WO2019097675A1 - Component mounter, component inspection method, component inspection program, and recording medium - Google Patents

Component mounter, component inspection method, component inspection program, and recording medium Download PDF

Info

Publication number
WO2019097675A1
WO2019097675A1 PCT/JP2017/041470 JP2017041470W WO2019097675A1 WO 2019097675 A1 WO2019097675 A1 WO 2019097675A1 JP 2017041470 W JP2017041470 W JP 2017041470W WO 2019097675 A1 WO2019097675 A1 WO 2019097675A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
substrate
pattern
image
mounting
Prior art date
Application number
PCT/JP2017/041470
Other languages
French (fr)
Japanese (ja)
Inventor
幸治 横田
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2017/041470 priority Critical patent/WO2019097675A1/en
Priority to JP2019554146A priority patent/JP6855148B2/en
Publication of WO2019097675A1 publication Critical patent/WO2019097675A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present invention relates to a technology for mounting a component provided with a pattern on a substrate, and more particularly to a technology for inspecting the position of the pattern of the component based on an image obtained by imaging the mounted component.
  • components having a bump pattern formed on the surface are generally used.
  • the components may be mounted on the substrate in a state where the positions of the bump patterns are shifted.
  • the present invention has been made in view of the above problems, and it is possible to accurately inspect the misalignment of the pattern of the component based on the image obtained by imaging the component mounted on the substrate regardless of the variation in the position of the pattern with respect to the outer shape of the component. To provide technology that makes it possible.
  • a component mounter comprises a component supply unit for supplying a component having a first surface provided with a pattern and a second surface opposite to the first surface, a substrate holding unit for holding a substrate, and a component supply A component mounting unit for picking up a component supplied by the unit and mounting the first surface on the substrate with the first surface facing the substrate side, an imaging unit for imaging the component, and the first surface of the component before mounting on the substrate
  • the imaging unit captures an image to obtain a first image
  • the imaging unit captures an image of a second surface of the component mounted on the substrate using the imaging unit to obtain a second image, and based on the first image and the second image
  • the component A control unit that executes an inspection process for performing an inspection, and in the inspection process, the control unit determines pattern position information indicating the position of the pattern with respect to the outline of the first surface from the first image, and a component mounted on the substrate Indicates the position of the second side of the The part position information obtained from the second image, checking the positional deviation of the part of
  • the first surface on which the pattern is provided is imaged to obtain the first image.
  • Step of acquiring step of imaging the second surface of the component mounted on the substrate with the first surface facing the substrate to acquire a second image, and pattern position indicating the position of the pattern with respect to the outline of the first surface
  • a process of obtaining information from the first image a process of obtaining component position information indicating the position of the second surface of the component mounted on the substrate from the second image, and mounting on the substrate based on the pattern position information and the component position information Inspecting the misalignment of the part pattern.
  • the component inspection program images a first surface on which a pattern is provided among the first surface and the second surface opposite to the first surface of the component before being mounted on a substrate, and generates a first image.
  • Step of acquiring step of imaging the second surface of the component mounted on the substrate with the first surface facing the substrate to acquire a second image, and pattern position indicating the position of the pattern with respect to the outline of the first surface
  • a process of obtaining information from the first image a process of obtaining component position information indicating the position of the second surface of the component mounted on the substrate from the second image, and mounting on the substrate based on the pattern position information and the component position information
  • a storage medium stores the above-described part inspection program in a readable manner by a computer.
  • the first surface (surface provided with the pattern) of the component before mounting on the substrate is imaged A first image is acquired, and based on the first image, pattern position information indicating the position of the pattern with respect to the outline of the first surface is obtained.
  • the second surface (surface opposite to the first surface) of the component after being mounted on the substrate is imaged to obtain a second image, and the position of the second surface of the component is indicated based on the second image. Part position information is obtained. Then, based on the pattern position information and the component position information, the misalignment of the pattern of the component mounted on the substrate is inspected.
  • the misalignment of the pattern is inspected not only based on the position of the second surface of the mounted part but also on the position of the pattern with respect to the outline of the first surface of the part.
  • the control unit obtains positional relationship information indicating the positional relationship between the first surface and the second surface based on the image obtained by causing the imaging unit to capture the component, and based on the pattern position information, the positional relationship information, and the component position information.
  • the component mounter may be configured to inspect misalignment of the pattern of the component mounted on the substrate. In this configuration, the positional deviation of the pattern is inspected based also on positional relationship information indicating the positional relationship between the first surface and the second surface.
  • the component supply unit supplies the component with the second surface directed upward, and in the inspection process, the control unit supplies the component before the component supply unit supplies it and is picked up by the component mounting unit.
  • the component mounter may be configured to capture the second surface of the image by the imaging unit to obtain a third image, and obtain positional relationship information based on the first image and the third image.
  • control unit picks up the first surface of the component before being picked up from the component supply unit by the component mounting unit and mounted on the substrate by the imaging unit to acquire a first image and execute inspection processing.
  • the component mounter may be configured to adjust the position at which the component is mounted on the substrate based on the result of recognizing the position of the pattern based on the first image. In such a configuration, pattern recognition processing and inspection processing for adjusting the mounting position of the component are executed based on the common first image, and efficient control is realized.
  • control unit may configure the component mounter so that the inspection process can be performed at one execution interval selected from the plurality of execution intervals.
  • the inspection process can be performed at an appropriate execution interval in consideration of the necessity of inspection of pattern misalignment and the efficiency of component mounting.
  • the component is a die of a diced wafer, and a plurality of execution intervals is a first execution interval to execute an inspection process each time one die is mounted on a substrate, and one wafer portion So as to include at least one of a second execution interval for performing the inspection process each time the die is mounted on the substrate and a third execution interval for performing the inspection process each time the die for one lot of wafers is mounted on the substrate;
  • a component mounter may be configured.
  • control unit may configure the component mounter so as to select one execution interval from among a plurality of execution intervals based on the positional deviation of the pattern of the component inspected in the inspection process. In such a configuration, it is possible to make appropriate the execution interval of the inspection process after the executed inspection process based on the positional deviation of the pattern inspected in the executed inspection process.
  • control unit may configure the component mounting machine to adjust the position at which the component mounting unit mounts the component on the substrate based on the positional deviation of the pattern of the component inspected in the executed inspection process. . By this, it is possible to mount the component on the substrate while suppressing the positional deviation of the pattern.
  • the present invention it becomes possible to accurately inspect the positional deviation of the pattern of the component based on the image obtained by imaging the component mounted on the substrate, regardless of the variation in the position of the pattern with respect to the outer shape of the component.
  • FIG. 2 is a block diagram showing an electrical configuration of the component mounter of FIG. 1; The figure which shows typically an example of the components used as the object of mounting by the component mounting machine of FIG.
  • 5 is a flowchart showing an example of part back surface recognition in the flowchart of FIG. 4;
  • 5 is a flowchart showing an example of component surface recognition in the flowchart of FIG. 4;
  • FIG. 1 is a plan view schematically showing an example of a component mounter according to the present invention.
  • FIG. 2 is a block diagram showing an electrical configuration of the mounter of FIG.
  • XYZ orthogonal coordinate axes configured of a transport direction X, a width direction Y, and a vertical direction Z are appropriately used.
  • the transport direction X and the width direction Y are parallel to the horizontal direction and orthogonal to each other, and the vertical direction Z is orthogonal to the transport direction X and the width direction Y.
  • the component mounting machine 10 mounts the component Wp on the substrate 1 carried in from the upstream side in the transport direction X and carries it out to the downstream side in the transport direction X.
  • a plurality of mounting target points 1a are provided on the upper surface of the substrate 1, and the control unit 100 provided in the component mounting machine 10 controls the respective components of the component mounting machine 10 to provide components at each mounting target point 1a.
  • the control unit 100 includes an operation unit 110 which is a processor having an arithmetic function for controlling the entire component mounter 10, and an image processing unit 120 which performs image processing based on an instruction of the operation unit 110. And a drive control unit 130 that controls a drive mechanism such as a motor based on a command from the calculation unit 110. Furthermore, the control unit 100 includes a storage unit 140 configured of an HDD (Hard Disk Drive) or the like. The storage unit 140 stores a component inspection program 150 for causing the calculation unit 110 to execute a component inspection to be described later.
  • HDD Hard Disk Drive
  • the component inspection program 150 is stored and provided in a recording medium 160 such as a DVD (Digital Versatile Disc) or USB (Universal Serial Bus), for example, and the computing unit 110 stores the component inspection program 150 read from the recording medium 160 Save to 140
  • a recording medium 160 such as a DVD (Digital Versatile Disc) or USB (Universal Serial Bus)
  • the computing unit 110 stores the component inspection program 150 read from the recording medium 160 Save to 140
  • the provision form of the component inspection program 150 is not limited to this, and the component inspection program 150 may be provided, for example, in the form of downloading from an Internet server.
  • the component mounter 10 includes a transport unit 2 that transports the substrate 1 in the transport direction X.
  • the transport unit 2 has two mounting work positions 21 aligned in the transport direction X, and carries the substrate 1 to each mounting work position 21 from the upstream side in the transport direction X. Further, the transport unit 2 unloads the substrate 1 on which the component Wp is mounted at each mounting work position 21 from the mounting work position 21 to the downstream side in the transport direction X.
  • the component mounter 10 further includes a component supply mechanism 3 for supplying the component Wp.
  • the parts Wp supplied by the parts supply mechanism 3 are dies (bare chips) of the diced wafer W. That is, the component supply mechanism 3 has a wafer storage unit 31 capable of storing a plurality of wafers W, and a wafer extraction unit 33 for extracting the wafer W from the wafer storage unit 31 to the component supply position 32.
  • the wafer storage unit 31 arranges a plurality of wafer holders Wh for holding the wafers W in the vertical direction Z and raises and lowers a rack for storing the wafers W at a height at which the wafer lead-out unit 33 can receive the wafers W.
  • One wafer holder Wh can be positioned and the wafer holder Wh can be pushed out to the wafer lead-out portion 33.
  • the wafer lead-out portion 33 includes a wafer support table 331 supporting the wafer holder Wh, a fixed rail 332 supporting the wafer support table 331 movably in the width direction Y, and is provided in the width direction Y and attached to the wafer support table 331 And a Y-axis motor 334 for driving the ball screw 333. Therefore, the wafer support table 331 can be moved in the width direction Y along the fixed rail 332 by rotating the ball screw 333 by the Y-axis motor 334. As shown in FIG. 1, the wafer storage unit 31 and the component supply position 32 are disposed so as to sandwich the transport unit 2 in the width direction Y, and the wafer support table 331 passes below the transport unit 2.
  • the wafer support table 331 receives the wafer holder Wh from the wafer storage unit 31 at the reception position adjacent to the wafer storage unit 31 and moves from the reception position to the component supply position 32 to move the wafer W to the component supply position 32. Pull out.
  • the component supply mechanism 3 has a component extraction unit 35 for extracting the component Wp from the component supply position 32.
  • the component pick-up unit 35 has a pick-up head 36 for picking the component Wp from the component supply position 32, and the pick-up head 36 is movable in the X and Y directions. That is, the component extraction unit 35 includes a support member 351 for supporting the extraction head 36 so as to be movable in the conveyance direction X, and an X-axis motor 352 for driving the ball screw provided in the conveyance direction X and attached to the extraction head 36. Have. Therefore, the drive control unit 130 can move the takeout head 36 in the transport direction X by rotating the X-axis motor 352.
  • the component pick-up portion 35 also drives a fixed rail 353 for supporting the support member 351 so as to be movable in the width direction Y, a ball screw 354 provided in the width direction Y and attached to the fixed rail 353, and Y for driving the ball screw 354. And an axial motor 355. Therefore, the drive control unit 130 can move the takeout head 36 together with the support member 351 in the width direction Y by rotating the Y-axis motor 355.
