WO2019098360A1 - 電動弁制御装置およびそれを備えた電動弁装置 - Google Patents

電動弁制御装置およびそれを備えた電動弁装置 Download PDF

Info

Publication number
WO2019098360A1
WO2019098360A1 PCT/JP2018/042611 JP2018042611W WO2019098360A1 WO 2019098360 A1 WO2019098360 A1 WO 2019098360A1 JP 2018042611 W JP2018042611 W JP 2018042611W WO 2019098360 A1 WO2019098360 A1 WO 2019098360A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
operated valve
valve
opening degree
control device
Prior art date
Application number
PCT/JP2018/042611
Other languages
English (en)
French (fr)
Inventor
勇介 石塚
潔治 佐藤
善朗 小川
Original Assignee
株式会社不二工機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社不二工機 filed Critical 株式会社不二工機
Priority to JP2019554439A priority Critical patent/JP6945882B2/ja
Priority to CN201880074733.6A priority patent/CN111356868B/zh
Publication of WO2019098360A1 publication Critical patent/WO2019098360A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a motor-operated valve control device for controlling the opening degree of a motor-operated valve and a motor-operated valve device provided with the same.
  • the flow rate of circulating refrigerant is adjusted for the purpose of stabilizing the cooling capacity and keeping the degree of superheat constant and operating efficiently.
  • an electric expansion valve for operating a valve body by a stepping motor and an electric valve as a flow control valve are widely used as an expansion valve for flow control.
  • a shutoff valve that uses a stepping motor to open and close a refrigerant flow path to flow or shut off the refrigerant, and a motorized valve such as a three-way valve (flow path switching valve) that switches the flow direction of the refrigerant.
  • initialization processing also referred to as origin positioning, origin positioning, or initialization
  • the valve body The control of the opening degree is started after performing the positioning of the position (for example, see Patent Document 1).
  • the initialization process refers to the number of pulses exceeding the full stroke from the fully open position to the fully closed position or from the fully closed position to the fully open position.
  • the stepping motor is sufficiently rotated in the valve closing direction or the valve opening direction by the number of pulses for stopping the rotation by the collision, whereby the initial position of 0 pulse or the maximum pulse of the motor-operated valve is determined.
  • Patent No. 4032993 gazette JP-A-8-145439
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to provide an electrically operated valve control device capable of finely controlling the degree of opening of the electrically operated valve by eliminating errors due to hysteresis.
  • An object of the present invention is to provide a motor-operated valve device provided with the same.
  • the motor-operated valve control device has a non-volatile storage unit for storing valve opening degree information at the time of power cut-off of the motor-operated valve or transition to sleep mode.
  • the drive direction of the motor-operated valve is stored in the storage unit together with the valve opening degree information of the motor-operated valve.
  • valve opening degree information and the drive direction of the motorized valve are read out from the storage unit when the motorized valve is powered on or returned from the sleep mode, and the drive direction is read out when the motorized valve is driven. If different from the drive direction, a predetermined value is added to the valve opening degree change.
  • LIN communication or CAN communication is used for communication for controlling the opening degree of the motor-operated valve.
  • a transmission / reception unit that transmits / receives a signal to / from the outside
  • an operation unit that calculates a control signal of the valve opening degree of the motorized valve according to a signal received from the outside by the transmission / reception unit
  • the motor drive unit operates the motor of the motor operated valve in accordance with the control signal of the valve opening degree of the motor operated valve.
  • an abnormal end flag is set in the storage unit at the start of driving of the motor-operated valve, and valve opening degree information and driving of the motor-operated valve at power-off of the motor-operated valve or transition to the sleep mode. After storing the direction in the storage unit, the abnormal end flag of the storage unit is cleared.
  • the motor-operated valve device is characterized in that the motor-operated valve control device and the motor-operated valve are assembled integrally.
  • the drive direction of the motor-operated valve is stored in the non-volatile storage unit together with the valve opening degree information of the motor-operated valve. Since the valve opening degree of the motor-operated valve can be controlled in consideration of the rotational direction, it is possible to precisely control the valve opening degree of the motor-operated valve by eliminating the error for the hysteresis.
  • FIG. 1 is a system block diagram of a motor-operated valve control device according to the present invention and a motor-operated valve device provided with the same.
  • FIG. 7 is a flowchart showing a process flow of control at power on or return to sleep mode by the motor-operated valve control device shown in FIG. 1;
  • FIG. The flowchart which shows the processing flow of control at the time of abnormality shown by FIG.
  • the flowchart which shows the processing flow of the control at the time of the motor-operated valve drive by the motor-operated valve control apparatus shown by FIG.
  • the flowchart which shows the processing flow at the time of the motor-operated valve drive control shown by FIG. The flowchart which shows the processing flow of control at the time of the power-off by the motor-operated valve control apparatus shown by FIG. 1, or at the time of sleep mode transfer.
  • FIG. 1 is a system block diagram of a motor-operated valve control device according to the present invention and a motor-operated valve device provided with the same.
  • the motor-operated valve control device according to the present invention is applied to an expansion valve of a refrigeration cycle system used for a car air conditioner will be described as an example.
  • the motor-operated valve 9 and the motor-operated valve control device 11 are connected by a lead wire or the like, and are not integrally separated but assembled integrally.
  • the expansion valve 5 includes an expansion valve 5 having a valve body (not shown) for controlling the flow rate of fluid (refrigerant), and a stepping motor 8 for driving the valve body of the expansion valve 5. The valve opening degree of (motor-operated valve 9) is adjusted.
  • the expansion valve 5 may be replaced by a shutoff valve that opens or closes a refrigerant flow path to flow or shut off the refrigerant, a three-way valve (flow path switching valve) that switches the flow direction of the refrigerant, or applications other than expansion valve
  • the flow control valve may be used.
  • a compressor, a condenser, (the expansion valve 5 of the motor-operated valve 9), and an evaporator are sequentially connected via piping.
  • the valve opening degree of (the expansion valve 5 of) the motor operated valve 9 the flow rate of the refrigerant flowing through the pipe is controlled.
  • the motor-operated valve control device 11 is connected to a battery power supply (+ Vb, GND) of the vehicle and is an on-vehicle LAN used for communication in the vehicle, for example, a LIN bus (or CAN bus or FlexRay bus) 14 is connected It is done.
  • the motor-operated valve control device 11 operates as a slave node, and is a LIN communication signal (a CAN communication signal in the case of CAN bus) transmitted from the air conditioner ECU 16 of the master node which is a control device of a system connected to the same LIN bus 14.
  • the FlexRay communication signal receives an instruction such as the number of pulses of the stepping motor 8 or the signal of the initialization operation instruction, and controls the opening degree of the motor operated valve 9 (expansion valve 5).
  • LIN communication As a communication system between the air conditioner ECU 16 and the motor-operated valve control device 11, input / output to the serial interface as described above (LIN communication, CAN communication, FlexRay communication, etc .: hereinafter referred to as LIN communication etc.) There are input / output to / from I / O port by digital signal (ON-OFF signal etc.), wireless (Wi-Fi (registered trademark), Bluetooth (registered trademark) etc.) input / output etc.
  • Wi-Fi registered trademark
  • Bluetooth registered trademark
  • the present invention is not limited to the aforementioned LIN communication and the like.
  • LIN communication which is an on-board LAN normally used for a car air conditioner or the like, is applied.
  • the motor-operated valve control unit 11 mainly uses a regulator 11a for generating a power supply + Vc (for example +5 Vdc) used in a circuit inside the motor-operated valve control unit 11 from a battery power supply + Vb (for example +12 Vdc)
  • a ROM for storing a program for controlling the rotation of the stepping motor 8 and the like based on the LIN communication signal to be transmitted
  • a CPU for executing a program stored in the ROM and executing arithmetic processing
  • a program such as the status of initialization operation and communication data RAM for temporarily storing data necessary for execution
  • I / O circuit for input / output with peripheral circuits
  • timer for measuring time of interrupt processing
  • a / D converter for converting analog signals to digital values, etc.
  • a LIN transceiver 11c as a transmitting / receiving unit that converts to bell and enables LIN communication with the microcomputer 11b, and a motor driving unit that controls the rotation of the stepping motor 8 of the motor operated valve 9 based on a control signal from the microcomputer 11b.
  • EEPROM 11e which is a non-volatile memory as a storage unit for storing the rotational direction, an abnormal end flag described later, and the like, is mounted on a substrate (not shown). Note that an IC in which two or more of the regulator 11a, the LIN transceiver 11c, the stepping motor driver 11d, the EEPROM 11e, and the microcomputer 11b are integrally formed may be used, and in that case, the device can be further miniaturized.
  • valve opening degree of the motor operated valve 9 that is, the current position (number of pulses) of the stepping motor 8
  • the rotation direction of the stepping motor 8 are transmitted from the motor operated valve control device 11 via the LIN bus 14
  • the valve opening degree and the rotational direction are transmitted (notified) to the motor-operated valve control device 11 via the LIN bus 14 (described in detail later).
  • the motor-operated valve control device 11 having received the LIN communication signal has the maximum number of pulses (for example, 500 pulses) that can be controlled by the motor-operated valve 9 when the current position (number of pulses) of the stepping motor 8 is unknown And the stepping motor 8 is rotated in the valve closing direction by the number of pulses (for example, 700 pulses or more) to which the number of pulses sufficient for the rotor to reliably collide with the stopper (rotational stop) (initialization of the motorized valve 9 Operation) (initial positioning of 0 pulse) is performed. In place of the initialization process for rotating the stepping motor 8 in the valve closing direction, the initialization process may be performed for rotating the stepping motor 8 in the valve opening direction.
  • the current position (number of pulses) of the stepping motor 8 and the like are stored in the EEPROM 11 e, the information is read from the EEPROM 11 e and used (described in detail later).
