WO2019101667A1 - Pesu-partikelschäume für anwendungen im luftfahrt-interieur - Google Patents

Pesu-partikelschäume für anwendungen im luftfahrt-interieur Download PDF

Info

Publication number
WO2019101667A1
WO2019101667A1 PCT/EP2018/081689 EP2018081689W WO2019101667A1 WO 2019101667 A1 WO2019101667 A1 WO 2019101667A1 EP 2018081689 W EP2018081689 W EP 2018081689W WO 2019101667 A1 WO2019101667 A1 WO 2019101667A1
Authority
WO
WIPO (PCT)
Prior art keywords
pesu
particle foam
weight
foamed
foam
Prior art date
Application number
PCT/EP2018/081689
Other languages
English (en)
French (fr)
Inventor
Christian Trassl
Denis HOLLEYN
Kay Bernhard
Original Assignee
Evonik Röhm Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112020010372-1A priority Critical patent/BR112020010372A2/pt
Application filed by Evonik Röhm Gmbh filed Critical Evonik Röhm Gmbh
Priority to EP18800669.6A priority patent/EP3717553A1/de
Priority to US15/733,134 priority patent/US20210095092A1/en
Priority to KR1020207018308A priority patent/KR20200084898A/ko
Priority to CN201880076517.5A priority patent/CN111406091A/zh
Priority to JP2020528470A priority patent/JP2021504523A/ja
Priority to CA3083553A priority patent/CA3083553A1/en
Priority to AU2018371107A priority patent/AU2018371107A1/en
Priority to MX2020005297A priority patent/MX2020005297A/es
Priority to MA49867A priority patent/MA49867A1/fr
Publication of WO2019101667A1 publication Critical patent/WO2019101667A1/de
Priority to IL274859A priority patent/IL274859A/en
Priority to ZA2020/03832A priority patent/ZA202003832B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/046Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/047Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • B32B7/09Interconnection of layers by mechanical means by stitching, needling or sewing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0004Use of compounding ingredients, the chemical constitution of which is unknown, broadly defined, or irrelevant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • C08J9/008Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/10Composition of foam characterised by the foam pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2479/00Furniture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/003Interior finishings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/10Trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/12Ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/10Water or water-releasing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones

Definitions

  • PESU particle foams for applications in the aviation interior are PESU particle foams for applications in the aviation interior
  • Polymer foams based on polyethersulfone (PESU) fulfill the aviation requirements of the aviation industry. Especially the requirements of the fire behavior, the media resistance and the mechanics make a big difference here
  • suitable polymer foams are produced as semi-finished products.
  • Post-processing to moldings is uneconomical in terms of time and material utilization, such as e.g. due to large amounts of cut waste.
  • the invention solves this problem by the fact that the material suitable in principle can be processed into particle foam moldings. These moldings can be produced without reworking in short cycle times and thus economically. Furthermore, this opens up new possibilities of functional integration, such as by direct foaming of inserts, etc., and in terms of creative freedom.
  • PESU poly (oxy-1,4-phenylsulfonyl-1,4-phenyl)
  • porous membranes of such blends are described, for example, in EP 0 764 461.
  • Such membranes are made by casting from an aqueous polymer composition.
  • Foams made of PPSU or PES are known in principle, although not in mixture with each other. So in L. Sorrentino were: "Polymeric foams from high-performance
  • Blends containing either PPSU or PSE are known as it were, though information in the art is rare. Thus, both polymers are especially useful as a minor component, e.g. described in PS foams to affect the properties in these commodity materials. Foams containing PPSU or PES as the main component are only to be found in a few descriptions, such as the following:
  • WO 2015/097058 describes foams based on PPSU or PES containing at least 10% by weight of a polyolefin.
  • the phase-separating polyolefin acts primarily as a nucleating agent. In this case, more uniform pores are achieved, but without the flame retardancy or mechanical properties, such as
  • Foams a good combination of applicability at high temperatures, good mechanical properties, in particular with respect to the elongation at break and at least sufficient for many applications in the field of vehicle and aircraft construction
  • the foam should have a high resistance to various liquid, acidic, basic or hydrophobic liquids and to emulsions. Furthermore, from the composition to be developed by a variety of methods and with a wide range of three-dimensional shapes of the foam should be feasible and in the production of the final component as little or no waste as possible.
  • compositions for the production of temperature-resistant, flame-retardant show m materials for use in lightweight construction, especially in the aerospace industry, shipbuilding, automotive or rail vehicle.
  • This composition according to the invention for the production of foams is characterized in that it is a PESU particle foam having a glass transition temperature between 180 and 215 ° C. as foamed PESU and in which the mean cell diameter of the particle foam is less than 1000 ⁇ m, preferably less than 500 miti, more preferably less than 250 gm.
  • a cell is understood to be the region in a particle foam which is defined by foaming a single particle. This is particularly surprising since the actual glass transition temperature of the PESU is 225 ° C.
  • the material sample is held for at least 2 min at this temperature. Thereafter, it is again cooled to a temperature which is at least 20 ° C below the lowest to be determined glass transition or melting temperature, the cooling rate should be a maximum of 20 ° C / min, preferably a maximum of 10 ° C / min. After a further waiting time of a few minutes, the actual measurement takes place, in which the sample is heated to at least 20 ° C. above the highest melting or glass transition temperature at a heating rate of generally 10 ° C./min or less.
  • the composition according to the invention for the production of the PESU preferably consists of 80 to 99.5% by weight of PESU. Furthermore, this composition has 0.5 to 10% by weight, preferably 1 to 9% by weight of a blowing agent. In addition, among other things 0 to 10 wt%, preferably 1 to 5 wt% additives may be included.
  • the additives may in particular be flame retardant additives, plasticizers, pigments, UV stabilizers, nucleating agents, impact modifiers, adhesion promoters, rheology modifiers, chain extenders, fibers and / or nanoparticles.
  • phosphorus compounds in particular phosphates, phosphines or phosphites are used.
  • Suitable UV stabilizers or UV absorbers are generally known to the person skilled in the art.
  • HALS compounds Tiuvine or triazoles.
  • the impact modifiers used are generally polymer particles comprising an elastomer or soft phase. These are often core (shell) shell particles, with an outer shell that is as a maximum weakly crosslinked and as a pure polymer would have at least minimal miscibility with the blend of PES and PPSU.
  • all known pigments can be used as pigments.
  • the influence on the foaming process - as with all other additives used in larger amounts of more than 0.1% by weight - should be investigated. This is feasible for the skilled person with relatively little effort.
  • Suitable plasticizers, rheology modifiers and chain extenders are generally known to the person skilled in the art from the production of films, membranes or molded parts from PES, PPSU or blends of these two and can accordingly be applied to the
  • Preparation of a foam are transferred from the composition of the invention.
  • the fibers are usually known fiber materials, the one
  • Polymer composition can be added.
  • the fibers are PES, PPSU or blend fibers, the latter being PSE and PPSU.
  • the nanoparticles which can be present, for example, as tubes, flakes, rods, spheres or in other known forms, are generally inorganic materials. These can take on different functions in the finished foam. Thus, these particles partially act as nucleating agents during foaming. Furthermore, the particles can influence the mechanical properties as well as the (gas) diffusion properties of the foam. Furthermore, the particles additionally contribute to the low flammability.
  • phase-separating polymers can also be added as nucleating agents.
  • the polymers described are separated from the others in the consideration of the composition
  • Nucleating agents as these primarily affect the mechanical properties of the foam, the melt viscosity of the composition and thus the
  • the additives may optionally also contain up to 9% by weight of a second polymer component for adjusting the physical properties.
  • the additional polymers may be, for example, polyamides, polyolefins, in particular PP, PEEK, polyesters, in particular PET, other sulfur-based polymers, such as, for example, PSU, polyetherimides or polymethacrylimide.
  • blowing agent is relatively free and determined for the skilled person in particular by the chosen foaming method and the foaming temperature. Suitable for example
  • Alcohol e.g. Isopranol or butanol, ketones, such as acetone or methyl ethyl ketone, alkanes, such as iso- or n-butane, pentane, hexane, heptane or octane, alkenes, such as pentene, hexene, heptene or octene, CO2, N2, water , Ethers, such as diethyl ether, aldehydes, such as Formaldehyde or propanal, fluorinated (chlorinated) hydrocarbons, chemical blowing agents or mixtures of several of these substances.
  • ketones such as acetone or methyl ethyl ketone
  • alkanes such as iso- or n-butane
  • pentane such as iso- or n-butane
  • pentane such as iso- or n-butane
  • the chemical blowing agents are less or non-volatile substances that are chemically decomposed under the foaming conditions and thereby the actual