  • the take-out head 36 has a bracket 361 extending in the transport direction X, and two nozzles 362 rotatably supported by the bracket 361. Each nozzle 362 is positioned at either the suction position facing downward or the delivery position facing upward (position in FIG. 1) by rotating around a rotation axis parallel to the transport direction X. In addition, the bracket 361 can move up and down with each nozzle 362.
  • the component pick-up unit 35 has a moving camera 356 that picks up an image of the component Wp at the component supply position 32 from above with an image sensor, and the moving camera 356 is movable in the X and Y directions. That is, in the component pickup portion 35, the movable camera 356 is supported movably in the transport direction X by the support member 351.
  • the component extraction unit 35 has an X-axis motor 357 which is provided in the transport direction X and drives a ball screw attached to the moving camera 356.
  • the drive control unit 130 can move the moving camera 356 in the transport direction X by rotating the X-axis motor 357, and the width of the moving camera 356 together with the support member 351 by rotating the Y-axis motor 355. It can be moved in the direction Y.
  • the component supply mechanism 3 supplies components Wp as follows. That is, the drive control unit 130 moves the moving camera 356 above the component Wp to be supplied among the plurality of components Wp of the component supply position 32. Subsequently, the moving camera 356 captures an image of the part Wp, transfers the captured image to the image processing unit 120, and the image processing unit 120 recognizes the position of the part Wp from the captured image. Then, the drive control unit 130 drives the nozzle 362 based on the recognition result by the image processing unit 120 to make the nozzle 362 located at the suction position face the component Wp from above, lower the nozzle 362 to move the component Wp.
  • the drive control unit 130 picks up the component Wp from the component supply position 32 by raising the nozzle 362 while applying a negative pressure to the nozzle 362. Then, the drive control unit 130 supplies the component Wp by positioning the nozzle 362 at the delivery position.
  • the component mounter 10 includes two mounting units 4 for mounting the component Wp thus supplied by the component supply mechanism 3 on the substrate 1.
  • the two mounting units 4 are provided in a one-to-one correspondence relationship with the two mounting work positions 21.
  • Each mounting unit 4 includes a support member 41 movable along a fixed rail provided on the ceiling of the component mounter 10 in the width direction Y, and a mounting head 42 supported movably in the transport direction X by the support member 41.
  • an X-axis motor 43 for driving a ball screw provided in the transport direction X and attached to the mounting head 42 and a Y-axis motor 44 provided in the width direction Y and attached to the support member 41 are provided. Therefore, the drive control unit 130 can move the mounting head 42 in the transport direction X by rotating the X-axis motor 43, and the mounting head 42 along with the support member 41 by rotating the Y-axis motor 44. Can be moved in the width direction Y.
  • the mounting head 42 of each of the mounting portions 4A and 4B moves to the upper side of the takeout head 36, and the nozzle 421 is placed from above the component Wp held by the nozzle 362 located at the delivery position.
  • the nozzle 421 is lowered to contact the part Wp.
  • the component supply mechanism 3 releases the negative pressure of the nozzle 362, and the mounting parts 4A and 4B apply a negative pressure to the nozzle 421, cause the nozzle 421 to adsorb the component Wp, raise the nozzle 421 while applying a negative pressure.
  • the mounting head 42 picks up the component Wp by the nozzle 421.
  • the component supply mechanism 3 has two nozzles 362, and these nozzles 362 can simultaneously supply two components Wp.
  • the mounting head 42 has two nozzles 421 corresponding to the two nozzles 362 of the component supply mechanism 3, and the two components Wp supplied by the component supply mechanism 3 are two nozzles It can be picked up at the same time by 421. However, it is not essential to simultaneously supply and pick up the two parts Wp.
  • each mounting unit 4 has a moving camera 45 provided facing downward.
  • the moving camera 45 images the component Wp supplied by the component supply mechanism 3 and the component Wp mounted on the substrate 1 from above by the image sensor.
  • the moving camera 45 is attached to the mounting head 42, and the drive control unit 130 moves the moving camera 45 in the XY direction like the mounting head 42 by rotating the X-axis motor 43 and the Y-axis motor 44. Can.
  • the component mounter 10 further includes a fixed camera 5 provided for each mounting unit 4.
  • the fixed camera 5 faces upward and is fixed to a base, and captures an image of the component Wp located above, as described later, from below by an image sensor.
  • an imaging unit IU including the moving camera 45, the fixed camera 5 and the moving camera 356 is configured.
  • FIG. 3 is a view schematically showing an example of a component to be mounted by the component mounting machine of FIG.
  • the part Wp in a state of being supplied to the part supply position 32 is illustrated.
  • the surface Sa and the back surface Sb (surface opposite to the surface Sa) of the component Wp are both formed in a rectangular shape.
  • a plurality of bumps B are provided side by side in a matrix on the surface Sa of the component Wp, and a bump pattern P is formed by these bumps B.
  • the part Wp is cut obliquely to the surface Sa (or the back surface Sb) due to the cutting accuracy in dicing, so the surface Sa and the back surface Sb are in the in-plane direction They are mutually offset (in the lateral direction of FIG. 3).
  • each component Wp is disposed with its surface Sa facing upward, and the takeout head 36 is moved by the nozzle 362 located at the suction position. By suctioning the surface Sa, the component Wp is picked up. Then, the take-out head 36 supplies the component Wp by rotating the nozzle 362 from the suction position to the delivery position. Since the part Wp is reversed as the nozzle 362 rotates, the part Wp is supplied with its back surface Sb directed upward. Therefore, the mounting head 42 picks up the component Wp by adsorbing the back surface Sb of the component Wp with the nozzle 421.
  • FIG. 4 is a flowchart showing an example of component mounting performed by the component mounting machine of FIG. 1
  • FIG. 5 is a flowchart showing an example of component back surface recognition performed in the flowchart of FIG. 4
  • FIG. 7 is a flowchart showing an example of component surface recognition performed in the flowchart
  • FIG. 7 is a flowchart showing an example of component inspection performed in the flowchart of FIG. 4.
  • the flowcharts of FIGS. 4 to 7 are executed by the arithmetic unit 110 controlling each part of the component mounter 10 according to the component inspection program 150.
  • the arithmetic unit 110 controlling each part of the component mounter 10 according to the component inspection program 150.
  • step S101 component back surface recognition is executed in step S101.
  • the moving camera 45 moves above the component Wp supplied by the component supply mechanism 3 and faces the back surface Sb of the component Wp from above (step S201).
  • step S202 the moving camera 45 captures an image of the back surface Sb of the part Wp, and transmits the captured image Ib to the image processing unit 120.
  • the image processing unit 120 recognizes the outer shape of the back surface Sb of the part Wp based on the captured image Ib of the back surface Sb of the part Wp (step S203), and returns to the flowchart of FIG.
  • step S102 the mounting head 42 sucks the component Wp, which is the imaging target of the moving camera 45 in step S101, by the nozzle 421 (step S102). As described above, the mounting head 42 sucks the back surface Sb of the component Wp from above, and the component Wp is picked up by the mounting head 42 with the surface Sa directed downward. Thus, when the mounting head 42 picks up the component Wp, component surface recognition in step S103 is performed.
  • the mounting head 42 moves the picked up component Wp above the fixed camera 5 (step S301).
  • the fixed camera 5 images the surface Sa of the part Wp from below, and transmits the captured image Ia of the surface Sa of the part Wp to the image processing unit 120.
  • the image processing unit 120 calculates the difference between the center positions of the front surface Sa and the rear surface Sb of the component Wp (step S303). Specifically, based on the outline of the back surface Sb of the component Wp recognized by the component back surface recognition in step S101, the geometric center of this outline is calculated as the back surface center Cb (FIG. 5).
  • the surface center Ca and the back surface center Cb are XY coordinates, and the front and back positional deviation amount ⁇ is a vector amount.
  • the pattern center Cp is XY coordinates as in the case of the surface center Ca, and the pattern positional deviation amount ⁇ is a vector amount.
  • step S104 the mounting head 42 mounts the component Wp to be adsorbed to the nozzle 421 on the mounting target point 1a with the surface Sa facing the substrate 1 side.
  • the pattern center Cp calculated in step S304 matches the predetermined mounting reference position (for example, the geometric center of the mounting target point 1a) representative of the mounting target point 1a. Adjusted.
  • the component Wp is mounted on the mounting target point 1a with the surface Sa facing the substrate 1 (in other words, with the back surface Sb facing upward).
  • the part inspection in step S105 is performed.
  • step S401 the mobile camera 45 moves above the component Wp mounted on the mounting target point 1a in step S104 (hereinafter, referred to as "mounted component Wp" as appropriate) (step S401).
  • step S402 the moving camera 45 captures an image of the back surface Sb of the mounted component Wp from above, and transmits the captured image Im to the image processing unit 120 (step S402).
  • the image processing unit 120 calculates the geometric center of the back surface Sb of the mounted component Wp as the mounting component back surface center Cbm based on the captured image Im of the back surface Sb of the mounted component Wp (step 403).
  • step S404 the image processing unit 120 calculates the center (mounting center Cpm) of the bump pattern P of the mounted component Wp based on the mounting component back surface center Cbm, the front / back positional deviation amount ⁇ , and the pattern positional displacement amount ⁇ . Then, when the image processing unit 120 calculates the difference between the mounting center Cpm and the mounting reference position as the mounting positional deviation amount ⁇ and stores the calculated amount in the storage unit 140 (step S405), the process returns to the flowchart of FIG.
  • the mounting component back surface center Cbm, the mounting center Cpm, and the mounting reference position are XY coordinates, and the mounting positional deviation amount ⁇ is a vector amount.
  • step S106 it is determined whether the mounting of the component Wp on all mounting target points 1a of the substrate 1 is completed. If the mounting is not completed (in the case of "NO” in step S106), steps S101 to S105 are repeated. In the subsequent component mounting in step S104, the mounting position of the component Wp is adjusted so as to cancel the mounting position shift amount ⁇ obtained in step S405. Then, when the mounting of the component Wp on all the mounting target points 1a is completed (“YES” in step S106), the component mounting of FIG. 4 ends.
  • the captured image Ia (first image) is obtained by imaging the surface Sa (surface on which the bump pattern P is provided) of the component Wp before being mounted on the substrate 1. Based on the captured image Ia, a pattern displacement amount ⁇ (pattern position information) indicating the position of the bump pattern P with respect to the outer shape of the surface Sa is obtained (step S305). Further, the back surface Sb of the component Wp after being mounted on the substrate 1 is imaged to obtain a captured image Im (second image) (step S402), and the position of the back surface Sb of the component Wp is determined based on the captured image Im. The mounted component back surface center Cbm (component position information) shown is determined (step S403).
  • the positional deviation of the bump pattern P of the component Wp mounted on the substrate 1 is inspected based on the pattern positional deviation amount ⁇ and the mounting component back surface center Cbm (step S405).
  • the position (pattern displacement amount ⁇ ) of the bump pattern P with respect to the outer shape of the surface Sa of the component Wp The mounting positional deviation amount ⁇ ) is inspected.
  • the positional deviation of the bump pattern P of the component Wp is accurately inspected based on the captured image Im obtained by imaging the component Wp mounted on the substrate 1 Is possible.
  • the position of the front surface Sa and the back surface Sb of the component Wp due to the precision of the manufacturing process of the component Wp, specifically the inclination of the cutting surface in dicing.
  • the position of is shifted in the in-plane direction.
  • the position of the front surface Sa and the position of the back surface Sb are shifted in the transport direction X by the front / back position shift amount ⁇ (note that the size and direction of the front / back position shift amount ⁇ are limited to the example of FIG. 3). Not).
