WO2019098876A1 - Catalyseur d'hydrocraquage de matière première hydrocarbure - Google Patents

Catalyseur d'hydrocraquage de matière première hydrocarbure Download PDF

Info

Publication number
WO2019098876A1
WO2019098876A1 PCT/RU2018/000378 RU2018000378W WO2019098876A1 WO 2019098876 A1 WO2019098876 A1 WO 2019098876A1 RU 2018000378 W RU2018000378 W RU 2018000378W WO 2019098876 A1 WO2019098876 A1 WO 2019098876A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
amorphous aluminosilicate
hydrocracking
molybdenum
tungsten
Prior art date
Application number
PCT/RU2018/000378
Other languages
English (en)
Russian (ru)
Inventor
Павел Петрович ДИК
Василий Юрьевич ПЕРЕЙМА
Галина Ивановна КОРЯКИНА
Ксения Александровна НАДЕИНА
Максим Олегович КАЗАКОВ
Олег Владимирович Климов
Александр Степанович НОСКОВ
Original Assignee
Акционерное Общество "Газпромнефть-Омский Нпз" (Ао "Газпромнефть-Онпз")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Газпромнефть-Омский Нпз" (Ао "Газпромнефть-Онпз") filed Critical Акционерное Общество "Газпромнефть-Омский Нпз" (Ао "Газпромнефть-Онпз")
Publication of WO2019098876A1 publication Critical patent/WO2019098876A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Definitions

