WO2015043416A1 - 一种空调系统及其控制方法 - Google Patents

一种空调系统及其控制方法 Download PDF

Info

Publication number
WO2015043416A1
WO2015043416A1 PCT/CN2014/086839 CN2014086839W WO2015043416A1 WO 2015043416 A1 WO2015043416 A1 WO 2015043416A1 CN 2014086839 W CN2014086839 W CN 2014086839W WO 2015043416 A1 WO2015043416 A1 WO 2015043416A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
expansion valve
control
electronic expansion
air conditioner
Prior art date
Application number
PCT/CN2014/086839
Other languages
English (en)
French (fr)
Inventor
张峻
张荣荣
姜骁骏
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Priority to PL14848835.6T priority Critical patent/PL3051218T3/pl
Priority to EP14848835.6A priority patent/EP3051218B1/en
Publication of WO2015043416A1 publication Critical patent/WO2015043416A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3211Control means therefor for increasing the efficiency of a vehicle refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the invention relates to an air conditioning system and a control method thereof, in particular to an air conditioning system with an electronic expansion valve and a control method thereof.
  • the electronic expansion valve As a new type of throttling element, electronic expansion valve has been widely used in the field of household air conditioning.
  • the electronic expansion valve can flexibly change the refrigerant flow rate of the air conditioning system according to the requirements of the system, and realize the effective control of the superheat degree, thereby improving the performance of the system.
  • the electronic expansion valve is a mechanism in which the stepping motor drives the spool movement, and adjusts the size of the valve port by the opening degree of the needle valve spool to adjust the flow rate of the refrigerant.
  • the controller regularly sends a voltage pulse sequence to the coil of the electronic expansion valve stepping motor, so that the phase coils of the stepping motor are energized and not energized according to a certain rule, and the coil stators are regularly controlled.
  • the change of the magnetic force of the claw level controls the rotation of the rotor, and the rotation of the rotor drives the valve needle to move up and down to achieve the purpose of flow regulation.
  • a non-mobile air conditioning system such as a home air conditioning system
  • the environment in which the air conditioning system is located is relatively stable, and the electronic expansion valve performs flow regulation at a predetermined constant speed.
  • the environment in which the air conditioning system is located is complex and variable, and the air conditioning system is required to respond to the influence of environmental changes on the air conditioning system in a more intelligent and flexible manner.
  • the electronic expansion valve In order to improve the performance of the mobile air conditioning system, it is necessary to properly control the electronic expansion valve to perform different operating speeds under different working conditions to adapt to the drastically changing working conditions.
  • the object of the present invention is to provide an air conditioning system and a control method thereof.
  • the air conditioning system can control the operating speed of the electronic expansion valve and improve the stability of the operation of the air conditioning system. Sex.
  • the air conditioning system of the present invention adopts the following technical solution: an air conditioning system, the air conditioning system is applicable to a vehicle, the air conditioning system includes an air conditioning controller, an electronic expansion valve, and an action for controlling an electronic expansion valve.
  • the air conditioning controller is a control center of the air conditioning system, configured to receive and analyze a control signal or input information of the vehicle system or the control panel, and send out a control signal generated by the analysis;
  • the air conditioner controller Responsible for receiving input information or sensor information of the main control board of the air conditioning system, and combining the preset control program for the electronic expansion valve stored by the air conditioner controller, and/or feedback information stored by the air conditioner controller, obtaining a control signal after operation, And outputting the control signal;
  • the electronic control portion converts the control signal into an action signal power that can be executed by the electronic expansion valve, and can control an electronic expansion valve by the action signal; or the air conditioning control
  • a control portion for receiving input information and or sensor information sent by the air conditioner controller, and combining with a preset control program stored for the electronic expansion valve and/or feedback information stored in the electronic control portion stored in the electronic control portion, Calculating a control signal, and converting the control signal into an action signal power that can be executed by the analysis
  • the air conditioner controller Responsible for receiving input
  • the air conditioning system control method of the present invention may adopt the following technical solution: an air conditioning system control method, the air conditioning system including an air conditioning controller, an electronic expansion valve, and an electronic control portion for controlling the electronic expansion valve,
  • the air conditioner controller or the electronic control unit issues different motion speed control signals according to a preset control program for the electronic expansion valve and the collected input signal, thereby controlling the electronic expansion valve to operate at different operating speeds.
  • the air conditioning system operation process includes the following steps: S1: the air conditioner controller or the electronic control part stores a preset control program; S2: the air conditioner controller collects a trigger signal and parses the signal, and the air conditioner controller or the electric The control part respectively outputs a running speed control signal and a predetermined opening degree control signal in combination with the preset electronic expansion valve program stored therein and the collected trigger signal, and controls the electronic expansion valve to operate, and the control signal is given different priorities; The higher the priority, the first is performed by the electronic expansion valve; S3: the control signal is rotated by the electronic control part
  • the action signal power that can be performed by the electronic expansion valve is such that the electronic expansion valve operates to the predetermined opening degree to adjust the refrigerant flow rate at the operating speed.
  • the air conditioning system and the control method thereof of the present invention can realize the operation speed control of the electronic expansion valve according to a preset control program for the electronic expansion valve and the collected trigger input information. Different motion speed control signals are issued to control the electronic expansion valve to operate at different speeds to ensure the stability of the air conditioning system.
  • Figure 1 is a schematic block diagram of a first embodiment of an air conditioning system of the present invention
  • Figure 2 is a schematic block diagram of a second embodiment of the air conditioning system of the present invention.
  • FIG. 3 is a schematic diagram showing the relationship between the pre-adjusted input amount and the pre-adjusted target position in the first pre-adjustment mode according to the embodiment of the present invention
  • FIG. 4 is a schematic diagram showing the relationship between the amount of change of the pre-adjusted input amount and the pre-adjustment action speed in the first pre-adjustment mode according to the embodiment of the present invention
  • FIG. 5 is a schematic diagram showing a relationship between a pre-adjusted input amount and a pre-adjusted target position in a second pre-adjustment mode according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram showing a relationship between a change amount of a pre-adjusted input amount and a pre-adjustment action speed in a second pre-adjustment mode according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram showing the relationship between the current opening degree and the negative feedback adjustment speed base when the negative feedback is adjusted in the embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the relationship between the absolute value of the difference between the current opening degree and the target opening degree and the negative feedback adjustment speed increment when the negative feedback is adjusted in the embodiment of the present invention
  • Figure 9 is a schematic view showing the control flow of the operation of controlling the electronic expansion valve of the air conditioning system of the present invention.
  • Figure 10 is a flow chart showing another control flow of the operation of the electronic expansion valve of the air conditioning system of the present invention.
  • an embodiment of the present invention discloses an air conditioning system 100, an air conditioning system. 100 includes an air conditioner controller 1 and an electronic expansion valve 2, the air conditioning system 100 further includes an electronic control portion 4 for controlling the action of the electronic expansion valve, and the electronic control portion 4 can be separately provided or integrated in the air conditioner controller 1 or integrated in the electronic expansion valve 2 on.
  • the air conditioning system 100 includes an air conditioner controller 1 and an electronic expansion valve 2, and an electronic control portion 4 for controlling the operation of the electronic expansion valve 2.
  • the electronic control unit 4 and the air conditioner controller 1 communicate via the LIN/CAN bus 3 of the vehicle, and the electronic control unit 4 is integrated on the electronic expansion valve 2.
  • the air conditioner controller 1 includes a vehicle air conditioning center processing module 11 and a first signal transceiver module 12; the vehicle air conditioning center processing module 11 is responsible for receiving an air conditioning system control panel input signal or sensor signal; and the first signal transceiver module 12 is responsible for processing the vehicle air conditioning center.
  • the signal from the module 11 is compiled and sent to the LIN/CAN bus 3 and the feedback signal on the received LIN/CAN bus 3 is parsed and sent to the vehicle air conditioning center processing module 11.
  • the electronic control unit 4 includes a second signal transceiving module 41, a central processing module 42, and a stepping drive control module 43.
  • the second signal transceiver module 41 is responsible for parsing the control signal of the LIN/CAN bus 3 and transmitting it to the central processing module 42. At the same time, the feedback signal of the electronic expansion valve 2 is compiled and sent to the LIN/CAN3 bus; the second signal transceiver module 41 receives a frame composed of control signals on the LIN/CAN bus 3, converts the voltage level of the digital signals constituting the frame to the central processing module 42, and the central processing module 42 is responsible for parsing the meaning of the frame.
  • the central processing module 42 first determines the frame identifier in the frame header. When the result of the determination is that the frame information is a command frame directed to the electronic expansion valve 2, the central processing module 42 further receives the frame response segment and performs the control signal therein. Analysis.
  • the central processing module 42 calculates the step amount supplied to the stepping drive control module 43 based on the current opening degree and the new opening degree information. Value, step speed and drive direction of the motor.
  • the step drive control module 43 receives the step value, the step speed and the motor drive direction signal, and controls the current change flowing through the A-phase coil and the B-phase coil of the electronic expansion valve to satisfy the step magnitude, the step speed and the step.
  • the motor drive direction is required, and the current values of the A-phase coil and the B-phase coil are fed back to the central processing module 42.
  • the electronic expansion valve 2 includes a stepping motor and a valve body, and the stepping motor controls the movement of the valve body according to the current value of the coil.
  • the air conditioning system can control the operation of the electronic expansion valve in one of two ways.
  • the first mode the action control signal of the electronic expansion valve is issued by the air conditioner controller 1, for example, by the vehicle air conditioning center processing module 11 of the air conditioner controller 1, and gives different priority to the control signal, and the higher the priority control The signal is first executed by the electronic expansion valve.
  • the vehicle air conditioning center processing module 11 of the air conditioner controller 1 is responsible for receiving the air conditioning system control panel input signal or sensor signal, and is combined with the control program stored in the memory of the vehicle air conditioning center processing module 11 and/or the vehicle air conditioning center processing module 11 for storing in the memory.
  • the feedback signal is calculated to obtain an operation speed control signal and a running opening degree control signal, and the operation speed control signal and the operation opening degree control signal are sent to the first signal transceiver module 12.
  • the first signal transceiving module 12 compiles the control signal and transmits it to the LIN/CAN bus 3.
  • the second signal transceiving module 41 of the electronic control unit 4 receives and parses the control signal from the LIN/CAN bus 3, and transmits the parsed control signal to the central processing module 42.