  • the control unit 100 Front and back positional deviation amount ⁇ (positional relationship information) indicating the positional relationship with the back surface Sb is determined (step S303). Then, the positional deviation of the bump pattern P of the component Wp mounted on the substrate 1 is inspected based on the pattern positional deviation amount ⁇ , the front and back positional deviation amount ⁇ , and the mounting component back surface center Cbm (step S405).
  • the positional deviation of the bump pattern P is inspected based on the front / rear positional deviation amount ⁇ indicating the positional relationship between the front surface Sa and the back surface Sb.
  • the positional deviation of the bump pattern P of the component Wp is accurately inspected based on the captured image Im obtained by imaging the component Wp mounted on the substrate 1 Is possible.
  • control unit 100 picks up the surface Sa of the component Wp before being picked up from the component supply mechanism 3 by the mounting head 42 and mounted on the substrate 1 by the fixed camera 5 to obtain a picked up image Ia (step S302) ), Perform inspection of the part Wp. Further, in step S304, the position at which the component Wp is mounted on the substrate 1 is adjusted based on the result of recognizing the position of the bump pattern P based on the captured image Ia. In this configuration, recognition processing of the bump pattern P for adjusting the mounting position of the component Wp and calculation of the pattern center Cp of the bump pattern P for inspection of the component Wp are performed based on the common captured image Ia. Efficient control is realized.
  • control unit 100 adjusts the position at which the mounting head 42 mounts the component Wp on the substrate 1 based on the positional deviation (mounting positional deviation amount ⁇ ) of the bump pattern P of the component Wp inspected at step S405. (Step S104). As a result, it is possible to mount the component Wp on the substrate 1 while suppressing the displacement of the bump pattern P.
  • the component mounter 10 corresponds to an example of the “component mounter” of the present invention
  • the component supply mechanism 3 corresponds to an example of the “component supply unit” of the present invention
  • the transport unit 2 The mounting units 4A and 4B correspond to an example of the "component mounting unit” of the present invention
  • the imaging unit IU corresponds to an example of the "imaging unit” of the present invention.
  • the control unit 100 corresponds to an example of the “control unit” of the present invention
  • the component Wp corresponds to an example of the “component” of the present invention
  • the surface Sa corresponds to an example of the “first surface” of the present invention
  • the back surface Sb corresponds to an example of the “second surface” of the present invention
  • the bump pattern P corresponds to an example of the “pattern” of the present invention
  • the captured image Ia corresponds to an example of the “first image” of the present invention
  • the captured image Im corresponds to an example of the “second image” in the present invention
  • the captured image Ib corresponds to the “third image” in the present invention.
  • the pattern positional deviation amount ⁇ corresponds to an example of “pattern position information” in the present invention
  • the mounting component back surface center Cbm corresponds to an example of “component position information” in the present invention
  • steps S101 to S103 and S105 corresponds to an example of the “inspection process” of the present invention
  • front and back positional deviation amount ⁇ corresponds to an example of the “positional relationship information” of the present invention
  • the parts inspection program 150 is an example of the “parts inspection program” of the present invention
  • the recording medium 160 corresponds to an example of the "recording medium” in the present invention.
  • control unit 100 may execute the inspection process (steps S101 to S103 and S105) at one execution interval selected from a plurality of different execution intervals. This makes it possible to execute inspection processing at an appropriate execution interval in consideration of the necessity of inspection of the mounting position deviation amount ⁇ of the bump pattern P and the efficiency of component mounting.
  • the plurality of execution intervals are a first execution interval at which an inspection process is performed each time one component Wp (die) is mounted on the substrate 1, and the components Wp of one wafer W are substrate 1
  • the second execution interval for executing the inspection process each time mounted on the board, and at least one of the third execution interval for executing the inspection process each time the parts Wp of one lot of wafers W are mounted on the substrate
  • the control unit 100 can be configured to include the interval.
  • the plurality of execution intervals include the first to third execution intervals, the inspection process is executed at the first execution interval when the cutting position accuracy in dicing is low, and the cutting position accuracy is higher than this.
  • the inspection process is executed at the second execution interval, and if the cutting position accuracy is higher than that, the inspection process is executed at the third execution interval. That is, the inspection process can be performed at a longer execution interval as the cutting position accuracy by dicing is higher, and at an appropriate execution interval taking into consideration the necessity of inspection of the mounting position shift amount ⁇ of the bump pattern P and the efficiency of component mounting. Can perform inspection processing.
  • control unit 100 may select one execution interval according to the user's input.
  • control unit 100 may select one execution interval from a plurality of execution intervals based on the mounting position shift amount ⁇ position of the bump pattern P of the part Wp inspected in the inspection process. In this configuration, based on the positional deviation of the bump pattern P inspected in the executed inspection process, the execution interval of the inspection process after the executed inspection process can be made appropriate.
  • the inspection processing may be shortened, and conversely, the execution interval of the inspection process may be lengthened when it decreases by the predetermined value or more.
  • the execution interval of the inspection process may be changed based on the result of comparing the moving average of the mounting positional deviation amount ⁇ in two or more executed inspection processes with a predetermined threshold. That is, when the moving average exceeds the threshold, the execution interval of the inspection process is lengthened, and when the moving average becomes equal to or less than the threshold, the execution interval of the inspection process is shortened.
  • the front / back positional deviation amount ⁇ indicating the positional relationship between the front surface Sa and the back surface Sb of the component Wp is obtained based on component back surface recognition (step S101) for recognizing the back surface Sb of the component Wp from the captured image Ib. (Step S303).
  • the specific method for obtaining the front and back positional deviation amount ⁇ is not limited to this. That is, the front and back positional deviation amount ⁇ can be obtained by imaging the part Wp from the side and imaging an image as shown in “side view” in FIG. 3.
  • the positional deviation of the bump pattern P of the component Wp mounted on the substrate 1 is inspected based on the front and back positional deviation amount ⁇ , the pattern positional deviation amount ⁇ , and the mounting component back surface center Cbm (step S405).
  • the cutting accuracy in dicing is good and the positional deviation between the front surface Sa and the rear surface Sb is minimal, such control is unnecessary.
  • steps S101 and S303 may be omitted, and the positional deviation of the bump pattern P of the component Wp mounted on the substrate 1 may be inspected based on the pattern positional deviation amount ⁇ and the mounting component back surface center Cbm (step S405). Also in this case, based on not only the position of the back surface Sb of the mounted component Wp, but also the position (pattern displacement amount ⁇ ) of the bump pattern P with respect to the outer shape of the surface Sa of the component Wp (Mounting positional deviation amount ⁇ ) is inspected.
  • the positional deviation of the bump pattern P of the component Wp is accurately inspected based on the captured image Im obtained by imaging the component Wp mounted on the substrate 1 Is possible.
  • the surface Sa of the component Wp is imaged by the fixed camera 5 to acquire the imaged image Ia.
  • the captured image Ia of the surface Sa of the part Wp may be acquired by capturing the part Wp of the part supply position 32 with the moving camera 356.
  • the inspection of the displacement of the bump pattern P is performed based on the center position such as the surface center Ca, the pattern center Cp, the mounted component back surface center Cbm or the back surface center Cb.
  • the reference for inspection of misalignment is not limited to these center positions, and is provided in advance at a value that can represent the position of the surface Sa, back surface Sb or bump pattern P of the component Wp, for example, at predetermined positions. It is sufficient if the position of the mark is present.
  • the part Wp may be changed.
  • the type of the component Wp is not limited to the die (bare chip).
  • the “pattern” is not limited to the bump pattern P in the above example, but also includes a wiring pattern and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Die Bonding (AREA)

Abstract

In the present invention, a captured image Ia is obtained by imaging the front surface Sa of a component Wp that has not yet been mounted on a substrate 1, and on the basis of the captured image Ia, a displacement amount β of a pattern position indicating the position of a bump pattern P with respect to the contour of the front surface Sa is determined. A captured image Im is obtained by imaging the rear surface Sb of the component Wp that has been mounted on the substrate 1, and on the basis of the captured image Im, a mounted component rear surface center Cbm indicating the position of the rear surface Sb of the component Wp is determined. The positional displacement of the bump pattern P on the component Wp mounted on the substrate 1 is inspected on the basis of the displacement amount β of the pattern position and the mounted component rear surface center Cbm. As a result, it is possible to accurately inspect the positional displacement of the bump pattern P on the component Wp on the basis of the captured image Im obtained by imaging the component Wp mounted on the substrate 1, independently of variations in the position of the bump pattern P with respect to the contour of the component Wp.

Description

部品実装機、部品検査方法、部品検査プログラム、記録媒体Component mounting machine, component inspection method, component inspection program, recording medium
 この発明は、パターンが設けられた部品を基板に実装する技術に関し、特に実装された部品を撮像した画像に基づき当該部品のパターンの位置を検査する技術に関する。 The present invention relates to a technology for mounting a component provided with a pattern on a substrate, and more particularly to a technology for inspecting the position of the pattern of the component based on an image obtained by imaging the mounted component.
 部品を基板に実装する部品実装技術では、特許文献1~3に示されるように、表面にバンプパターンが形成された部品が一般に用いられている。このような部品を用いた場合、部品の表面を基板側に向けつつバンプパターンを基板の例えば配線パターン等に合わせて、部品を実装する必要がある。しかしながら、実際には、バンプパターンの位置がずれた状態で、部品が基板に実装される場合がある。 In component mounting technology for mounting components on a substrate, as disclosed in Patent Documents 1 to 3, components having a bump pattern formed on the surface are generally used. When such a component is used, it is necessary to mount the component with the bump pattern aligned with, for example, the wiring pattern of the substrate while the surface of the component is directed to the substrate side. However, in practice, the components may be mounted on the substrate in a state where the positions of the bump patterns are shifted.
特開2013-30657号公報JP, 2013-30657, A 特開2014-45109号公報JP, 2014-45109, A 特開2001-345348号公報JP 2001-345348 A
 そこで、基板に実装された部品を撮像した画像に基づき部品の実装位置を算出し、その結果に基づきパターンの位置のずれを検査することが考えられる。ただし、特許文献1等に示されるように、部品の外形に対するパターンの位置は、個々の部品でばらつく。これに対して、基板に実装された部品のパターンを直接撮像することはできず、パターンが形成された表面と逆側の裏面を撮像できるに過ぎない。したがって、パターンの位置ずれを的確に検査することが難しかった。 Therefore, it is conceivable to calculate the mounting position of the component based on the image obtained by imaging the component mounted on the substrate, and to inspect the displacement of the position of the pattern based on the result. However, as shown in Patent Document 1 etc., the position of the pattern with respect to the outer shape of the part varies among the individual parts. On the other hand, the pattern of the component mounted on the substrate can not be directly imaged, and only the back surface opposite to the surface on which the pattern is formed can be imaged. Therefore, it has been difficult to accurately inspect the positional deviation of the pattern.
 この発明は上記課題に鑑みなされたものであり、部品の外形に対するパターンの位置のばらつきによらず、基板に実装された部品を撮像した画像に基づき部品のパターンの位置ずれを的確に検査することを可能とする技術の提供を目的とする。 The present invention has been made in view of the above problems, and it is possible to accurately inspect the misalignment of the pattern of the component based on the image obtained by imaging the component mounted on the substrate regardless of the variation in the position of the pattern with respect to the outer shape of the component. To provide technology that makes it possible.
 本発明に係る部品実装機は、パターンが設けられた第1面と第1面と反対の第2面とを有する部品を供給する部品供給部と、基板を保持する基板保持部と、部品供給部により供給された部品をピックアップして、第1面を基板側に向けて基板に実装する部品実装部と、部品を撮像する撮像ユニットと、基板に実装される前の部品の第1面を撮像ユニットにより撮像して第1画像を取得し、基板に実装された後の部品の第2面を撮像ユニットにより撮像して第2画像を取得し、第1画像および第2画像に基づき部品について検査を行う検査処理を実行する制御部とを備え、検査処理において、制御部は、第1面の外形に対するパターンの位置を示すパターン位置情報を第1画像から求めるとともに、基板に実装された部品の第2面の位置を示す部品位置情報を第2画像から求め、パターン位置情報と部品位置情報とに基づき基板に実装された部品のパターンの位置ずれを検査する。 A component mounter according to the present invention comprises a component supply unit for supplying a component having a first surface provided with a pattern and a second surface opposite to the first surface, a substrate holding unit for holding a substrate, and a component supply A component mounting unit for picking up a component supplied by the unit and mounting the first surface on the substrate with the first surface facing the substrate side, an imaging unit for imaging the component, and the first surface of the component before mounting on the substrate The imaging unit captures an image to obtain a first image, and the imaging unit captures an image of a second surface of the component mounted on the substrate using the imaging unit to obtain a second image, and based on the first image and the second image, the component A control unit that executes an inspection process for performing an inspection, and in the inspection process, the control unit determines pattern position information indicating the position of the pattern with respect to the outline of the first surface from the first image, and a component mounted on the substrate Indicates the position of the second side of the The part position information obtained from the second image, checking the positional deviation of the part of the pattern mounted on the substrate based on the pattern position information and the part position information.
 本発明に係る部品検査方法は、基板に実装される前の部品の第1面および第1面と反対の第2面のうち、パターンが設けられた第1面を撮像して第1画像を取得する工程と、第1面を基板側に向けて基板に実装された部品の第2面を撮像して第2画像を取得する工程と、第1面の外形に対するパターンの位置を示すパターン位置情報を第1画像から求める工程と、基板に実装された部品の第2面の位置を示す部品位置情報を第2画像から求める工程と、パターン位置情報と部品位置情報とに基づき基板に実装された部品のパターンの位置ずれを検査する工程とを備える。 In the component inspection method according to the present invention, of the first surface and the second surface opposite to the first surface of the component before being mounted on the substrate, the first surface on which the pattern is provided is imaged to obtain the first image. Step of acquiring, step of imaging the second surface of the component mounted on the substrate with the first surface facing the substrate to acquire a second image, and pattern position indicating the position of the pattern with respect to the outline of the first surface A process of obtaining information from the first image, a process of obtaining component position information indicating the position of the second surface of the component mounted on the substrate from the second image, and mounting on the substrate based on the pattern position information and the component position information Inspecting the misalignment of the part pattern.
 本発明に係る部品検査プログラムは、基板に実装される前の部品の第1面および第1面と反対の第2面のうち、パターンが設けられた第1面を撮像して第1画像を取得する工程と、第1面を基板側に向けて基板に実装された部品の第2面を撮像して第2画像を取得する工程と、第1面の外形に対するパターンの位置を示すパターン位置情報を第1画像から求める工程と、基板に実装された部品の第2面の位置を示す部品位置情報を第2画像から求める工程と、パターン位置情報と部品位置情報とに基づき基板に実装された部品のパターンの位置ずれを検査する工程とを、コンピューターに実行させる。 The component inspection program according to the present invention images a first surface on which a pattern is provided among the first surface and the second surface opposite to the first surface of the component before being mounted on a substrate, and generates a first image. Step of acquiring, step of imaging the second surface of the component mounted on the substrate with the first surface facing the substrate to acquire a second image, and pattern position indicating the position of the pattern with respect to the outline of the first surface A process of obtaining information from the first image, a process of obtaining component position information indicating the position of the second surface of the component mounted on the substrate from the second image, and mounting on the substrate based on the pattern position information and the component position information And (d) checking the misalignment of the part pattern.
 本発明に係る記憶媒体は、上記の部品検査プログラムをコンピューターにより読み出し可能に記憶する。 A storage medium according to the present invention stores the above-described part inspection program in a readable manner by a computer.
 このように構成された本発明(部品実装機、部品検査方法、部品検査プログラム、記憶媒体)によれば、基板に実装される前の部品の第1面(パターンが設けられた面)を撮像して第1画像が取得され、この第1画像に基づき、第1面の外形に対するパターンの位置を示すパターン位置情報が求められる。また、基板に実装された後の部品の第2面(第1面と反対の面)を撮像して第2画像が取得され、この第2画像に基づき、部品の第2面の位置を示す部品位置情報が求められる。そして、パターン位置情報と部品位置情報とに基づき、基板に実装された部品のパターンの位置ずれが検査される。このように、実装された部品の第2面の位置のみならず、部品の第1面の外形に対するパターンの位置にも基づいて、パターンの位置ずれが検査される。その結果、部品の外形に対するパターンの位置のばらつきによらず、基板に実装された部品を撮像した画像に基づき部品のパターンの位置ずれを的確に検査することが可能となっている。 According to the present invention (component mounter, component inspection method, component inspection program, storage medium) configured as described above, the first surface (surface provided with the pattern) of the component before mounting on the substrate is imaged A first image is acquired, and based on the first image, pattern position information indicating the position of the pattern with respect to the outline of the first surface is obtained. In addition, the second surface (surface opposite to the first surface) of the component after being mounted on the substrate is imaged to obtain a second image, and the position of the second surface of the component is indicated based on the second image. Part position information is obtained. Then, based on the pattern position information and the component position information, the misalignment of the pattern of the component mounted on the substrate is inspected. Thus, the misalignment of the pattern is inspected not only based on the position of the second surface of the mounted part but also on the position of the pattern with respect to the outline of the first surface of the part. As a result, regardless of the variation in the position of the pattern with respect to the outer shape of the component, it is possible to accurately inspect the positional deviation of the pattern of the component based on the image obtained by imaging the component mounted on the substrate.
 ところで、部品の製造工程の精度等に起因して、部品の第1面の位置と第2面の位置とが面内方向にずれている場合がある。そこで、制御部は、撮像ユニットに部品を撮像させた画像に基づき、第1面と第2面との位置関係を示す位置関係情報を求め、パターン位置情報、位置関係情報および部品位置情報に基づき、基板に実装された部品のパターンの位置ずれを検査するように、部品実装機を構成してもよい。かかる構成では、第1面と第2面との位置関係を示す位置関係情報にも基づいて、パターンの位置ずれが検査される。その結果、部品の第1面と第2面との位置ずれによらず、基板に実装された部品を撮像した画像に基づき部品のパターンの位置ずれを的確に検査することが可能となっている。 By the way, there are cases where the position of the first surface of the part and the position of the second surface are deviated in the in-plane direction due to the precision of the manufacturing process of the part, and the like. Therefore, the control unit obtains positional relationship information indicating the positional relationship between the first surface and the second surface based on the image obtained by causing the imaging unit to capture the component, and based on the pattern position information, the positional relationship information, and the component position information. The component mounter may be configured to inspect misalignment of the pattern of the component mounted on the substrate. In this configuration, the positional deviation of the pattern is inspected based also on positional relationship information indicating the positional relationship between the first surface and the second surface. As a result, regardless of the positional deviation between the first surface and the second surface of the part, it is possible to accurately inspect the positional deviation of the pattern of the part based on the image obtained by imaging the part mounted on the substrate. .
 具体的には、部品供給部は、第2面を上方に向けた状態で部品を供給し、検査処理において、制御部は、部品供給部により供給されて部品実装部にピックアップされる前の部品の第2面を撮像ユニットにより撮像して第3画像を取得し、第1画像と第3画像とに基づき位置関係情報を求めるように、部品実装機を構成してもよい。 Specifically, the component supply unit supplies the component with the second surface directed upward, and in the inspection process, the control unit supplies the component before the component supply unit supplies it and is picked up by the component mounting unit. The component mounter may be configured to capture the second surface of the image by the imaging unit to obtain a third image, and obtain positional relationship information based on the first image and the third image.
 また、制御部は、部品実装部により部品供給部からピックアップされて基板に実装される前の部品の第1面を撮像ユニットにより撮像して第1画像を取得して検査処理を実行するとともに、第1画像に基づきパターンの位置を認識した結果に基づき基板に部品を実装する位置を調整するように、部品実装機を構成してもよい。かかる構成では、部品を実装する位置を調整するためのパターンの認識処理と検査処理とを共通の第1画像に基づき実行しており、効率的な制御が実現されている。 Further, the control unit picks up the first surface of the component before being picked up from the component supply unit by the component mounting unit and mounted on the substrate by the imaging unit to acquire a first image and execute inspection processing. The component mounter may be configured to adjust the position at which the component is mounted on the substrate based on the result of recognizing the position of the pattern based on the first image. In such a configuration, pattern recognition processing and inspection processing for adjusting the mounting position of the component are executed based on the common first image, and efficient control is realized.
 また、制御部は、複数の実行間隔のうちから選択した一の実行間隔で、検査処理を実行可能であるように、部品実装機を構成してもよい。かかる構成では、パターンの位置ずれの検査の必要性と、部品実装の効率性とを勘案した適切な実行間隔で、検査処理を実行することが可能となる。 Further, the control unit may configure the component mounter so that the inspection process can be performed at one execution interval selected from the plurality of execution intervals. In such a configuration, the inspection process can be performed at an appropriate execution interval in consideration of the necessity of inspection of pattern misalignment and the efficiency of component mounting.
 具体的には、部品は、ダイシングされたウェハーのダイであり、複数の実行間隔は、1個のダイを基板に実装する度に検査処理を実行する第1実行間隔、1枚のウェハー分のダイを基板に実装する度に検査処理を実行する第2実行間隔および1ロットのウェハー分のダイを基板に実装する度に検査処理を実行する第3実行間隔の少なくとも1つを含むように、部品実装機を構成してもよい。 Specifically, the component is a die of a diced wafer, and a plurality of execution intervals is a first execution interval to execute an inspection process each time one die is mounted on a substrate, and one wafer portion So as to include at least one of a second execution interval for performing the inspection process each time the die is mounted on the substrate and a third execution interval for performing the inspection process each time the die for one lot of wafers is mounted on the substrate; A component mounter may be configured.
 また、制御部は、検査処理で検査された部品のパターンの位置ずれに基づき、複数の実行間隔のうちから一の実行間隔を選択するように、部品実装機を構成しても良い。かかる構成では、実行済みの検査処理で検査されたパターンの位置ずれに基づき、当該実行済みの検査処理より後における検査処理の実行間隔を適切化することが可能となる。 In addition, the control unit may configure the component mounter so as to select one execution interval from among a plurality of execution intervals based on the positional deviation of the pattern of the component inspected in the inspection process. In such a configuration, it is possible to make appropriate the execution interval of the inspection process after the executed inspection process based on the positional deviation of the pattern inspected in the executed inspection process.
 また、制御部は、部品実装部によって部品を基板に実装する位置を、実行済みの検査処理で検査された部品のパターンの位置ずれに基づき調整するように、部品実装機を構成してもよい。これによって、パターンの位置ずれを抑えつつ、部品を基板に実装することができる。 Further, the control unit may configure the component mounting machine to adjust the position at which the component mounting unit mounts the component on the substrate based on the positional deviation of the pattern of the component inspected in the executed inspection process. . By this, it is possible to mount the component on the substrate while suppressing the positional deviation of the pattern.
 本発明によれば、部品の外形に対するパターンの位置のばらつきによらず、基板に実装された部品を撮像した画像に基づき部品のパターンの位置ずれを的確に検査することが可能となる。 According to the present invention, it becomes possible to accurately inspect the positional deviation of the pattern of the component based on the image obtained by imaging the component mounted on the substrate, regardless of the variation in the position of the pattern with respect to the outer shape of the component.