  • the microcomputer 11 b of the motor-operated valve control device 11 normally opens the motor-operated valve 9 (expansion valve 5) based on a control signal transmitted from the air-conditioner ECU 16 via the LIN bus 14 which is a signal transmission / reception line.
  • the power supply disconnecting signal or sleep mode transition signal is received from the air conditioner ECU 16, for example, the operation of the motor operated valve 9 (expansion valve 5) which is in operation is stopped, and the (current)
  • the opening degree information of the motor-operated valve 9 and the storage of the rotation direction (of the stepping motor 8) in the EEPROM 11e are executed.
  • the microcomputer 11b is also provided in advance with an abnormal end flag for notifying the end state of (the motor operated valve control device 11) of the motor operated valve device 12 such as a sudden power cut due to a short circuit or disconnection of a lead wire.
  • the microcomputer 11b also stores the status of the abnormal end flag in the EEPROM 11e (described in detail later).
  • the current position of the valve is the number of pulses applied (increased / decreased) in the valve opening or closing direction to move the valve from the fully closed position to the fully open position with the lower limit position of the valve as 0 pulse.
  • the number of pulses applied may be counted with the upper limit position of the valve body as 0 pulse.
  • the sleep mode here is a mode in which power is turned on, but power saving is achieved by limiting or partially stopping the function of the microcomputer 11 b. At this time, it shifts to a state where the storage of the RAM for temporarily storing the valve opening degree information is not held.
  • power saving can be achieved by transitioning to the sleep mode during a period in which data transmission / reception is not performed, and returning from the sleep mode when data transmission is detected.
  • the air conditioner ECU 16 After receiving the power-off enable signal or the sleep mode shift permission signal from the motor-operated valve control device 11 via the LIN bus 14, the air conditioner ECU 16 shuts off the power of the motor-operated valve control device 11 or shifts it to the sleep mode. .
  • the microcomputer 11b When the power is turned on again through the air conditioner ECU 16 or the microcomputer 11b returns from the sleep mode, the microcomputer 11b normally operates before the power is turned off from the EEPROM 11e or in the sleep state (specifically, when the previous control has ended normally).
  • the valve opening degree information of the motor operated valve 9 and its rotation direction stored before the mode transition are read out, and the motor opening is carried out using the valve opening degree and the rotation direction.
  • the control of the valve 9 (valve opening control) is resumed.
  • FIG. 2 is a flow chart showing the entire processing flow of control of the motor-operated valve 9 by (the microcomputer 11 b of) the motor-operated valve control device 11 shown in FIG.
  • the control of the motor-operated valve 9 by (the microcomputer 11b of) the motor-operated valve control device 11 is basically the control at the time of power on or return to the sleep mode (S10), the control at the time of motor valve drive (S20), the power off Alternatively, it is configured by control (S30) at the time of transition to the sleep mode.
  • FIG. 3 is a flow chart showing a process flow of control at power on or return to the sleep mode by the motor-operated valve control device 11 (microcomputer 11b thereof) shown in FIG.
  • the state in which the abnormal end flag is set is identified as 1 and the state in which the abnormal end flag is cleared is identified as 0.
  • the microcomputer 11b determines whether the abnormal end flag stored in the EEPROM 11e is 0 (in other words, whether it is cleared or not). It judges (step S11). If the abnormal end flag is 0 (step S11: Yes), the previous control has ended normally, and it is determined that the valve opening degree etc. stored in the EEPROM 11e is valid, and the previous power off is made from the EEPROM 11e. At the time of transition to the sleep mode or sleep mode, the valve opening degree information of the motor operated valve 9 and its rotation direction (of the stepping motor 8) stored in the EEPROM 11e are read (step S12), and the valve opening degree information and the rotation direction are controlled for the motor operated valve 9. Use for
  • step S11 when the abnormal end flag is not 0 (is 1 or is set) (step S11: No), the previous control has abnormally ended, and the valve opening degree etc. stored in the EEPROM 11e are It judges that it is invalid and implements control at the time of abnormality (Step S13).
  • FIG. 4 is a flowchart more specifically showing the process flow of the control at the abnormal time (step S13) shown in FIG. 3 described above.
  • the microcomputer 11b determines whether the air conditioner ECU 16 has received an initialization instruction signal instructing execution of initialization processing from the air conditioner ECU 16 via the LIN bus 14 (step S62), and when the initialization instruction signal is received ((step S62) Step S62: Yes)
  • the stepping motor 8 is rotated in the valve closing direction by the maximum pulse number or more (for example, 700 pulses or more) (step S63).
  • the microcomputer 11b checks for each fixed time whether the stepping motor 8 has rotated in the valve closing direction by at least the maximum pulse number (for example, 700 pulses or more) (step S64), and the valve closing direction by the stepping motor 8 at the maximum pulse number. If it is confirmed that the rotation has been performed (that is, if the initialization operation has been executed) (step S64: Yes), the processing is terminated.
  • FIG. 5 is a flowchart showing a process flow of control when the motor-operated valve is driven by (the microcomputer 11b of) the motor-operated valve control device 11 shown in FIG.
  • FIG. 6 and 7 are flowcharts more specifically showing the process flow at the time of the motor-operated valve drive control (step S21) shown in FIG. 5 described above.
  • step S71 whether the microcomputer 11b changes the valve opening degree of the motor operated valve 9 (expansion valve 5) according to the control signal transmitted from the air conditioner ECU 16 (in other words, transmitted from the air conditioner ECU 16) Whether the target valve opening degree and the current valve opening degree are different is judged (step S71) and the valve opening degree of the motor operated valve 9 (expansion valve 5) is changed (step S71: Yes) ), Whether the rotation direction of the motor-operated valve 9 (expansion valve 5) is the same as the rotation direction at the previous driving (in other words, whether the driving direction is the same as the read rotation direction or the rotation direction by the initialization operation) ) Is determined (step S72).
  • step S72: Yes If the rotation direction is the same as the rotation direction at the previous driving time (step S72: Yes), the hysteresis can be ignored, so the valve opening degree change is opened and closed to adjust the valve opening degree of the motor operated valve 9 (Step S73).
  • step S72: No when the rotation direction is not the same as the rotation direction at the previous driving time (that is, the driving direction is different from the read rotation direction or the rotation direction by the initialization operation) (step S72: No), it is necessary to consider the hysteresis. Therefore, the valve opening degree of the motor operated valve 9 is adjusted by adding and opening a predetermined value (number of pulses corresponding to the rotation angle of the motor for hysteresis) to the valve opening degree change (step S74).
  • step S22 The setting of the abnormal end flag by the microcomputer 11b (step S22) may be performed when it is confirmed that the valve opening degree of the motor operated valve 9 (expansion valve 5) is changed (driven) (step S71).
  • the control may be performed when the valve opening degree of the motor-operated valve 9 (expansion valve 5) is actually changed (driven) (step S73 or step S74).
  • the microcomputer 11b transmits the valve opening degree information of the motor operated valve 9 and the rotational direction to the air conditioner ECU 16 every fixed time at the time of drive control of the motor operated valve 9 (step S81).
  • FIG. 8 is a flow chart showing a process flow of control at the time of power-off or transition to the sleep mode by (the microcomputer 11 b of) the motor-operated valve control device 11 shown in FIG.
  • the microcomputer 11b When the microcomputer 11b receives the power-off signal or the sleep mode transition signal from the air-conditioner ECU 16 while controlling the drive state of the motor-operated valve 9 (expansion valve 5) as described above, the current valve opening of the motor-operated valve 9 to the EEPROM 11e is performed.
  • the degree information and its rotational direction are stored (written) (step S31), and then the abnormal end flag is cleared (that is, 0) and the information is stored in the EEPROM 11e (step S32).
  • the microcomputer 11b informs that the power can be turned off (in other words, allows the power to be shut off) as soon as the preparation for the power shutoff as described above is made (in other words, the power shutoff enable signal) or the sleep mode And a sleep mode transition permission signal is transmitted to the outside (in step S33).
  • step S34 the power of the motor-operated valve control device 11 is turned off or is shifted to the sleep mode by the air conditioner ECU 16 that has received the power-off enable signal or the sleep mode shift permission signal from the microcomputer 11b (step S34).
  • the state where the abnormal end flag is set is 1 and the state where the abnormal end flag is cleared is 0.
  • the specific signal state in the storage area of the EEPROM 11e is arbitrary as long as it can be determined whether or not it is possible.
  • the abnormal end flag is set in the EEPROM 11 e which is a non-volatile storage unit, and when the power of the motor operated valve 9 is turned off or transition to the sleep mode, the abnormal end flag of the EEPROM 11 e Clear
  • the previous control is abnormally terminated (for example, when the power is suddenly cut off due to a short circuit or disconnection of a lead wire)
  • the next startup when power is turned on or return from sleep mode
  • the abnormal end flag of the EEPROM 11e is set, it is possible to determine that the valve opening stored in the EEPROM 11e is abnormal when the power of the motor-operated valve control device 11 is turned on or when control is started (when returning from the sleep mode).
  • a motor type shut valve that opens and closes a refrigerant flow path to flow or shuts off refrigerant
  • a flow path switching valve such as a three-way valve or a four-way valve that switches the flow direction of refrigerant, It is natural.
  • the rotation direction of the motor is stored in the EEPROM 11e, the rotation direction of the valve body or gear, the valve closing / opening movement / driving direction, the valve body instead of the motor rotation direction.
  • the direction of movement (upper or lower) may be used. Therefore, the term “drive direction of the motor-operated valve” is described as a term including the rotation direction of the motor, the rotation direction of the valve body or gear, the valve closing / opening movement / driving direction, the valve movement direction.
  • Stepping motor 9 Motor-operated valve 11 Motor-operated valve control device 11a Regulator 11b Microcomputer (calculation unit) 11c LIN transceiver (transmitter / receiver) 11d stepping motor driver (motor drive unit) 11e EEPROM (nonvolatile storage unit) 12 electrically operated valve device 14 LIN bus 16 air conditioner ECU

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)

Abstract

ヒステリシス分の誤差をなくして、電動弁の弁開度を精緻に制御することのできる電動弁制御装置およびそれを備えた電動弁装置を提供する。電動弁9の電源切断時又はスリープモードへの移行時に、電動弁9の弁開度情報とともに電動弁9の駆動方向を不揮発性の記憶部であるEEPROM11eに記憶する。

Description

電動弁制御装置およびそれを備えた電動弁装置
 本発明は、電動弁の弁開度を制御する電動弁制御装置およびそれを備えた電動弁装置に関する。
 従来、空調機や冷蔵・冷凍ショーケース等に使用される冷凍サイクルシステムにおいては、冷房能力を安定させ、過熱度を一定にして効率良く運転するなどの目的から循環冷媒の流量調整を行っているが、その際の調整を高精度に行うため、流量制御用の膨張弁として、ステッピングモータにより弁体を動作させる電動式膨張弁や流量制御弁としての電動弁が広く活用されている。また、ステッピングモータを使用し、冷媒の流路を開閉して冷媒を流したり遮断したりするシャット弁や、冷媒の流れる方向を切り換える三方弁(流路切換弁)などの電動弁もある。
 しかし、前記のステッピングモータを使用した電動弁などにおいては、絶対開度(実際の開度)をフィードバックしない開ループ制御を用いて開度の制御を行うのが一般的であり、また、弁内の弁体は、電源供給が停止された際に、初期位置に戻ることなく、電源遮断時の位置で停止してしまう。そのため、次に電源を投入したときに、弁体が停止している位置(絶対開度)を正確に把握できないという問題がある。
 そこで、前記のステッピングモータを使用した電動弁などの制御にあたっては、通常、電源を投入したときなどにイニシャライズ処理(原点位置出し、基点位置出し、又は初期化などともいう)を実行し、弁体の位置出しを行ってから開度の制御を開始するようにしている(例えば、特許文献1参照)。ここで、イニシャライズ処理とは、全開位置から全閉位置又は全閉位置から全開位置に至るまでの全ストロークを超えるパルス数だけ、詳しくは、例えばステッピングモータのロータが確実にストッパと呼ばれる回り止めに衝突して回転を停止するパルス数だけ、ステッピングモータを閉弁方向又は開弁方向に十分に回転させる処理であり、これにより電動弁の0パルス又は最大パルスの初期位置を確定する。
 ところで、前記のように電源を再投入する時、又はスリープモードから復帰する時にイニシャライズを実施して基準位置を知る場合、通常動作へ復帰するまでに時間がかかり、エアコン機器などの動作開始が遅れるという問題があった。また、イニシャライズ動作により、余分なエネルギーを消費してしまうという問題があった。また、イニシャライズ毎に閉弁動作又は/および開弁動作や増し締めも発生するが、電動弁は機械部品であり、機械的な動作寿命が決まっているため、イニシャライズ(回数)が多くなると、電動弁の寿命も短くなってしまうという問題もあった。
 このような問題に対し、例えば下記特許文献2には、電源切断時やスリープモードへの移行時に、弁開度情報であるステッピングモータの回転位置データを不揮発性の記憶手段であるEEPROMに記憶することが提案されている。
特許第4032993号公報 特開平8-145439号公報
 しかしながら、例えばギア式の電動弁などでは、開弁から閉弁に、又は閉弁から開弁に回転方向が逆転する場合に、ギアのクリアランスによりヒステリシスが生じてしまう問題があった。このような開弁、閉弁による機械的なヒステリシスがある電動弁において、昇降機構のギア等には、例えば粘度の高いグリスが塗布されており、電源切断中やスリープ中のギア間の隙間が外部の振動等によって変化しないように配慮されている。そのため、上記特許文献2に所載の従来技術のように、電源切断時やスリープモードへの移行時に、そのときの弁開度情報をEEPROMに記憶するのみでは、次回立ち上げ時(電源を再投入する時、又はスリープモードから復帰する時)に、モータの回転方向によっては、昇降機構のギア等のヒステリシスの角度分の誤差が生じるおそれがあった。
 本発明は、上記事情に鑑みてなされたものであって、その目的とするところは、ヒステリシス分の誤差をなくして、電動弁の弁開度を精緻に制御することのできる電動弁制御装置およびそれを備えた電動弁装置を提供することにある。
 前記した課題を解決すべく、本発明に係る電動弁制御装置は、電動弁の電源切断時又はスリープモードへの移行時に弁開度情報を記憶する不揮発性の記憶部を有し、前記電動弁の電源切断時又はスリープモードへの移行時に、前記電動弁の弁開度情報とともに前記電動弁の駆動方向を前記記憶部に記憶することを特徴としている。
 好ましい態様では、前記電動弁の電源投入時又はスリープモードからの復帰時に、前記記憶部から前記電動弁の弁開度情報および駆動方向を読み出し、前記電動弁の駆動時に、駆動する方向が読み出した駆動方向と異なる場合は、弁開度変更分に所定値を加算する。
 他の好ましい態様では、前記電動弁の弁開度情報および駆動方向を前記記憶部に記憶した後に、外部に対して電源切断が可能となったこと又はスリープモードへの移行が可能となったことを知らせる信号を出力する。
 別の好ましい態様では、前記電動弁の弁開度制御のための通信に、LIN通信又はCAN通信が用いられる。
 別の好ましい態様では、外部との信号の送受信を行う送受信部、前記送受信部で外部から受信した信号に応じて前記電動弁の弁開度の制御信号を算出する演算部、および、前記演算部からの前記電動弁の弁開度の制御信号に応じて前記電動弁のモータを動作させるモータ駆動部を有する。
 別の好ましい態様では、前記電動弁の駆動開始時に、前記記憶部に異常終了フラグをセットし、前記電動弁の電源切断時又はスリープモードへの移行時に、前記電動弁の弁開度情報および駆動方向を前記記憶部に記憶した後に、前記記憶部の前記異常終了フラグをクリアする。
 また、本発明に係る電動弁装置は、前記電動弁制御装置と前記電動弁とが一体として組み立てられたことを特徴としている。
 本発明によれば、電動弁の電源切断時又はスリープモードへの移行時に、電動弁の弁開度情報とともに電動弁の駆動方向を不揮発性の記憶部に記憶するので、次回立ち上げ時にモータの回転方向を考慮して電動弁の弁開度を制御できるため、ヒステリシス分の誤差をなくして、電動弁の弁開度を精緻に制御することができる。
本発明に係る電動弁制御装置およびそれを備えた電動弁装置のシステムブロック図。 図1に示される電動弁制御装置による電動弁の制御の処理フロー全体を示すフローチャート。 図1に示される電動弁制御装置による電源投入時又はスリープモード復帰時の制御の処理フローを示すフローチャート。 図3に示される異常時の制御の処理フローを示すフローチャート。 図1に示される電動弁制御装置による電動弁駆動時の制御の処理フローを示すフローチャート。 図5に示される電動弁駆動制御時の処理フローを示すフローチャート。 図5に示される電動弁駆動制御時の処理フローを示すフローチャート。 図1に示される電動弁制御装置による電源切断時又はスリープモード移行時の制御の処理フローを示すフローチャート。
 以下、本発明の実施形態について図面を参照して説明する。
[電動弁制御装置およびそれを備えた電動弁装置の構成]
 図1は、本発明に係る電動弁制御装置およびそれを備えた電動弁装置のシステムブロック図である。なお、以下の説明においては、カーエアコンに使用される冷凍サイクルシステムの膨張弁に本発明に係る電動弁制御装置を適用した場合を例にとって説明する。
 図示実施形態の電動弁装置12は、電動弁9と電動弁制御装置11とがリード線などで接続され、離れた場所にあるのではなく、一体に組み立てられたもので、電動弁9は、流体(冷媒)の流量を制御する弁体(不図示)を備える膨張弁5と、膨張弁5の弁体を駆動するステッピングモータ8とで構成され、ステッピングモータ8が回転することにより膨張弁5(電動弁9)の弁開度が調整されるようになっている。なお、膨張弁5に替えて、冷媒の流路を開閉して冷媒を流したり遮断したりするシャット弁や冷媒の流れる方向を切り換える三方弁(流路切換弁)、もしくは膨張弁としての用途以外の流量調整弁などでもよい。
 図示は省略するが、例えばカーエアコンに使用される冷凍サイクルシステムにおいては、圧縮機、凝縮器、前記電動弁9(の膨張弁5)、および蒸発器が配管を介して順次に接続されており、電動弁9(の膨張弁5)の弁開度を調整することなどにより、その配管を流れる冷媒の流量が制御される。
 電動弁制御装置11には車両のバッテリー電源(+Vb、GND)が接続されるとともに、車両内での通信に使用される車載LANである、例えばLINバス(又はCANバスもしくはFlexRayバス)14が接続されている。電動弁制御装置11は、スレーブノードとして動作し、同じLINバス14に接続されているシステムの制御装置であるマスターノードのエアコンECU16から送信されるLIN通信信号(CANバスの場合はCAN通信信号、FlexRayバスの場合はFlexRay通信信号)で、ステッピングモータ8のパルス数やイニシャライズ動作指示の信号等の命令を受信し、電動弁9(膨張弁5)の開度(弁開度)を制御する。
 なお、エアコンECU16と電動弁制御装置11との間の通信方式としては、前記のようなシリアルインターフェイスへの入出力(LIN通信、CAN通信又はFlexRay通信など:「以下、LIN通信等」とする)、デジタル信号によるI/Oポートへの入出力(ON-OFF信号など)、無線(Wi-Fi(登録商標)、ブルートゥース(登録商標)など)などによる入出力などがあり、どの方式を採用してもよく、前記したLIN通信等に限定されない。図1では、カーエアコンなどで通常用いる車載LANであるLIN通信を適用している。そのため、電動弁制御装置11の制御に用いられる、後述の電源切断信号の受信、スリープモード移行信号の受信、電源切断可能信号の送信、およびスリープモード移行許可信号の送信等は、LIN通信で行われる。このように既存の車載LANであるLIN通信等を用いることで、新たな送受信の信号線の取付けが不要となる。
 電動弁制御装置11は、主に、バッテリー電源+Vb(例えば+12Vdc)から電動弁制御装置11の内部の回路で使用する電源+Vc(例えば+5Vdc)を発生させるレギュレータ11aと、LINバス14を通してエアコンECU16から送信されるLIN通信信号に基づいて、ステッピングモータ8の回転を制御するプログラム等を格納するROM、ROMに格納したプログラムの実行や演算処理を行うCPU、イニシャライズ動作の状況や通信データ等のプログラムの実行に必要なデータを一時的に記憶するRAM、周辺回路との入出力を行うI/O回路、割り込み処理等の時間を計測するタイマ、アナログ信号をデジタル値に変換するA/D変換器等を備えた演算部としてのマイコン11bと、LINバス14に接続され、LINバス14の電圧レベルを電動弁制御装置11内部の回路電圧レベルに変換し、マイコン11bとのLIN通信を可能にする送受信部としてのLINトランシーバ11cと、マイコン11bからの制御信号に基づいて電動弁9のステッピングモータ8の回転を制御するモータ駆動部としてのステッピングモータドライバ11dと、マイコン11bに接続され、マイコン11bのRAMデータのうち、バッテリー電源が切断されても保持する必要があるデータ(例えば、電動弁9の現在の弁開度に関する弁開度情報やその回転方向、後述する異常終了フラグなど)を記憶する記憶部としての不揮発性メモリであるEEPROM11eとが、不図示の基板上に搭載されて構成される。なお、レギュレータ11a、LINトランシーバ11c、ステッピングモータドライバ11d、EEPROM11e、マイコン11bの2つ以上を一体的に構成したICを用いてもよく、その場合は、さらなる装置の小型化が可能になる。
 なお、電動弁制御装置11の具体的構成は、上記構成に限定されるものではなく、本発明を実施可能(つまり、電動弁9の弁開度制御およびイニシャライズ制御等を実施可能)であれば、如何なる構成でも良い。
 エアコンECU16は、電動弁制御装置11にバッテリー電源を投入した場合などに電動弁9の初期位置として例えば0パルスを決める必要があるため、ステッピングモータ8を例えば最大パルス数以上閉弁方向に回転させるイニシャライズ動作を実行する命令(イニシャライズ指示信号)を、LINバス14を介してLIN通信信号で電動弁制御装置11に送信する。また、LINバス14を介して電動弁制御装置11から電動弁9の弁開度(つまり、ステッピングモータ8の現在位置(パルス数))やステッピングモータ8の回転方向が送信されていれば、その弁開度や回転方向をLINバス14を介して電動弁制御装置11に送信する(知らせる)(後で詳述)。
 前記LIN通信信号を受信した電動弁制御装置11は、バッテリー電源投入時などにおいてステッピングモータ8の現在位置(パルス数)が判らない場合、電動弁9が制御可能な最大パルス数(例えば500パルス)に、ロータが確実にストッパ(回り止め)に衝突するために十分なパルス数を加えたパルス数(例えば700パルス以上)だけステッピングモータ8を閉弁方向に回転させるイニシャライズ処理(電動弁9のイニシャライズ動作)(0パルスの初期位置出し)を行う。なお、ステッピングモータ8を閉弁方向に回転させるイニシャライズ処理に替えて開弁方向に回転させるイニシャライズ処理を行ってもよい。また、ステッピングモータ8の現在位置(パルス数)等がEEPROM11eに記憶されている場合、その情報をEEPROM11eから読み出して使用する(後で詳述)。
 前記電動弁制御装置11のマイコン11bは、通常時は、信号の送受信ラインであるLINバス14を介してエアコンECU16から送信される制御信号に基づいて、電動弁9(膨張弁5)の弁開度を制御するが、エアコンECU16から電源切断信号又はスリープモード移行信号を受信した場合には、例えば動作中である電動弁9(膨張弁5)の動作を停止して、その時の(現在の)電動弁9の弁開度情報およびその(ステッピングモータ8の)回転方向のEEPROM11eへの記憶を実行する。また、マイコン11bには、例えばリード線の短絡や切断等による突然の電源切断などといった電動弁装置12(の電動弁制御装置11)の終了状態を知らせるための異常終了フラグが予め用意されており、マイコン11bは、その異常終了フラグの状態も当該EEPROM11eに記憶させておく(後で詳述)。