  • the invention relates to catalysts for the hydrocracking of hydrocarbons, intended for the production of kerosene and diesel fractions with low sulfur content.
  • catalysts containing nickel and molybdenum or tungsten oxides are used, supported on a carrier containing amorphous aluminosilicate, high silica zeolite Y and alumina.
  • So known catalyst [RF No 2540071], most preferably containing 10-20 May. % of tungsten or molybdenum, 1-6 May. % nickel, and its carrier contains a total of 10-50 May. % of zeolites Y and beta, and the rest is amorphous aluminosilicate, and the content of zeolite beta is 0.5-10 May.
  • the process of hydrocracking is carried out at a temperature of 300-450 ° C, a pressure of 8-20 MPa, with a ratio of hydrogen / feedstock of 200-3000 nl / kg and a bulk flow rate of feed of 0.2-5 kg * l 1 * h 1 .
  • the main disadvantage of such a catalyst and method of carrying out the hydrocracking process is the low yield of the kerosene and diesel fractions, as well as the high sulfur content in the resulting products.
  • Known catalyst most preferably containing 21 May. % W0 3 , 5 May. % NiO, and its carrier most preferably contains a total of 20-80 May. % Ultrastable zeolite Y and zeolite nizkokremnezemnogo Y or zeolite beta or zeolite ZSM-5, and the remainder a binder in the form of amorphous silica and aluminum oxide, wherein the content nizkokremnezemnogo zeolite Y, zeolite beta, zeolite ZSM-5 is 0.5-10%.
  • the process of hydrocracking is carried out at a temperature of 300-450 ° C, a pressure of 8-20 MPa, with a ratio of hydrogen / raw materials of 250-2000 nl / kg and a bulk flow rate of raw materials of 0.5-5 kg * l 1 * h 1 .
  • the main disadvantage of such a catalyst and method of carrying out the hydrocracking process is the low yield of the kerosene and diesel fractions, as well as the high sulfur content in the resulting products.
  • catalysts containing a three-component system Ni + Mo + W
  • So known catalyst [RF N ° 2 245 737], containing, May. %: hydrogenating components 15-30% (oxides of nickel, molybdenum and tungsten with a mass ratio of 25:35:40), acid component (aluminum fluoride) 20-40 promoter (boron and / or zirconium oxide) 1-4, binder (oxide aluminum, aluminosilicate, clay or their mixture) up to 100%.
  • the process of hydrocracking is carried out at a temperature of 380-430 ° C, a pressure of 3-10 MPa, with a ratio of hydrogen / feedstock of 250-1000 nm 3 / m 3 and a space velocity of feed of raw materials 1-3 h 1 .
  • the main disadvantage of such a catalyst and method of carrying out the hydrocracking process is the low yield of the kerosene and diesel fractions, as well as the high sulfur content in the resulting products.
  • catalysts containing C 3 -C 12 polyhydroxy compounds as modifying additives can be used.
  • the hydrocracking catalyst for hydrocarbon feedstock [WO 2013092806 Al, B01J21 / 12, C10G47 / 12, 27/06/2013], which includes nickel, molybdenum or tungsten, a carrier based on amorphous aluminosilicate and C 3 -C 12 polyhydroxy compound .
  • the components in the catalyst are most preferably contained in the following concentrations, May. %: Nickel 3-6, molybdenum 10-16 or tungsten 15-22, sucrose and / or gluconic acid 5-20.
  • the catalyst after the application of the active metals is dried at a temperature of not more than 200 ° C.
  • the hydrocracking process is carried out at a temperature of 300-450 ° C, a pressure of 8-20 MPa, with a hydrogen / feedstock ratio of 200-3000 nl / kg and a space feed rate of 0.2-5 kg * l 1 * h '1 .
  • the main disadvantage of such a catalyst is the low yield of kerosene and diesel fractions, as well as the high sulfur content in the resulting products.
  • the closest in technical essence to the claimed catalyst is a catalyst for the hydrocracking of hydrocarbons [RF JVo 2607905], which includes nickel, molybdenum, aluminum and silicon.
  • the components in the catalyst are contained in the following concentrations, May. %: [Ni (H 2 0) x (L) y ] 2 [Mo 4 O ll (C 6 H 5 0 7 ) 2 ] 13.1-23.3, amorphous aluminosilicate - 40.0-61.3; g-A1 2 0 3 - the rest, which corresponds to the content in the calcined at 550 ° C catalyst, May. %: MoO 3 - 7.0-13.0, O - 1.8-3, 4, amorphous aluminosilicate - 43.1-66.9; g-A1 2 0 3 - the rest.
  • the main disadvantage of the prototype, as well as other known catalysts, is the low yield of kerosene and diesel fractions, as well as the high sulfur content in the resulting products.
  • the invention solves the problem of creating an effective catalyst for the hydrocracking of hydrocarbons.
  • the technical result is a high hydrodesulfurization activity and the textural and acidic characteristics of the catalyst that are optimal for the hydrocracking of hydrocarbon feedstock, providing kerosene and diesel fractions with high yield and low sulfur content.
  • a catalyst that contains nickel, molybdenum, tungsten, aluminum and silicon.
  • the molar ratio of W / (Mo + W) in the catalyst should be in the range of 0.3-0.7.
  • the catalyst has a pore volume of 0.61-0.80 cm 3 / g, a specific surface area of 224-263 m / g and an average pore diameter of 10.3-11.8 nm and is a particle with a cross-section in the form of a trefoil, quatrefoil or a circle with a diameter of 1.2 circumference -2, 5 mm and a length of up to 20 mm, having a volumetric mechanical strength, determined by the method of Shell SMS 1471, not less than 1, 0 MPa.
  • aluminosilicates with a Si / Al mass ratio of 0.6 to 0.85 can be used, characterized by X-ray diffraction patterns containing a broad peak in the 16.5-33.5 ° range with a maximum of 23.1-23.4 °.
  • a distinctive feature of the proposed catalyst in comparison with the prototype is that the catalyst contains, [Ni (H 2 0) x (L) y ] 2 [Mo 4 0 ll (C 6 H 5 0 7 ) 2 ] 6.2-14.9, Ni ( NH 4 ) a [H b W 2 0 5 (C 6 H 5 0 7 ) 2 ] 10.2-
  • the molar ratio of W / (Mo + W) in the catalyst should be in the range of 0.3-0.7.
  • the yield of the content and the mass ratio of the catalyst components beyond the claimed limits leads to a decrease in the activity of the catalyst in the target hydrocracking reactions, to a decrease in the selectivity of the catalyst with respect to the kerosene and diesel fractions and to a decrease in the activity of the catalyst in hydrodesulfurization.
  • the claimed chemical composition of the catalyst causes a high activity in the target hydrocracking reactions and a high selectivity for relative to the kerosene and diesel fractions.
  • the presence of bimetallic compounds [Ni (H 2 0) x (L) y ] 2 [Mo 4 O ll (C 6 H 5 0 7 ) 2 ] and Ni (NH 4 ) a [H b W 2 05 (C 6 H50 7 ) 2] in the claimed concentrations provides further formation in the catalyst, during its operation in hydrocracking, highly active particles of the sulfide component — NiMoS and NiWS phases of type II in the form of particles that are optimal for catalysis of morphology localized in the pores accessible to all molecules to be converted .
  • nickel-molybdenum and nickel-tungsten with a molar ratio of W / (Mo + W) from 0.3 to 0.7 leads to easier sulfiding of tungsten-containing compounds by adding building tungsten sulfide around molybdenum sulfide to form particles of the core-shell type - a trimetallic NiMoWS phase of type II, possessing maximum activity in the hydrogenation of aromatic compounds.
  • each essential feature is necessary, and their combination is sufficient to achieve a new quality, non-characteristic in disunity, that is, the task is achieved not by the sum of the effects, but by the new supereffect of the sum of the signs.
  • the amount of aluminum hydroxide and aluminosilicate powder is taken taking into account that the mass content of amorphous aluminosilicate in the carrier was 50-70 May. %
  • the amount of water added to make a paste depends on the moisture content of the initial powders and is approximately 0.8-1.3 ml / g.
  • the amount of nitric acid is calculated depending on the amount of g-A1 2 0 3 so that the acid modulus is from 0.05 to 0.7, more preferably from 0.1 to 0.5.
  • the resulting paste is extruded through a die with holes, the shape and dimensions of which provide the production of granules with a cross-section in the form of a trefoil, quatrefoil or a circle with a circumference of 1.2-2.5 mm.
  • the obtained wet carrier is dried at a temperature of 100-150 ° C and calcined at a temperature of 500-600 ° C.
  • the result is a homogeneous carrier of white color, which is a granule with a cross with section in the form of a trefoil, a four-leaf or a circle with a circumference of 1.2-2.5 mm and a length of 2-20 mm.
  • the resulting solution is impregnated with a carrier containing amorphous aluminosilicate, using either the impregnation of the carrier according to moisture capacity, or from an excess of solution, or vacuum impregnation. Impregnation is carried out at a temperature of 15-90 ° C for 5-60 minutes with occasional stirring, in the case of impregnation from an excess solution, or vacuum impregnation, after impregnation an excess solution is drained from the catalyst and used to prepare the following catalyst batches. After impregnation, the catalyst is dried in air at a temperature of 100-250 ° C. The result is a catalyst, the characteristics of which fully correspond to the claimed intervals.
  • the catalyst is tested in the hydrocracking of vacuum gas oil with a sulfur and nitrogen content of 2.81 May. % and 0.093 May. %, respectively, the distillation temperature of 5% vol. 292 ° C and a distillation temperature of 95% vol. 527 ° C.
  • the catalyst is sulfided by heating it in a stream of hydrogen and a sulfiding mixture, which is a straight-run diesel fuel with a sulfur content of 1.45% S, to which dimethyl disulfide with a concentration of 12 g / l is additionally added.
  • the resulting catalyst contains, may. %:
  • a portion of the catalyst with a volume of 30 cm is mixed with 120 cm of silicon carbide (0.1-0.3 mm), placed in a stainless steel flow reactor and heated in a stream of hydrogen and a sulfiding mixture, which is a straight-run diesel fuel with a sulfur content of 1.45 % S, which additionally added dimethyl disulfide with a concentration of 12 g / l.
  • Sulfidation is carried out at 3.5 MPa, the flow rate of the sulfiding mixture is 2 hours and the volume ratio of hydrogen / sulfiding mixture is 500 nm / m 4 h at 240 ° C, and then 4 h at 260 ° C and then 8 h at 340 ° C.
  • the hydrocracking process is carried out at a temperature of 390 ° C, a pressure of 12 MPa, a volumetric flow rate of the raw material of 0.6 h 1 , a volume ratio of hydrogen / raw material of 1100 m 3 (at U.) / m 3 .
  • a carrier is prepared containing 50% by weight of amorphous aluminosilicate as in Example 1.
  • An aqueous solution is prepared containing 13.9 g of [Ni (H 2 0) x (L) y ] 2 [Mo 4 0 (C 6 H 5 0 7 ) 2 ] and 9.5 g Ni (NH 4 ) a [H b W 2 0 5 (C 6 H 5 0 7 ) 2 ], for which purpose 9.62 g of citric acid monohydrate C 6 H 8 0 are successively dissolved in 40 ml of water at 70 ° C and stirring.
  • the IR spectrum of the resulting solution contains peaks characteristic of Ni (NH 4 ) a [H b W 2 0 5 (C 6 H 5 0 7 ) 2 ] and [Ni (H 2 0) x (L) y ] 2 [Mo 4 O ll (C 6 H 5 0 7 ) 2 ] (table 1).
  • the catalyst is dried in air at 120 ° C.
  • the radiograph of the catalyst obtained contains a peak with a maximum of 23.1 °, corresponding to amorphous aluminosilicate with a Si / Al mass ratio of 0.85.
  • the resulting catalyst contains, may. %:
  • the catalyst has a pore volume of 0.69 cm 3 / g, a specific surface area of 247 m 2 / g and an average pore diameter of 1 1.0 nm and is a particle with a cross-section in the shape of a trefoil with a diameter of a circumcircle of 1.0-1.6 mm and a length of up to 20 mm .
  • the volumetric mechanical strength of the catalyst measured by the method of Shell SMS 1471, is 1.15 MPa.
  • the IR spectrum of the resulting solution contains peaks characteristic of Ni (NH 4 ) a [H b W 2 0 5 (C 6 H 5 0 7 ) 2 ] and [Ni (H 2 0) x (L) y ] 2 [Mo 4 On (C 6 H 5 0 7 ) 2 ] (table 1).
  • the catalyst is dried in air at 120 ° C.
  • the resulting catalyst contains, may. %:
  • the catalyst has a pore volume of 0.66 cm 3 / g, a specific surface area of 240 m 2 / g and an average pore diameter of 10.3 nm and is a particle with a cross-section in the shape of a trefoil with a diameter of a circumscribed circle of 1.0-1.6 mm and a length of up to 20 mm.
  • the volumetric mechanical strength of the catalyst measured by the method of Shell SMS 1471, is 1.15 MPa.
  • the IR spectrum of the resulting solution contains peaks characteristic of Ni (NH 4 ) a [H b W 2 0 5 (C 6 H 5 0 7 ) 2 ] and [Ni (H 2 0) x (L) y ] 2 [Mo 4 0 11 (C 6 H 5 0 7 ) 2 ] (table 1).
  • 70 g of the carrier is impregnated on the capacity of 72 ml of the resulting solution.
  • the catalyst is dried in air at 120 ° C.
  • the resulting catalyst contains, may. %:
  • the catalyst has a pore volume of 0.64 cm 3 / g, a specific surface area of 236 m 2 / g and an average pore diameter of 10.7 nm and is a particle with a cross-section in the shape of a trefoil with a diameter of a circumscribed circle of 1.0-1.6 mm and length up to 20 mm.
  • the volumetric mechanical strength of the catalyst measured by the method of Shell SMS 1471, is equal to 1.10 MPa.
  • An aqueous solution is prepared containing 13.4 g [Ni (H 2 0) x (L) y ] 2 [Mo 4 On (C 6 H 5 0 7 ) 2 ] and 21.5 r Ni (NH 4 ) a [H b W 2 0 5 (C 6 H 5 0 7 ) 2 ], for which purpose 14.99 g of citric acid monohydrate C 6 H 8 0 7 hH 2 0, 5.86 g of basic nickel carbonate NiC0 3 mNi are successively dissolved in 40 ml of water at 70 ° C and stirring 0H) 2 nH 2 0, 12.58 g of ammonium paratungstate (NH 4 ) 6 W 7 0 24 x4H 2 0r and 8.41 g of ammonium paramolybdate (NH 4 ) 6 Mo 7 0 24 c 4H 2 0.
  • the resulting catalyst contains, may. %:
  • the catalyst has a pore volume of 0.61 cm 3 / g, a specific surface area of 224 m 2 / g and an average pore diameter of 1 1.8 nm and is a particle with a section in the form of a circle with a diameter of a circumscribed circle of 1.0-1.6 mm and a length of up to 20 mm .
  • the volumetric mechanical strength of the catalyst measured by the method of Shell SMS 1471, is equal to 1.28 MPa.
  • the powder of amorphous aluminosilicate with a mass ratio of Si / Al 0.6, having a broad peak in the region of 16.5-33.5 ° with a maximum of 23.4 °, is calcined at a temperature of 700 ° C for 4 hours.
  • the resulting catalyst contains, may. %:
  • the catalyst has a pore volume of 0.80 cm 3 / g, a specific surface area of 263 m 2 / g and an average pore diameter of 1 1.4 nm and is a quadruple-shaped particle with a circumferential diameter of 1.0-1.6 mm and a length of up to 20 mm .
  • the volumetric mechanical strength of the catalyst measured by the method of Shell SMS 1471, is 1.05 MPa.
  • compositions of the complex compounds Ni (NH 4 ) a [H b W 2 0 5 (C 6 H 5 0 7 ) 2 ] and [M (H 2 0) x (b) y ] 2 [Mo 4 0n (C 6 H 5 0 7 ) 2 ] in examples 1-6 are given in table 3.
  • the proposed catalyst due to its chemical composition has high activity and selectivity to the fraction with an initial boiling point of 130 ° C and a final boiling point of 360 ° C, i.e. to the kerosene and diesel fractions, providing a significantly higher yield of kerosene and diesel fractions than when using the prototype catalyst in the hydrocracking of hydrocarbons.
  • the sulfur content in the resulting fraction of 360 ° ⁇ -boiling point is significantly lower than when using the prototype catalyst. Table 1.

Abstract

L'invention concerne des catalyseurs d'hydrocraquage de matières premières hydrocarbures pour obtenir des fractions de gasoil et de kérosène à faible teneur en sulfures. L'invention porte sur une solution au problème de création d'un catalyseur efficace d'hydrocraquage de matière première hydrocarbure. L'invention concerne un catalyseur qui comprend simultanément du molybdène et du tungstène sous forme de composés bimétalliques [Ni(H2O)х(L)y]2[Mo4O11(C6H5O7)2] и Ni(NH4)a[HbW2O5(C6H5O7)2], dans laquelle: L et С6Н5О7 sont une forme partiellement exempte de protons d'acide citrique; х=0 ou 2; y=0 ou 1; а=0, 1 ou 2; b=2-а; du silicium sous forme de silicate d'aluminium amorphe, de l'aluminium sous forme de γ-Al2O3 et de silicate d'aluminium amorphe, les composants dans le catalyseur étant contenus dans les proportions suivantes, en % en masse : [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6.2-14.9, Ni(NH4)a[HbW2O5(C6H5O7)2] - 10.2-23.3, silicate d'aluminium amorphe 33.4-50.9; γ-Al2O3 pour le reste, ce qui correspond à la teneur dans un catalyseur recuit à 550°С, en % en masse: MoO3 3.6-8.4, WO3 5.8-13.5, NiO 3.1-3.9, silicate d'aluminium amorphe 38.3-56.9, γ-Al2O3 constituant le reste. Le tungstène et le molybdène faisant partie de la composition du catalyseur sont contenus dans un rapport molaire W/(Mo+W) de 0,3 à 0,7.
PCT/RU2018/000378 2017-11-16 2018-06-07 Catalyseur d'hydrocraquage de matière première hydrocarbure WO2019098876A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2017140003A RU2662239C1 (ru) 2017-11-16 2017-11-16 Катализатор гидрокрекинга углеводородного сырья
RU2017140003 2017-11-16

Publications (1)

Publication Number Publication Date
WO2019098876A1 true WO2019098876A1 (fr) 2019-05-23

Family

ID=62981701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2018/000378 WO2019098876A1 (fr) 2017-11-16 2018-06-07 Catalyseur d'hydrocraquage de matière première hydrocarbure

Country Status (2)

Country Link
RU (1) RU2662239C1 (fr)
WO (1) WO2019098876A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013092806A1 (fr) * 2011-12-23 2013-06-27 Shell Internationale Research Maatschappij B.V. Procédé pour la préparation de catalyseur d'hydrocraquage
RU2607905C1 (ru) * 2015-11-05 2017-01-11 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор гидрокрекинга углеводородного сырья
RU2626396C1 (ru) * 2016-10-19 2017-07-27 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Катализатор гидрокрекинга углеводородного сырья

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2245737C1 (ru) * 2003-07-15 2005-02-10 ОАО "Всероссийский научно-исследовательский институт по переработке нефти" Катализатор и способ гидрокрекинга нефтяного сырья с его использованием
US7951745B2 (en) * 2008-01-03 2011-05-31 Wilmington Trust Fsb Catalyst for hydrocracking hydrocarbons containing polynuclear aromatic compounds
RU2626397C1 (ru) * 2016-10-19 2017-07-27 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Способ гидрокрекинга углеводородного сырья

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013092806A1 (fr) * 2011-12-23 2013-06-27 Shell Internationale Research Maatschappij B.V. Procédé pour la préparation de catalyseur d'hydrocraquage
RU2607905C1 (ru) * 2015-11-05 2017-01-11 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор гидрокрекинга углеводородного сырья
RU2626396C1 (ru) * 2016-10-19 2017-07-27 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Катализатор гидрокрекинга углеводородного сырья

Also Published As

Publication number Publication date
RU2662239C1 (ru) 2018-07-25

Similar Documents

Publication Publication Date Title
US5187133A (en) Catalyst composition for hydrotreating of hydrocarbons and hydrotreating process using the same
EP3363878A1 (fr) Catalyseur d'hydrotraitement et son procédé de fabrication
WO2010116603A1 (fr) Procédé de fabrication d'alkyl benzènes et catalyseur utilisé dans ce procédé
RU2569682C2 (ru) Состав и способ приготовления носителя и катализатора глубокой гидроочистки углеводородного сырья
US6995112B2 (en) Highly homogeneous amorphous silica-alumina catalyst composition
JP2012500174A (ja) 水素化分解のためのタングステンをベースとする空隙ケギンタイプのヘテロポリアニオン
RU2626397C1 (ru) Способ гидрокрекинга углеводородного сырья
EP2794090A1 (fr) Procédé pour la préparation de compositions de catalyseur d'hydrocraquage
RU2607908C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
RU2633965C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
WO2000000286A1 (fr) Cogel contenant des composes a base d'oxydes d'elements metalliques tetravalents, trivalents et bivalents
RU2662232C1 (ru) Способ гидрокрекинга углеводородного сырья
RU2626396C1 (ru) Катализатор гидрокрекинга углеводородного сырья
RU2603776C1 (ru) Способ гидрокрекинга углеводородного сырья
RU2607905C1 (ru) Катализатор гидрокрекинга углеводородного сырья
US20230330641A1 (en) Trimetal supported catalyst
RU2662239C1 (ru) Катализатор гидрокрекинга углеводородного сырья
RU2662234C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
JP3342504B2 (ja) 改良された金属担持結晶質アルミノシリケートの製造方法及びそれを用いた炭化水素類の改質方法
RU2626401C1 (ru) Способ гидроочистки сырья гидрокрекинга
EP1102631B1 (fr) Support de catalyseur a haute selectivite diesel
RU2786516C1 (ru) Способ гидрокрекинга углеводородного сырья
RU2794727C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
CN114433187B (zh) 多级孔催化剂的后修饰方法、由该方法得到的加氢裂化催化剂及其应用
CN111097505B (zh) 含Beta分子筛的加氢裂化催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879385

Country of ref document: EP

Kind code of ref document: A1