本発明に係る部品実装機の一例を模式的に示す平面図。BRIEF DESCRIPTION OF THE DRAWINGS The top view which shows typically an example of the component mounting machine which concerns on this invention. 図1の部品実装機が備える電気的構成を示すブロック図。FIG. 2 is a block diagram showing an electrical configuration of the component mounter of FIG. 1; 図1の部品実装機による実装の対象となる部品の一例を模式的に示す図。The figure which shows typically an example of the components used as the object of mounting by the component mounting machine of FIG. 図1の部品実装機が実行する部品実装の一例を示すフローチャート。The flowchart which shows an example of the component mounting which the component mounting machine of FIG. 1 performs. 図4のフローチャートの部品裏面認識の一例を示すフローチャート。5 is a flowchart showing an example of part back surface recognition in the flowchart of FIG. 4; 図4のフローチャートの部品表面認識の一例を示すフローチャート。5 is a flowchart showing an example of component surface recognition in the flowchart of FIG. 4; 図4のフローチャートの部品検査の一例を示すフローチャート。The flowchart which shows an example of the components inspection of the flowchart of FIG.
 図1は本発明に係る部品実装機の一例を模式的に示す平面図である。図2は図1の部品実装機が備える電気的構成を示すブロック図である。図1に示すように、本明細書では、搬送方向X、幅方向Yおよび鉛直方向Zで構成されるXYZ直交座標軸を適宜用いる。搬送方向Xおよび幅方向Yは水平方向に平行であるとともに互いに直交し、鉛直方向Zは搬送方向Xおよび幅方向Yに直交する。 FIG. 1 is a plan view schematically showing an example of a component mounter according to the present invention. FIG. 2 is a block diagram showing an electrical configuration of the mounter of FIG. As shown in FIG. 1, in the present specification, XYZ orthogonal coordinate axes configured of a transport direction X, a width direction Y, and a vertical direction Z are appropriately used. The transport direction X and the width direction Y are parallel to the horizontal direction and orthogonal to each other, and the vertical direction Z is orthogonal to the transport direction X and the width direction Y.
 この部品実装機10は、搬送方向Xの上流側から搬入された基板1に対して部品Wpを実装して搬送方向Xの下流側に搬出する。基板1の上面には複数の実装対象点1aが設けられており、部品実装機10に具備された制御部100は、部品実装機10の各部を制御することで、各実装対象点1aに部品Wpを実装する。 The component mounting machine 10 mounts the component Wp on the substrate 1 carried in from the upstream side in the transport direction X and carries it out to the downstream side in the transport direction X. A plurality of mounting target points 1a are provided on the upper surface of the substrate 1, and the control unit 100 provided in the component mounting machine 10 controls the respective components of the component mounting machine 10 to provide components at each mounting target point 1a. Implement Wp.
 図2に示すように、制御部100は、部品実装機10全体を制御するための演算機能を担うプロセッサーである演算部110と、演算部110の指令に基づき画像処理を担う画像処理部120と、演算部110の指令に基づきモーター等の駆動機構を制御する駆動制御部130とを有する。さらに、制御部100は、HDD(Hard Disk Drive)等で構成された記憶部140を有する。この記憶部140には、後述する部品検査を演算部110に実行させるための部品検査プログラム150が記憶される。部品検査プログラム150は、例えばDVD(Digital Versatile Disc)やUSB(Universal Serial Bus)等の記録媒体160に記憶されて提供され、演算部110は、記録媒体160から読み出した部品検査プログラム150を記憶部140に保存する。なお、部品検査プログラム150の提供形態はこれに限られず、部品検査プログラム150は、例えばインターネットサーバーからダウンロードする形態で提供されてもよい。 As shown in FIG. 2, the control unit 100 includes an operation unit 110 which is a processor having an arithmetic function for controlling the entire component mounter 10, and an image processing unit 120 which performs image processing based on an instruction of the operation unit 110. And a drive control unit 130 that controls a drive mechanism such as a motor based on a command from the calculation unit 110. Furthermore, the control unit 100 includes a storage unit 140 configured of an HDD (Hard Disk Drive) or the like. The storage unit 140 stores a component inspection program 150 for causing the calculation unit 110 to execute a component inspection to be described later. The component inspection program 150 is stored and provided in a recording medium 160 such as a DVD (Digital Versatile Disc) or USB (Universal Serial Bus), for example, and the computing unit 110 stores the component inspection program 150 read from the recording medium 160 Save to 140 The provision form of the component inspection program 150 is not limited to this, and the component inspection program 150 may be provided, for example, in the form of downloading from an Internet server.
 この部品実装機10は搬送方向Xに基板1を搬送する搬送部2を備える。この搬送部2は、搬送方向Xに並ぶ2箇所の実装作業位置21を有し、搬送方向Xの上流側から各実装作業位置21に基板1を搬入する。また、搬送部2は、各実装作業位置21で部品Wpが実装された基板1を、各実装作業位置21から搬送方向Xの下流側へ搬出する。 The component mounter 10 includes a transport unit 2 that transports the substrate 1 in the transport direction X. The transport unit 2 has two mounting work positions 21 aligned in the transport direction X, and carries the substrate 1 to each mounting work position 21 from the upstream side in the transport direction X. Further, the transport unit 2 unloads the substrate 1 on which the component Wp is mounted at each mounting work position 21 from the mounting work position 21 to the downstream side in the transport direction X.
 また、部品実装機10は部品Wpを供給する部品供給機構3を備える。この部品供給機構3が供給する部品WpはダイシングされたウェハーWのダイ(ベアチップ)である。つまり、部品供給機構3は、複数のウェハーWを収納可能なウェハー収納部31と、ウェハー収納部31から部品供給位置32までウェハーWを引き出すウェハー引出部33とを有する。ウェハー収納部31は、それぞれウェハーWを保持する複数のウェハーホルダーWhを鉛直方向Zに並べて収納するラックを鉛直方向Zに昇降させることで、ウェハー引出部33がウェハーWを受取可能な高さに一のウェハーホルダーWhを位置させて、このウェハーホルダーWhをウェハー引出部33に押し出すことができる。 The component mounter 10 further includes a component supply mechanism 3 for supplying the component Wp. The parts Wp supplied by the parts supply mechanism 3 are dies (bare chips) of the diced wafer W. That is, the component supply mechanism 3 has a wafer storage unit 31 capable of storing a plurality of wafers W, and a wafer extraction unit 33 for extracting the wafer W from the wafer storage unit 31 to the component supply position 32. The wafer storage unit 31 arranges a plurality of wafer holders Wh for holding the wafers W in the vertical direction Z and raises and lowers a rack for storing the wafers W at a height at which the wafer lead-out unit 33 can receive the wafers W. One wafer holder Wh can be positioned and the wafer holder Wh can be pushed out to the wafer lead-out portion 33.
 ウェハー引出部33は、ウェハーホルダーWhを支持するウェハー支持テーブル331と、ウェハー支持テーブル331を幅方向Yに移動可能に支持する固定レール332と、幅方向Yに設けられてウェハー支持テーブル331に取り付けられたボールネジ333と、ボールネジ333を駆動するY軸モーター334とを有する。したがって、Y軸モーター334によりボールネジ333を回転させることで、ウェハー支持テーブル331を固定レール332に沿って幅方向Yに移動させることができる。なお、図1に示すように、ウェハー収納部31と部品供給位置32とは搬送部2を幅方向Yから挟むように配置されており、ウェハー支持テーブル331は搬送部2の下方を通過する。かかるウェハー支持テーブル331は、ウェハー収納部31に隣接する受取位置でウェハー収納部31からウェハーホルダーWhを受け取って、受取位置から部品供給位置32へと移動することで、部品供給位置32にウェハーWを引き出す。 The wafer lead-out portion 33 includes a wafer support table 331 supporting the wafer holder Wh, a fixed rail 332 supporting the wafer support table 331 movably in the width direction Y, and is provided in the width direction Y and attached to the wafer support table 331 And a Y-axis motor 334 for driving the ball screw 333. Therefore, the wafer support table 331 can be moved in the width direction Y along the fixed rail 332 by rotating the ball screw 333 by the Y-axis motor 334. As shown in FIG. 1, the wafer storage unit 31 and the component supply position 32 are disposed so as to sandwich the transport unit 2 in the width direction Y, and the wafer support table 331 passes below the transport unit 2. The wafer support table 331 receives the wafer holder Wh from the wafer storage unit 31 at the reception position adjacent to the wafer storage unit 31 and moves from the reception position to the component supply position 32 to move the wafer W to the component supply position 32. Pull out.
 さらに、部品供給機構3は、部品供給位置32から部品Wpを取り出す部品取出部35を有する。部品取出部35は、部品供給位置32から部品Wpを取り出す取出ヘッド36を有し、この取出ヘッド36はXY方向に移動可能である。つまり、部品取出部35は、取出ヘッド36を搬送方向Xに移動可能に支持する支持部材351と、搬送方向Xに設けられて取出ヘッド36に取り付けられたボールネジを駆動するX軸モーター352とを有する。したがって、駆動制御部130は、X軸モーター352を回転させることで、取出ヘッド36を搬送方向Xに移動させることができる。また、部品取出部35は、支持部材351を幅方向Yに移動可能に支持する固定レール353と、幅方向Yに設けられて固定レール353に取り付けられたボールネジ354と、ボールネジ354を駆動するY軸モーター355とを有する。したがって、駆動制御部130は、Y軸モーター355を回転させることで、支持部材351とともに取出ヘッド36を幅方向Yに移動させることができる。 Further, the component supply mechanism 3 has a component extraction unit 35 for extracting the component Wp from the component supply position 32. The component pick-up unit 35 has a pick-up head 36 for picking the component Wp from the component supply position 32, and the pick-up head 36 is movable in the X and Y directions. That is, the component extraction unit 35 includes a support member 351 for supporting the extraction head 36 so as to be movable in the conveyance direction X, and an X-axis motor 352 for driving the ball screw provided in the conveyance direction X and attached to the extraction head 36. Have. Therefore, the drive control unit 130 can move the takeout head 36 in the transport direction X by rotating the X-axis motor 352. The component pick-up portion 35 also drives a fixed rail 353 for supporting the support member 351 so as to be movable in the width direction Y, a ball screw 354 provided in the width direction Y and attached to the fixed rail 353, and Y for driving the ball screw 354. And an axial motor 355. Therefore, the drive control unit 130 can move the takeout head 36 together with the support member 351 in the width direction Y by rotating the Y-axis motor 355.
 取出ヘッド36は、搬送方向Xに延設されたブラケット361と、ブラケット361に回転可能に支持された2個のノズル362とを有する。各ノズル362は、搬送方向Xに平行な回転軸を中心に回転することで、下方を向く吸着位置および上方を向く受渡位置(図1の位置)のいずれかに位置する。また、ブラケット361は、各ノズル362を伴って昇降可能である。 The take-out head 36 has a bracket 361 extending in the transport direction X, and two nozzles 362 rotatably supported by the bracket 361. Each nozzle 362 is positioned at either the suction position facing downward or the delivery position facing upward (position in FIG. 1) by rotating around a rotation axis parallel to the transport direction X. In addition, the bracket 361 can move up and down with each nozzle 362.
 さらに、部品取出部35は、部品供給位置32の部品Wpを上方からイメージセンサーにより撮像する移動カメラ356を有し、この移動カメラ356はXY方向に移動可能である。つまり、部品取出部35では、移動カメラ356が支持部材351によって搬送方向Xに移動可能に支持されている。また、部品取出部35は、搬送方向Xに設けられて移動カメラ356に取り付けられたボールネジを駆動するX軸モーター357を有する。したがって、駆動制御部130は、X軸モーター357を回転させることで移動カメラ356を搬送方向Xに移動させることができるとともに、Y軸モーター355を回転させることで支持部材351とともに移動カメラ356を幅方向Yに移動させることができる。 Further, the component pick-up unit 35 has a moving camera 356 that picks up an image of the component Wp at the component supply position 32 from above with an image sensor, and the moving camera 356 is movable in the X and Y directions. That is, in the component pickup portion 35, the movable camera 356 is supported movably in the transport direction X by the support member 351. In addition, the component extraction unit 35 has an X-axis motor 357 which is provided in the transport direction X and drives a ball screw attached to the moving camera 356. Therefore, the drive control unit 130 can move the moving camera 356 in the transport direction X by rotating the X-axis motor 357, and the width of the moving camera 356 together with the support member 351 by rotating the Y-axis motor 355. It can be moved in the direction Y.