 ここで、弁開度情報とは、電動弁9の弁開度に関連する情報であり、例えば、ステッピングモータ8の回転位置、パルス数、膨張弁5(電動弁9)の弁体位置などの情報が含まれる。また、最大パルス数とは、弁体の下限位置(弁体が下方向に移動できる限界位置)から上限位置(弁体が上方向に移動できる限界位置)まで移動する間にステッピングモータ8に印加されるパルスの数、もしくは弁体の上限位置から下限位置まで移動する間にステッピングモータ8に印加されるパルスの数であり、例えば、弁体の下限位置は全閉位置、上限位置は全開位置である。弁体の現在位置とは、弁体の下限位置を0パルスとして、全閉位置から全開位置の間で弁体を移動させるために開弁又は閉弁方向に印加(増減)したパルス数である。もちろん、弁体の上限位置を0パルスとして印加したパルス数をカウントしてもよい。
 また、ここでのスリープモードとは、電源は投入されているが、マイコン11bの機能を制限又は一部停止することで省電力とするモードである。このとき、弁開度情報を一時的に記憶するRAMの記憶が保持されない状態に移行する。例えば、データの送受信が行われない期間はスリープモードへ移行し、データ送信が検知されるとスリープモードから復帰させることにより、省電力化を図ることができる。
 電動弁9の弁開度が変更される毎にEEPROM11eにその弁開度を記憶する方法も考えられるが、EEPROM11eには一般的に記憶回数の制限があるため、本実施形態では、記憶する機会を、外部からの電源切断信号又はスリープモード移行信号を受信した場合のみに限定し、不揮発性の記憶部であるEEPROM11eへの記憶回数を制限している。すなわち、外部からの電源切断信号又はスリープモード移行信号を受信するまでは、EEPROM11eにその弁開度や回転方向を記憶する動作は行わない。
 前記までの電源切断又はスリープモードへの移行の準備が整い次第、すなわち、前記弁開度情報、回転方向および異常終了フラグをEEPROM11eに記憶したことを確認すると、前記電動弁制御装置11のマイコン11bは、電源切断が可能な状態となったことを知らせる電源切断可能信号又はスリープモードへの移行が可能な状態となったことを知らせるスリープモード移行許可信号を外部(エアコンECU16)へ送信する。
 エアコンECU16は、LINバス14を介して電動弁制御装置11から前記電源切断可能信号又はスリープモード移行許可信号を受信した後に、電動弁制御装置11の電源を切断するか、又はスリープモードへ移行させる。
 マイコン11bは、エアコンECU16を介して電源が再投入される又はスリープモードから復帰すると、通常は(具体的には、前回の制御が正常終了している場合は)、EEPROM11eから電源切断前又はスリープモード移行前(言い換えれば、前回の電源切断時又はスリープモード移行時)に記憶してある電動弁9の弁開度情報およびその回転方向を読み出し、その弁開度および回転方向を用いて、電動弁9の制御(弁開度制御)を再開する。
[電動弁制御装置による電動弁の制御]
 以下、図1に示される電動弁制御装置11(のマイコン11b)による電動弁9の制御の処理フローを、図2~図8を参照しながら具体的に説明する。
 図2は、図1に示される電動弁制御装置11(のマイコン11b)による電動弁9の制御の処理フロー全体を示すフローチャートである。
 この電動弁制御装置11(のマイコン11b)による電動弁9の制御は、基本的に、電源投入時又はスリープモード復帰時の制御(S10)、電動弁駆動時の制御(S20)、電源切断時又はスリープモード移行時の制御(S30)で構成される。
<電源投入時又はスリープモード復帰時の制御(S10)>
 図3は、図1に示される電動弁制御装置11(のマイコン11b)による電源投入時又はスリープモード復帰時の制御の処理フローを示すフローチャートである。なお、この制御では、異常終了フラグをセットするEEPROM11eの記憶領域において、異常終了フラグがセットされている状態を1、クリアされている状態を0として識別している。
 マイコン11bは、エアコンECU16を介して電源が投入される又はスリープモードから復帰されると、EEPROM11eに記憶された異常終了フラグが0であるか否か(言い換えれば、クリアされているか否か)を判断する(ステップS11)。異常終了フラグが0である場合は(ステップS11:Yes)、前回の制御は正常終了しており、EEPROM11eに記憶されている弁開度等が有効であると判断し、EEPROM11eから前回の電源切断時又はスリープモード移行時に当該EEPROM11eに記憶した電動弁9の弁開度情報およびその(ステッピングモータ8の)回転方向を読み出し(ステップS12)、その弁開度情報および回転方向を電動弁9の制御に用いる。
 一方、異常終了フラグが0でない(1である、もしくは、セットされている)場合は(ステップS11:No)、前回の制御は異常終了しており、EEPROM11eに記憶されている弁開度等が無効であると判断し、異常時の制御を実施する(ステップS13)。EEPROM11eに記憶された異常終了フラグがクリアされているか否かを判断する具体的なタイミングは、電動弁制御装置11に電源供給された後、又はスリープモードから復帰した後、エアコンECU16からの指示を読み込む前である。
 図4は、前述の、図3に示される異常時の制御(ステップS13)の処理フローをより具体的に示すフローチャートである。
 この場合、マイコン11bは、LINバス14を介してエアコンECU16に異常終了フラグが1であったことを知らせる報知信号を送信する(ステップS61)。これにより、エアコンECU16に対して、現在の弁開度等が不明であることを報知する。
 次いで、マイコン11bは、LINバス14を介してエアコンECU16から、イニシャライズ処理の実行を指示するイニシャライズ指示信号が有ったか否かを判断し(ステップS62)、イニシャライズ指示信号が有った場合は(ステップS62:Yes)、ステッピングモータ8を閉弁方向に最大パルス数以上(例えば700パルス以上)回転させる(ステップS63)。マイコン11bは、ステッピングモータ8が最大パルス数以上(例えば700パルス以上)閉弁方向へ回転したか否かを定時間毎に確認し(ステップS64)、ステッピングモータ8が最大パルス数以上閉弁方向へ回転したことを確認すると(つまり、イニシャライズ動作を実行処理し終えると)(ステップS64:Yes)、処理を終了する。
 一方、イニシャライズ指示信号が無かった場合は(ステップS62:No)、エアコンECU16から、現在の弁開度情報および回転方向を受信したか否か(つまり、エアコンECU16が知っている現在の弁開度情報および回転方向が知らせられたか否か)を確認する(ステップS65)。現在の弁開度情報および回転方向を受信した場合は(ステップS65:Yes)、その弁開度情報および回転方向を電動弁9の制御に用いるために、当該マイコン11b内にあるRAMの弁開度および回転方向を更新して(ステップS66)、処理を終了する。なお、現在の弁開度情報および回転方向を受信していない場合は(ステップS65:No)、再度、イニシャライズ指示信号が有ったか否かを判断する(ステップS62)。
<電動弁駆動時の制御(S20)>
 図5は、図1に示される電動弁制御装置11(のマイコン11b)による電動弁駆動時の制御の処理フローを示すフローチャートである。
 マイコン11bは、前述の電動弁9の弁開度情報およびその回転方向、もしくは、イニシャライズ動作による電動弁9の初期位置を使用し、LINバス14を介してエアコンECU16から送信される制御信号に基づいて、電動弁9(膨張弁5)の弁開度の制御信号を算出して当該電動弁9(膨張弁5)の駆動状態を制御する(ステップS21)。このときに、前記した異常終了フラグを1にセットしてEEPROM11eに記憶する(ステップS22)。
 図6、7は、前述の、図5に示される電動弁駆動制御時(ステップS21)の処理フローをより具体的に示すフローチャートである。
 図6に示されるように、マイコン11bは、エアコンECU16から送信される制御信号に応じて、電動弁9(膨張弁5)の弁開度を変更するか否か(言い換えれば、エアコンECU16から送信される目標の弁開度と現在の弁開度とが異なるか否か)を判断し(ステップS71)、電動弁9(膨張弁5)の弁開度を変更する場合は(ステップS71:Yes)、その電動弁9(膨張弁5)の回転方向が、前回駆動時の回転方向と同じか否か(言い換えれば、駆動する方向が読み出した回転方向もしくはイニシャライズ動作による回転方向と同じか否か)を判断する(ステップS72)。回転方向が前回駆動時の回転方向と同じである場合は(ステップS72:Yes)、ヒステリシス分を無視できるので、弁開度変更分を開閉して、当該電動弁9の弁開度を調整する(ステップS73)。一方、回転方向が前回駆動時の回転方向と同じでない(つまり、駆動する方向が読み出した回転方向もしくはイニシャライズ動作による回転方向と異なる)場合は(ステップS72:No)、ヒステリシス分を考慮する必要があるので、弁開度変更分に所定値(ヒステリシス分のモータの回転角度に相当するパルス数)を加算して開閉して、当該電動弁9の弁開度を調整する(ステップS74)。
 なお、前記したマイコン11bによる異常終了フラグのセット(ステップS22)は、電動弁9(膨張弁5)の弁開度を変更(駆動)することを確認したとき(ステップS71)に行ってもよいし、実際に電動弁9(膨張弁5)の弁開度を変更(駆動)したとき(ステップS73、又は、ステップS74)に行ってもよい。
 また、図7に示されるように、マイコン11bは、この電動弁9の駆動制御時において定時間毎に、エアコンECU16に電動弁9の弁開度情報と回転方向を送信する(ステップS81)。
<電源切断時又はスリープモード移行時の制御(S30)>
 図8は、図1に示される電動弁制御装置11(のマイコン11b)による電源切断時又はスリープモード移行時の制御の処理フローを示すフローチャートである。
 マイコン11bは、前記のように電動弁9(膨張弁5)の駆動状態を制御しつつ、エアコンECU16から電源切断信号又はスリープモード移行信号を受信すると、EEPROM11eへの電動弁9の現在の弁開度情報とその回転方向の記憶を実施(書き込み)し(ステップS31)、その後、異常終了フラグをクリア(つまり、0に)してその情報をEEPROM11eに記憶する(ステップS32)。また、マイコン11bは、上記のような電源切断の準備が整い次第、電源切断が可能な状態となったことを知らせる(言い換えれば、電源切断を許可する)電源切断可能信号、又は、スリープモードへの移行が可能な状態となったことを知らせる(言い換えれば、スリープモード移行を許可する)スリープモード移行許可信号を外部へ送信する(ステップS33)。
 そして、マイコン11bから前記電源切断可能信号又はスリープモード移行許可信号を受けたエアコンECU16により、電動弁制御装置11の電源が切断される、又は、スリープモードへ移行される(ステップS34)。
 なお、上記の制御では、異常終了フラグをセットするEEPROM11eの記憶領域において、異常終了フラグがセットされている状態を1、クリアされている状態を0としているが、異常終了フラグがセットされているか否かを識別できるのであれば、EEPROM11eの記憶領域における具体的な信号の状態は任意であることはもちろんである。
[電動弁制御装置およびそれを備えた電動弁装置の作用効果]
 このように、本実施形態の電動弁制御装置11では、電動弁9の電源切断時又はスリープモードへの移行時に、電動弁9の弁開度とともに電動弁9のステッピングモータ8の回転方向を不揮発性の記憶部であるEEPROM11eに記憶するので、次回立ち上げ時(電源投入時またはスリープモードからの復帰時)にステッピングモータ8の回転方向を考慮して、前回駆動時の回転方向と今回駆動時の回転方向が異なる場合には、弁開度変更分に所定値(ヒステリシス分のモータの回転角度に相当するパルス数)を加算して電動弁9の弁開度を制御できるため、機械的なヒステリシスがあるギア式の電動弁であっても、ヒステリシス分の誤差をなくして、電動弁9の弁開度を精緻に制御することができる。
 また、本実施形態の電動弁制御装置11では、不揮発性の記憶部であるEEPROM11eに異常終了フラグをセットし、電動弁9の電源切断時又はスリープモードへの移行時に、EEPROM11eの前記異常終了フラグをクリアする。これにより、前回の制御が異常終了したとき(例えば、リード線の短絡や切断等によって、電源が突然遮断されたとき)は、次回立ち上げ時(電源投入時またはスリープモードからの復帰時)にEEPROM11eの異常終了フラグがセットされているので、電動弁制御装置11の電源投入時ないし制御開始時(スリープモードからの復帰時)にEEPROM11eに記憶されている弁開度を異常と判断できる。また、電動弁9の次回立ち上げ時(電源投入時またはスリープモードからの復帰時)にEEPROM11eの異常終了フラグがクリアされていれば、前回の制御は正常終了していると判断して、EEPROM11eに記憶されている弁開度情報を使用して電動弁9を駆動することができる。そのため、EEPROM11eに記憶されている弁開度情報の正否を確実に判断でき、信頼性を高めることができる。
 なお、上記実施形態においては、電動弁制御装置11および電動弁装置12をカーエアコンに使用される冷凍サイクルシステムの膨張弁5(電動弁9)に適用した場合を例示したが、膨張弁5に限らず、流体の流入口および流出口、該流出口より流出する流体の流量を制御する弁体、および該弁体を駆動するモータを備えた電動弁であれば、本発明に係る電動弁制御装置11および電動弁装置12を適用できることは勿論である。また、例えば、冷媒の流路を開閉して冷媒を流したり遮断したりするモータ式シャット弁や冷媒の流れる方向を切り換える三方弁や四方弁などの流路切換弁などに適用してもよいことは当然である。
 また、上記実施形態においては、モータの回転方向をEEPROM11eに記憶しているが、モータの回転方向に替えて、弁体やギアの回転方向、閉弁/開弁の移動/駆動方向、弁体の移動方向(上下)などでもよい。そのため、モータの回転方向、弁体やギアの回転方向、閉弁/開弁の移動/駆動方向、弁体の移動方向等を含めた用語として「電動弁の駆動方向」と記載する。
5   膨張弁
8   ステッピングモータ
9   電動弁
11  電動弁制御装置
11a レギュレータ
11b マイコン(演算部)
11c LINトランシーバ(送受信部)
11d ステッピングモータドライバ(モータ駆動部)
11e EEPROM(不揮発性の記憶部)
12  電動弁装置
14  LINバス
16  エアコンECU

Claims (7)

  1.  電動弁の電源切断時又はスリープモードへの移行時に弁開度情報を記憶する不揮発性の記憶部を有する電動弁制御装置であって、
     前記電動弁の電源切断時又はスリープモードへの移行時に、前記電動弁の弁開度情報とともに前記電動弁の駆動方向を前記記憶部に記憶することを特徴とする電動弁制御装置。
  2.  前記電動弁の電源投入時又はスリープモードからの復帰時に、前記記憶部から前記電動弁の弁開度情報および駆動方向を読み出し、前記電動弁の駆動時に、駆動する方向が読み出した駆動方向と異なる場合は、弁開度変更分に所定値を加算することを特徴とする請求項1に記載の電動弁制御装置。
  3.  前記電動弁の弁開度情報および駆動方向を前記記憶部に記憶した後に、外部に対して電源切断が可能となったこと又はスリープモードへの移行が可能となったことを知らせる信号を出力することを特徴とする請求項1又は2に記載の電動弁制御装置。
  4.  前記電動弁の弁開度制御のための通信に、LIN通信又はCAN通信が用いられることを特徴とする請求項1から3のいずれか一項に記載の電動弁制御装置。
  5.  外部との信号の送受信を行う送受信部、前記送受信部で外部から受信した信号に応じて前記電動弁の弁開度の制御信号を算出する演算部、および、前記演算部からの前記電動弁の弁開度の制御信号に応じて前記電動弁のモータを動作させるモータ駆動部を有することを特徴とする請求項1から4のいずれか一項に記載の電動弁制御装置。
  6.  前記電動弁の駆動開始時に、前記記憶部に異常終了フラグをセットし、前記電動弁の電源切断時又はスリープモードへの移行時に、前記電動弁の弁開度情報および駆動方向を前記記憶部に記憶した後に、前記記憶部の前記異常終了フラグをクリアすることを特徴とする請求項1から5のいずれか一項に記載の電動弁制御装置。
  7.  請求項1から6のいずれか一項に記載の電動弁制御装置と前記電動弁とが一体として組み立てられたことを特徴とする電動弁装置。
PCT/JP2018/042611 2017-11-20 2018-11-19 電動弁制御装置およびそれを備えた電動弁装置 WO2019098360A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019554439A JP6945882B2 (ja) 2017-11-20 2018-11-19 電動弁制御装置およびそれを備えた電動弁装置
CN201880074733.6A CN111356868B (zh) 2017-11-20 2018-11-19 电动阀控制装置以及具备该电动阀控制装置的电动阀装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-222746 2017-11-20
JP2017222746 2017-11-20

Publications (1)

Publication Number Publication Date
WO2019098360A1 true WO2019098360A1 (ja) 2019-05-23

Family

ID=66539801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042611 WO2019098360A1 (ja) 2017-11-20 2018-11-19 電動弁制御装置およびそれを備えた電動弁装置

Country Status (3)

Country Link
JP (3) JP6945882B2 (ja)
CN (1) CN111356868B (ja)
WO (1) WO2019098360A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067988A1 (ja) * 2021-10-19 2023-04-27 株式会社不二工機 電動弁制御装置および電動弁装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060602A (zh) * 2021-08-25 2022-02-18 石化盈科智能科技有限责任公司 一种阀门开度指示方法及系统
US20240280185A1 (en) 2022-04-19 2024-08-22 Fujikoki Corporation Control apparatus of electrically driven valve, electrically driven valve, and electrically driven valve unit using the same
CN117387192B (zh) * 2023-11-23 2024-04-16 宜所(广东)智能科技有限公司 空调电子膨胀阀的控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10292876A (ja) * 1997-04-18 1998-11-04 Fujitsu General Ltd 電子膨張弁
JP2007298158A (ja) * 2006-05-08 2007-11-15 Surpass Kogyo Kk バルブ制御装置および流量コントローラ
JP2009115220A (ja) * 2007-11-07 2009-05-28 Hitachi Valve Ltd 電動コントロール弁

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420963U (ja) * 1990-06-12 1992-02-21
JPH08145439A (ja) * 1994-11-15 1996-06-07 Fuji Koki Seisakusho:Kk 空調機
JPH09189456A (ja) * 1996-01-10 1997-07-22 Sharp Corp 空気調和機
JP2000088131A (ja) * 1998-09-14 2000-03-31 Kitz Corp バルブの流量制御装置
JP3490383B2 (ja) * 2000-07-26 2004-01-26 株式会社東芝 電動弁及び冷蔵庫
CN1880877A (zh) * 2005-06-13 2006-12-20 彭建华 热泵式空调热水器两用装置
CN102853596B (zh) * 2011-06-27 2015-02-18 浙江三花股份有限公司 电子膨胀阀
JP6105270B2 (ja) 2012-12-14 2017-03-29 シャープ株式会社 空気調和機
JP6764316B2 (ja) * 2016-10-31 2020-09-30 株式会社不二工機 電動弁制御装置及びそれを備えた電動弁装置
JP6664730B2 (ja) * 2017-11-20 2020-03-13 株式会社不二工機 電動弁制御装置およびそれを備えた電動弁装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10292876A (ja) * 1997-04-18 1998-11-04 Fujitsu General Ltd 電子膨張弁
JP2007298158A (ja) * 2006-05-08 2007-11-15 Surpass Kogyo Kk バルブ制御装置および流量コントローラ
JP2009115220A (ja) * 2007-11-07 2009-05-28 Hitachi Valve Ltd 電動コントロール弁

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067988A1 (ja) * 2021-10-19 2023-04-27 株式会社不二工機 電動弁制御装置および電動弁装置
JP7555645B2 (ja) 2021-10-19 2024-09-25 株式会社不二工機 電動弁制御装置および電動弁装置

Also Published As

Publication number Publication date
JP7231958B2 (ja) 2023-03-02
JP2023053137A (ja) 2023-04-12
JP2021185325A (ja) 2021-12-09
JP7503866B2 (ja) 2024-06-21
JPWO2019098360A1 (ja) 2020-08-20
CN111356868B (zh) 2022-08-05
CN111356868A (zh) 2020-06-30
JP6945882B2 (ja) 2021-10-06

Similar Documents

Publication Publication Date Title
WO2019098360A1 (ja) 電動弁制御装置およびそれを備えた電動弁装置
CN113757436B (zh) 电动阀控制装置以及具备该电动阀控制装置的电动阀装置
JP6764316B2 (ja) 電動弁制御装置及びそれを備えた電動弁装置
JP6105868B2 (ja) 電動弁制御装置及び電動弁装置
WO2019098359A1 (ja) 電動弁制御装置およびそれを備えた電動弁装置
WO2015043416A1 (zh) 一种空调系统及其控制方法
JP6283739B2 (ja) 冷媒サイクルシステム
JP2016205584A (ja) 電動弁装置および電動弁制御装置
CN107883045B (zh) 电动阀控制装置以及具有该电动阀控制装置的电动阀装置
JP2014169771A (ja) 電磁弁制御装置
JP6757088B2 (ja) 電動弁制御装置及びそれを備えた電動弁装置
KR20140096508A (ko) 스텝모터 전자밸브 제어장치 및 스텝모터 전자밸브 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554439

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18877574

Country of ref document: EP

Kind code of ref document: A1