  • Form blowing agent A very simple example of this is tert-butanol, which is under
  • Foaming conditions isobutene and water forms.
  • Further examples are NaHCO 3, citric acid or their derivatives, azodicarbonamide (ADC) or compounds thereof,
  • TSH Toluenesulfonylhydrazine
  • OBSH oxybis (benzosulfohydrozide)
  • 5-phenyltetrazole 5-PT
  • the PESU particle foam according to the invention has a tensile strength according to IS01926 greater than 0.5 MPa, an elongation at break according to IS01926 between 8 and 12%, a shear modulus according to ASTM C273 at room temperature greater than 8 MPa, a shear strength according to ASTM C273 at room temperature greater than 0.45 MPa , a pressure module according to ISO 844 at room temperature greater than 13 MPa and a compressive strength to ISO 844 at room temperature greater than 0.4 MPa.
  • a tensile strength according to IS01926 greater than 0.5 MPa an elongation at break according to IS01926 between 8 and 12%
  • a shear modulus according to ASTM C273 at room temperature greater than 8 MPa a shear strength according to ASTM C273 at room temperature greater than 0.45 MPa
  • a pressure module according to ISO 844 at room temperature greater than 13 MPa and a compressive strength to ISO 844 at room temperature greater than 0.4 MPa.
  • Aircraft's important fire safety regulations or fire characteristics according to FAR 25.852 is applicable.
  • the foams according to the invention preferably have a degree of foaming which constitutes a reduction of the density in relation to the pure blend of between 1 and 98%, preferably between 50 and 97%, particularly preferably between 70 and 95%.
  • the foam has a density between 20 and 1000 kg / m 3 , preferably 40 and 250 kg / m 3 .
  • PESU particle foam and process for its preparation are part of the present invention.
  • a composition consisting of 80 to 99.5% by weight of PESU, 0.5 to 10% by weight of blowing agent and 0 to 10% by weight of additives by means of an extruder
  • Perforated plate processed into a foamed granules The temperatures between feed zone and screw tip are in a range between 180 and 380 ° C. In most cases, there is no uniform temperature over this distance, but, for example, a gradient with increasing temperature in the conveying direction of the polymer melt.
  • the temperature of the perforated plate is between 300 and 350 ° C and the melt temperature when exiting through the perforated plate between 200 and 360 ° C.
  • the loading with the propellant takes place in the extruder.
  • the granules then foam on leaving the perforated plate.
  • the granules thus foamed are then preferably further foamed to form a particle foam.
  • the composition may be passed into an underwater granulator upon exiting the extruder. This is designed so with respect to a combination of temperature and pressure that foaming is prevented. This procedure results in a granulate laden with propellant, which can later be foamed by renewed energy supply to the desired density and / or can be further processed under optional shaping to form a particle foam workpiece.
  • a composition consisting of 90 to 100% by weight of PESU and 0 to 10% by weight of additives is also initially processed into granules by means of an extruder with perforated plate, but not loaded with a blowing agent.
  • the temperatures, which are again not necessarily uniform, between the feed zone and the screw tip are in the range between 180 and 380.degree.
  • the temperature of the perforated plate between 300 and 350 ° C and the melt temperature at the exit through the perforated plate between 200 and 360 ° C.
  • the granules are then loaded in an autoclave with a propellant so that it contains between 0.5 and 10 wt% propellant.
  • the propellant loaded granules can then be foamed by relaxing and / or by heating to a temperature of about 200 ° C to a particle foam.
  • Polymer compositions are known, in particular with respect to methods for
  • thermoplastic foams are applicable to the present composition.
  • the composition may be foamed at a temperature between 150 and 250 ° C and a pressure between 0.1 and 2 bar.
  • the actual foaming takes place, if not in connection to the extrusion, at a temperature between 180 and 230 ° C in a normal pressure atmosphere.
  • a composition still without propellant, in an autoclave at a temperature e.g. between 20 and 120 ° C and a pressure e.g. between 30 and 100 bar applied to the propellant and then foamed by lowering the pressure and raising the temperature to the foaming temperature in the autoclave.
  • a pressure e.g. between 30 and 100 bar applied to the propellant and then foamed by lowering the pressure and raising the temperature to the foaming temperature in the autoclave.
  • Welded means that by heating the components, an adhesion between the materials, e.g. by partially filling open pores on the foam surface with cover material.
  • the cover material can be wood, metals, decorative films, composite materials, prepregs or other known materials.
  • the produced particle foam can alternatively in the presence of a
  • Covering material are foamed so that it is connected to this by means of gluing or welding.
  • the PESU can alternatively also be discharged from the extruder into an optionally heated mold, optionally containing cover materials. This is under molding to a
  • Foamed particle foam or a composite material Foamed particle foam or a composite material.
  • Composition are discharged at the exit from the extruder in a foam injection device. In this device is then foamed directly under shaping.
  • the particle foams or composite materials can be provided with inlets during foaming and / or channels can be incorporated into the particle foam.
  • foams of the invention or the foams produced by the process according to the invention find particular in the construction of space or
  • Aircraft especially in their interior use. That can do that
  • Particle foams produced by the process of the invention or not, as well as the composite materials realized therefrom include. Especially because of the heavy
  • Flammability foams of the invention can also be installed in the interior of these vehicles.
  • the HT foams produced according to the invention can be further processed into foam moldings or foam core composite materials.
  • foam moldings or foam core composite materials may in particular be used in series production, e.g. for bodywork or interior trim in the automotive industry, interior parts in
  • Rail vehicle or shipbuilding in the aerospace industry, in mechanical engineering, at the manufacture of sports equipment, in furniture construction or in the construction of wind turbines.

Abstract

Polymerschäume auf Basis von Polyethersulfon (PESU) erfüllen die von der Luftfahrtindustrie geforderten gesetzlichen Vorgaben für das Luftfahrt-Interieur. Speziell die Anforderungen an das Brandverhalten, die Medienbeständigkeit und die Mechanik stellen hier eine große Herausforderung dar. Nach dem Stand der Technik werden geeignete Polymerschäume als Halbzeuge hergestellt. Die Nachbearbeitung zu Formteilen ist unwirtschaftlich hinsichtlich Zeit und Materialausnutzung, wie z.B. durch große Mengen Schnittabfall. Die Erfindung löst dieses Problem dadurch, dass das prinzipiell geeignete Material zu Partikelschaum-Formteilen verarbeitet werden kann. Diese Formteile können ohne Nachbearbeitung in kurzen Zykluszeiten und damit wirtschaftlich hergestellt werden. Des Weiteren ergeben sich dadurch neue Möglichkeiten der Funktionsintegration, wie z.B. durch direktes Einschäumen von Inserts usw., und hinsichtlich der gestalterischen Freiheit.