  • the central processing module 42 calculates the step magnitude, the stepping speed, and the driving direction of the motor according to the control signal and supplies it to the stepping driving control module 43; the stepping driving control module 43 receives the operating speed and the target opening degree control
  • the signal causes the current flowing through the A-phase coil and the B-phase coil of the electronic expansion valve to satisfy the requirements of the step magnitude, the stepping speed, and the driving direction of the stepping motor, and the current values of the A-phase coil and the B-phase coil Feedback to the central processing module 42;
  • the electronic expansion valve 2 receives the amount of action signal that can be executed, and controls the electronic expansion valve 2 to operate.
  • the central processing module 42 of the electronic control unit 4 issues an electronic expansion valve control signal and assigns different priorities to the control signal.
  • the higher priority control signal is first executed by the electronic expansion valve.
  • the vehicle air conditioning center processing module 11 of the air conditioner controller 1 is responsible for receiving the input signal or sensor signal of the air conditioning system control panel, is compiled by the first signal transceiver module 11 and sent to the LIN/CAN bus 3, and the second signal transceiver module 41 receives the LIN/CAN.
  • the signal of the bus 3 is parsed and sent to the central processing module 42.
  • the central processing module 42 receives the signal and parses it in conjunction with the control program stored in the memory of the central processing module 42 and/or the feedback signal stored in the memory of the central processing module 42. After the operation, the electronic expansion valve operating speed control signal and the operating opening control signal are obtained, and the control signal is combined according to the control signal.
  • the current opening degree and the new opening degree information are calculated to obtain a step magnitude, a stepping speed, and a driving direction of the motor, and the step magnitude, the stepping speed, and the driving direction of the motor are supplied to the stepping driving control module 43,
  • the electronic expansion valve 2 is controlled to operate.
  • the air conditioning system 100 includes an air conditioner controller 1 and an electronic expansion valve 2, and the air conditioning system 100 further includes an electronic control portion 4 for controlling the action of the electronic expansion valve, and the electronic control portion 4 Integrated on the air conditioner controller 1.
  • the air conditioner controller 1 includes a vehicle air conditioning center processing module 11 and a stepping drive control module 43; wherein the stepping drive control module 43 has the function of the corresponding module in the first embodiment; the vehicle air conditioning center processing module 11 includes the first embodiment The original function of the vehicle air conditioning center processing module 11 and the original functions of the central processing module 42.
  • the air conditioning system controls the electronic expansion valve action by: the vehicle air conditioning center processing module 11 is responsible for receiving the air conditioning system control panel input signal or sensor signal and combining the control program stored in the memory of the vehicle air conditioning center processing module 11 and/or Or the feedback signal stored in the memory of the vehicle air conditioning center processing module 11 is calculated to obtain an operation speed control signal and an opening degree control signal, and the control signal calculates the step value, the step speed, and the motor according to the current opening degree and the new opening degree information.
  • the vehicle air conditioning center processing module 11 is responsible for receiving the air conditioning system control panel input signal or sensor signal and combining the control program stored in the memory of the vehicle air conditioning center processing module 11 and/or
  • the feedback signal stored in the memory of the vehicle air conditioning center processing module 11 is calculated to obtain an operation speed control signal and an opening degree control signal
  • the control signal calculates the step value, the step speed, and the motor according to the current opening degree and the new opening degree information.
  • the step driving control module 43 receives the running speed and the target opening degree control signal so as to flow through the electronic expansion valve A
  • the current changes of the phase coil and the B-phase coil satisfy the requirements of the step magnitude, the stepping speed, and the stepping motor driving direction, and feed back the current values of the A-phase coil and the B-phase coil to the vehicle air-conditioning center processing module 11.
  • the air-conditioning system 100 of the present embodiment controls the electronic control part of the electronic expansion valve to be integrated on the air-conditioning controller 1, so that direct communication between the electronic expansion valve and the air-conditioning controller 1 can save signal transmission and reception.
  • the use of the module reduces the line occupying the LIN/CAN bus, and integrates the central processing module into the vehicle air conditioning center processing module, making the air conditioning system more compact.
  • the air conditioning system of the present invention is capable of controlling an electronic expansion valve to perform the following operational functions:
  • the air conditioning system can issue an initialization control signal according to a preset control program for the electronic expansion valve stored in the memory and the control information of the vehicle or the initialization trigger signal, so that the electronic expansion valve completes the initialization action; Include at least an electronic expansion valve to perform a closing action from a current opening degree to an opening degree of 0 to confirm that the electronic expansion valve can be normally closed; or
  • the initializing operation includes performing a switch confirmation operation of the full opening degree of the electronic expansion valve, running to a predetermined opening degree operation, and confirming that the electronic expansion valve can perform full opening operation; the initial operation of the electronic expansion valve can eliminate the operation of the electronic expansion valve
  • the out-of-step may occur in the process, avoiding the loss of step after long-term operation and affecting the control effect during normal operation, thereby ensuring stable operation of the air conditioning system and rapid response capability.
  • the initialization control signal includes an initialization action and an initialized action speed control signal.
  • the initializing action control signal includes causing the electronic expansion valve to run from the current opening degree to 0 degree or from the current opening degree to 0 degree opening and then running a set opening degree or from the current opening degree running to 0 opening degree and then running to The 100% opening is then run to a set opening or from the current opening to 100% opening and then to 0 opening and then to a set opening.
  • the initialization speed of the air conditioning system is greater than or equal to the maximum speed of the electronic expansion valve when the flow rate is adjusted.
  • the initialization action speed is typically calibrated to a fixed value based on the performance of the air conditioning system.
  • the number of pulses of the electronic expansion valve operation exceeds the number of pulses of the electronic expansion valve from 0-100% of the operating opening; for example: the electronic expansion valve is opened from 0 When the degree reaches 100% opening, 480 to 500 pulses are required.
  • the number of pulses depends on the parameters of the electronic expansion valve.
  • the initial expansion of the electronic expansion valve is to run 600 pulses from the current opening degree and then run in reverse. 600 pulses, and finally run a certain pulse to the set opening degree; or run 600 pulses in reverse from the current opening degree, then run 600 pulses in the forward direction, and finally run a certain pulse to the set opening degree in the reverse direction.
  • the initialization trigger signal is generated when the air conditioning system is powered on, when the air conditioner is turned off, or when the vehicle's key has just been turned to the ACC position.
  • the initialization trigger signal is generated when the air conditioning system is powered on, and the vehicle control system determines whether the potential difference between the positive and negative terminals of the air conditioning system is greater than a minimum voltage during normal operation of the air conditioning system, and if yes, indicating that there is a power-on signal; No, it means no power-on signal. If there is a power-on signal, the air-conditioning system can issue an initialization control signal according to a preset control program for the electronic expansion valve and a power-on signal stored in the memory, so that the electronic expansion valve completes the initialization operation.
  • the initialization trigger signal is generated when the air conditioning system is turned off, and when the shutdown switch of the air conditioning system is triggered, the battery continues to supply power to the air conditioning system.
  • the air conditioning system collects the shutdown signal of the air conditioning system to issue an initialization control signal, and the electronic expansion valve performs an initializing operation, and sends a feedback signal to control the air conditioning system to be powered off after the execution is completed; and the battery continues to supply the air conditioning system with a set time by setting a delay program. T2.
  • an initialization control signal is sent, and the electronic expansion valve performs an initialization operation; wherein the set time t2 is greater than the initialization time of the electronic expansion valve.
  • the initialization trigger signal is generated when the vehicle's vehicle key has just turned to the ACC position, and an initialization trigger signal is generated when the vehicle's key is turned from the ON position to the ACC position.
  • the battery continues to supply power to the air conditioning system.
  • the car key collected by the air conditioning system is in the ACC position signal to issue an initialization control signal, the electronic expansion valve performs an initialization action, and the feedback signal is sent to control the air conditioning system to be powered off; or by setting a delay program
  • the battery continues to supply power to the air conditioning system for a set time t2.
  • the ACC position signal or the air conditioning system shutdown signal sends an initialization control signal, and the electronic expansion valve performs an initialization action; wherein the set time t2 It is greater than the initialization time of the electronic expansion valve.
  • the initialization trigger signal may also be an electronic expansion valve failure signal or an opening degree signal when the target opening degree of the electronic expansion valve is 0 or 100%; the electronic expansion valve may be initialized and confirmed when needed; The purpose is to confirm whether the electronic expansion valve can be normally closed or whether it can be operated at full opening, so it is desirable to operate as fast as possible, saving time. Therefore, the air conditioning system sends the maximum operating speed control signal to the electronic expansion valve.
  • Pre-adjustment operation when the air-conditioning system determines that the collected signal contains a valid pre-adjustment trigger signal according to a stored program, transmitting a pre-adjustment target opening degree control signal and a pre-adjustment action speed control signal to the electronic expansion valve;
  • the adjustment trigger signal is a pre-adjustment input amount related to the compressor speed or displacement and/or the evaporator fan speed. The larger the pre-adjustment input amount is, the larger the pre-adjustment target opening degree is, and the larger the pre-adjustment input amount is.
  • the pre-adjustment action speed is divided into several sections, each section corresponds to one pre-adjustment target opening degree, and the pre-adjustment input quantity change amount is divided into several sections, and each section corresponds to one pre-adjustment speed
  • the pre-adjustment trigger signal is located in one of the intervals, and the pre-adjustment trigger signal is valid when the pre-adjustment signal occurs within the two control duty cycles of the air-conditioning system and is maintained for a set time t1 in the new interval, the air-conditioning system
  • a pre-adjustment target opening degree control signal and a pre-adjustment action speed control signal corresponding to the new section are issued, and the electronic expansion valve is executed Operation; wherein controlling a duty cycle of the air conditioning system of an air conditioning system refers to a signal sent from the collection period control signal, the duty cycle of the control set time t1 is an integer multiple of the air conditioning system.
  • a pre-adjustment implementation that controls the pre-tuning of the pre-adjusted target position
  • the input amount of the section, the variable that controls the pre-adjustment action speed is the amount of change of the pre-adjustment input amount
  • the amount of change of the pre-adjusted input amount and the pre-adjusted input amount is divided into six sections by L1 to L7 and L1' to L7'