 かかる部品供給機構3では、次のようにして部品Wpの供給が行われる。つまり、駆動制御部130は、部品供給位置32の複数の部品Wpのうち供給対象の部品Wpの上方に移動カメラ356を移動させる。続いて、移動カメラ356は、部品Wpを撮像して、撮像画像を画像処理部120に転送し、画像処理部120はこの撮像画像から部品Wpの位置を認識する。そして、駆動制御部130は、画像処理部120による認識結果に基づきノズル362を駆動することで、吸着位置に位置するノズル362を部品Wpに上方から対向させると、ノズル362を下降させて部品Wpに接触させる。さらに、駆動制御部130は、ノズル362に負圧を与えつつノズル362を上昇させることで、部品供給位置32から部品Wpをピックアップする。そして、駆動制御部130は、ノズル362を受渡位置に位置させることで、部品Wpを供給する。 The component supply mechanism 3 supplies components Wp as follows. That is, the drive control unit 130 moves the moving camera 356 above the component Wp to be supplied among the plurality of components Wp of the component supply position 32. Subsequently, the moving camera 356 captures an image of the part Wp, transfers the captured image to the image processing unit 120, and the image processing unit 120 recognizes the position of the part Wp from the captured image. Then, the drive control unit 130 drives the nozzle 362 based on the recognition result by the image processing unit 120 to make the nozzle 362 located at the suction position face the component Wp from above, lower the nozzle 362 to move the component Wp. Contact Furthermore, the drive control unit 130 picks up the component Wp from the component supply position 32 by raising the nozzle 362 while applying a negative pressure to the nozzle 362. Then, the drive control unit 130 supplies the component Wp by positioning the nozzle 362 at the delivery position.
 部品実装機10は、こうして部品供給機構3によって供給された部品Wpを基板1に実装する2個の実装部4を備える。これら2個の実装部4は、2個の実装作業位置21に対して一対一の対応関係で設けられている。各実装部4は、部品実装機10の天井に幅方向Yに設けられた固定レールに沿って移動可能な支持部材41と、支持部材41によって搬送方向Xに移動可能に支持された実装ヘッド42とを有する。さらに、搬送方向Xに設けられて実装ヘッド42に取り付けられたボールネジを駆動するX軸モーター43と、幅方向Yに設けられて支持部材41に取り付けられたY軸モーター44が具備されている。したがって、駆動制御部130は、X軸モーター43を回転させることで実装ヘッド42を搬送方向Xに移動させることができるとともに、Y軸モーター44を回転させることで支持部材41に伴って実装ヘッド42を幅方向Yに移動させることができる。 The component mounter 10 includes two mounting units 4 for mounting the component Wp thus supplied by the component supply mechanism 3 on the substrate 1. The two mounting units 4 are provided in a one-to-one correspondence relationship with the two mounting work positions 21. Each mounting unit 4 includes a support member 41 movable along a fixed rail provided on the ceiling of the component mounter 10 in the width direction Y, and a mounting head 42 supported movably in the transport direction X by the support member 41. And. Furthermore, an X-axis motor 43 for driving a ball screw provided in the transport direction X and attached to the mounting head 42 and a Y-axis motor 44 provided in the width direction Y and attached to the support member 41 are provided. Therefore, the drive control unit 130 can move the mounting head 42 in the transport direction X by rotating the X-axis motor 43, and the mounting head 42 along with the support member 41 by rotating the Y-axis motor 44. Can be moved in the width direction Y.
 部品Wpのピックアップに際しては、実装部4A、4Bそれぞれの実装ヘッド42は、取出ヘッド36の上方に移動して、受渡位置に位置するノズル362に保持される部品Wpに対してノズル421を上方から対向させると、ノズル421を下降させて部品Wpに接触させる。続いて、部品供給機構3がノズル362の負圧を解除するとともに、実装部4A、4Bがノズル421に負圧を与え、ノズル421により部品Wpを吸着させ、負圧を与えつつノズル421を上昇させる。こうして、実装ヘッド42はノズル421によって部品Wpをピックアップする。 When picking up the component Wp, the mounting head 42 of each of the mounting portions 4A and 4B moves to the upper side of the takeout head 36, and the nozzle 421 is placed from above the component Wp held by the nozzle 362 located at the delivery position. When facing each other, the nozzle 421 is lowered to contact the part Wp. Subsequently, the component supply mechanism 3 releases the negative pressure of the nozzle 362, and the mounting parts 4A and 4B apply a negative pressure to the nozzle 421, cause the nozzle 421 to adsorb the component Wp, raise the nozzle 421 while applying a negative pressure. Let Thus, the mounting head 42 picks up the component Wp by the nozzle 421.
 なお、部品供給機構3は、2個のノズル362を有しており、これらノズル362によって2個の部品Wpを同時に供給できる。一方、実装ヘッド42は、部品供給機構3の2個のノズル362に対応して2個のノズル421を有しており、部品供給機構3により供給された2個の部品Wpを2個のノズル421によって同時にピックアップすることができる。ただし、2個の部品Wpを同時に供給およびピックアップすることは必須ではない。 The component supply mechanism 3 has two nozzles 362, and these nozzles 362 can simultaneously supply two components Wp. On the other hand, the mounting head 42 has two nozzles 421 corresponding to the two nozzles 362 of the component supply mechanism 3, and the two components Wp supplied by the component supply mechanism 3 are two nozzles It can be picked up at the same time by 421. However, it is not essential to simultaneously supply and pick up the two parts Wp.
 さらに、各実装部4は、下方を向いて設けられた移動カメラ45を有する。移動カメラ45は、部品供給機構3により供給された部品Wpや、基板1に実装された部品Wpを、イメージセンサーにより上方から撮像する。この移動カメラ45は実装ヘッド42に取り付けられており、駆動制御部130はX軸モーター43およびY軸モーター44を回転させることで、実装ヘッド42と同様に移動カメラ45をXY方向に移動させることができる。 Furthermore, each mounting unit 4 has a moving camera 45 provided facing downward. The moving camera 45 images the component Wp supplied by the component supply mechanism 3 and the component Wp mounted on the substrate 1 from above by the image sensor. The moving camera 45 is attached to the mounting head 42, and the drive control unit 130 moves the moving camera 45 in the XY direction like the mounting head 42 by rotating the X-axis motor 43 and the Y-axis motor 44. Can.
 また、部品実装機10は、各実装部4に対して設けられた固定カメラ5を備える。固定カメラ5は上方を向いて基台に固定されており、後述するように上方に位置する部品Wpをイメージセンサーにより下方から撮像する。こうして、部品実装機10では、移動カメラ45、固定カメラ5および移動カメラ356を含む撮像ユニットIUが構成されている。 The component mounter 10 further includes a fixed camera 5 provided for each mounting unit 4. The fixed camera 5 faces upward and is fixed to a base, and captures an image of the component Wp located above, as described later, from below by an image sensor. Thus, in the component mounter 10, an imaging unit IU including the moving camera 45, the fixed camera 5 and the moving camera 356 is configured.
 図3は図1の部品実装機による実装の対象となる部品の一例を模式的に示す図である。同図では、部品供給位置32に供給された状態の部品Wpが例示されている。この部品Wpの表面Saおよび裏面Sb(表面Saの反対側の面)はいずれも矩形に形成されている。部品Wpの表面Saには、複数のバンプB(電極)がマトリックス状に並んで設けられており、これらバンプBによってバンプパターンPが形成されている。また、同図の例では、ダイシングでの切断精度に起因して、部品Wpがその表面Sa(あるいは裏面Sb)に対して斜めに切断されたことから、表面Saと裏面Sbとが面内方向(図3の横方向)に相互にずれている。 FIG. 3 is a view schematically showing an example of a component to be mounted by the component mounting machine of FIG. In the figure, the part Wp in a state of being supplied to the part supply position 32 is illustrated. The surface Sa and the back surface Sb (surface opposite to the surface Sa) of the component Wp are both formed in a rectangular shape. A plurality of bumps B (electrodes) are provided side by side in a matrix on the surface Sa of the component Wp, and a bump pattern P is formed by these bumps B. Further, in the example of the figure, the part Wp is cut obliquely to the surface Sa (or the back surface Sb) due to the cutting accuracy in dicing, so the surface Sa and the back surface Sb are in the in-plane direction They are mutually offset (in the lateral direction of FIG. 3).
 図1の部品実装機10の部品供給位置32では、各部品Wpは、その表面Saが上方を向いた状態で配置されており、取出ヘッド36は、吸着位置に位置するノズル362によって部品Wpの表面Saを吸着することで、部品Wpをピックアップする。そして、取出ヘッド36は、ノズル362を吸着位置から受渡位置に回転させることで、部品Wpを供給する。かかるノズル362の回転に伴い、部品Wpが反転するため、部品Wpは、その裏面Sbを上方に向けた状態で供給される。したがって、実装ヘッド42は、部品Wpの裏面Sbをノズル421で吸着することで部品Wpをピックアップする。 In the component supply position 32 of the component mounting machine 10 of FIG. 1, each component Wp is disposed with its surface Sa facing upward, and the takeout head 36 is moved by the nozzle 362 located at the suction position. By suctioning the surface Sa, the component Wp is picked up. Then, the take-out head 36 supplies the component Wp by rotating the nozzle 362 from the suction position to the delivery position. Since the part Wp is reversed as the nozzle 362 rotates, the part Wp is supplied with its back surface Sb directed upward. Therefore, the mounting head 42 picks up the component Wp by adsorbing the back surface Sb of the component Wp with the nozzle 421.
 図4は図1の部品実装機が実行する部品実装の一例を示すフローチャートであり、図5は図4のフローチャートで実行される部品裏面認識の一例を示すフローチャートであり、図6は図4のフローチャートで実行される部品表面認識の一例を示すフローチャートであり、図7は図4のフローチャートで実行される部品検査の一例を示すフローチャートである。図4~図7のフローチャートは、演算部110が部品検査プログラム150に従って部品実装機10の各部を制御することで実行される。また、2個の実装部4の動作は共通するため、以下ではこれらを特に区別せずに説明を行う。 4 is a flowchart showing an example of component mounting performed by the component mounting machine of FIG. 1, FIG. 5 is a flowchart showing an example of component back surface recognition performed in the flowchart of FIG. 4, and FIG. FIG. 7 is a flowchart showing an example of component surface recognition performed in the flowchart, and FIG. 7 is a flowchart showing an example of component inspection performed in the flowchart of FIG. 4. The flowcharts of FIGS. 4 to 7 are executed by the arithmetic unit 110 controlling each part of the component mounter 10 according to the component inspection program 150. Moreover, since the operation of the two mounting units 4 is common, the following description will be made without particular distinction.
 図4の実装処理が開始されると、ステップS101で部品裏面認識が実行される。図5に示すように、部品裏面認識では、部品供給機構3によって供給された部品Wpの上方に移動カメラ45が移動して、当該部品Wpの裏面Sbに上方から対向する(ステップS201)。ステップS202では、移動カメラ45は、この部品Wpの裏面Sbを撮像して、撮像画像Ibを画像処理部120に送信する。そして、画像処理部120が部品Wpの裏面Sbの撮像画像Ibに基づき部品Wpの裏面Sbの外形を認識し(ステップS203)、図4のフローチャートに戻る。 When the mounting process of FIG. 4 is started, component back surface recognition is executed in step S101. As shown in FIG. 5, in the component back surface recognition, the moving camera 45 moves above the component Wp supplied by the component supply mechanism 3 and faces the back surface Sb of the component Wp from above (step S201). In step S202, the moving camera 45 captures an image of the back surface Sb of the part Wp, and transmits the captured image Ib to the image processing unit 120. Then, the image processing unit 120 recognizes the outer shape of the back surface Sb of the part Wp based on the captured image Ib of the back surface Sb of the part Wp (step S203), and returns to the flowchart of FIG.
 ステップS102では、実装ヘッド42は、ステップS101で移動カメラ45の撮像対象となった部品Wpをノズル421により吸着する(ステップS102)。上述の通り、実装ヘッド42は部品Wpの裏面Sbを上方より吸着し、部品Wpは表面Saを下方に向けた状態で実装ヘッド42によりピックアップされる。こうして、実装ヘッド42が部品Wpをピックアップすると、ステップS103の部品表面認識が実行される。 In step S102, the mounting head 42 sucks the component Wp, which is the imaging target of the moving camera 45 in step S101, by the nozzle 421 (step S102). As described above, the mounting head 42 sucks the back surface Sb of the component Wp from above, and the component Wp is picked up by the mounting head 42 with the surface Sa directed downward. Thus, when the mounting head 42 picks up the component Wp, component surface recognition in step S103 is performed.
 図6に示すように、部品表面認識では、実装ヘッド42は、ピックアップした部品Wpを固定カメラ5の上方に移動させる(ステップS301)。ステップS302では、固定カメラ5が部品Wpの表面Saを下方から撮像して、部品Wpの表面Saの撮像画像Iaを画像処理部120に送信する。そして、画像処理部120が部品Wpの表面Saと裏面Sbとの中心位置の差を算出する(ステップS303)。具体的には、ステップS101の部品裏面認識で認識された部品Wpの裏面Sbの外形に基づき、この外形の幾何中心が裏面中心Cb(図5)として算出される。また、ステップS302での撮像画像Iaに基づき部品Wpの表面Saの外形が認識され、この表面Saの外形の幾何中心が表面中心Caとして(図5)算出される。そして、裏面中心Cbと表面中心Caとの差が表裏位置ずれ量α(=Cb-Ca)として算出されて、記憶部140に記憶される。なお、表面中心Caおよび裏面中心CbはXY座標であり、表裏位置ずれ量αはベクトル量である。 As shown in FIG. 6, in the component surface recognition, the mounting head 42 moves the picked up component Wp above the fixed camera 5 (step S301). In step S302, the fixed camera 5 images the surface Sa of the part Wp from below, and transmits the captured image Ia of the surface Sa of the part Wp to the image processing unit 120. Then, the image processing unit 120 calculates the difference between the center positions of the front surface Sa and the rear surface Sb of the component Wp (step S303). Specifically, based on the outline of the back surface Sb of the component Wp recognized by the component back surface recognition in step S101, the geometric center of this outline is calculated as the back surface center Cb (FIG. 5). Further, the outline of the surface Sa of the part Wp is recognized based on the captured image Ia in step S302, and the geometric center of the outline of the surface Sa is calculated as the surface center Ca (FIG. 5). Then, the difference between the back surface center Cb and the surface center Ca is calculated as the front / back position displacement amount α (= Cb−Ca) and stored in the storage unit 140. The surface center Ca and the back surface center Cb are XY coordinates, and the front and back positional deviation amount α is a vector amount.
 ステップS304では、画像処理部120は、撮像画像Iaに基づき、バンプパターンPの幾何中心をパターン中心Cp(図5)として算出する。そして、ステップS305で、画像処理部120が部品Wpの表面中心Caとパターン中心Cpとの差をパターン位置ずれ量β(=Ca-Cp)として算出して、記憶部140に記憶すると、図4のフローチャートに戻る。なお、パターン中心Cpは表面中心Caと同様にXY座標であり、パターン位置ずれ量βはベクトル量である。 In step S304, the image processing unit 120 calculates the geometric center of the bump pattern P as the pattern center Cp (FIG. 5) based on the captured image Ia. Then, in step S305, the image processing unit 120 calculates the difference between the surface center Ca of the part Wp and the pattern center Cp as the pattern positional deviation amount β (= Ca−Cp) and stores it in the storage unit 140, as shown in FIG. Return to the flowchart of. The pattern center Cp is XY coordinates as in the case of the surface center Ca, and the pattern positional deviation amount β is a vector amount.
 ステップS104では、実装ヘッド42はノズル421に吸着する部品Wpを、その表面Saを基板1側に向けつつ実装対象点1aに実装する。この際、部品Wpが実装される位置は、ステップS304で算出されたパターン中心Cpが、実装対象点1aを代表する所定の実装基準位置(例えば実装対象点1aの幾何中心)に一致するように調整される。これによって、部品Wpは、その表面Saが基板1側に向いた状態で(換言すれば、その裏面Sbが上方に向いた状態で)実装対象点1aに実装される。こうして、部品Wpの実装が完了すると、ステップS105の部品検査が実行される。 In step S104, the mounting head 42 mounts the component Wp to be adsorbed to the nozzle 421 on the mounting target point 1a with the surface Sa facing the substrate 1 side. At this time, in the position where the component Wp is mounted, the pattern center Cp calculated in step S304 matches the predetermined mounting reference position (for example, the geometric center of the mounting target point 1a) representative of the mounting target point 1a. Adjusted. As a result, the component Wp is mounted on the mounting target point 1a with the surface Sa facing the substrate 1 (in other words, with the back surface Sb facing upward). Thus, when the mounting of the part Wp is completed, the part inspection in step S105 is performed.
 図7に示すように、部品検査では、ステップS104で実装対象点1aに実装された部品Wp(以下、「実装部品Wp」と適宜称する)の上方に移動カメラ45が移動する(ステップS401)。ステップS402では、移動カメラ45は実装部品Wpの裏面Sbを上方から撮像して、撮像画像Imを画像処理部120に送信する(ステップS402)。そして、画像処理部120は、実装部品Wpの裏面Sbの撮像画像Imに基づき、実装部品Wpの裏面Sbの幾何中心を実装部品裏面中心Cbmとして算出する(ステップ403)。ステップS404では、画像処理部120は、実装部品裏面中心Cbm、表裏位置ずれ量αおよびパターン位置ずれ量βに基づき、実装部品WpのバンプパターンPの中心(実装中心Cpm)を算出する。そして、画像処理部120がこの実装中心Cpmと上述の実装基準位置との差を、実装位置ずれ量γとして算出して記憶部140に記憶すると(ステップS405)、図4のフローチャートに戻る。なお、実装部品裏面中心Cbm、実装中心Cpmおよび実装基準位置はXY座標であり、実装位置ずれ量γはベクトル量である。 As shown in FIG. 7, in the component inspection, the mobile camera 45 moves above the component Wp mounted on the mounting target point 1a in step S104 (hereinafter, referred to as "mounted component Wp" as appropriate) (step S401). In step S402, the moving camera 45 captures an image of the back surface Sb of the mounted component Wp from above, and transmits the captured image Im to the image processing unit 120 (step S402). Then, the image processing unit 120 calculates the geometric center of the back surface Sb of the mounted component Wp as the mounting component back surface center Cbm based on the captured image Im of the back surface Sb of the mounted component Wp (step 403). In step S404, the image processing unit 120 calculates the center (mounting center Cpm) of the bump pattern P of the mounted component Wp based on the mounting component back surface center Cbm, the front / back positional deviation amount α, and the pattern positional displacement amount β. Then, when the image processing unit 120 calculates the difference between the mounting center Cpm and the mounting reference position as the mounting positional deviation amount γ and stores the calculated amount in the storage unit 140 (step S405), the process returns to the flowchart of FIG. The mounting component back surface center Cbm, the mounting center Cpm, and the mounting reference position are XY coordinates, and the mounting positional deviation amount γ is a vector amount.
 ステップS106では、基板1の全ての実装対象点1aに対する部品Wpの実装が完了したかが判断される。実装が完了していない場合(ステップS106で「NO」の場合)には、ステップS101~S105が繰り返される。なお、以後のステップ104での部品実装においては、ステップS405で求められた実装位置ずれ量γを打ち消すように、部品Wpを実装する位置が調整される。そして、全実装対象点1aへの部品Wpの実装が完了すると(ステップS106で「YES」)、図4の部品実装が終了する。 In step S106, it is determined whether the mounting of the component Wp on all mounting target points 1a of the substrate 1 is completed. If the mounting is not completed (in the case of "NO" in step S106), steps S101 to S105 are repeated. In the subsequent component mounting in step S104, the mounting position of the component Wp is adjusted so as to cancel the mounting position shift amount γ obtained in step S405. Then, when the mounting of the component Wp on all the mounting target points 1a is completed (“YES” in step S106), the component mounting of FIG. 4 ends.
 以上に説明したように、本実施形態によれば、基板1に実装される前の部品Wpの表面Sa(バンプパターンPが設けられた面)を撮像して撮像画像Ia(第1画像)が取得され(ステップS302)、この撮像画像Iaに基づき、表面Saの外形に対するバンプパターンPの位置を示すパターン位置ずれ量β(パターン位置情報)が求められる(ステップS305)。また、基板1に実装された後の部品Wpの裏面Sbを撮像して撮像画像Im(第2画像)が取得され(ステップS402)、この撮像画像Imに基づき、部品Wpの裏面Sbの位置を示す実装部品裏面中心Cbm(部品位置情報)が求められる(ステップS403)。そして、パターン位置ずれ量βと実装部品裏面中心Cbmとに基づき、基板1に実装された部品WpのバンプパターンPの位置ずれが検査される(ステップS405)。このように、実装された部品Wpの裏面Sbの位置のみならず、部品Wpの表面Saの外形に対するバンプパターンPの位置(パターン位置ずれ量β)にも基づいて、バンプパターンPの位置ずれ(実装位置ずれ量γ)が検査される。その結果、部品Wpの外形に対するバンプパターンPの位置のばらつきによらず、基板1に実装された部品Wpを撮像した撮像画像Imに基づき部品WpのバンプパターンPの位置ずれを的確に検査することが可能となっている。 As described above, according to the present embodiment, the captured image Ia (first image) is obtained by imaging the surface Sa (surface on which the bump pattern P is provided) of the component Wp before being mounted on the substrate 1. Based on the captured image Ia, a pattern displacement amount β (pattern position information) indicating the position of the bump pattern P with respect to the outer shape of the surface Sa is obtained (step S305). Further, the back surface Sb of the component Wp after being mounted on the substrate 1 is imaged to obtain a captured image Im (second image) (step S402), and the position of the back surface Sb of the component Wp is determined based on the captured image Im. The mounted component back surface center Cbm (component position information) shown is determined (step S403). Then, the positional deviation of the bump pattern P of the component Wp mounted on the substrate 1 is inspected based on the pattern positional deviation amount β and the mounting component back surface center Cbm (step S405). Thus, based on not only the position of the back surface Sb of the mounted component Wp, but also the position (pattern displacement amount β) of the bump pattern P with respect to the outer shape of the surface Sa of the component Wp The mounting positional deviation amount γ) is inspected. As a result, regardless of the variation in the position of the bump pattern P with respect to the outer shape of the component Wp, the positional deviation of the bump pattern P of the component Wp is accurately inspected based on the captured image Im obtained by imaging the component Wp mounted on the substrate 1 Is possible.