Description

PESU-Partikelschäume für Anwendungen im Luftfahrt-Interieur
Gebiet der Erfindung
Polymerschäume auf Basis von Polyethersulfon (PESU) erfüllen die von der Luftfahrtindustrie geforderten gesetzlichen Vorgaben für das Luftfahrt-Interieur. Speziell die Anforderungen an das Brandverhalten, die Medienbeständigkeit und die Mechanik stellen hier eine große
Herausforderung dar. Nach dem Stand der Technik werden geeignete Polymerschäume als Halbzeuge hergestellt. Die Nachbearbeitung zu Formteilen ist unwirtschaftlich hinsichtlich Zeit und Materialausnutzung, wie z.B. durch große Mengen Schnittabfall. Die Erfindung löst dieses Problem dadurch, dass das prinzipiell geeignete Material zu Partikelschaum-Formteilen verarbeitet werden kann. Diese Formteile können ohne Nachbearbeitung in kurzen Zykluszeiten und damit wirtschaftlich hergestellt werden. Des Weiteren ergeben sich dadurch neue Möglichkeiten der Funktio ns Integration, wie z.B. durch direktes Einschäumen von Inserts usw., und hinsichtlich der gestalterischen Freiheit.
Stand der Technik
Blends aus PES und PPSU sind für andere technische Anwendungen durchaus bekannt. So beschreibt die EP 1 497 376 einen entsprechenden Blend zur Verarbeitung in der
Schmelzformung, im Spritzguss, im Druckguss, in einer Extrusion oder bei der Blasenformung. Es ist jedoch nicht bekannt, aus einer solchen Zusammensetzung einen Schaumstoff herzustellen.
Ein alternatives Material dazu, welches als Plattenmaterial bereits in der Luftfahrtindustrie verbaut wird, stellt Poly(oxy-1 ,4-phenylsulfonyl-1 ,4-phenyl) (PESU) dar. Dieses wird beispielsweise unter dem Produktnamen Divinycell F von der Firma DIAB, bzw. Radel von der Firma Solvay vertrieben. Bei der weiteren Verarbeitung dieser Extrusionsschaumplatten fallen jedoch unwirtschaftlich große Mengen Verschnittmaterial an.
Auch poröse Membranen aus solchen Blends sind, beispielsweise in der EP 0 764 461 , beschrieben. Solche Membranen werden mittels eines Gussverfahrens aus einer wässrigen Polymerzusammensetzung hergestellt.
Viele industriell genutzte Schaumstoffe haben entweder Nachteile bei der Verwendung bei hohen Temperauren oder aber insgesamt, und insbesondere bei diesen hohen Temperaturen, nicht optimale mechanische Eigenschaften. Hinzu kommt, dass nur sehr wenige Schaumstoffe bekannt sind, die nicht leicht zu entflammen sind und daher z.B. in Innenräumen von Straßen-, Schienenoder Luftfahrzeugen verbaut werden können. So haben beispielsweise PES-Schäume eine schlechte Flammschutzwirkung, während PPSU-Schäume beispielsweise eine nicht optimale Reißfestigkeit aufweisen.
Schaumstoffe aus PPSU oder PES sind grundsätzlich bekannt, wenn auch nicht in Mischung miteinander. So wurden in L. Sorrentino:„Polymerie Foams from High-Performance
Thermoplastics“, Advances in Polymer Technology, Vol. 30, No. 3, S. 234-243, 2011 (DOI 10.1002/adv) entsprechende Untersuchungen zur Identifikation idealer Bedingungen für das Schäumen von PPSU bzw. PES bestimmt.
Blends, die entweder PPSU oder PSE enthalten sind gleichsam bekannt, wenn auch Angaben dazu im Stand der Technik eher selten sind. So sind beide Polymere insbesondere als in der Menge untergeordnete Komponente z.B. in PS-Schäumen beschrieben, um in diesen Commodity Materialien die Eigenschaften zu beeinflussen. Schäume die dagegen PPSU oder PES als Hauptkomponente enthalten sind nur in wenigen Beschreibungen, wie beispielsweise den folgenden, zu finden:
In US 4,940,733 ist ein Schaumstoff, basierend auf einem Blend aus einem Polycarbonat und einem zweiten Polymer, bei dem es sich neben einer Vielzahl anderer Beispiele auch um PES oder PPSU handeln kann. Ein solcher Schaum weist zwar eine hohe Temperaturbeständigkeit, jedoch keine besonders gute Flammschutzwirkung auf. Zu den mechanischen Eigenschaften fehlen darüber hinaus Angaben.
In der WO 2015/097058 werden Schaumstoffe auf Basis von PPSU oder PES, enthaltend mindestens 10 Gew% eines Polyolefins beschrieben. Das phasenseparierende Polyolefin wirkt dabei wohl primär als Nukleierungsmittel. Dabei werden gleichmäßigere Poren erzielt, ohne jedoch die Flammschutzeigenschaften oder mechanische Eigenschaften, wie zum Beispiel die
Reißdehnung positiv zu beeinflussen. Aufgrund der Phasenseparation ist sogar eher von einer schlechteren Reißdehnung auszugehen. In Hinblick auf die Flammschutzeigenschaften ist durch die Beimischung einer Polyolefinkomponente ebenfalls von einer Verschlechterung auszugehen.
In US 2013/0059933, US 2012/13599528, sowie in EP 2 692 519 sind PS-Partikelschäume beschrieben, denen bis zu 10 Gew% eines anderen Polymers wie beispielsweise Polyacrylate zugesetzt sind. Solche Schäume sind sämtlich in Anwendungen mit Brandschutzanforderungen ungeeignet. In der DE 1020111 10216 werden einem solchen PS-Partikelschaum auch kleine Mengen Polysulfone oder Polyethersulfone zugesetzt. Trotzdem besteht auch dieser Schaum überwiegend aus PS, was entsprechende Nachteile für Anwendungen im Luftverkehr mit sich bringt. Aufgabe
Aufgabe der vorliegenden Erfindung war es in Hinblick auf den Stand der Technik eine
Zusammensetzung zur Herstellung neuartiger Schaumstoffe bzw. Verbundmaterialien für die Verwendung im Flugzeugbau zur Verfügung zu stellen. Dabei sollen die resultierenden
Schaumstoffe eine gute Kombination aus Anwendbarkeit bei hohen Temperaturen, guten mechanischen Eigenschaften, insbesondere bezüglich der Reißdehnung und eine für viele Anwendungen im Bereich des Fahrzeug- und Flugzeugbaus zumindest ausreichende
Flammschutzwirkung haben.
Insbesondere soll der Schaumstoff dabei eine hohe Beständigkeit gegenüber diversen flüssigen, aciden, basischen oder hydrophoben Flüssigkeiten sowie gegenüber Emulsionen haben. Weiterhin soll aus der zu entwickelnden Zusammensetzung über verschiedenste Methoden und mit eine großen Brandbreite von dreidimensionalen Formen der Schaumstoff realisierbar sein und bei der Herstellung des finalen Bauteils möglichst kein oder nur sehr wenig Verschnitt anfallen.
Weitere nicht explizite Aufgaben können sich aus der Beschreibung, den Ansprüchen oder den Beispielen des vorliegenden Textes ergeben, ohne dazu an dieser Stelle explizit aufgeführt worden zu sein.
Lösung
Gelöst werden die Aufgaben durch die Zurverfügungstellung einer neuartigen Zusammensetzung zur Herstellung von temperaturbeständigen, schwer entflammbaren Schau mwerkstoffen zur Anwendung im Leichtbau, insbesondere in der Luftfahrtindustrie, im Schiffsbau, Automobilindustrie oder im Schienenfahrzeugbau. Diese erfindungsgemäße Zusammensetzung zur Herstellung von Schaumstoffen ist dadurch gekennzeichnet, dass es sich um einen PESU-Partikelschaum handelt, der als geschäumtes PESU eine Glasübergangstemperatur zwischen 180 und 215 °C aufweist, und in dem der mittlere Zelldurchmesser des Partikelschaums kleiner 1000 miti, bevorzugt kleiner 500 miti, besonders bevorzugt kleiner 250 gm ist. Unter einer Zelle wird dabei der Bereich in einem Partikelschaum verstanden, der durch Aufschäumen eines einzelnen Partikels definiert ist. Dies ist insbesondere überraschend, da die eigentliche Glasübergangstemperatur des PESU’s 225 °C beträgt.