  • the pre-adjustment target position value and the adjustment speed correspond to R1 to R6 and Sr1 to Sr6, respectively, wherein FIG. 3 is the relationship between the pre-adjustment target position value and the pre-adjustment input amount
  • FIG. 3 is the relationship between the pre-adjustment target position value and the pre-adjustment input amount
  • L1 ⁇ L7, L1′ ⁇ L7′, R1 ⁇ R6, Sr1 ⁇ Sr6 need to be calibrated according to experience and system experiment results, and the number of intervals is not limited to six, which can be corresponding according to the actual situation of the system.
  • For adjustment take the pre-adjusted input amount as the compressor speed as an example.
  • L1 to L7 is 0/1000/2000/3000/4000/5000/6000 rev/min; the corresponding R1 to R6 are 50/90/120/140/150/160 steps; the corresponding Sr1 to Sr6 are 50/70/90/110/130/150PPS.
  • the pre-adjustment function is characterized by first determining whether a pre-adjustment trigger signal is included, and the main function is to change the pre-adjustment trigger signal interval and maintain a preset time length t1 in a new interval before performing pre-conditioning output (ie, The pre-adjustment mode is intermittent) to prevent unnecessary pre-conditioning due to transient operating conditions (such as slamming the throttle and then braking, adjusting the evaporator fan speed and then immediately adjusting) to improve the air conditioning system. stability.
  • Another pre-adjustment embodiment is different from the interval pre-adjustment in the previous embodiment.
  • This embodiment is continuous pre-adjustment, and may be, for example, a piecewise function.
  • the description is as follows:
  • the piecewise function pre-adjustment refers to the critical point of the piecewise function according to several critical points such as L0, L1, L2, L3 and L0', L1', L2', L3' to pre-adjust the input amount and
  • the amount of change of the pre-adjusted input amount is a variable, and a pre-adjustment is performed in each interval by a function corresponding to the adjustment demand of the interval system, and the pre-adjusted opening En corresponding to the interval and the corresponding adjustment speed Sen are output; wherein the pre-adjustment
  • the opening En and the corresponding adjustment speed Sen are functions of pre-adjusted acquisition signals, respectively, which may be one or more functions, which are determined by empirical and systematic experiments.
  • the pre-regulation operation is an advanced adjustment based on empirical and experimental data before the electronic expansion valve enters the precise control.
  • the purpose is to shorten the time when the electronic expansion valve controls the superheat to reach the set value, so that the air conditioning system can quickly reach equilibrium. And quickly meet the cooling capacity required by the air conditioning system.
  • the pre-conditioning trigger signal typically comes from the sensor and / or LIN / CAN bus.
  • Negative feedback operation the air conditioning system is based on the current position of the electronic expansion valve and the collected air conditioning system
  • the temperature and pressure signals of the evaporator outlet in the refrigeration system determine the operating opening and operating speed of the electronic expansion valve
  • the negative feedback operating speed of the electronic expansion valve includes a negative feedback adjustment speed base and a negative feedback adjustment speed increment
  • the negative feedback adjustment speed base of the electronic expansion valve is based on the current opening degree of the electronic expansion valve feedback, and the current opening degree of the feedback is divided into 7 sections by M0-M6, corresponding to 7 adjustment speed bases S1.
  • the definition of the opening interval and the corresponding adjustment speed can be calibrated according to different systems, where M0 ⁇ M6 are: 0/30/50/70/90/150/300 steps, respectively, S1 ⁇ S7 are 10/15/20/30/40/60/80PPS.
  • M0 ⁇ M6 are: 0/30/50/70/90/150/300 steps, respectively
  • S1 ⁇ S7 are 10/15/20/30/40/60/80PPS.
  • the electronic expansion valve will operate frequently and affect its service life; however, with the current electronic expansion valve
  • the increase in the opening degree that is, the load of the system operation is getting higher and higher, and it is necessary to gradually increase the operating speed of the electronic expansion valve to ensure that the opening degree required by the system is reached as quickly as possible under the premise that the degree of superheat is stable.
  • a quadratic function whose absolute value of the difference between the target opening degree and the current opening degree is a variable is used as a scheme for calculating the speed adjustment increment;
  • the negative feedback adjustment process further adjusts the opening of the electronic expansion valve to a more close to the target value or even just reaches the target value.
  • Quick shutdown operation when the air conditioner controller 1 collects the quick shutdown trigger signal and combines the program set by the air conditioner controller 1, or the electronic control unit receives the quick shutdown trigger signal collected by the air conditioner controller, and combines the preset
  • the control program of the fixed electronic expansion valve action sends a full-close control signal and a maximum running speed control signal, so that the electronic expansion valve closes the refrigerant circulation pipe at the fastest speed;
  • the quick-shutdown trigger signal includes a vehicle collision signal;
  • the air conditioner controller 1 directly reads the collision trigger signal of the vehicle from the LIN/CAN bus of the vehicle, and the collision trigger signal of the vehicle may be a sensor signal for controlling the airbag; when the vehicle collides, controlling the electronic expansion valve to quickly turn off can prevent After the vehicle collides, a large amount of refrigerant enters the cab; some vehicles automatically cut off after the vehicle expansion signal is collected.
  • an additional power source connected to the electronic expansion valve may be required.
  • the priority of the fast-shutdown control signal is greater than the priority of the initialization control signal, the priority of the initialization control signal is greater than the priority of the pre-conditioning control signal, the pre-conditioning control
  • the priority of the signal is greater than the priority of the negative feedback adjustment control signal; the fast shutdown control signal is first executed by the electronic expansion valve to improve the safety of the vehicle.
  • the present invention also discloses an air conditioning system control method, the air conditioning system control method, the air conditioning system including an air conditioner controller 1, an electronic expansion valve 2, and an electronic control portion for controlling the electronic expansion valve 4, the air conditioning system can realize electronic expansion valve action control, the air conditioning controller or the electronic control part sends different action control signals according to a preset program and the collected input signal, so that the electronic expansion valve
  • the action speeds are performed at different speeds of operation; the air conditioning system operation process includes the steps listed below.
  • S1 preset control program: the air conditioner controller or the electronic control portion stores a preset control program.
  • control signal formation the air conditioner controller or the electronic control part respectively combines the preset program stored by itself and the collected trigger signal, and issues a running speed control signal and a predetermined opening degree control signal to control the movement of the electronic expansion valve.
  • the control signals are given different priorities; the higher the priority, the first is performed by the electronic expansion valve.
  • the preset electronic expansion valve control program includes an initialization control program, a pre-conditioning control program, a negative feedback adjustment control program, and a quick shutdown control program.
  • the step S2 described therein includes the sub-steps listed below.
  • step S21 power-on detection: the air conditioner controller determines whether the positive and negative potential difference of the air conditioner power source is greater than the minimum working voltage of the air conditioning system, and if yes, indicating that the air conditioner has a power-on signal, go to step S22 and/or step S23; if not, indicate the air conditioner Without the power-on signal, go to step S00.
  • Initialization control The air conditioner controller or the electronic control part is combined with the initialization control program to issue an initialization command and an initialization operation speed control signal.
  • step S23 Quick shutdown signal reading: The air conditioner controller reads the vehicle state related signal from the LIN/CAN bus of the vehicle, and proceeds to step S24.
  • Air conditioning system opening detection The air conditioning controller determines whether the compressor is turned on, and if so, proceeds to step S26, and if not, proceeds to step S20.
  • Pre-adjustment control judgment judging whether the signal read by the air-conditioning controller includes the pre-adjustment trigger signal according to the pre-adjustment control program, if yes, go to step S28; if no, go to step S29.
  • Pre-adjustment control The air-conditioning controller or the electronic control part calculates and generates the pre-adjusted opening degree and the pre-adjusting adjustment speed, and issues a pre-adjusting opening degree control signal and a pre-adjusting action speed signal.
  • Negative feedback adjustment control the air conditioner controller performs negative feedback adjustment according to the current position of the electronic expansion valve feedback and the temperature and pressure signal of the evaporator outlet, and the air conditioner controller or the electronic control part issues a negative feedback adjustment amount and a corresponding motion speed, Then, the process proceeds to step S20.
  • step S20 Power failure judgment: The air conditioner controller determines whether the electromotive force of the air conditioner system power source is smaller than the minimum operating voltage of the air conditioner system power supply, and if yes, proceeds to step S00; if not, proceeds to step S23.
  • the present invention also discloses another air conditioning system control method, wherein the S2 step of forming a control signal in the control method is different from the previous embodiment, and includes the following sub-steps.
  • S21' Power-on detection: The air conditioner controller determines whether the positive and negative potential difference of the air conditioner power supply is greater than the minimum operating voltage of the air conditioner system. If yes, it indicates that the air conditioner has a power-on signal, and goes to step S22'; if not, it indicates that the air conditioner has no power-on. Signal, go to step S00'.
  • step S23' fast turn-off control: the air conditioner controller or the electronic control unit determines whether there is a collision signal in conjunction with the initialization control program, and if so, issues a full off signal and a maximum operating speed; if not, proceeds to step S24'.
  • step S24' judging whether the first duty cycle: the air conditioner controller or the electronic control portion judges whether it is the first duty cycle, and if so, proceeds to step S25'; if not, proceeds to step S26'.
  • initialization control the air conditioner controller or the electronic control part is combined with the initialization control program to issue an initialization command and an initialization operation speed control signal;
  • Air-conditioning system opening detection The air-conditioning controller judges whether or not the compressor is turned on, and if so, proceeds to step S28', and if not, proceeds to step S31'.
  • Pre-adjustment control judgment judging whether the signal read by the air-conditioning controller includes the pre-adjustment trigger signal according to the pre-adjustment control program, and if so, proceeds to step S29'; if not, proceeds to step S30'.
  • Pre-adjustment control The air-conditioning controller or the electronic control part calculates and generates the pre-adjusted opening degree and the pre-adjusting adjustment speed, and issues a pre-adjusting opening degree control signal and a pre-adjusting action speed signal.
  • Negative feedback adjustment control The air conditioner controller performs negative feedback adjustment according to the current position of the electronic expansion valve feedback and the temperature and pressure signal of the evaporator outlet, and the air conditioner controller or the electronic control part issues a negative feedback adjustment amount and a corresponding motion speed. And then proceeds to step S31'.
  • step S20' power-off judgment: the air-conditioning controller determines whether the electromotive force of the air-conditioning system power source is smaller than the minimum operating voltage of the air-conditioning system power source, and if so, proceeds to step S00'; if not, proceeds to step S22'.
  • the initialization control may also send a control signal for initializing the electronic expansion valve before the power failure determination, that is, when the vehicle key is in a closed state, and send a feedback signal to control the air conditioning system to be powered off when the electronic expansion valve executes the initialization command. It saves time for initialization control after power-on startup.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调系统(100),其应用于车辆上,包括空调控制器(1)和电子膨胀阀(2),空调控制器(1)根据预先设定的针对电子膨胀阀(2)的控制程序以及采集到的触发输入信息,发送不同的动作速度控制信号给电子膨胀阀(2),使电子膨胀阀(2)以不同的动作速度进行动作;这样既能够保证空调系统运行的稳定性,又可以保证空调系统的快速响应。还公开了一种空调控制方法。

