
    The thickness of each of the plurality of second grid-like fins is larger than the thickness of each of the plurality of first grid-like fins.
    The thermoacoustic device according to claim 12 or 13.
  15.  前記複数の第2の格子状のフィンは、前記複数の第1の格子状のフィンの少なくとも一部を収容する複数の第2の凹部を有する、
     請求項12から14のいずれか一項に記載の熱音響装置。
    The plurality of second grid-like fins have a plurality of second recesses accommodating at least a part of the plurality of first grid-like fins.
    The thermoacoustic apparatus according to any one of claims 12 to 14.
PCT/JP2020/003549 2019-11-01 2020-01-30 Thermoacoustic device WO2021152798A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/003549 WO2021152798A1 (en) 2020-01-30 2020-01-30 Thermoacoustic device
PCT/JP2020/031854 WO2021084868A1 (en) 2019-11-01 2020-08-24 Thermoacoustic device
JP2021554106A JPWO2021084868A1 (en) 2019-11-01 2020-08-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003549 WO2021152798A1 (en) 2020-01-30 2020-01-30 Thermoacoustic device

Publications (1)

Publication Number Publication Date
WO2021152798A1 true WO2021152798A1 (en) 2021-08-05

Family

ID=77078490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003549 WO2021152798A1 (en) 2019-11-01 2020-01-30 Thermoacoustic device

Country Status (1)

Country Link
WO (1) WO2021152798A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195209A1 (en) * 2022-04-06 2023-10-12 株式会社デンソー Heat-sound converter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625517A (en) * 1985-01-22 1986-12-02 Sulzer Brothers Limited Thermoacoustic device
US5456082A (en) * 1994-06-16 1995-10-10 The Regents Of The University Of California Pin stack array for thermoacoustic energy conversion
JP2012047440A (en) * 2010-07-26 2012-03-08 Nippon Electric Glass Co Ltd Stack, manufacturing method thereof, and heat-acoustic device using the stack
JP2015021671A (en) * 2013-07-19 2015-02-02 いすゞ自動車株式会社 Accumulator and accumulator manufacturing method
JP2017198116A (en) * 2016-04-26 2017-11-02 東邦瓦斯株式会社 Thermoacoustic device and control method therefor
JP2018066501A (en) * 2016-10-18 2018-04-26 株式会社ジェイテクト Thermoacoustic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625517A (en) * 1985-01-22 1986-12-02 Sulzer Brothers Limited Thermoacoustic device
US5456082A (en) * 1994-06-16 1995-10-10 The Regents Of The University Of California Pin stack array for thermoacoustic energy conversion
JP2012047440A (en) * 2010-07-26 2012-03-08 Nippon Electric Glass Co Ltd Stack, manufacturing method thereof, and heat-acoustic device using the stack
JP2015021671A (en) * 2013-07-19 2015-02-02 いすゞ自動車株式会社 Accumulator and accumulator manufacturing method
JP2017198116A (en) * 2016-04-26 2017-11-02 東邦瓦斯株式会社 Thermoacoustic device and control method therefor
JP2018066501A (en) * 2016-10-18 2018-04-26 株式会社ジェイテクト Thermoacoustic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195209A1 (en) * 2022-04-06 2023-10-12 株式会社デンソー Heat-sound converter

Similar Documents

Publication Publication Date Title
Yazaki et al. A pistonless Stirling cooler
Biwa et al. Low temperature differential thermoacoustic Stirling engine
TWI311191B (en) Heat sink
US7404296B2 (en) Cooling device
CN110168291B (en) Thermoacoustic device
JP2006189218A (en) Thermoacoustic device
US9635468B2 (en) Encapsulated thermoacoustic projector based on freestanding carbon nanotube film
WO2021152798A1 (en) Thermoacoustic device
JP2012202586A (en) Stack for thermoacoustic device and manufacturing method of stack for thermoacoustic device
JP2019190718A (en) Thermoacoustic device
JP6884491B2 (en) Thermoacoustic engine
Kajurek et al. Design and simulation of a small capacity thermoacoustic refrigerator
WO2021084868A1 (en) Thermoacoustic device
JP6257412B2 (en) Method for manufacturing thermal / sonic wave conversion component, thermal / sonic wave conversion component, and thermal / sonic wave transducer
US10480832B2 (en) Thermoacoustic energy converting element part and thermoacoustic energy converter
WO2020045600A1 (en) Thermoacoustic device
JP2010071559A (en) Thermoacoustic cooling device
Senga et al. Design and experimental verification of a cascade traveling-wave thermoacoustic amplifier
JP6178735B2 (en) Thermal / sonic conversion component, thermal / sonic transducer, and method for manufacturing thermal / sonic conversion component
Biwa et al. Direct measurements of steady heat transfer maintained by oscillating pipe flow in thermoacoustic system
JP6894050B1 (en) Thermoacoustic device
WO2022024426A1 (en) Thermoacoustic device
Dhuchakallaya et al. The performance improvement of a cascade thermoacoustic engine by adjusting the acoustic impedance in the regenerator
WO2020045675A1 (en) Thermoacoustic device
Novotný et al. Standing-wave thermoacoustic engines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP