JP2005127633A - Pulse pipe refrigerating machine - Google Patents

Pulse pipe refrigerating machine Download PDF

Info

Publication number
JP2005127633A
JP2005127633A JP2003364582A JP2003364582A JP2005127633A JP 2005127633 A JP2005127633 A JP 2005127633A JP 2003364582 A JP2003364582 A JP 2003364582A JP 2003364582 A JP2003364582 A JP 2003364582A JP 2005127633 A JP2005127633 A JP 2005127633A
Authority
JP
Japan
Prior art keywords
pulse tube
working gas
heat exchanger
pulse pipe
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003364582A
Other languages
Japanese (ja)
Inventor
Shin Matsumoto
伸 松本
Yukio Yasukawa
保川  幸雄
Yuji Tsukahara
祐二 塚原
Yoshinori Mizoguchi
義則 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003364582A priority Critical patent/JP2005127633A/en
Publication of JP2005127633A publication Critical patent/JP2005127633A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1407Pulse-tube cycles with pulse tube having in-line geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1412Pulse-tube cycles characterised by heat exchanger details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1423Pulse tubes with basic schematic including an inertance tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit the impairing of the performance when a pulse pipe refrigerating machine is mounted in a state of keeping a high-temperature side of a pulse pipe down. <P>SOLUTION: In this pulse pipe refrigerating machine comprising a compressor, a cold storage unit 2, the pulse pipe 3 and a phase control part, and provided with a heat exchanger 6 at a low-temperature end 5 formed between the cold storage unit 2 and the pulse pipe 3, a straightening unit 12 is inserted between the heat exchanger 6 and the pulse pipe 3 for straightening the flow of a working gas flowing into the pulse pipe 3 through the heat exchanger 6. Whereby a distribution of a speed of the working gas flowing into the pulse pipe 3 is unified, the generation of the natural convection and vortex of the working gas in a case of keeping the high-temperature side of the pulse pipe down, can be minimized, and the impairing of the performance can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、パルス管内での作動ガスのピストン作用により極低温を発生させるパルス管冷凍機に関する。     The present invention relates to a pulse tube refrigerator that generates a cryogenic temperature by a piston action of a working gas in a pulse tube.

上記パルス管冷凍機については、例えば特許文献1や特許文献2に記載されているが、図9に従来のパルス管冷凍機の概略構成を示す。図9において、パルス管冷凍機は、圧縮機1、蓄冷器2、パルス管3、位相制御部4を備え、蓄冷器2とパルス管3との間に形成される低温端5に熱交換器6が配置されている。位相制御部4はイナータンスチューブ7とバッファタンク8とからなり、熱交換器6の周囲には伝熱体9が設けられている。このパルス管冷凍機の系内には作動ガス(冷媒ガス)として、例えばヘリウムが封入されている。   The pulse tube refrigerator is described in, for example, Patent Document 1 and Patent Document 2, and FIG. 9 shows a schematic configuration of a conventional pulse tube refrigerator. In FIG. 9, the pulse tube refrigerator includes a compressor 1, a regenerator 2, a pulse tube 3, and a phase controller 4, and a heat exchanger at a low temperature end 5 formed between the regenerator 2 and the pulse tube 3. 6 is arranged. The phase control unit 4 includes an inertance tube 7 and a buffer tank 8, and a heat transfer body 9 is provided around the heat exchanger 6. For example, helium is enclosed as a working gas (refrigerant gas) in the system of the pulse tube refrigerator.

このような構成のパルス管冷凍機の動作原理はすでに知られている通り、圧縮機1の運転でピストン1aが往復運動し、作動ガスが圧縮、膨張を繰り返すと、この作動ガスは圧縮機1から蓄冷器2、パルス管3を通り位相制御部4に達する一連の系の中を往復動流として流れる。その際、作動ガスはイナータンスチューブ7とバッファタンク8とからなる位相制御部4の中をほぼ正弦波的な圧力振幅を伴って流れ、作動ガスの圧力変化と流量変化との間に位相差が発生する。   As the operation principle of the pulse tube refrigerator having such a configuration is already known, when the piston 1a reciprocates by the operation of the compressor 1 and the working gas is repeatedly compressed and expanded, the working gas is compressed into the compressor 1. From the regenerator 2 and the pulse tube 3 to the phase control unit 4 as a reciprocating flow. At that time, the working gas flows in the phase control unit 4 composed of the inertance tube 7 and the buffer tank 8 with a substantially sinusoidal pressure amplitude, and the phase difference between the pressure change and the flow rate change of the working gas. Will occur.

これを電気回路に例えると、イナータンスチューブ7はインダクタンス、レジスタンス、キャパシタンス成分、またバッファタンク8はキャパシタンス成分に相当し、作動ガスの圧力に対する流量の位相差を−90°から+90°まで変化させる。その結果、冷凍機の運転時にはパルス管3内で圧力と流量との間に位相差が生じ、この圧力と流量によるPV仕事により低温端5に寒冷が発生する。この寒冷仕事は低温PV仕事と呼ばれている。   If this is compared to an electric circuit, the inertance tube 7 corresponds to an inductance, resistance, capacitance component, and the buffer tank 8 corresponds to a capacitance component, and the phase difference of the flow rate with respect to the pressure of the working gas is changed from −90 ° to + 90 °. . As a result, a phase difference occurs between the pressure and the flow rate in the pulse tube 3 during operation of the refrigerator, and cold is generated at the low temperature end 5 due to the PV work due to this pressure and flow rate. This cold work is called a low-temperature PV work.

ここで、圧縮機1の圧縮工程で送り出された作動ガスは、蓄冷器2で低温となってパルス管3に流入し、その内部で断熱膨張により吸熱して位相制御部4に流出する。一方、作動ガスが位相制御部4からパルス管3を通過して低温端5に還流する工程では、ほぼ一定体積で移動するため熱の発生又は吸収は行なわれない。その場合、作動ガスがPV仕事を効率よく行なうためには、作動ガスがパルス管内の少なくとも低温端側で、ある固定面となって動くようなピストン(いわゆるガスピストン)10として作用する必要がある。このガスピストン10はできるだけ固体的に挙動することが理想であり、そのためにはパルス管3の内部での流体の流れは圧縮機1の運転周期に応じた流れだけで、他の2次的な流れが存在しないことが望ましい。   Here, the working gas sent out in the compression process of the compressor 1 becomes a low temperature in the regenerator 2 and flows into the pulse tube 3, absorbs heat by adiabatic expansion therein, and flows out to the phase controller 4. On the other hand, in the process where the working gas passes through the pulse tube 3 from the phase control unit 4 and recirculates to the low temperature end 5, heat is not generated or absorbed because it moves at a substantially constant volume. In that case, in order for the working gas to perform the PV work efficiently, it is necessary to act as a piston (so-called gas piston) 10 in which the working gas moves as a fixed surface at least on the low temperature end side in the pulse tube. . It is ideal that the gas piston 10 behave as solidly as possible. For this purpose, the flow of the fluid inside the pulse tube 3 is only the flow according to the operation cycle of the compressor 1, and other secondary flows. Desirably no flow exists.

特開平11−248279号公報JP 11-248279 A 特開2002−235962号公報Japanese Patent Laid-Open No. 2002-235932

ところで、パルス管冷凍機は、通常、図9に示すように、パルス管3の高温側(図9の上側)の端部が上側になるように直立に設置している(以下、「上向設置」という。)。事実、パルス管3の低温側(図9の下側)の端部が上側になるように設置すると(以下、「下向設置」という。)、性能が大きく低下することが確認されている。その理由は、下向設置によりパルス管3の高温側の端部が下側になると、パルス管内で下側の比重の小さい高温の作動ガスが自然対流により上昇する一方、上側の比重の大きい低温の作動ガスが重力の影響により下降するという還流が生じ、結果として渦が発生して円滑な熱の運搬が妨げられるとともに、高温ガスの上昇により低温端の冷却が阻害されるためと考えられる。   Incidentally, as shown in FIG. 9, the pulse tube refrigerator is usually installed upright so that the end of the pulse tube 3 on the high temperature side (upper side in FIG. 9) is on the upper side (hereinafter referred to as “upward”). "Installation"). In fact, it has been confirmed that when the end of the pulse tube 3 on the low temperature side (the lower side in FIG. 9) is placed on the upper side (hereinafter referred to as “downward installation”), the performance is greatly reduced. The reason for this is that when the end of the high-temperature side of the pulse tube 3 is positioned downward due to the downward installation, the high-temperature working gas having a small specific gravity on the lower side rises by natural convection in the pulse tube, while the low-temperature having a large specific gravity on the upper side. This is thought to be because the working gas is lowered due to the influence of gravity, and as a result, a vortex is generated and smooth heat transfer is hindered, and the rising of the hot gas hinders cooling of the cold end.

ここで、図10は、図9における熱交換器6の平面図である。図10の熱交換器6は熱伝導性の良好な金属、例えば銅の円板からなり、円板6aには軸方向に多数の貫通孔11があけられている。蓄冷器2からパルス管3に流入する低温の作動ガスは貫通穴11を通過し、熱交換器6を介して伝熱体9と熱交換し、伝熱体9に接触する図示しない被冷却物を冷却する。また、熱交換器6は整流体を兼ねており、パルス管3に流入する作動ガスを整流している。多孔円板からなる図示熱交換器6は伝熱体9との密着性がよく、特許文献1に示されたパルス管冷凍機にも用いられている。熱交換器としては他に、金網を積層したメッシュ構造のものも用いられ、このメッシュ構造の熱交換器は、多孔円板のものと比較すると整流作用に優れ伝熱表面積も広いが、伝熱体との密着性は劣る。   Here, FIG. 10 is a plan view of the heat exchanger 6 in FIG. The heat exchanger 6 shown in FIG. 10 is made of a metal having a good thermal conductivity, such as a copper disk, and a large number of through holes 11 are formed in the disk 6a in the axial direction. The low-temperature working gas that flows into the pulse tube 3 from the regenerator 2 passes through the through hole 11, exchanges heat with the heat transfer body 9 through the heat exchanger 6, and is to be cooled (not shown) that contacts the heat transfer body 9. Cool down. The heat exchanger 6 also serves as a rectifier and rectifies the working gas flowing into the pulse tube 3. The illustrated heat exchanger 6 made of a porous disk has good adhesion to the heat transfer body 9 and is also used in the pulse tube refrigerator disclosed in Patent Document 1. In addition, a mesh structure with a metal mesh is also used as a heat exchanger. This mesh structure heat exchanger has a large rectifying effect and a large heat transfer surface area compared with a porous disk, but heat transfer Adhesion with the body is inferior.

図11は多孔円板からなる熱交換器6を用いた従来のパルス管冷凍機において、熱交換器6を通過してパルス管3に流入する作動ガスの速度分布を示したものである。図11に示すように、各貫通孔11の中心での速度はパルス管3の断面内で略揃っているが、各貫通孔11の断面内では速度は山形に分布し、パルス管3の断面全体として凹凸のある不均一な分布になっている。   FIG. 11 shows the velocity distribution of the working gas flowing into the pulse tube 3 through the heat exchanger 6 in the conventional pulse tube refrigerator using the heat exchanger 6 made of a porous disk. As shown in FIG. 11, the speed at the center of each through hole 11 is substantially uniform in the cross section of the pulse tube 3, but the speed is distributed in a mountain shape in the cross section of each through hole 11, and the cross section of the pulse tube 3. The distribution is uneven and uneven as a whole.

ところが、このような不均一な速度分布は、従来の上向設置では冷凍性能(以下、単に「性能」という。)にそれほど影響しないが、下向設置では性能に大きく影響することが発明者らの実験で判明した。すでに述べたように、パルス管冷凍機を下向に設置すると、作動ガスの温度と密度の不安定状態により自然対流が生じるが、そこに低温で密度の大きい作動ガスが不均一な速度分布で、図示の通り上から下に吹き出されると、速度成分の大きい作動ガスが重力の作用で加速されて温度の高い高温側端部の作動ガス中に突入し、作動ガスの対流と渦の発生を促進するものと判断される。   However, the non-uniform velocity distribution does not significantly affect the refrigeration performance (hereinafter simply referred to as “performance”) in the conventional upward installation, but the inventors have a large influence on the performance in the downward installation. It became clear by experiment. As described above, when the pulse tube refrigerator is installed downward, natural convection occurs due to unstable conditions of the temperature and density of the working gas, but the working gas having a high density at a low temperature has a non-uniform velocity distribution. As shown in the figure, when blown from the top to the bottom, the working gas with a large velocity component is accelerated by the action of gravity and rushes into the working gas at the high temperature side end, generating convection of the working gas and generation of vortices It is judged that it promotes.

この発明の課題は、パルス管冷凍機を下向に設置したときの性能の低下を抑え、パルス管冷凍機の使い勝手を向上させることにある。   The subject of this invention is suppressing the fall of the performance when a pulse tube refrigerator is installed downward, and improving the usability of a pulse tube refrigerator.

上記課題を解決するために、この発明は、圧縮機、蓄冷器、パルス管及び位相制御部を備え、前記蓄冷器とパルス管との間に形成される低温端に熱交換器が配置されたパルス管冷凍機において、前記熱交換器と前記パルス管との間に、前記熱交換器を通過して前記パルス管に流入する作動ガスの流れを整流する整流器を挿入するものとする(請求項1)。   In order to solve the above problems, the present invention includes a compressor, a regenerator, a pulse tube, and a phase control unit, and a heat exchanger is disposed at a low temperature end formed between the regenerator and the pulse tube. In the pulse tube refrigerator, a rectifier that rectifies the flow of the working gas flowing through the heat exchanger and flowing into the pulse tube is inserted between the heat exchanger and the pulse tube. 1).

請求項1の発明によれば、熱交換器とは別に整流器を設け、熱交換器を通過してパルス管に流入する作動ガスの流れを整流することにより、パルス管に流入する作動ガスの速度分布を一様にならし、パルス管冷凍機を下向に設置したときの作動ガスの自然対流や渦の発生を最小限に抑えることができる。   According to the first aspect of the present invention, the velocity of the working gas flowing into the pulse tube is provided by providing a rectifier separately from the heat exchanger and rectifying the flow of the working gas flowing through the heat exchanger and flowing into the pulse tube. The distribution can be made uniform, and the natural convection and vortex generation of the working gas when the pulse tube refrigerator is installed downward can be minimized.

請求項1の発明において、前記熱交換器と前記整流器との間に空隙を設けるのがよい(請求項2)。これにより、熱交換器を通過した作動ガスが整流器の手前の空隙内でパルス管の断面全体に広がり、速度分布がより一様になる。   In the first aspect of the present invention, a gap may be provided between the heat exchanger and the rectifier (second aspect). As a result, the working gas that has passed through the heat exchanger spreads over the entire cross section of the pulse tube within the gap before the rectifier, and the velocity distribution becomes more uniform.

請求項1又は請求項2の発明において、前記パルス管の内径d[m]と前記作動ガスの質量流量M[kg/s]との比d/M[m・s/kg]を260〜315の範囲に選ぶとよい(請求項3)。   The ratio d / M [m · s / kg] between the inner diameter d [m] of the pulse tube and the mass flow rate M [kg / s] of the working gas may be 260 to 315. (Claim 3).

請求項1〜請求項3のいずれかの発明において、前記パルス管の長さL[m]と内径d[m]との比L/dを7.5〜10の範囲に選ぶとよい(請求項4)。   In any one of claims 1 to 3, the ratio L / d between the length L [m] of the pulse tube and the inner diameter d [m] may be selected in the range of 7.5 to 10 (invention). Item 4).

この発明によれば、熱交換器とパルス管との間に整流器を挿入し、熱交換器を通過してパルス管に流入する作動ガスの速度分布の一様化を図ることにより、パルス管冷凍機を下向に設置した場合に、パルス管の高温側端部が下になることによる自然対流や渦の発生を最小限に抑え、パルス管冷凍機の下向設置による性能の低下を低減することができる。   According to the present invention, the rectifier is inserted between the heat exchanger and the pulse tube, and the velocity distribution of the working gas flowing through the heat exchanger and flowing into the pulse tube is made uniform. When the machine is installed downward, natural convection and vortex generation due to the lower end of the high-temperature side of the pulse tube are minimized, and performance degradation due to the downward installation of the pulse tube refrigerator is reduced. be able to.

以下、図1〜図9に基づいて、この発明の実施の形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は、この発明の実施例1を示すパルス管冷凍機の熱交換器部分の縦断面図である。図1において、低温端5の熱交換器6とパルス管3との間に、熱交換器6を通過してパルス管3に流入する作動ガスの流れを整流する整流器12が挿入されている。熱交換器6は、銅の円板に多数の貫通孔11を軸方向にあけたものである。整流器12は、円形に打ち抜いた金網を積層したメッシュ構造である。メッシュ構造の整流器12は、メッシュ数と積層枚数の調整により、圧力損失の増大を抑えながら一様な速度分布を形成することができるが、実験ではメッシュ数100、線径110μ、積層枚数23枚(高さ5mm)のものを用いた。整流器12にはメッシュ構造に限らず、例えばハニカム構造など、他の構造のものも使用可能である。   1 is a longitudinal sectional view of a heat exchanger portion of a pulse tube refrigerator showing Embodiment 1 of the present invention. In FIG. 1, a rectifier 12 that rectifies the flow of the working gas flowing through the heat exchanger 6 and flowing into the pulse tube 3 is inserted between the heat exchanger 6 at the low temperature end 5 and the pulse tube 3. The heat exchanger 6 is obtained by opening a large number of through holes 11 in the axial direction in a copper disk. The rectifier 12 has a mesh structure in which metal nets punched into a circle are stacked. The rectifier 12 having a mesh structure can form a uniform velocity distribution while suppressing an increase in pressure loss by adjusting the number of meshes and the number of stacked layers. In the experiment, the number of meshes is 100, the wire diameter is 110 μm, and the number of stacked layers is 23. (Height 5 mm) was used. The rectifier 12 is not limited to a mesh structure, and other structures such as a honeycomb structure can be used.

図1に示すように、整流器12を経てパルス管3に流入する作動ガスの速度分布は、貫通孔11ごとの山形(図11参照)が解消され、パルス管3の断面全体で一様になる。これにより、図示の通りパルス管冷凍機を下向に設置した場合の作動ガスの自然対流や渦の発生が抑えられ、結果として性能の低下が低減する。   As shown in FIG. 1, the velocity distribution of the working gas flowing into the pulse tube 3 through the rectifier 12 eliminates the mountain shape for each through hole 11 (see FIG. 11), and is uniform over the entire cross section of the pulse tube 3. . As a result, the natural convection of the working gas and the generation of vortices when the pulse tube refrigerator is installed downward as shown in the figure are suppressed, and as a result, the performance degradation is reduced.

図3は、この効果を実験により確認した結果を示す線図で、パルス管冷凍機を下向に設置した場合に、上向に設置した場合に対して性能がどの程度低下するかという低下率[%]を整流器12の有無について比較したものである。なお、図中の実験条件のL/dはパルス管3の長さL[m]と内径d[m]との比、d/mは同じく内径d[m]と作動ガスの質量流量M[kg/s]との比である。図3の結果によれば、整流器なしの低下率が約87%であるのに対し、整流器ありの低下率は約62%に低減していることがわかる。   FIG. 3 is a diagram showing the results of confirming this effect by experiment. When the pulse tube refrigerator is installed in the downward direction, the reduction rate of how much the performance is reduced with respect to the installation in the upward direction. [%] Is compared for the presence or absence of the rectifier 12. In the experiment conditions, L / d is the ratio of the length L [m] of the pulse tube 3 to the inner diameter d [m], and d / m is the inner diameter d [m] and the working gas mass flow rate M [ kg / s]. According to the result of FIG. 3, it can be seen that the decrease rate without the rectifier is about 87%, whereas the decrease rate with the rectifier is reduced to about 62%.

図2は、実施例1において、熱交換器6と整流器12との間に空隙13を設けた実施例2を示すものである。これにより、熱交換器6を通過した作動ガスは、整流器12の流体抵抗により、その手前の空隙13内でパルス管3の断面全体に広がる。その結果、整流器12による整流作用がより高くなり、図示の通り実施の形態に比べて速度分布がより滑らかになる。   FIG. 2 shows a second embodiment in which a gap 13 is provided between the heat exchanger 6 and the rectifier 12 in the first embodiment. As a result, the working gas that has passed through the heat exchanger 6 spreads over the entire cross section of the pulse tube 3 in the air gap 13 in front of it due to the fluid resistance of the rectifier 12. As a result, the rectification action by the rectifier 12 becomes higher, and the velocity distribution becomes smoother as compared with the embodiment as shown.

ところで、実施例1又は実施例2のパルス管冷凍機において、パルス管の内径を適正に選ぶことにより、この発明の作用効果をより高めることができる。図4に示すように、図4(A)の内径の大きいパルス管3よりも、図4(B)の内径の小さいパルス管3の方が平均流速が大きくなる。パルス管冷凍機における作動ガスの往復運動において、作動ガスの流速が速いということは、流体要素が1周期に移動する振幅が大きいことを意味する。すなわち、流体要素の質量m[kg]が位置振幅r[m]及び角振動数ωで往復運動する場合、その流体要素にかかる力FXは運動方程式により、以下の通り表される。 By the way, in the pulse tube refrigerator of Example 1 or Example 2, the operational effects of the present invention can be further enhanced by appropriately selecting the inner diameter of the pulse tube. As shown in FIG. 4, the average flow velocity of the pulse tube 3 having a small inner diameter in FIG. 4B is larger than that of the pulse tube 3 having a large inner diameter in FIG. In the reciprocating motion of the working gas in the pulse tube refrigerator, a high working gas flow velocity means that the amplitude of movement of the fluid element in one cycle is large. That is, when the mass m [kg] of the fluid element reciprocates at the position amplitude r [m] and the angular frequency ω, the force F X applied to the fluid element is expressed as follows by the equation of motion.

X=mrω2sin(ωt)
ここで、同じ角振動数ωで運転させた場合、パルス管に流入する作動ガス流量Q[m3/s]が常に一定であれば、パルス管3の内径をd[m]として、
Q=r・(1/2・πd2)
r=Q/(1/2・πd2)
の関係から、位置振幅rはパルス管の内径dの2乗に反比例する。力FXは上記式から位置振幅rのみの影響を受けるので、結局、力FXはパルス管の内径dの2乗に反比例し、例えば内径dが2分の1になれば、力FXは4倍になる。
F X = mrω 2 sin (ωt)
Here, when operating at the same angular frequency ω, if the working gas flow rate Q [m 3 / s] flowing into the pulse tube is always constant, the inner diameter of the pulse tube 3 is defined as d [m]
Q = r · (1/2 · πd 2 )
r = Q / (1/2 · πd 2 )
Thus, the position amplitude r is inversely proportional to the square of the inner diameter d of the pulse tube. Since the force F X is affected only by the position amplitude r from the above equation, the force F X is inversely proportional to the square of the inner diameter d of the pulse tube. For example, if the inner diameter d is halved, the force F X Is quadrupled.

上記の力FXは、流体要素に往復動を起こさせる駆動力となるものである。一方、下向設置のパルス管冷凍機に性能の低下をもたらす作動ガスの自然対流は、作動ガスに作用する重力により生じる。すなわち、作動ガスには駆動力FXと重力が同時に作用するが、その際、駆動力FXが大きいと作動ガスに対する重力の影響が相対的に低下し、作動ガスの自然対流が抑えられる。従って、自然対流の抑制の点からは、パルス管の内径は小さい方がよいことになる。 The force F X is a driving force that causes the fluid element to reciprocate. On the other hand, the natural convection of the working gas that causes the performance deterioration of the pulse tube refrigerator installed in the downward direction is caused by the gravity acting on the working gas. That is, the driving force F X and the gravity act simultaneously on the working gas. At this time, if the driving force F X is large, the influence of the gravity on the working gas is relatively lowered, and the natural convection of the working gas is suppressed. Therefore, from the viewpoint of suppressing natural convection, it is better that the inner diameter of the pulse tube is smaller.

図5は、パルス管の内径d[m]を3種類用いて、質量流量M[kg/s]との比d/M[m・s/kg]をパラメータにとり、設置の向きによる性能の低下率[%]を比較した実験結果を示すものである。図示の通り、性能の低下率は比d/Mが275[m・s/kg]のところで極小値をとる。この結果から、質量流量Mが同じならパルス管の内径dが小さいほど性能の低下率が小さくなることがわかる。ただし、内径dを小さくし過ぎた場合には、作動ガスによる粘性抵抗が大きくなるため性能が低下するものと考えられる。このようにパルス管の内径d[m]と質量流量Mとの比d/Mには最適範囲が存在し、性能低下率の上限を10%とした場合は、260〜315[m・s/kg]の範囲となる。すなわち、この範囲に選べば、性能低下率を10%以内に留めることができる。   FIG. 5 shows the deterioration in performance due to the orientation of the installation, using three types of inner diameter d [m] of the pulse tube and taking the ratio d / M [m · s / kg] to the mass flow rate M [kg / s] as a parameter. The experimental result which compared rate [%] is shown. As shown in the figure, the rate of decrease in performance takes a local minimum when the ratio d / M is 275 [m · s / kg]. From this result, it can be seen that if the mass flow rate M is the same, the smaller the inner diameter d of the pulse tube, the smaller the performance degradation rate. However, if the inner diameter d is made too small, the viscous resistance due to the working gas increases, so the performance is considered to deteriorate. As described above, there is an optimum range for the ratio d / M between the inner diameter d [m] of the pulse tube and the mass flow rate M. When the upper limit of the performance degradation rate is 10%, 260 to 315 [m · s / kg] range. That is, if it is selected within this range, the performance deterioration rate can be kept within 10%.

一方、図6は、パルス管3内の作動ガスの自然対流を図6(A)に模式的に示し、そのパルス管3の長手方向の温度勾配を図6(B)に示したものである。図示の通り、パルス管3の長さL[m]を大きくすることにより(L1→L2)、温度勾配dT/dL[K/m]を緩やかにすることができる。一般的に、対流による伝熱量は温度勾配で決まってくる。従って、パルス管3の長さLを大きくすることで、パルス管3の高温側(位相制御部側)から低温端へ自然対流で持ち込まれる熱を低減することができる。   On the other hand, FIG. 6 schematically shows the natural convection of the working gas in the pulse tube 3 in FIG. 6A, and shows the temperature gradient in the longitudinal direction of the pulse tube 3 in FIG. 6B. . As illustrated, the temperature gradient dT / dL [K / m] can be moderated by increasing the length L [m] of the pulse tube 3 (L1 → L2). Generally, the amount of heat transfer by convection is determined by the temperature gradient. Therefore, by increasing the length L of the pulse tube 3, it is possible to reduce the heat brought in by natural convection from the high temperature side (phase control unit side) of the pulse tube 3 to the low temperature end.

一般的に、パルス管などの鉛直管路に見られる自然対流は、長さLと内径dとの比L/dに大きく影響を受ける。内径dを一定にして比L/dを変化させときの設置の向きによる性能低下率の変化の実験結果を図7に示す。図7から、比L/dを6.9から7.9に変化させただけで、性能の低下率を大きく低減できることがわかる。   In general, natural convection found in a vertical pipe such as a pulse tube is greatly affected by the ratio L / d between the length L and the inner diameter d. FIG. 7 shows the experimental results of the change in the performance degradation rate depending on the installation direction when the ratio L / d is changed while keeping the inner diameter d constant. From FIG. 7, it can be seen that the performance degradation rate can be greatly reduced only by changing the ratio L / d from 6.9 to 7.9.

上記した実験成果を踏まえ、実施例2の構成(図2)を採用し、比L/dを9.6に選んで、上向及び下向の両方の設置状態について、冷凍性能を図11の従来構成と比較した実験結果を図8に示す。図中の表示「対策前」は従来構成、「対策後」は実施例2の構成を表す。図8によれば、上向設置では対策前と対策後との間にほとんど差はないが、下向設置では対策前は低温端温度70Kで冷凍出力は2.8[W]から0に低下するのに対し、対策後は2.7[W]から2.5[W]までの約8%の低下に留まり、設置の向きによる性能低下率が大幅に低減していることがわかる。なお、上記実施例では熱交換器が多孔円板構造の例を示したが、この発明は熱交換器が他の構造、例えばメッシュ構造の場合にも適用可能である。   Based on the experimental results described above, the configuration of Example 2 (FIG. 2) was adopted, the ratio L / d was selected as 9.6, and the refrigeration performance for both the upward and downward installation states in FIG. The experimental results compared with the conventional configuration are shown in FIG. The display “before countermeasure” in the figure represents the conventional configuration, and “after countermeasure” represents the configuration of the second embodiment. According to FIG. 8, there is almost no difference between before and after the countermeasure in the upward installation, but in the downward installation, before the countermeasure, the cold end temperature is 70K and the refrigeration output is reduced from 2.8 [W] to 0. On the other hand, after the measure, it is only about 8% decrease from 2.7 [W] to 2.5 [W], and it can be seen that the performance deterioration rate due to the installation direction is greatly reduced. In the above embodiment, the heat exchanger has a porous disk structure. However, the present invention can be applied to other structures such as a mesh structure.

この発明の実施例1を示す冷凍機の熱交換器部分の縦断面図である。It is a longitudinal cross-sectional view of the heat exchanger part of the refrigerator which shows Example 1 of this invention. この発明の実施例2を示す冷凍機の熱交換器部分の縦断面図である。It is a longitudinal cross-sectional view of the heat exchanger part of the refrigerator which shows Example 2 of this invention. 実施例1の作用効果を説明する図である。It is a figure explaining the effect of Example 1. FIG. パルス管内径による作動ガスの平均流速の差を説明する図である。It is a figure explaining the difference of the average flow velocity of the working gas by the inside diameter of a pulse tube. 図1の冷凍機の下向設置時におけるパルス管内径による性能低下率の差を説明する図である。It is a figure explaining the difference of the performance fall rate by the pulse tube internal diameter at the time of downward installation of the refrigerator of FIG. パルス管内における作動ガスの自然対流及びパルス管長さによる温度勾配の差を説明する図である。It is a figure explaining the difference of the temperature gradient by the natural convection of the working gas in a pulse tube, and pulse tube length. 冷凍機の設置に向きによる性能低下率のパルス管長さによる差を説明する図である。It is a figure explaining the difference by the pulse tube length of the performance fall rate by direction for installation of a refrigerator. この発明による対策の前後における冷凍出力の差を説明する図である。It is a figure explaining the difference of the freezing output before and behind the countermeasure by this invention. 従来のパルス管冷凍機の構成を示す図である。It is a figure which shows the structure of the conventional pulse tube refrigerator. 図9における熱交換器の平面図である。It is a top view of the heat exchanger in FIG. 図9のパルス管冷凍機における熱交換器部分の拡大図である。It is an enlarged view of the heat exchanger part in the pulse tube refrigerator of FIG.

符号の説明Explanation of symbols

2 蓄冷器
3 パルス管
5 低温端
6 熱交換器
9 伝熱体
12 整流器
13 空隙
2 Regenerator 3 Pulse tube 5 Low temperature end 6 Heat exchanger 9 Heat transfer body 12 Rectifier 13 Air gap

Claims (4)

圧縮機、蓄冷器、パルス管及び位相制御部を備え、前記蓄冷器とパルス管との間に形成される低温端に熱交換器が配置されるパルス管冷凍機において、前記熱交換器と前記パルス管との間に、前記熱交換器を通過して前記パルス管に流入する作動ガスの流れを整流する整流器を挿入したことを特徴とするパルス管冷凍機。 A pulse tube refrigerator comprising a compressor, a regenerator, a pulse tube, and a phase control unit, wherein a heat exchanger is disposed at a low temperature end formed between the regenerator and the pulse tube, wherein the heat exchanger and the A pulse tube refrigerator, wherein a rectifier for rectifying the flow of the working gas flowing through the heat exchanger and flowing into the pulse tube is inserted between the pulse tube and the pulse tube. 前記熱交換器と前記整流器との間に空隙を設けたことを特徴とする請求項1記載のパルス管冷凍機。 The pulse tube refrigerator according to claim 1, wherein a gap is provided between the heat exchanger and the rectifier. 前記パルス管の内径d[m]と前記作動ガスの質量流量M[kg/s]との比d/M[m・s/kg]を260〜315の範囲に選んだことを特徴とする請求項1又は請求項2記載のパルス管冷凍機。 The ratio d / M [m · s / kg] between the inner diameter d [m] of the pulse tube and the mass flow rate M [kg / s] of the working gas is selected in the range of 260 to 315. The pulse tube refrigerator according to claim 1 or 2. 前記パルス管の長さL[m]と内径d[m]との比L/dを7.5〜10の範囲に選んだことを特徴とする請求項1〜請求項3のいずれかに記載のパルス管冷凍機。
4. The ratio L / d between the length L [m] and the inner diameter d [m] of the pulse tube is selected in the range of 7.5 to 10. 5. Pulse tube refrigerator.
JP2003364582A 2003-10-24 2003-10-24 Pulse pipe refrigerating machine Pending JP2005127633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364582A JP2005127633A (en) 2003-10-24 2003-10-24 Pulse pipe refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364582A JP2005127633A (en) 2003-10-24 2003-10-24 Pulse pipe refrigerating machine

Publications (1)

Publication Number Publication Date
JP2005127633A true JP2005127633A (en) 2005-05-19

Family

ID=34643520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364582A Pending JP2005127633A (en) 2003-10-24 2003-10-24 Pulse pipe refrigerating machine

Country Status (1)

Country Link
JP (1) JP2005127633A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175329A (en) * 2013-03-26 2013-06-26 中国科学院上海技术物理研究所 Flow guide structure inside hot end of U-type / linear pulse tube refrigerating machine and manufacturing method thereof
JP2014169852A (en) * 2013-03-05 2014-09-18 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2014190582A (en) * 2013-03-26 2014-10-06 Sumitomo Heavy Ind Ltd U-shaped pulse tube refrigerator
JP2015031424A (en) * 2013-08-01 2015-02-16 住友重機械工業株式会社 Refrigerating machine
CN105135735A (en) * 2014-06-05 2015-12-09 住友重机械工业株式会社 Stirling-type Pulse Tube Refrigerator
CN109237830A (en) * 2017-09-30 2019-01-18 北京空间飞行器总体设计部 Coaxial type pulse pipe refrigerator cold end and refrigeration machine based on the cold end
JP2020046125A (en) * 2018-09-20 2020-03-26 住友重機械工業株式会社 Pulse tube refrigeration machine and method for manufacturing pulse tube refrigeration machine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169852A (en) * 2013-03-05 2014-09-18 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
CN103175329A (en) * 2013-03-26 2013-06-26 中国科学院上海技术物理研究所 Flow guide structure inside hot end of U-type / linear pulse tube refrigerating machine and manufacturing method thereof
JP2014190582A (en) * 2013-03-26 2014-10-06 Sumitomo Heavy Ind Ltd U-shaped pulse tube refrigerator
JP2015031424A (en) * 2013-08-01 2015-02-16 住友重機械工業株式会社 Refrigerating machine
CN105135735B (en) * 2014-06-05 2019-01-11 住友重机械工业株式会社 Stirling Type Pulse Tube Cryocooler
JP2015230131A (en) * 2014-06-05 2015-12-21 住友重機械工業株式会社 Stirling type pulse tube refrigerator
CN105135735A (en) * 2014-06-05 2015-12-09 住友重机械工业株式会社 Stirling-type Pulse Tube Refrigerator
CN109237830A (en) * 2017-09-30 2019-01-18 北京空间飞行器总体设计部 Coaxial type pulse pipe refrigerator cold end and refrigeration machine based on the cold end
CN109237830B (en) * 2017-09-30 2020-12-11 北京空间飞行器总体设计部 Coaxial type pulse tube refrigerator cold end and refrigerator based on cold end
JP2020046125A (en) * 2018-09-20 2020-03-26 住友重機械工業株式会社 Pulse tube refrigeration machine and method for manufacturing pulse tube refrigeration machine
WO2020059317A1 (en) * 2018-09-20 2020-03-26 住友重機械工業株式会社 Pulse tube refrigerator and method for manufacturing pulse tube refrigerator
CN112867898A (en) * 2018-09-20 2021-05-28 住友重机械工业株式会社 Pulse tube refrigerator and method for manufacturing pulse tube refrigerator
JP7146543B2 (en) 2018-09-20 2022-10-04 住友重機械工業株式会社 Pulse tube refrigerator and method for manufacturing pulse tube refrigerator
US11506426B2 (en) 2018-09-20 2022-11-22 Sumitomo Heavy Industries, Ltd. Pulse tube cryocooler and method of manufacturing pulse tube cryocooler
CN112867898B (en) * 2018-09-20 2023-01-13 住友重机械工业株式会社 Pulse tube refrigerator and method for manufacturing pulse tube refrigerator

Similar Documents

Publication Publication Date Title
CN101292123B (en) Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir
JP6403539B2 (en) Cryogenic refrigerator
US10274230B2 (en) Annular portions protruding from a displacer and expansion space of a cryocooler
JP5931787B2 (en) U-shaped pulse tube refrigerator
CN104006564A (en) Pulse tube refrigerator
JPH11248279A (en) Pulse tube refrigirating machine
US9976780B2 (en) Stirling-type pulse tube refrigerator
JP2005127633A (en) Pulse pipe refrigerating machine
CN105222389B (en) Pulse tube refrigerator
US9194616B2 (en) Cryogenic refrigerator
JP6188619B2 (en) Cryogenic refrigerator
JP3744413B2 (en) Pulse tube refrigerator heat exchanger
US9494346B2 (en) Cryogenic refrigerator
CN220187129U (en) Hot end heat exchanger and Stirling refrigerator
JP2005265261A (en) Pulse pipe refrigerator
JP2002349981A (en) Pulse-tube refrigeration unit
JP2003148822A (en) Cold storage unit for very low temperature refrigerator
JP6270368B2 (en) refrigerator
JP2008286507A (en) Pulse tube refrigerator
JP7111526B2 (en) pulse tube refrigerator
JP2010025411A (en) Heat exchanger and pulse tube refrigerating machine
US20130074524A1 (en) Cryogenic refrigerator
RU2273808C2 (en) Refrigeration machine with pulsating pipe
JP2004132676A (en) Pulse pipe refrigerator
JPH1194382A (en) Pulse tube refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060315

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

A131 Notification of reasons for refusal

Effective date: 20080515

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080904