Description

一种空调系统及其控制方法
本申请要求于2013年9月28日提交中国专利局、申请号为201310456452.6、发明名称为“一种空调系统及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种空调系统及其控制方法,尤其涉及具有电子膨胀阀的空调系统及其控制方法。
背景技术
电子膨胀阀作为一种新型的节流元件已广泛应用在家用空调领域。电子膨胀阀可以根据系统的要求灵活改变空调系统的制冷剂流量,实现对过热度的有效控制,从而实现系统的效能的提高。电子膨胀阀是的步进电机驱动阀芯运动,通过针形阀芯开启度,调整阀口的大小,从而调整制冷剂流量的机构。
在家用空调系统中,控制器有规律地发出电压脉冲序列给电子膨胀阀步进电机的线圈,使得步进电机的各相线圈按一定规律进行通电和不通电,达到有规律地控制线圈定子各个爪级磁性的变化,进而控制转子的转动,该转子转动带动阀针上下移动,达到流量调节的目的。在家用空调系统等非移动式空调系统中,空调系统所处环境相对较稳定,电子膨胀阀以预先设定的一恒定速度进行流量调节。
但在车用空调系统等移动式空调系统中,空调系统所处环境复杂多变,需要空调系统以更为智能灵活的方式来应对环境变化对空调系统带来的影响。为了提升所述移动式空调系统的性能,需要正确地控制电子膨胀阀,使之在不同的工况条件下执行不同的动作速度来适应剧烈变化的工况。
发明内容
本发明的目的在于提供一种空调系统及其控制方法,当空调系统受到剧烈扰动时,空调系统能够控制电子膨胀阀的动作速度,提高空调系统运行的稳定 性。
为实现上述目的,本发明空调系统采用如下技术方案:一种空调系统,所述空调系统可应用于车辆上,所述空调系统包括空调控制器、电子膨胀阀以及用于控制电子膨胀阀动作的电控部分;所述空调控制器,是所述空调系统的控制中心,用于接收并解析车辆系统或控制面板的控制信号或输入信息,并将解析生成的控制信号发出;所述空调控制器负责接收空调系统主控板的输入信息或传感器信息,并结合空调控制器存储的预先设定的针对电子膨胀阀的控制程序,和/或空调控制器存储的反馈信息,经过运算得到控制信号,并将所述控制信号发出;所述电控部分将所述控制信号转化为所述电子膨胀阀能够执行的动作信号电量,可通过所述动作信号电量控制电子膨胀阀动作;或者所述空调控制器,用于接收空调系统主控板的输入信息或传感器信息;所述电控部分,用于接收所述空调控制器发出的输入信息和或传感器信息,并结合电控部分存储的预先设定的针对电子膨胀阀的控制程序和/或电控部分存储的反馈信息,经过运算得到控制信号,并将控制信号转化为电子膨胀阀能够执行的动作信号电量,可通过所述动作信号电量控制电子膨胀阀动作;所述电子膨胀阀,用于调节所述空调系统中制冷系统的制冷剂流量和/或用于关断或打开制冷剂流通通道;所述空调系统控制电子膨胀阀的动作速度,在所述空调系统处于不同工作状态时发出不同的动作速度控制信号,从而控制电子膨胀阀以不同的动作速度进行动作。
为实现上述目的,本发明空调系统控制方法可采用如下技术方案:一种空调系统控制方法,所述空调系统包括空调控制器、电子膨胀阀以及用于控制电子膨胀阀的电控部分,所述空调控制器或所述电控部分根据预先设定的针对电子膨胀阀的控制程序以及采集到的输入信号,发出不同的动作速度控制信号,从而控制电子膨胀阀以不同的动作速度进行动作。所述空调系统运行过程包括以下步骤:S1:所述空调控制器或所述电控部分存储预先设定的控制程序;S2:空调控制器采集触发信号并解析信号,空调控制器或所述电控部分各自结合自身存储的预设的电子膨胀阀程序和采集到的触发信号,发出运行速度控制信号和预定开度控制信号,控制电子膨胀阀动作,所述控制信号别赋予不同的优先级;优先级越高越先被电子膨胀阀执行;S3:所述控制信号经所述电控部分转 化为电子膨胀阀能够执行的动作信号电量,使得电子膨胀阀以所述运行速度运行到所述预定开度调节制冷剂流量。
与现有技术相比,本发明的空调系统及其控制方法能够实现对电子膨胀阀的动作速度控制,所述空调系统根据预先设定的针对电子膨胀阀的控制程序以及采集到的触发输入信息,发出不同的动作速度控制信号,从而控制电子膨胀阀以不同的动作速度进行动作,可以保证空调系统运行的稳定性。
附图说明
图1是本发明空调系统的第一实施方式的示意框图;
图2是本发明空调系统的第二实施方式的示意框图;
图3是本发明实施方式中第一种预调节方式下预调节输入量与预调节目标位置关系示意图;
图4是本发明实施方式中第一种预调节方式下预调节输入量的变化量与预调节动作速度关系示意图;
图5是本发明实施方式中第二种预调节方式下预调节输入量与预调节目标位置关系示意图;
图6是本发明实施方式中第二种预调节方式下预调节输入量的变化量与预调节动作速度关系示意图;
图7是本发明实施方式中负反馈调节时,当前开度与负反馈调节速度基数的关系示意图;
图8是本发明实施方式中负反馈调节时,当前开度与目标开度的差值的绝对值与负反馈调节速度增量的关系示意图;
图9是本发明空调系统控制电子膨胀阀动作的控制流程示意图;
图10是本发明空调系统控制电子膨胀阀动作的另一种控制流程示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,具体以一种车辆空调系统为例进行说明。
如图1至图2所示,本发明一实施例公开了一种空调系统100,空调系统 100包括空调控制器1和电子膨胀阀2,空调系统100还包括用于控制电子膨胀阀动作的电控部分4,电控部分4可以单独设置或集成在空调控制器1或集成在电子膨胀阀2上。
本发明第一实施方式,如图1所示,空调系统100包括空调控制器1和电子膨胀阀2以及用于控制电子膨胀阀2动作的电控部分4。电控部分4和空调控制器1通过车辆的LIN/CAN总线3进行通讯,电控部分4集成在电子膨胀阀2上。
空调控制器1包括车辆空调中心处理模块11和第一信号收发模块12;车辆空调中心处理模块11负责接收空调系统控制面板输入信号或传感器信号;第一信号收发模块12,负责将车辆空调中心处理模块11发出的信号编译后发送到LIN/CAN总线3以及将接收到的LIN/CAN总线3上的反馈信号并解析后发送给车辆空调中心处理模块11。
电控部分4包括第二信号收发模块41、中心处理模块42、步进驱动控制模块43。
第二信号收发模块41,负责解析LIN/CAN总线3的控制信号,并发送给中心处理模块42;同时将电子膨胀阀2的反馈信号编译后发送到LIN/CAN3总线上;第二信号收发模块41接收LIN/CAN总线3上的控制信号组成的帧(frame),对组成帧的数字信号的电压电平转换后发给中心处理模块42,中心处理模块42负责对帧的含义进行解析。
中心处理模块42首先对帧头中的帧标识符进行判断,当判断的结果为该帧信息为指向电子膨胀阀2的命令帧时,中心处理模块42进一步接收帧响应段并对其中控制信号进行解析。
当解析的结果为要求电子膨胀阀2从当前开度调整到一个新的开度时,中心处理模块42根据当前开度和新开度信息计算得到提供给步进驱动控制模块43的步进量值、步进速度和电机的驱动方向。
步进驱动控制模块43接收到步进值、步进速度和电机驱动方向信号,控制流经电子膨胀阀A相线圈和B相线圈的电流变化满足所述步进量值、步进速度和步进电机驱动方向的要求,并将A相线圈和B相线圈的电流值反馈到中心处理模块42。
电子膨胀阀2包括步进电机和阀体,步进电机根据线圈的电流值控制阀体动作。
在第一实施方式中,空调系统可以通过以下两种方式之一对电子膨胀阀进行动作控制。
第一种方式:电子膨胀阀的动作控制信号由空调控制器1发出,例如由空调控制器1的车辆空调中心处理模块11发出,并对控制信号赋予不同的优先级,优先级越高的控制信号越先被电子膨胀阀执行。
空调控制器1的车辆空调中心处理模块11负责接收空调系统控制面板输入信号或传感器信号,并结合车辆空调中心处理模块11的存储器中存储的控制程序和/或车辆空调中心处理模块11存储器中存储的反馈信号,经过运算得到运行速度控制信号和运行开度控制信号,并将所述运行速度控制信号和运行开度控制信号发送给第一信号收发模块12。第一信号收发模块12编译所述控制信号并发送到LIN/CAN总线3上。电控部分4的第二信号收发模块41自LIN/CAN总线3上接收并解析所述控制信号,并将解析后的控制信号发送给中心处理模块42。中心处理模块42接着根据控制信号计算得到步进量值、步进速度和电机的驱动方向并提供给步进驱动控制模块43;步进驱动控制模块43接收到所述运行速度和目标开度控制信号,使得流经电子膨胀阀A相线圈和B相线圈的电流变化满足所述步进量值、步进速度和步进电机驱动方向的要求,并将A相线圈和B相线圈的电流值反馈到中心处理模块42;电子膨胀阀2接收到能够执行的动作信号电量,控制电子膨胀阀2动作。
第二种方式:电控部分4的中心处理模块42发出电子膨胀阀控制信号,并对控制信号赋予不同的优先级,优先级越高的控制信号越先被电子膨胀阀执行。
空调控制器1的车辆空调中心处理模块11负责接收空调系统控制面板输入信号或传感器信号,经过第一信号收发模块11编译后发送到LIN/CAN总线3,第二信号收发模块41接收LIN/CAN总线3的信号解析后发给中心处理模块42,中心处理模块42接收信号并解析后结合该中心处理模块42的存储器中存储的控制程序和/或该中心处理模块42的存储器中存储的反馈信号经过运算得到电子膨胀阀运行速度控制信号和运行开度控制信号,结合控制信号根据 当前开度和新开度信息计算得到步进量值、步进速度和电机的驱动方向,并将所述步进量值、步进速度和电机的驱动方向提供给步进驱动控制模块43,控制电子膨胀阀2动作。
本发明第二种实施方式,如图2所示,空调系统100包括空调控制器1和电子膨胀阀2,空调系统100还包括用于控制电子膨胀阀动作的电控部分4,电控部分4集成在空调控制器1上。
空调控制器1包括车辆空调中心处理模块11和步进驱动控制模块43;其中步进驱动控制模块43具有第一实施方式中相应模块的功能;车辆空调中心处理模块11包括第一实施方式中的车辆空调中心处理模块11原有的功能以及中心处理模块42原有的功能。
本实施方式中,空调系统通过以下方式控制电子膨胀阀动作:车辆空调中心处理模块11负责接收空调系统控制面板输入信号或传感器信号并结合车辆空调中心处理模块11的存储器中存储的控制程序和/或车辆空调中心处理模块11的存储器中存储的反馈信号经过运算得到运行速度控制信号和开度控制信号,控制信号根据当前开度和新开度信息计算得到步进量值、步进速度和电机的驱动方向,并将所述步进量值和电机的驱动方向提供给步进驱动控制模块43;步进驱动控制模块43接收到运行速度和目标开度控制信号,使得流经电子膨胀阀A相线圈和B相线圈的电流变化满足所述步进量值、步进速度和步进电机驱动方向的要求,并将A相线圈和B相线圈的电流值反馈到车辆空调中心处理模块11。
与第一种实施方式相比,本实施方式的空调系统100控制电子膨胀阀的电控部分集成于空调控制器1上,这样电子膨胀阀和空调控制器1之间直接通讯,可节省信号收发模块的使用,减少占用LIN/CAN总线的线路,同时将中心处理模块整合到车辆空调中心处理模块上,使空调系统更加紧凑。
本发明的空调系统能够控制电子膨胀阀完成以下动作功能:
初始化运行:空调系统能够根据自身存储器存储的预先设定的针对电子膨胀阀的控制程序和或车辆的控制信息或初始化触发信号,发出初始化控制信号,使电子膨胀阀完成初始化动作;所述初始化动作至少包括电子膨胀阀进行从当前开度到0开度的关闭动作,以确认电子膨胀阀能够正常关闭;或者所述 初始化动作包括进行电子膨胀阀全开度的开关确认动作、运行到预定的开度动作,确认电子膨胀阀能够进行全开度的运行;电子膨胀阀的初始化运行动作能够消除在电子膨胀阀在运行中可能产生的失步,避免长时间运行后失步累加而影响正常工作时的控制效果,从而保证空调系统的稳定运行以及快速反应能力。
初始化控制信号包括初始化动作和初始化的动作速度控制信号。所述初始化动作控制信号包括使电子膨胀阀从当前开度运行到0开度或从当前开度运行到0开度再运行一设定开度或从当前开度运行到0开度再运行到100%开度然后运行到一设定开度或从当前开度运行到100%开度再运行到0开度然后运行到一设定开度。所述空调系统发出的初始化的动作速度大于或等于电子膨胀阀在流量调节时的动作速度的最大值。通常根据空调系统的性能将所述初始化动作速度标定为某一固定值。在实际使用中,为了防止电子膨胀阀在运行过程中失步,通常电子膨胀阀运行的脉冲数超过电子膨胀阀从0-100%的运行开度的脉冲数;例如:电子膨胀阀从0开度到100%开度时需要的是480~500个脉冲,这一脉冲数决定于电子膨胀阀的参数,电子膨胀阀的初始化动作是从当前开度正向运行600个脉冲,然后反向运行600个脉冲,最后正向运行一定脉冲到设定开度;或者从当前开度反向运行600个脉冲,然后正向运行600个脉冲,最后反向运行一定脉冲到设定开度。
所述初始化触发信号在所述空调系统的上电时产生、空调关机时产生或车辆的钥匙刚刚转到ACC位置时产生。
所述初始化触发信号在所述空调系统的上电时产生,车辆控制系统通过判断空调系统电源正负极的电势差是否大于空调系统正常工作时最小电压,如果是,则表示有上电信号;如果否,则表示无上电信号。如果有上电信号,空调系统能够根据自身存储器存储的预先设定的针对电子膨胀阀的控制程序和上电信号,发出初始化控制信号,使电子膨胀阀完成初始化动作。
所述初始化触发信号在所述空调系统关机时产生,当触发空调系统的关机开关时,蓄电池继续为空调系统供电。空调系统采集到空调系统的关机信号发出初始化控制信号,电子膨胀阀执行初始化动作,执行完毕发送反馈信号控制空调系统断电;通过设置一延迟程序使蓄电池继续为空调系统供电一设定时间 t2,空调系统采集到车辆系统的空调系统关机信号后发出初始化控制信号,电子膨胀阀执行初始化动作;其中所述设定时间t2大于所述电子膨胀阀初始化动作时间。
所述初始化触发信号在车辆的车钥匙刚刚转到ACC位置时产生,当车辆的钥匙从ON位置转到ACC位置时,产生初始化触发信号。蓄电池继续为空调系统供电,空调系统采集到车辆系统的车钥匙处于ACC位置信号发出初始化控制信号,电子膨胀阀执行初始化动作,执行完毕发送反馈信号控制空调系统断电;或者通过设置一延迟程序使蓄电池继续为空调系统供电一设定时间t2,空调系统采集到车辆系统的车钥匙处于ACC位置信号或空调系统关机信号后发出初始化控制信号,电子膨胀阀执行初始化动作;其中所述设定时间t2大于所述电子膨胀阀初始化动作时间。
当然所述初始化触发信号也可以为电子膨胀阀故障信号或电子膨胀阀的目标开度为0或100%时的开度信号;使电子膨胀阀可以在需要的时候进行初始化确认;所述初始化运行的目的在于确认电子膨胀阀是否可以正常关闭或是否可以进行全开度运行,所以希望动作越快越好,可节省时间。因此空调系统发送最大的运行速度控制信号给电子膨胀阀。
预调节运行:当所述空调系统根据自身存储的程序判断采集的信号含有有效的预调节触发信号时,发送预调节目标开度控制信号和预调节动作速度控制信号给电子膨胀阀;所述预调节触发信号为与压缩机转速或排量和/或蒸发器风机转速有关的预调节输入量,预调节输入量越大对应的预调节目标开度越大,预调节输入量的变化量越大预调节动作速度越大;所述预调节输入量分为若干区间,每个区间对应一个预调节目标开度,所述预调节输入量变化量分为若干区间,每个区间对应一个预调节速度;所述预调节触发信号位于其中一个区间,当在空调系统两个控制工作循环内预调节信号发生区间变化并在新的区间保持一设定时间t1时,预调节触发信号才有效,空调系统发出与新区间对应的预调节目标开度控制信号和预调节动作速度控制信号,电子膨胀阀执行动作;其中所述空调系统的一个控制工作循环是指空调系统从采集信号到发出控制信号的时间段,所述设定时间t1为空调系统控制工作循环的整数倍。
如图3-图4所示,一种预调节实施方式,控制预调节目标位置的变量预调 节输入量,控制预调节动作速度的变量为预调节输入量的变化量,通过L1~L7和L1’~L7’将预调节输入量和预调节输入量的变化量分为6个区间,其预调节目标位置值和调节速度分别对应于R1~R6和Sr1~Sr6,其中图3为预调节目标位置值和预调节输入量的关系,图4为预调节速度和预调节输入量的变化量的关系。其中L1~L7、L1’~L7’、R1~R6、Sr1~Sr6均需要根据经验和系统实验结果进行标定,且区间个数不局限于图示6个,可以根据系统的实际情况进行相应的调整,以预调节输入量为压缩机转速为例,此处给出L1~L7的一种可能情况为0/1000/2000/3000/4000/5000/6000转/分;对应的R1~R6为50/90/120/140/150/160步;对应的Sr1~Sr6为50/70/90/110/130/150PPS。所述预调节功能特点为先判断是否含有预调节触发信号,主要功能是在预调节触发信号发生区间变化,且在新的区间内保持一设定时间长度t1,才进行预调节输出(即该预调节方式为间断性的),防止由于瞬时的工况变化(如猛踩油门后紧接着刹车、调整蒸发器风机转速后又立马调回)而产生不必要的预调节,以提高空调系统的稳定性。