Angegebene Glasübergangstemperaturen werden erfindungsgemäß - wenn nicht anders ausgeführt - mittels DSC (Differential Scanning Calometry) gemessen. Der Fachmann weiß dazu, dass die DSC nur ausreichend aussagekräftig ist, wenn nach einem ersten Aufheizzyklus bis zu einer Temperatur, die minimal 25 °C oberhalb der höchsten Glasübergangs- bzw.
Schmelztemperatur, dabei jedoch mindestens 20 °C unterhalb der tiefsten Zersetzungstemperatur eines Materials liegt, die Materialprobe für mindestens 2 min bei dieser Temperatur gehalten wird. Danach wird wieder auf eine Temperatur, die mindestens 20 °C unterhalb der tiefsten zu bestimmenden Glasübergangs- oder Schmelztemperatur liegt, abgekühlt, wobei die Abkühlrate maximal 20 °C / min, bevorzugt maximal 10 °C / min betragen sollte. Nach einer weiteren Wartezeit von wenigen Minuten erfolgt dann die eigentliche Messung, bei der mit einer Aufheizrate von in der Regel 10 °C / min oder weniger die Probe bis mindestens 20 °C über die höchste Schmelz- oder Glasübergangstemperatur erhitzt wird.
Bevorzugt besteht die erfindungsgemäße Zusammensetzung zur Herstellung des PESU aus 80 bis 99,5 Gew% PESU. Weiterhin weist diese Zusammensetzung 0,5 bis 10 Gew%, bevorzugt 1 bis 9 Gew% eines Treibmittels auf. Darüber hinaus können unter anderem 0 bis 10 Gew%, bevorzugt 1 bis 5 Gew% Additive enthalten sein.
Bei den Additiven kann es sich insbesondere um Flammschutzadditive, Weichmacher, Pigmente, UV-Stabilisatoren, Nukleierungsmittel, Schlagzähmodifier, Haftvermittler, Rheologiemodifier, Kettenverlängerer, Fasern und/oder um Nanopartikel handeln.
Als Flammschutzadditive kommen in der Regel Phosphor-Verbindungen, insbesondere Phosphate, Phosphine oder Phosphite zum Einsatz. Geeignete UV-Stabilisatoren bzw. UV-Absorber sind dem Fachmann im Allgemeinen bekannt. In der Regel verwendet man dazu HALS-Verbindungen, Tiuvine oder Triazole. Als Schlagzähmodifier werden in der Regel Polymerpartikel, aufweisend eine Elastomer- bzw. Weichphase verwendet. Dabei handelt es sich häufig um Kern-(Schale- )Schale-Partikel, mit einer Außenschale, die als solche maximal schwach vernetzt ist und als reines Polymer eine zumindest minimale Mischbarkeit mit dem Blend aus PES und PPSU aufweisen würde. Als Pigmente können grundsätzlich alle bekannten Pigmente eingesetzt werden. Insbesondere bei größeren Mengen sollte natürlich der Einfluss auf den Schäumungsvorgang - wie bei allen anderen in größeren Mengen von mehr als 0,1 Gew% eingesetzten Additiven - untersucht werden. Dies ist für den Fachmann mit relativ wenig Aufwand durchführbar.
Geeignete Weichmacher, Rheologiemodifier und Kettenverlängerer sind dem Fachmann im Allgemeinen aus der Herstellung von Folien, Membranen oder Formteilen aus PES, PPSU oder Blends aus diesen beiden bekannt und können entsprechend mit wenig Aufwand auf die
Herstellung eines Schaums aus der erfindungsgemäßen Zusammensetzung übertragen werden.
Bei den Fasern handelt es sich in der Regel um bekannte Fasermaterialien, die einer
Polymerzusammensetzung zugegeben werden können. In einer besonders geeigneten Ausführung der vorliegenden Erfindung handelt es sich bei den Fasern um PES-, PPSU- oder um Blend- Fasern, letztere aus PSE und PPSU.
Die Nanopartikel, die beispielsweise als Röhrchen, Plättchen, Stab, Kugel oder in anderen bekannten Formen vorliegen können, handelt es sich in der Regel um anorganische Materialien. Diese können gleich verschiedene Funktionen in dem fertigen Schaum übernehmen. So wirken diese Partikel teilweise als Nukleierungsmittel beim Schäumen. Weiterhin können die Partikel die mechanischen Eigenschaften, wie auch die (Gas-)Diffusionseigenschaften des Schaums beeinflussen. Weiterhin tragen die Partikel zusätzlich zur Schwerentflammbarkeit bei.
Neben den aufgeführten Nanopartikel können auch Mikropartikel oder wenig mischbare, phasenseparierende Polymere als Nukleierungsmittel zugefügt sein. Dabei sind die beschriebenen Polymere in der Betrachtung der Zusammensetzung getrennt von den anderen
Nukleierungsmitteln zu sehen, da diese primär einen Einfluss auf die mechanischen Eigenschaften des Schaums, die Schmelzviskosität der Zusammensetzung und damit die
Schäumungsbedingungen nehmen. Die zusätzliche Wirkung eines phasenseparierenden Polymers als Nukleierungsmittel ist ein zusätzlicher gewünschter, in diesem Fall jedoch nicht primärer Effekt dieser Komponente. Aus diesem Grund werden diese zusätzlichen Polymere in der Gesamtbilanz weiter oben getrennt von den übrigen Additiven aufgeführt.
In den Additiven können optional auch bis zu 9 Gew% einer zweiten Polymerkomponente zur Einstellung der physikalischen Eigenschaften enthalten sein. Bei den zusätzlichen Polymeren kann es sich beispielsweise um Polyamide, Polyolefine, insbesondere PP, PEEK, Polyester, insbesondere PET, andere schwefelbasierte Polymere, wie zum Beispiel PSU, Polyetherimide oder Polymethacrylimid handeln.
Die Wahl der Treibmittel ist relativ frei und bestimmt sich für den Fachmann insbesondere durch die gewählte Schäumungsmethode und die Schäumtemperatur. Geeignet sind zum Beispiel
Alkohol, wie z.B. Isopranol oder Butanol, Ketone, wie Aceton oder Methylethylketon, Alkane, wie iso- oder n-Butan, bzw. -Pentan, Hexan, Heptan oder Octan, Alkene, wie zum Beispiel Penten, Hexen, Hepten oder Octen, CO2, N2, Wasser, Ether, wie zum Beispiel Diethylether, Aldehyde, wie z.B. Formaldehyd oder Propanal, Fluor(chlor)kohlenwasserstoffe, chemische Treibmittel oder um Mischungen aus mehreren dieser Substanzen.
Bei den chemischen Treibmitteln handelt es sich um weniger oder nicht flüchtige Substanzen, die unter den Schäumungsbedingungen chemisch zersetzt werden und dabei das eigentliche
Treibmittel bilden. Ein sehr einfaches Beispiel dafür stellt tert-Butanol dar, welches unter
Schäumungsbedingen Isobuten und Wasser bildet. Weitere Beispiele sind NaHC03, Zitronensäure bzw. deren Derivate, Azodicarbonamid (ADC), bzw. Verbindungen davon ausgehend,
Toluolsulfonylhydrazin (TSH), Oxybis(benzosulfohydroazid) (OBSH) oder 5-Phenyl-tetrazol (5-PT).
Bevorzugt weist der erfindungsgemäße PESU-Partikelschaum eine Zugfestigkeit nach IS01926 größer 0,5 MPa, eine Bruchdehnung nach IS01926 zwischen 8 und 12 %, ein Schubmodul nach ASTM C273 bei Raumtemperatur größer 8 MPa, eine Schubfestigkeit nach ASTM C273 bei Raumtemperatur größer 0,45 MPa, ein Druck-Modul nach ISO 844 bei Raumtemperatur größer 13 MPa und eine Druckfestigkeit nach ISO 844 bei Raumtemperatur größer 0,4 MPa auf. Bei Anwendung des weiter unten beschriebenen Verfahrens zur Herstellung des PESU- Partikelschaums ist es für den Fachmann, unter Erhalt der erfindungsgemäßen
Glasübergangstemperatur und Zellgröße einfach, diese mechanischen Eigenschaften einzuhalten. Überraschend wurde darüber hinaus auch gefunden, dass der erfindungsgemäße Partikelschaum unter den in der Luftfahrtindustrie, insbesondere für Verwendung im Innenraum eines
Luftfahrzeugs wichtigen Brandschutzbestimmungen bzw. Brandeigenschaften nach FAR 25.852 anwendbar ist.
Weiterhin sehr überraschend ist, dass alle benötigten Materialeigenschaften, die für die
Verwendung in einem Flugzeuginnenraum vorausgesetzt werden, durch einen PESU- Partikelschaum genauso erfüllt werden, wie durch einen entsprechenden Schaum in Plattenform. Für PMI z.B. ist dieser Zusammenhang nicht gegeben, da für dieses Polymethacrylimid
Plattenware aus einem Blockschaum die Bedingungen erfüllt, während ein Partikelschaum keine Zulassung erhalten würde. Bevorzugt weisen die erfindungsgemäßen Schaumstoffe einen Schäumungsgrad auf, der eine Reduktion der Dichte gegenüber dem reinen Blend zwischen 1 und 98 %, bevorzugt zwischen 50 und 97 %, besonders bevorzugt zwischen 70 und 95 % ausmacht. Bevorzugt hat der Schaum eine Dichte zwischen 20 und 1000 kg/m3, bevorzugt 40 und 250 kg/m3. Neben dem PESU-Partikelschaum sind auch Verfahren zu dessen Herstellung Bestandteil der vorliegenden Erfindung.
Grundsätzlich gibt es zwei bevorzugte Vorgehen zur Herstellung der PESU-Partikelschäume. In einer ersten Verfahrensvariante wird eine Zusammensetzung, bestehend aus 80 bis 99,5 Gew% PESU, 0,5 bis 10 Gew% Treibmittel und 0 bis 10 Gew% Additiven mittels einem Extruder mit
Lochplatte zu einem geschäumten Granulat verarbeitet. Dabei liegen die Temperaturen zwischen Einzugszone und Schneckenspitze in einem Bereich zwischen 180 und 380 °C. Dabei liegt zumeist keine einheitliche Temperatur über diese Strecke vor, sondern beispielsweise ein Gradient mit steigender Temperatur in Förderrichtung der Polymerschmelze. Die Temperatur der Lochplatte liegt dabei zwischen 300 und 350 °C und die Massetemperatur beim Austritt durch die Lochplatte zwischen 200 und 360 °C. In dem Extruder erfolgt dabei in der Regel die Beladung mit dem Treibmittel. Das Granulat schäumt dann beim Austritt aus der Lochplatte. Das so geschäumte Granulat wird dann bevorzugt anschließend zu einem Partikelschaum weiter geschäumt.
In einer Variante dieser Ausführungsform kann die Zusammensetzung beim Austritt aus dem Extruder in einen Unterwassergranulator geleitet werden. Dieser ist dabei derart bezüglich einer Kombination aus Temperatur und Druck ausgelegt, dass ein Schäumen verhindert wird. Durch dieses Vorgehen erhält man ein mit Treibmittel beladenes Granulat, welches später durch erneute Energiezufuhr auf die gewünschte Dichte aufgeschäumt und/oder unter optionaler Formgebung zu einem Partikelschaumwerkstück weiterverarbeitet werden kann.
In einer zweiten Verfahrensvariante zur Herstellung eines PESU-Partikelschaums wird eine Zusammensetzung, bestehend aus 90 bis 100 Gew% PESU und 0 bis 10 Gew% Additiven mittels einem Extruder mit Lochplatte ebenfalls zunächst zu einem Granulat verarbeitet, dabei jedoch nicht mit einem Treibmittel beladen. Auch hier liegen die - wieder nicht zwingend gleichmäßigen - Temperaturen zwischen Einzugszone und Schneckenspitze in einem Bereich zwischen 180 und 380 °C. Gleichfalls beträgt die Temperatur der Lochplatte zwischen 300 und 350 °C und die Massetemperatur beim Austritt durch die Lochplatte zwischen 200 und 360 °C. Hier wird das Granulat anschließend in einem Autoklaven derart mit einem Treibmittel beladen werden, dass diese darauf zwischen 0,5 und 10 Gew% Treibmittel enthält. Das mit Treibmittel beladene Granulat kann anschließend durch Entspannen und/oder durch Erhitzen auf eine Temperatur von über 200 °C zu einem Partikelschaum geschäumt werden.
Grundsätzlich sind dem Fachmann diverse Methoden zum eigentlichen Schäumen von
Polymerzusammensetzungen bekannt, die insbesondere in Bezug auf Methoden für
thermoplastische Schäume auf die vorliegende Zusammensetzung anwendbar sind. Zum Beispiel kann die Zusammensetzung bei einer Temperatur zwischen 150 und 250 °C und einem Druck zwischen 0,1 und 2 bar aufgeschäumt werden. Bevorzugt erfolgt das eigentliche Schäumen, wenn nicht in Anschluss an die Extrusion, bei einer Temperatur zwischen 180 und 230 °C in einer Normaldruckatmosphäre.
In der Variante der späteren Beladung mit einem Treibmittel wird eine Zusammensetzung, noch ohne Triebmittel, in einem Autoklaven bei einer Temperatur z.B. zwischen 20 und 120 °C und einem Druck z.B. zwischen 30 und 100 bar mit dem Treibmittel beaufschlagt und anschließend durch Senken des Drucks und Erhöhen der Temperatur auf die Schäumtemperatur im Autoklaven geschäumt. Alternativ wird die mit dem Treibmittel beaufschlagte Zusammensetzung im
Autoklaven abgekühlt und nach dem Abkühlen entnommen. Diese Zusammensetzung kann dann durch Erhitzen auf die Schäumtemperatur später aufgeschäumt werden. Dies kann beispielsweise auch unter weiterer Formgebung oder in Verbindung mit anderen Elementen wie Inserts oder Deckschichten erfolgen. Besonders bevorzugt wird der hergestellte Partikelschaum - unabhängig vom verwendeten Verfahren - anschließend mit einem Deckmaterialien verklebt, vernäht oder verschweißt.
Verschweißt meint dabei, dass durch Erhitzen der Komponenten eine Adhesion zwischen den Materialien, z.B. durch partielles Füllen offener Poren an der Schaumoberfläche mit Deckmaterial, entsteht.
Bei dem Deckmaterial kann es sich um Holz, Metalle, Dekorfolien, Compositematerialien, Prepregs oder andere bekannte Materialien handeln.
Bei einem späteren Schäumen des PESU, z.B. nach dem Treibmittel-Beladen in einem
Autoklaven, kann der hergestellte Partikelschaum alternativ auch in Gegenwart eines
Deckmaterials derart geschäumt werden, dass es mit diesem mittels Verkleben oder Verschweißen verbunden wird.
Bei der Verfahrensvariante, bei der die Beladung mit T reibmittel im Extruder erfolgt kann das PESU alternativ auch bei Austritt aus dem Extruder in eine optional beheizte Form, optional enthaltend Deckmaterialien, gegeben werden. Dabei wird unter Formgebung zu einem
Partikelschaum bzw. einem Verbundmaterial ausgeschäumt. Alternativ kann die
Zusammensetzung beim Austritt aus dem Extruder in eine Schaumspritzvorrichtung geleitet werden. In dieser Vorrichtung wird dann direkt unter Formgebung aufgeschäumt.
Unabhängig von den eingesetzten Varianten können die Partikelschäume oder Verbundmaterialien während des Schäumens mit Inlets versehen werden und/oder Kanäle in den Partikelschaum eingebaut werden.
Die erfindungsgemäßen Schaumstoffe, bzw. die nach dem erfindungsgemäßen Verfahren hergestellten Schaumstoffe finden insbesondere in der Konstruktion von Raum- oder
Luftfahrzeugen, insbesondere in deren Interieur Verwendung. Das kann dabei die
Partikelschäume, hergestellt nach erfindungsgemäßen Verfahren oder auch nicht, genauso wie die daraus realisierten Verbundmaterialien umfassen. Insbesondere aufgrund der schweren
Entflammbarkeit können die erfindungsgemäßen Schaumstoffe auch im Innenraum dieser Fahrzeuge verbaut werden.
Weiterhin können die erfindungsgemäß hergestellten HT-Schäume zu Schaumformteilen bzw. Schaumkern-Composite-Materialien weiterverarbeitet werden. Diese Schaumformteilen bzw. Schaumkern-Composite-Materialien können insbesondere Anwendung in der Serienfertigung z.B. für Karosseriebau oder für Innenverkleidungen in der Automobilindustrie, Interieurteile im
Schienenfahrzeugs- oder Schiffsbau, in der Luft- und Raumfahrtindustrie, im Maschinenbau, bei der Herstellung von Sportgeräten, beim Möbelbau oder bei der Konstruktion von Windkraftanlagen finden.

Claims

Ansprüche
1. Verwendung eines PESU-Partikelschaums in der Luftfahrtindustrie, dadurch
gekennzeichnet, dass das geschäumte PESU eine Glasübergangstemperatur zwischen
180 und 215 °C aufweist, und dass der mittlere Zelldurchmesser des Partikelschaums kleiner 1000 pm beträgt.
2. Verwendung eines PESU-Partikelschaums gemäß Anspruch 1 , dadurch gekennzeichnet, dass dieser aus einer Zusammensetzung bestehend aus 80 bis 99,5 Gew% PESU, 0,5 bis 10 Gew% eines Treibmittels und 0 bis 10 Gew% Additiven erhalten wurde.
3. Verwendung eines PESU-Partikelschaums gemäß Anspruch 2, dadurch gekennzeichnet, dass es sich bei den Additiven um Flammschutzadditive, Weichmacher, Pigmente, UV- Stabilisatoren, Nukleierungsmittel, Schlagzähmodifier, Haftvermittler, Rheologiemodifier,
Kettenverlängerer, Fasern und/oder um Nanopartikel handelt
4. Verwendung eines PESU-Partikelschaums gemäß Anspruch 2 oder 3, dadurch
gekennzeichnet, dass es sich bei den Treibmitteln um einen Alkohol, ein Keton, ein Alkan, ein Alken, CO2, N2, Wasser, einen Ether, ein Aldehyd, chemische Treibmittel oder um Mischungen aus mehreren dieser Substanzen handelt.
5. Verwendung eines PESU-Partikelschaums gemäß mindestens einem der Ansprüche 1 bis
4, dadurch gekennzeichnet, dass der Partikelschaum eine Zugfestigkeit nach IS01926 größer 0,5 MPa, eine Bruchdehnung nach IS01926 zwischen 8 und 12 %, ein Schubmodul nach ASTM C273 bei Raumtemperatur größer 8 MPa, eine Schubfestigkeit nach ASTM C273 bei Raumtemperatur größer 0,45 MPa, ein Druck-Modul nach ISO 844 bei
Raumtemperatur größer 13 MPa und eine Druckfestigkeit nach ISO 844 bei
Raumtemperatur größer 0,4 MPa erfüllt.
6. Verwendung eines PESU-Partikelschaums gemäß mindestens einem der Ansprüche 1 bis
5, dadurch gekennzeichnet, dass es sich bei der Verwendung im Leichtbau um eine Verwendung in der Luftfahrtindustrie, im Schiffsbau, Automobilindustrie oder im
Schienenfahrzeugbau handelt.
7. Verfahren zur Herstellung eines PESU-Partikelschaums zur Verwendung gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine
Zusammensetzung, bestehend aus 80 bis 99,5 Gew%, PESU 0,5 bis 10 Gew%
Treibmittel und 0 bis 10 Gew% Additiven mittels einem Extruder mit Lochplatte zu einem geschäumten Granulat verarbeitet wird, wobei die Temperaturen zwischen Einzugszone und Schneckenspitze in einem Bereich zwischen 180 und 380 °C, die der Lochplatte zwischen 300 und 350 °C und die Massetemperatur beim Austritt durch die Lochplatte zwischen 200 und 360 °C liegen, und dass das geschäumte Granulat anschließend zu einem Partikelschaum weiter geschäumt wird.
8. Verfahren zur Herstellung eines PESU-Partikelschaums zur Verwendung gemäß
mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine
Zusammensetzung, bestehend aus 90 bis 100 Gew%, PESU und 0 bis 10 Gew%
Additiven mittels einem Extruder mit Lochplatte zu einem Granulat verarbeitet wird, wobei die Temperaturen zwischen Einzugszone und Schneckenspitze in einem Bereich zwischen 180 und 380 °C, die der Lochplatte zwischen 300 und 350 °C und die Massetemperatur beim Austritt durch die Lochplatte zwischen 200 und 360 °C liegen, dass das Granulat anschließend in einem Autoklaven derart mit einem Treibmittel beladen werden, dass diese darauf zwischen 0,5 und 10 Gew% Treibmittel enthält, und dass das mit Treibmittel beladene Granulat anschließend durch Entspannen und/oder durch Erhitzen auf eine Temperatur von über 200 °C zu einem Partikelschaum geschäumt wird.
9. Verfahren zur Herstellung eines Verbundteils, dadurch gekennzeichnet, dass der mittels einem Verfahren gemäß einem der Ansprüche 7 oder 8 hergestellte Partikelschaum mit Deckmaterialien verklebt, vernäht oder verschweißt wird.
10. Verfahren zur Herstellung eines Verbundteils, dadurch gekennzeichnet, dass der mittels einem Verfahren gemäß Anspruch 8 hergestellte Partikelschaum mit in Gegenwart eines Deckmaterials derart geschäumt wird, dass es mit diesem mittels Verkleben oder Verschweißen verbunden wird.
11. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass das PESU bei Austritt aus dem Extruder in eine optional beheizte Form, optional enthaltend Deckmaterialien, gegeben wird und dabei unter Formgebung zu einem Partikelschaum bzw. einem
Verbundmaterial ausgeschäumt wird.
12. Verfahren gemäß mindestens einem der Ansprüche 7 bis 11 , dadurch gekennzeichnet, dass während des Schäumens Inlets und/oder Kanäle in den Partikelschaum eingebaut werden.
13. Verwendung eines gemäß einem der Ansprüche 7, 8, 11 oder 12 hergestellten Partikelschaums im Flugzeugbau.
14. Verwendung eines gemäß einem der Ansprüche 9, 10, 11 oder 12 hergestellten
Verbundmaterials im Flugzeugbau.
PCT/EP2018/081689 2017-11-27 2018-11-19 Pesu-partikelschäume für anwendungen im luftfahrt-interieur WO2019101667A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2020528470A JP2021504523A (ja) 2017-11-27 2018-11-19 航空機内装品において使用するためのpesuパーティクルフォーム
EP18800669.6A EP3717553A1 (de) 2017-11-27 2018-11-19 Pesu-partikelschäume für anwendungen im luftfahrt-interieur
US15/733,134 US20210095092A1 (en) 2017-11-27 2018-11-19 Pesu particle foams for applications in aviation interiors
KR1020207018308A KR20200084898A (ko) 2017-11-27 2018-11-19 항공기 내부에서의 적용을 위한 pesu 입자 발포체
CN201880076517.5A CN111406091A (zh) 2017-11-27 2018-11-19 用于在航空器内部中应用的pesu粒子泡沫
BR112020010372-1A BR112020010372A2 (pt) 2017-11-27 2018-11-19 espumas de partícula de pesu para aplicações em interiores de aeronave
CA3083553A CA3083553A1 (en) 2017-11-27 2018-11-19 Pesu particle foams for applications in aviation interiors
MA49867A MA49867A1 (fr) 2017-11-27 2018-11-19 Mousses à base de particules de pesu destinées à des utilisations à l'intérieur d'aéronefs
MX2020005297A MX2020005297A (es) 2017-11-27 2018-11-19 Espumas de particulas de polietersulfona (pesu) para aplicaciones en interiores de aeronaves.
AU2018371107A AU2018371107A1 (en) 2017-11-27 2018-11-19 PESU particle foams for applications in aviation interiors
IL274859A IL274859A (en) 2017-11-27 2020-05-24 Foams of polyethersulfone particles for applications in interior parts of aircraft
ZA2020/03832A ZA202003832B (en) 2017-11-27 2020-06-24 Pesu particle foams for application in aviation interiors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17203688 2017-11-27
EP17203688.1 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019101667A1 true WO2019101667A1 (de) 2019-05-31

Family

ID=60661719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/081689 WO2019101667A1 (de) 2017-11-27 2018-11-19 Pesu-partikelschäume für anwendungen im luftfahrt-interieur

Country Status (14)

Country Link
US (1) US20210095092A1 (de)
EP (1) EP3717553A1 (de)
JP (1) JP2021504523A (de)
KR (1) KR20200084898A (de)
CN (1) CN111406091A (de)
AU (1) AU2018371107A1 (de)
BR (1) BR112020010372A2 (de)
CA (1) CA3083553A1 (de)
IL (1) IL274859A (de)
MA (1) MA49867A1 (de)
MX (1) MX2020005297A (de)
TW (1) TW201925295A (de)
WO (1) WO2019101667A1 (de)
ZA (1) ZA202003832B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889212A1 (de) * 2020-04-03 2021-10-06 Evonik Operations GmbH Polyetherimid-polyetheretherketon-partikelschäume für anwendungen im leichtbau
WO2022037857A1 (de) * 2020-08-18 2022-02-24 Evonik Operations Gmbh Herstellung von granulaten auf basis von hochtemperatur-polymeren mittels unterwassergranulierung bei erhöhter wassertemperatur zur herstellung von partikel(hart)schaumstoffen
US11485832B2 (en) 2017-11-27 2022-11-01 Evonik Operations Gmbh High-temperature foams with reduced resin absorption for producing sandwich materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038213A1 (de) 2017-08-24 2019-02-28 Evonik Röhm Gmbh Pei-partikelschäume für anwendungen im luftfahrt-interieur

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940733A (en) 1989-11-28 1990-07-10 Air Products And Chemicals, Inc. Method for foaming high temperature polymers using poly(alkylene carbonates) as foaming agents
EP0411437A2 (de) * 1989-08-03 1991-02-06 BASF Aktiengesellschaft Verfahren zur Herstellung von expandierbarem Granulat und Schaumstoffen daraus
EP0764461A1 (de) 1994-06-07 1997-03-26 Mitsubishi Rayon Co., Ltd. Poröse polysulfonmembrane und verfahren zu deren herstellung
EP1497376A1 (de) 2002-04-15 2005-01-19 Solvay Advanced Polymers, LLC Polyarylenetherzusammensetzungen mit verringerter vergilbung und hoher lichtdurchlässigkeit und daraus hergestellte gegenstände
DE102011110216A1 (de) 2010-08-18 2012-02-23 Basf Se Partikelschaumstoffe mit verbesserter Steifigkeit
US20130059933A1 (en) 2011-08-31 2013-03-07 Basf Se Expandable thermally-stable styrene copolymers
EP2692519A1 (de) 2012-08-02 2014-02-05 Basf Se Wärmeformbeständiger und stabilisierter Schaumstoff aus Styrolcopolymeren
WO2015097058A1 (en) 2013-12-23 2015-07-02 Solvay Specialty Polymers Usa, Llc New foam materials
EP3202837A1 (de) * 2014-09-30 2017-08-09 Sekisui Plastics Co., Ltd. Perlschaumformkörper, harzschaumpartikel, verfahren zur herstellung von harzschaumpartikeln, schäumbare harzpartikel und verfahren zur herstellung eines perlschaumformkörpers