如图5-图6所示,另一种预调节实施方式,与上一实施方式中的区间预调节不同,本实施例为连续预调节,例如可以为分段函数。说明如下:分段函数预调节指根据几个临界点如图示L0、L1、L2、L3和L0’、L1’、L2’、L3’作为分段函数的临界点,以预调节输入量和预调节输入量的变化量为变量,在各个区间内采用与所在区间系统调节需求相对应的函数进行预调节,并输出与所在区间对应的预调节开度En及相应调节速度Sen;其中预调节开度En和相应调节速度Sen分别为预调节采集信号的函数,所述函数可能为一次或多次函数,由经验和系统实验确定该函数关系。连续性预调节可以根据系统需求可以以分段函数形式,也可以为多次函数,特点是预调节和负反馈调节均持续进行。
预调节运行是在电子膨胀阀进入精确控制前预先快速地进行一个基于经验和实验数据得出的估算调节,目的是缩短电子膨胀阀控制过热度达到设定值的时间,使空调系统快速达到平衡,并快速满足空调系统所需要的制冷量。
对于车辆空调系统而言,预调节触发信号一般来自传感器和/或LIN/CAN总线。
负反馈运行:空调系统根据电子膨胀阀的当前位置以及采集的空调系统中 制冷系统中的蒸发器出口的温度和压力信号确定电子膨胀阀的运行开度和运行速度;所述电子膨胀阀的负反馈运行速度包括负反馈调节速度基数和负反馈调节速度增量两部分;如图7所示,所述电子膨胀阀负反馈调节速度基数以电子膨胀阀反馈的当前开度为变量,通过M0-M6将反馈当前开度分为7个区间,对应7个调节速度基数S1-S7,其开度区间的定义和对应调节速度的值可以根据不同系统进行标定,此处M0~M6分别为:0/30/50/70/90/150/300步,S1~S7分别为10/15/20/30/40/60/80PPS。当电子膨胀阀当前处于小开度区间时,即此时空调系统处于低负荷运行状态,此时制冷剂流量较小,故制冷系统对开度的变化敏感,此时需要采用尽可能低的速度控制电子膨胀阀动作,防止因为电子膨胀阀动作速度过快而引起的制冷系统过热度震荡,同时调节频率过快也会使电子膨胀阀动作频繁,影响其使用寿命;但是随着电子膨胀阀当前开度的增加,即系统运行的负荷越来越高,此时需要逐步增加电子膨胀阀的动作速度,以确保在过热度稳定的前提下尽可能快地达到系统所需要的开度。
如图8所示,以目标开度和当前开度的差值的绝对值为变量的二次函数作为计算速度调节增量的一种方案;
负反馈调节过程进一步将电子膨胀阀开度调节到接近目标值的更小区间甚至正好达到目标值。
快速关断运行:当空调控制器1采集到快速关断触发信号后结合该空调控制器1自身设定的程序,或者电控部分收到空调控制器采集的快速关断触发信号后结合预先设定的电子膨胀阀动作的控制程序,发出全关控制信号和最大的运行速度控制信号,使电子膨胀阀以最快的速度关闭制冷剂流通管道;快速关断触发信号包括车辆碰撞信号;所述空调控制器1直接从车辆的LIN/CAN总线上读取车辆的碰撞触发信号,所述车辆的碰撞触发信号可以为控制安全气囊的传感器信号;车辆碰撞时,控制电子膨胀阀快速关断能够防止车辆碰撞后导致制冷剂大量进入驾驶室内;有些车辆在采集到车辆膨胀信号后电源会自动切断,为了保证电子膨胀阀的运行可能需要增加一与电子膨胀阀连接的附加电源。
所述快速关断控制信号的优先级大于所述初始化控制信号的优先级,所述初始化控制信号的优先级大于所述预调节控制信号的优先级,所述预调节控制 信号的优先级大于所述负反馈调节控制信号的优先级;快速关断控制信号最先被电子膨胀阀执行,提高车辆的安全性。
如图9所示,本发明还公开了一种空调系统控制方法,所述空调系统控制方法,所述空调系统包括空调控制器1、电子膨胀阀2以及用于控制电子膨胀阀的电控部分4,所述空调系统能够实现电子膨胀阀动作控制,所述空调控制器或所述电控部分根据预先设定的程序以及采集到的输入信号,发出不同的动作控制信号,使电子膨胀阀以不同的动作速度进行动作;所述空调系统运行过程包括以下所列步骤。
S1:预设控制程序:所述空调控制器或所述电控部分存储预先设定的控制程序。
S2:控制信号形成:空调控制器或所述电控部分各自结合自身存储的预设的程序和采集到的触发信号,发出运行速度控制信号和预定开度控制信号,控制电子膨胀阀动作,所述控制信号别赋予不同的优先级;优先级越高越先被电子膨胀阀执行。
S3:动作信号形成并执行:所述控制信号经所述电控部分转化为电子膨胀阀能够执行的动作信号电量,使得电子膨胀阀以所述运行速度运行到所述预定开度调节制冷剂流量。
所述预先设定的电子膨胀阀控制程序包括初始化控制程序、预调节控制程序、负反馈调节控制程序以及快速关断控制程序。
其中所述步骤S2包括以下所列子步骤。
S21:上电检测:空调控制器判断空调电源正负极电势差是否大于空调系统的最小工作电压,如果是,表示空调有上电信号,转到步骤S22和/或步骤S23;如果否,表示空调无上电信号,转到步骤S00。
S22:初始化控制:空调控制器或电控部分结合初始化控制程序,发出初始化命令和初始化运行速度控制信号。
S23:快速关断信号读取:空调控制器从车辆的LIN/CAN总线上读取车辆状态相关信号,转到步骤S24。
S24:快速关断控制:空调控制器或电控部分结合初始化控制程序判断是否有碰撞信号,如果是,发出全关信号和最大的运行速度;如果否,转到步骤 S25。
S25:空调系统开启检测:空调控制器判断压缩机的是否开启,如果是,转入步骤S26,如果否,转入步骤S20。
S26:输入信号采集:空调控制器从传感器和车辆的LIN/CAN总线读取输入信号;转入步骤S27。
S27:预调节控制判断:根据预调节控制程序判断空调控制器读取的信号是否包括预调节触发信号,如果是转入步骤S28;如果否,转入步骤S29。
S28:预调节控制:空调控制器或电控部分计算生成预调节开度和预调节调节速度,并发出预调节开度控制信号和预调节动作速度信号。
S29:负反馈调节控制:空调控制器根据电子膨胀阀反馈的当前位置和蒸发器出口的温度、压力信号进行负反馈调节,空调控制器或电控部分发出负反馈调节量和对应的动作速度,然后转入步骤S20。
S20:断电判断:空调控制器判断空调系统电源的电动势是否小于空调系统电源的最小工作电压,如果是,转入步骤S00;如果否,转入步骤S23。
S00:结束。
如图10所示,本发明还公开了另一种空调系统控制方法,其中该控制方法中形成控制信号的S2步骤与前一实施方式不同,包括以下所列子步骤。
S21’:上电检测:空调控制器判断空调电源正负极电势差是否大于空调系统的最小工作电压,如果是,表示空调有上电信号,转到步骤S22’;如果否,表示空调无上电信号,转到步骤S00’。
S22’:快速关断信号读取:空调控制器从车辆的LIN/CAN总线上读取车辆状态相关信号,转到步骤S23’。
S23’:快速关断控制:空调控制器或电控部分结合初始化控制程序判断是否有碰撞信号,如果是,发出全关信号和最大的运行速度;如果否,转到步骤S24’。
S24’:判断是否第一个工作循环:空调控制器或电控部分判断是否第一个工作循环,如果是,转到步骤S25’;如果否,转到步骤S26’。
S25’:初始化控制:空调控制器或电控部分结合初始化控制程序,发出初始化命令和初始化运行速度控制信号;
S26’:输入信号采集:空调控制器从传感器和车辆的LIN/CAN总线读取输入信号;转入步骤S27’。
S27’:空调系统开启检测:空调控制器判断压缩机的是否开启,如果是,转入步骤S28’,如果否,转入步骤S31’。
S28’:预调节控制判断:根据预调节控制程序判断空调控制器读取的信号是否包括预调节触发信号,如果是,转入步骤S29’;如果否,转入步骤S30’。
S29’:预调节控制:空调控制器或电控部分计算生成预调节开度和预调节调节速度,并发出预调节开度控制信号和预调节动作速度信号。
S30’:负反馈调节控制:空调控制器根据电子膨胀阀反馈的当前位置和蒸发器出口的温度、压力信号进行负反馈调节,空调控制器或电控部分发出负反馈调节量和对应的动作速度,然后转入步骤S31’。
S20’:断电判断:空调控制器判断空调系统电源的电动势是否小于空调系统电源的最小工作电压,如果是,转入步骤S00’;如果否,转入步骤S22’。
S00’:结束。
当然所述初始化控制也可以在断电判断前,即在车辆钥匙处于关闭状态时发送电子膨胀阀进行初始化的控制信号,待电子膨胀阀执行完初始化命令时发送反馈信号控制空调系统断电,从而可节省再次上电启动后进行初始化控制的时间。
需要说明的是,以上实施例仅用于说明本发明而并非限制本发明所描述的技术方案,尽管本说明书参照上述的实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本发明进行修改或者等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

Claims (13)

  1. 一种空调系统,所述空调系统可应用于车辆上,其特征在于,所述空调系统包括空调控制器、电子膨胀阀以及用于控制电子膨胀阀动作的电控部分;
    所述空调控制器,是所述空调系统的控制中心,用于接收并解析车辆系统或控制面板的控制信号或输入信息,并将解析生成的控制信号发出;所述空调控制器负责接收空调系统主控板的输入信息或传感器信息,并结合空调控制器存储的预先设定的针对电子膨胀阀的控制程序,和/或空调控制器存储的反馈信息,经过运算得到控制信号,并将所述控制信号发出;
    所述电控部分将所述控制信号转化为所述电子膨胀阀能够执行的动作信号电量,可通过所述动作信号电量控制电子膨胀阀动作;
    或者
    所述空调控制器,用于接收空调系统主控板的输入信息或传感器信息;
    所述电控部分,用于接收所述空调控制器发出的输入信息和或传感器信息,并结合电控部分存储的预先设定的针对电子膨胀阀的控制程序和/或电控部分存储的反馈信息,经过运算得到控制信号,并将控制信号转化为电子膨胀阀能够执行的动作信号电量,可通过所述动作信号电量控制电子膨胀阀动作;
    所述电子膨胀阀,用于调节所述空调系统中制冷系统的制冷剂流量和/或用于关断或打开制冷剂流通通道;
    所述空调系统控制电子膨胀阀的动作速度,在所述空调系统处于不同工作状态时发出不同的动作速度控制信号,从而控制电子膨胀阀以不同的动作速度进行动作。
  2. 根据权利要求1所述的空调系统,其特征在于:当所述空调控制器或所述电控部分各自根据自身存储的预先设定的针对电子膨胀阀的控制程序,确定接收的信号含有空调系统的上电信号或空调系统的关机信号时,发出包括初始化动作控制信号和初始化的动作速度控制信号的初始化控制信号;所述初始化动作控制信号包括使电子膨胀阀从当前开度运行到0开度或从当前开度运行到0开度再运行一设定开度或从当前开度运行到0开度再运行到100%开度 然后运行到一设定开度或从当前开度运行到100%开度再运行到0开度然后运行到一设定开度。
  3. 根据权利要求2所述的空调系统,其特征在于:所述空调系统发出的初始化的动作速度大于或等于电子膨胀阀在流量调节时的动作速度的最大值。
  4. 根据权利要求2或3所述的空调系统,其特征在于:所述电子膨胀阀初始化动作运行的脉冲数超过电子膨胀阀从0-100%的运行开度的脉冲数。
  5. 根据权利要求1所述的空调系统,其特征在于:当所述空调控制器或所述电控部分各自根据自身存储的预先设定的针对电子膨胀阀的控制程序,确定采集的信号中含有预调节触发信号并且预调节触发信号有效时,发出预调节目标开度控制信号和预调节动作速度控制信号,所述预调节触发信号是与压缩机转速或排量和/或蒸发器风机转速有关的预调节输入量和预调节输入量的变化量;预调节输入量越大,对应的预调节目标开度越大;预调节输入量的变化量越大,所述预调节动作速度越大。
  6. 根据权利要求5所述的空调系统,其特征在于:所述预调节输入量分为若干区间,每个区间对应一个预调节目标开度;所述预调节输入量的变化量分为若干区间,每个区间对应一个预调节速度;所述预调节触发信号位于其中一个区间;当在空调系统两个控制工作循环内预调节触发信号发生区间变化并在新的区间保持一设定时间t1时,所述预调节触发信号有效,所述空调控制器或所述电控部分发出与新区间对应的预调节目标开度控制信号和预调节动作速度;其中所述空调系统的一个控制工作循环是指空调系统从采集信号到发出控制信号的时间段,所述设定时间t1为空调系统控制工作循环的整数倍。
  7. 根据权利要求1或5所述的空调系统,其特征在于:所述空调控制器根据采集到的制冷系统的蒸发器出口的温度和压力,计算电子膨胀阀的目标动作开度;通过从所述空调控制器或所述电控部分各自自身存储器中读取电子膨胀阀返回的当前开度信号,确定调节速度基数,再通过输出的目标开度和反馈的当前开度的差值的绝对值来确定上述速度调节基数的增量,以速度调节基数和速度调节增量的和来确定最终的负反馈调节动作速度,然后将目标动作开度控制信号和负反馈调节动作速度控制信号发出,当电子膨胀阀当前处于小开度时或空调系统处于低负荷运行状态,以低速控制电子膨胀阀动作,随着电子膨 胀阀当前开度的增加或空调系统运行的负荷越来越高,逐步增加电子膨胀阀的动作速度。
  8. 根据权利要求1或2所述的空调系统,其特征在于:所述空调控制器或所述电控部分各自根据自身存储的预先设定的针对电子膨胀阀的控制程序,确定所述空调控制器采集的信息含有快速关断触发信号时,发出全关控制信号和最大的运行速度控制信号,所述电控部分将所述全关控制信号和最大运行速度控制信号转化为所述电子膨胀阀能够执行的动作信号电量,控制电子膨胀阀动作;所述快速关断触发信号包括车辆碰撞传感器采集到的信号。
  9. 根据权利要求1-2,5-8中任一项所述的空调系统,其特征在于:所述空调控制器或所述电控部分发出的控制电子膨胀阀动作的控制信号被赋予不同的优先级,优先级越高的控制信号越先被电子膨胀阀执行。
  10. 根据权利要求9所述的空调系统,其特征在于:所述控制信号为快速关断控制信号、初始化控制信号、预调节控制信号或负反馈调节控制信号,所述快速关断控制信号的优先级大于所述初始化控制信号的优先级,所述初始化控制信号的优先级大于所述预调节控制信号的优先级,所述预调节控制信号的优先级大于所述负反馈调节控制信号的优先级。
  11. 一种空调系统控制方法,所述空调系统包括空调控制器、电子膨胀阀以及用于控制电子膨胀阀的电控部分,所述空调控制器或所述电控部分根据预先设定的针对电子膨胀阀的控制程序以及采集到的输入信号,发出不同的动作速度控制信号,从而控制电子膨胀阀以不同的动作速度进行动作,所述空调系统运行过程包括:
    S1:所述空调控制器或所述电控部分存储预先设定的控制程序;
    S2:空调控制器采集触发信号并解析信号,空调控制器或所述电控部分各自结合自身存储的预设的电子膨胀阀程序和采集到的触发信号,发出运行速度控制信号和预定开度控制信号,控制电子膨胀阀动作,所述控制信号别赋予不同的优先级;优先级越高越先被电子膨胀阀执行;
    S3:所述控制信号经所述电控部分转化为电子膨胀阀能够执行的动作信号电量,使得电子膨胀阀以所述运行速度运行到所述预定开度调节制冷剂流量。
  12. 根据权利要求11所述的空调系统控制方法,其特征在于:所述预先 设定的针对电子膨胀阀的控制程序包括初始化控制程序、预调节控制程序、负反馈调节控制程序以及快速关断控制程序;
    其中所述步骤S2包括:
    S21:空调控制器判断空调电源正负极电势差是否大于空调系统最小工作电压,如果是,表示空调有上电信号,转到步骤S22和/或步骤S23;如果否,表示空调无上电信号,转到步骤S00;
    S22:空调控制器或电控部分结合初始化控制程序,发出初始化命令和初始化运行速度控制信号;
    S23:空调控制器从车辆的LIN/CAN总线上读取车辆相关信号,转到步骤S24;
    S24:空调控制器判断是否有碰撞信号,如果是,空调控制器或电控部分发出全关信号和最大的运行速度;如果否,转到步骤S25;
    S25:空调控制其判断压缩机的是否开启,如果是,转入步骤S26,如果否,转入步骤S20;
    S26:空调控制器从传感器和车辆的LIN/CAN总线读取输入信号;转入步骤S27;
    S27:空调控制器或电子膨胀阀根据预调节控制程序判断空调控制器读取的信号是否包括预调节触发信号,如果是转入步骤S28;如果否,转入步骤S29;
    S28:空调控制器或电控部分根据预先设置的电子膨胀阀控制程序,计算生成预调节开度和预调节调节速度,并发出预调节开度控制信号和预调节动作速度信号;
    S29:空调控制器根据电子膨胀阀反馈的当前位置和蒸发器出口的温度、压力信号进行负反馈调节,并发出负反馈调节量和对应的动作速度,然后转入步骤S20;
    S20:空调控制器判断空调系统电源的电动势是否小于空调系统电源的最小工作电压,如果是,转入步骤S00;如果否,转入步骤S23;
    S00:结束。
  13. 根据权利要求11所述的空调系统控制方法,其特征在于:所述预先设定的针对电子膨胀阀的控制程序包括初始化控制程序、预调节控制程序、负 反馈调节控制程序以及快速关断控制程序;
    所述步骤S2包括:
    S21’:空调控制器判断空调电源正负极电势差是否大于空调系统的最小工作电压,如果是,表示空调有上电信号,转到步骤S22’;如果否,表示空调无上电信号,转到步骤S00’;
    S22’:空调控制器从车辆的LIN/CAN总线上读取车辆状态相关信号,转到步骤S23’;
    S23’:空调控制器或电控部分结合初始化控制程序判断是否有碰撞信号,如果是,发出全关信号和最大的运行速度;如果否,转到步骤S24’;
    S24’:空调控制器或电控部分判断是否第一个工作循环,如果是,转到步骤S25’;如果否,转到步骤S26’;
    S25’:空调控制器或电控部分结合初始化控制程序,发出初始化命令和初始化运行速度控制信号;
    S26’:空调控制器从传感器和车辆的LIN/CAN总线读取输入信号;转入步骤S27’;
    S27’:空调控制器判断压缩机的是否开启,如果是,转入步骤S28’,如果否,转入步骤S31’;
    S28’:根据预调节控制程序判断空调控制器读取的信号是否包括预调节触发信号,如果是,转入步骤S29’;如果否,转入步骤S30’;
    S29’:空调控制器或电控部分计算生成预调节开度和预调节调节速度,并发出预调节开度控制信号和预调节动作速度信号;
    S30’:空调控制器根据电子膨胀阀反馈的当前位置和蒸发器出口的温度、压力信号进行负反馈调节,空调控制器或电控部分发出负反馈调节量和对应的动作速度,然后转入步骤S31’;
    S20’:空调控制器判断空调系统电源的电动势是否小于空调系统电源的最小工作电压,如果是,转入步骤S00’;如果否,转入步骤S22’;
    S00’:结束。
PCT/CN2014/086839 2013-09-28 2014-09-18 一种空调系统及其控制方法 WO2015043416A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL14848835.6T PL3051218T3 (pl) 2013-09-28 2014-09-18 Układ klimatyzacji i sposób sterowania tym układem
EP14848835.6A EP3051218B1 (en) 2013-09-28 2014-09-18 Air conditioning system and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310456452.6A CN104515270B (zh) 2013-09-28 2013-09-28 一种空调系统及其控制方法
CN201310456452.6 2013-09-28

Publications (1)

Publication Number Publication Date
WO2015043416A1 true WO2015043416A1 (zh) 2015-04-02

Family

ID=52742039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086839 WO2015043416A1 (zh) 2013-09-28 2014-09-18 一种空调系统及其控制方法

Country Status (4)

Country Link
EP (1) EP3051218B1 (zh)
CN (1) CN104515270B (zh)
PL (1) PL3051218T3 (zh)
WO (1) WO2015043416A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106627033A (zh) * 2015-10-28 2017-05-10 福特全球技术公司 车辆气候控制阀和操作方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106671728A (zh) * 2015-11-06 2017-05-17 福特环球技术公司 空调系统及其控制方法
CN105650825B (zh) * 2016-02-26 2019-09-24 珠海格力电器股份有限公司 制热模式下的空调控制方法和装置
CN108692488B (zh) * 2017-04-11 2021-05-28 浙江三花智能控制股份有限公司 换热系统、该空调控制系统及空调系统的控制方法
JP6600608B2 (ja) * 2016-09-26 2019-10-30 株式会社不二工機 電動弁制御装置及びそれを備えた電動弁装置
CN106642540A (zh) * 2016-11-11 2017-05-10 青岛海尔空调器有限总公司 空调换热器自清洁方法
CN108626919A (zh) * 2017-03-15 2018-10-09 杭州三花研究院有限公司 电子膨胀阀的控制方法以及空调控制系统
CN108332372A (zh) * 2018-01-22 2018-07-27 广东美的制冷设备有限公司 运行控制方法、装置、空调器和计算机可读存储介质
DE102018203537A1 (de) * 2018-03-08 2019-09-12 Volkswagen Aktiengesellschaft Verfahren zur Kühlung einer Traktionsbatterie eines elektrisch antreibbaren Fahrzeugs sowie Kühlanordnung zur Durchführung des Verfahrens
CN109246086A (zh) * 2018-08-16 2019-01-18 上海海压特智能科技有限公司 指令数据包的传送方法
CN110068179B (zh) * 2019-04-22 2021-04-27 广东美博制冷设备有限公司 一种电子膨胀阀的控制方法及装置
CN110173837A (zh) * 2019-05-10 2019-08-27 广东美的制冷设备有限公司 空调器及其控制方法与装置
JP7384073B2 (ja) * 2020-03-02 2023-11-21 株式会社富士通ゼネラル 空気調和装置および空気調和方法
CN113757980B (zh) * 2020-06-01 2022-09-23 广东美的暖通设备有限公司 空调系统、空调系统的控制方法和计算机可读存储介质
CN113834198B (zh) * 2020-06-24 2022-09-27 广东美的制冷设备有限公司 空调器的控制方法、空调器及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1288134A (zh) * 1999-06-26 2001-03-21 三星电子株式会社 复合型空调的电控膨胀阀的控制方法
US6279870B1 (en) * 1998-03-27 2001-08-28 Maxon Corporation Intelligent valve actuator
CN1512284A (zh) * 2002-10-08 2004-07-14 控制器和用于控制制冷系统膨胀阀的方法
JP4456352B2 (ja) * 2003-10-21 2010-04-28 シーケーディ株式会社 モータ駆動式比例弁
CN102374328A (zh) * 2010-08-27 2012-03-14 杭州三花研究院有限公司 一种电子膨胀阀、步进电机及换向阀
CN103115182A (zh) * 2011-11-16 2013-05-22 杭州三花研究院有限公司 一种电子膨胀阀

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3890713B2 (ja) * 1997-11-27 2007-03-07 株式会社デンソー 冷凍サイクル装置
JP4134399B2 (ja) * 1997-11-28 2008-08-20 株式会社デンソー 冷凍サイクル制御装置
CN1216260C (zh) * 2003-07-10 2005-08-24 上海交通大学 轿车空调蒸发器制冷剂流量控制系统
JP2006284074A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 冷却装置の制御装置
KR20070082934A (ko) * 2006-02-20 2007-08-23 한라공조주식회사 자동차용 공조장치의 가변용량 컴프레서 사이클링 방지방법
KR101221775B1 (ko) * 2006-04-18 2013-01-11 한라공조주식회사 차량 공조장치용 가변용량형 압축기의 사이클링 방지방법
CN202432743U (zh) * 2011-12-12 2012-09-12 惠州大华科技有限公司 一种汽车用的变频空调
CN103245154B (zh) * 2012-02-09 2016-08-31 杭州三花研究院有限公司 一种汽车空调系统电子膨胀阀的控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6279870B1 (en) * 1998-03-27 2001-08-28 Maxon Corporation Intelligent valve actuator
CN1288134A (zh) * 1999-06-26 2001-03-21 三星电子株式会社 复合型空调的电控膨胀阀的控制方法
CN1512284A (zh) * 2002-10-08 2004-07-14 控制器和用于控制制冷系统膨胀阀的方法
JP4456352B2 (ja) * 2003-10-21 2010-04-28 シーケーディ株式会社 モータ駆動式比例弁
CN102374328A (zh) * 2010-08-27 2012-03-14 杭州三花研究院有限公司 一种电子膨胀阀、步进电机及换向阀
CN103115182A (zh) * 2011-11-16 2013-05-22 杭州三花研究院有限公司 一种电子膨胀阀

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3051218A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106627033A (zh) * 2015-10-28 2017-05-10 福特全球技术公司 车辆气候控制阀和操作方法

Also Published As

Publication number Publication date
EP3051218A1 (en) 2016-08-03
PL3051218T3 (pl) 2022-08-22
CN104515270B (zh) 2018-12-11
EP3051218A4 (en) 2017-08-02
CN104515270A (zh) 2015-04-15
EP3051218B1 (en) 2022-05-25

Similar Documents

Publication Publication Date Title
WO2015043416A1 (zh) 一种空调系统及其控制方法
CN104515252A (zh) 一种电子膨胀阀的控制方法
CN113757436B (zh) 电动阀控制装置以及具备该电动阀控制装置的电动阀装置
US20150362236A1 (en) Electronic expansion valve and control method thereof
WO2015043519A1 (zh) 制冷剂循环系统
US10571875B2 (en) Electric valve control device and electric valve device including the same
CN103033004A (zh) 一种汽车空调系统电子膨胀阀的控制方法
US20130340860A1 (en) Electrically operated valve control device and electrically operated valve device
JP7231958B2 (ja) 電動弁制御装置およびそれを備えた電動弁装置
EP3299748B1 (en) Electric valve control device and electric valve device including the same
CN110254157B (zh) 一种汽车用热泵空调系统的控制方法
JP4048698B2 (ja) 車両用冷却ファンの制御装置および制御方法
JP6664730B2 (ja) 電動弁制御装置およびそれを備えた電動弁装置
CN108312805B (zh) 空调机组的控制方法及其控制装置
CN109595773B (zh) 一种空调系统及空调系统的控制方法
JP6757088B2 (ja) 電動弁制御装置及びそれを備えた電動弁装置
KR20160050792A (ko) 차량의 액티브 에어 플랩 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014848835

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014848835

Country of ref document: EP