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1569763A (en) * 1976-09-06 1980-06-18 Ici Ltd Manufacture of foamed thermoplastic aromatic polyether-sulphone
CA1173613A (en) * 1980-08-18 1984-09-04 Peter J. Ives Methods and apparatus for producing foamed thermoplastics materials and articles
DE4004599A1 (de) * 1990-02-15 1991-08-22 Basf Ag Laminate mit stabilen befestigungsstellen
JPH05285965A (ja) * 1992-04-07 1993-11-02 Kyowa Leather Cloth Co Ltd 表皮材を有する発泡成形体の製造方法
JPH08132453A (ja) * 1994-11-05 1996-05-28 Inoac Corp ヘッドレスト基体の成形用金型
JPH11293026A (ja) * 1998-04-08 1999-10-26 Asahi Chem Ind Co Ltd スチレン系発泡性粒子および発泡体
JP2001079868A (ja) * 1999-09-14 2001-03-27 Sekisui Chem Co Ltd 複合発泡体の製造方法
AU2004219602A1 (en) * 2003-03-12 2004-09-23 Petritech, Inc. Structural and other composite materials and methods for making same
CA2542367A1 (en) * 2003-10-17 2005-04-28 Shiina Kasei Co. Method for producing plastic foamed composite
JP2006146123A (ja) * 2004-10-21 2006-06-08 Idemitsu Kosan Co Ltd Led用反射体及びその製造方法
WO2014102139A2 (en) * 2012-12-28 2014-07-03 Total Research & Technology Feluy Improved expandable vinyl aromatic polymers
JP2018520263A (ja) * 2015-05-18 2018-07-26 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. フォームアセンブリ
US11499028B2 (en) * 2017-08-04 2022-11-15 Basf Se Expandable, expanding-agent-containing granules based on high-temperature thermoplastics

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0411437A2 (de) * 1989-08-03 1991-02-06 BASF Aktiengesellschaft Verfahren zur Herstellung von expandierbarem Granulat und Schaumstoffen daraus
US4940733A (en) 1989-11-28 1990-07-10 Air Products And Chemicals, Inc. Method for foaming high temperature polymers using poly(alkylene carbonates) as foaming agents
EP0764461A1 (de) 1994-06-07 1997-03-26 Mitsubishi Rayon Co., Ltd. Poröse polysulfonmembrane und verfahren zu deren herstellung
EP1497376A1 (de) 2002-04-15 2005-01-19 Solvay Advanced Polymers, LLC Polyarylenetherzusammensetzungen mit verringerter vergilbung und hoher lichtdurchlässigkeit und daraus hergestellte gegenstände
DE102011110216A1 (de) 2010-08-18 2012-02-23 Basf Se Partikelschaumstoffe mit verbesserter Steifigkeit
US20130059933A1 (en) 2011-08-31 2013-03-07 Basf Se Expandable thermally-stable styrene copolymers
EP2692519A1 (de) 2012-08-02 2014-02-05 Basf Se Wärmeformbeständiger und stabilisierter Schaumstoff aus Styrolcopolymeren
WO2015097058A1 (en) 2013-12-23 2015-07-02 Solvay Specialty Polymers Usa, Llc New foam materials
EP3202837A1 (de) * 2014-09-30 2017-08-09 Sekisui Plastics Co., Ltd. Perlschaumformkörper, harzschaumpartikel, verfahren zur herstellung von harzschaumpartikeln, schäumbare harzpartikel und verfahren zur herstellung eines perlschaumformkörpers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L. SORRENTINO: "Polymeric Foams from High-Performance Thermoplastics", ADVANCES IN POLYMER TECHNOLOGY, vol. 30, no. 3, 2011, pages 234 - 243

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11485832B2 (en) 2017-11-27 2022-11-01 Evonik Operations Gmbh High-temperature foams with reduced resin absorption for producing sandwich materials
EP3889212A1 (de) * 2020-04-03 2021-10-06 Evonik Operations GmbH Polyetherimid-polyetheretherketon-partikelschäume für anwendungen im leichtbau
WO2021197660A1 (en) * 2020-04-03 2021-10-07 Evonik Operations Gmbh Pei or pei-peek particle foams for applications in lightweight construction
WO2022037857A1 (de) * 2020-08-18 2022-02-24 Evonik Operations Gmbh Herstellung von granulaten auf basis von hochtemperatur-polymeren mittels unterwassergranulierung bei erhöhter wassertemperatur zur herstellung von partikel(hart)schaumstoffen

Also Published As

Publication number Publication date
JP2021504523A (ja) 2021-02-15
BR112020010372A2 (pt) 2020-10-20
US20210095092A1 (en) 2021-04-01
EP3717553A1 (de) 2020-10-07
MA49867A1 (fr) 2020-12-31
MX2020005297A (es) 2020-08-13
CA3083553A1 (en) 2019-05-31
CN111406091A (zh) 2020-07-10
IL274859A (en) 2020-07-30
TW201925295A (zh) 2019-07-01
KR20200084898A (ko) 2020-07-13
AU2018371107A1 (en) 2020-07-09
ZA202003832B (en) 2022-03-30

Similar Documents

Publication Publication Date Title
WO2019038213A1 (de) Pei-partikelschäume für anwendungen im luftfahrt-interieur
WO2019101667A1 (de) Pesu-partikelschäume für anwendungen im luftfahrt-interieur
EP1718450B9 (de) Verfahren zur herstellung von mikroporösen kunststoffprodukten
EP3717211B1 (de) Hochtemperaturschaumstoffe mit verringerter harzaufnahme zur herstellung von sandwichmaterialien
WO2019101704A1 (de) Pes-ppsu-blends als basis für schaumstoffe
WO2012100880A1 (de) Verfahren zur herstellung einer mehrschichtigen kunststofffolie
EP2519569B1 (de) Expandierbare polymerisate aus celluloseacetatbutyrat
EP2565224A1 (de) Expandierbare temperaturbeständige Styrol-Copolymere
WO2016074811A1 (de) Verfahren zur herstellung eines schaumfolienlaminats und dessen verwendung
DE102011013516A1 (de) Verfahren zur Herstellung von verstärkten Schaumstoffen
EP3889212A1 (de) Polyetherimid-polyetheretherketon-partikelschäume für anwendungen im leichtbau
RU2777619C2 (ru) Пэи-пенопласты из вспененных частиц для применения внутри летательных аппаратов
DE102006010354A1 (de) Verfahren zum Herstellen eines Kunststoffgranulats, Kunststoffgranulat und Verfahren zum Herstellen eines geschäumten Artikels
DE4307323A1 (de) Formkörper unter Verwendung von Schaumstoffen
EP3225654A1 (de) Verkürzung der abkühlphase beim partikelschäumen durch die wärmeleitung erhöhende additive
DE102011052273A1 (de) Verfahren zur Herstellung eines extrudierten, aufgeschäumten Granulates
DE102006034953A1 (de) Verfahren zum Herstellen eines Artikels mit einem Hohlraum aus einem Kunststoffmaterial
DE102016208904A1 (de) Spritzgegossener Artikel sowie Verfahren zur Herstellung des Artikels
DE102015106988A1 (de) Zeolithe in Lacken oder Klebstoffen für thermoplastischen Schaumspritzguss
WO2008011862A1 (de) Verfahren zum herstellen eines artikels mit einem hohlraum aus einem kunstoffmaterial

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18800669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3083553

Country of ref document: CA

Ref document number: 2020528470

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207018308

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018800669

Country of ref document: EP

Effective date: 20200629

ENP Entry into the national phase

Ref document number: 2018371107

Country of ref document: AU

Date of ref document: 20181119

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020010372

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020010372

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200525