 特に上述のように、部品WpがダイシングされたウェハーWのダイである場合、ダイシングによって切断される位置には誤差が生じうる。そのため、部品Wpの外形に対するバンプパターンPの位置ずれが生じやすい。これに対して、本実施形態では上述のように構成されているため、ダイシングでの切断位置誤差によらず、基板1に実装された部品Wpを撮像した撮像画像Imに基づき部品WpのバンプパターンPの位置ずれを的確に検査することが可能となっている。 In particular, as described above, when the component Wp is a die of a diced wafer W, an error may occur in the position to be cut by dicing. Therefore, positional deviation of the bump pattern P with respect to the outer shape of the component Wp is likely to occur. On the other hand, since the present embodiment is configured as described above, the bump pattern of the component Wp based on the captured image Im obtained by imaging the component Wp mounted on the substrate 1 regardless of the cutting position error in dicing. It is possible to inspect the positional deviation of P accurately.
 ところで、図3の「側面視」の欄に例示したように、部品Wpの製造工程の精度、具体的にはダイシングにおける切断面の傾斜に起因して、部品Wpの表面Saの位置と裏面Sbの位置とが面内方向にずれている場合がある。図3の例では、表面Saの位置と裏面Sbの位置とが表裏位置ずれ量αだけ搬送方向Xにずれている(なお、表裏位置ずれ量αの大きさおよび方向は図3の例に限られない)。これに対して、制御部100は、移動カメラ45および固定カメラ5(撮像ユニットIU)に部品Wpを撮像させた撮像画像Ib(第3画像)および撮像画像Iaに基づき、部品Wpの表面Saと裏面Sbとの位置関係を示す表裏位置ずれ量α(位置関係情報)を求める(ステップS303)。そして、パターン位置ずれ量β、表裏位置ずれ量αおよび実装部品裏面中心Cbmに基づき、基板1に実装された部品WpのバンプパターンPの位置ずれを検査する(ステップS405)。かかる構成では、表面Saと裏面Sbとの位置関係を示す表裏位置ずれ量αにも基づいて、バンプパターンPの位置ずれが検査される。その結果、部品Wpの表面Saと裏面Sbとの位置ずれによらず、基板1に実装された部品Wpを撮像した撮像画像Imに基づき部品WpのバンプパターンPの位置ずれを的確に検査することが可能となっている。 By the way, as exemplified in the column of “side view” in FIG. 3, the position of the front surface Sa and the back surface Sb of the component Wp due to the precision of the manufacturing process of the component Wp, specifically the inclination of the cutting surface in dicing. There is a case where the position of is shifted in the in-plane direction. In the example of FIG. 3, the position of the front surface Sa and the position of the back surface Sb are shifted in the transport direction X by the front / back position shift amount α (note that the size and direction of the front / back position shift amount α are limited to the example of FIG. 3). Not). On the other hand, based on the captured image Ib (third image) and the captured image Ia obtained by causing the moving camera 45 and the fixed camera 5 (the imaging unit IU) to capture the component Wp, the control unit 100 Front and back positional deviation amount α (positional relationship information) indicating the positional relationship with the back surface Sb is determined (step S303). Then, the positional deviation of the bump pattern P of the component Wp mounted on the substrate 1 is inspected based on the pattern positional deviation amount β, the front and back positional deviation amount α, and the mounting component back surface center Cbm (step S405). In such a configuration, the positional deviation of the bump pattern P is inspected based on the front / rear positional deviation amount α indicating the positional relationship between the front surface Sa and the back surface Sb. As a result, regardless of the positional deviation between the front surface Sa and the back surface Sb of the component Wp, the positional deviation of the bump pattern P of the component Wp is accurately inspected based on the captured image Im obtained by imaging the component Wp mounted on the substrate 1 Is possible.
 また、制御部100は、実装ヘッド42により部品供給機構3からピックアップされて基板1に実装される前の部品Wpの表面Saを固定カメラ5により撮像して撮像画像Iaを取得して(ステップS302)、部品Wpの検査を実行する。さらに、ステップS304では、この撮像画像Iaに基づきバンプパターンPの位置を認識した結果に基づき、基板1に部品Wpを実装する位置を調整する。かかる構成では、部品Wpを実装する位置を調整するためのバンプパターンPの認識処理と、部品Wpの検査のためのバンプパターンPのパターン中心Cpの算出とを、共通の撮像画像Iaに基づき実行しており、効率的な制御が実現されている。 Further, the control unit 100 picks up the surface Sa of the component Wp before being picked up from the component supply mechanism 3 by the mounting head 42 and mounted on the substrate 1 by the fixed camera 5 to obtain a picked up image Ia (step S302) ), Perform inspection of the part Wp. Further, in step S304, the position at which the component Wp is mounted on the substrate 1 is adjusted based on the result of recognizing the position of the bump pattern P based on the captured image Ia. In this configuration, recognition processing of the bump pattern P for adjusting the mounting position of the component Wp and calculation of the pattern center Cp of the bump pattern P for inspection of the component Wp are performed based on the common captured image Ia. Efficient control is realized.
 また、制御部100は、実装ヘッド42によって部品Wpを基板1に実装する位置を、実行済みのステップS405で検査された部品WpのバンプパターンPの位置ずれ(実装位置ずれ量γ)に基づき調整する(ステップS104)。これによって、バンプパターンPの位置ずれを抑えつつ、部品Wpを基板1に実装することが可能となっている。 Further, the control unit 100 adjusts the position at which the mounting head 42 mounts the component Wp on the substrate 1 based on the positional deviation (mounting positional deviation amount γ) of the bump pattern P of the component Wp inspected at step S405. (Step S104). As a result, it is possible to mount the component Wp on the substrate 1 while suppressing the displacement of the bump pattern P.
 このように本実施形態では、部品実装機10が本発明の「部品実装機」の一例に相当し、部品供給機構3が本発明の「部品供給部」の一例に相当し、搬送部2が本発明の「基板保持部」の一例に相当し、実装部4A、4Bが本発明の「部品実装部」の一例に相当し、撮像ユニットIUが本発明の「撮像ユニット」の一例に相当し、制御部100が本発明の「制御部」の一例に相当し、部品Wpが本発明の「部品」の一例に相当し、表面Saが本発明の「第1面」の一例に相当し、裏面Sbが本発明の「第2面」の一例に相当し、バンプパターンPが本発明の「パターン」の一例に相当し、撮像画像Iaが本発明の「第1画像」の一例に相当し、撮像画像Imが本発明の「第2画像」の一例に相当し、撮像画像Ibが本発明の「第3画像」の一例に相当し、パターン位置ずれ量βが本発明の「パターン位置情報」の一例に相当し、実装部品裏面中心Cbmが本発明の「部品位置情報」の一例に相当し、ステップS101~S103およびS105が本発明の「検査処理」の一例に相当し、表裏位置ずれ量αが本発明の「位置関係情報」の一例に相当し、部品検査プログラム150が本発明の「部品検査プログラム」の一例に相当し、記録媒体160が本発明の「記録媒体」の一例に相当する。 As described above, in the present embodiment, the component mounter 10 corresponds to an example of the “component mounter” of the present invention, the component supply mechanism 3 corresponds to an example of the “component supply unit” of the present invention, and the transport unit 2 The mounting units 4A and 4B correspond to an example of the "component mounting unit" of the present invention, and the imaging unit IU corresponds to an example of the "imaging unit" of the present invention. The control unit 100 corresponds to an example of the “control unit” of the present invention, the component Wp corresponds to an example of the “component” of the present invention, and the surface Sa corresponds to an example of the “first surface” of the present invention The back surface Sb corresponds to an example of the “second surface” of the present invention, the bump pattern P corresponds to an example of the “pattern” of the present invention, and the captured image Ia corresponds to an example of the “first image” of the present invention The captured image Im corresponds to an example of the “second image” in the present invention, and the captured image Ib corresponds to the “third image” in the present invention. Corresponds to an example, the pattern positional deviation amount β corresponds to an example of “pattern position information” in the present invention, the mounting component back surface center Cbm corresponds to an example of “component position information” in the present invention, and steps S101 to S103 and S105 corresponds to an example of the “inspection process” of the present invention, front and back positional deviation amount α corresponds to an example of the “positional relationship information” of the present invention, and the parts inspection program 150 is an example of the “parts inspection program” of the present invention The recording medium 160 corresponds to an example of the "recording medium" in the present invention.
 なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば上記実施形態では、1個の部品Wpを基板1に実装する度に検査処理(ステップS101~S103およびS105)が実行されている。しかしながら、検査処理の実行間隔はこれに限られない。 The present invention is not limited to the above-described embodiment, and various modifications can be made to the above-described one without departing from the scope of the invention. For example, in the above embodiment, every time one component Wp is mounted on the substrate 1, inspection processing (steps S101 to S103 and S105) is performed. However, the execution interval of the inspection process is not limited to this.
 また、制御部100は、異なる複数の実行間隔のうちから選択した一の実行間隔で、検査処理(ステップS101~S103およびS105)を実行してもよい。これによって、バンプパターンPの実装位置ずれ量γの検査の必要性と、部品実装の効率性とを勘案した適切な実行間隔で検査処理を実行することが可能となる。 Further, the control unit 100 may execute the inspection process (steps S101 to S103 and S105) at one execution interval selected from a plurality of different execution intervals. This makes it possible to execute inspection processing at an appropriate execution interval in consideration of the necessity of inspection of the mounting position deviation amount γ of the bump pattern P and the efficiency of component mounting.
 具体的には、これら複数の実行間隔は、1個の部品Wp(ダイ)を基板1に実装する度に検査処理を実行する第1実行間隔、1枚のウェハーW分の部品Wpを基板1に実装する度に検査処理を実行する第2実行間隔および1ロットのウェハーW分の部品Wpを基板1に実装する度に検査処理を実行する第3実行間隔の少なくとも1つを、複数の実行間隔が含むように、制御部100を構成することができる。特に複数の実行間隔が第1~第3の実行間隔を含む場合には、ダイシングにおける切断位置精度が低い場合には、第1実行間隔で検査処理を実行し、これより切断位置精度が高い場合には、第2実行間隔で検査処理を実行し、さらにこれより切断位置精度が高い場合には、第3実行間隔で検査処理を実行するといった制御ができる。つまり、ダイシングによる切断位置精度が高いほど長い実行間隔で検査処理を実行でき、バンプパターンPの実装位置ずれ量γの検査の必要性と、部品実装の効率性とを勘案した適切な実行間隔で検査処理を実行できる。 Specifically, the plurality of execution intervals are a first execution interval at which an inspection process is performed each time one component Wp (die) is mounted on the substrate 1, and the components Wp of one wafer W are substrate 1 The second execution interval for executing the inspection process each time mounted on the board, and at least one of the third execution interval for executing the inspection process each time the parts Wp of one lot of wafers W are mounted on the substrate The control unit 100 can be configured to include the interval. In particular, when the plurality of execution intervals include the first to third execution intervals, the inspection process is executed at the first execution interval when the cutting position accuracy in dicing is low, and the cutting position accuracy is higher than this. In the second embodiment, the inspection process is executed at the second execution interval, and if the cutting position accuracy is higher than that, the inspection process is executed at the third execution interval. That is, the inspection process can be performed at a longer execution interval as the cutting position accuracy by dicing is higher, and at an appropriate execution interval taking into consideration the necessity of inspection of the mounting position shift amount γ of the bump pattern P and the efficiency of component mounting. Can perform inspection processing.
 この際、複数の実行間隔のうちから一の実行間隔を選ぶ基準は種々考えられる。例えば制御部100は、ユーザーの入力に従って一の実行間隔を選択してもよい。あるいは、制御部100は、検査処理で検査された部品WpのバンプパターンPの実装位置ずれ量γ位置に基づき、複数の実行間隔のうちから一の実行間隔を選択してもよい。かかる構成では、実行済みの検査処理で検査されたバンプパターンPの位置ずれに基づき、当該実行済みの検査処理より後における検査処理の実行間隔を適切化できる。 At this time, various criteria for selecting one execution interval out of a plurality of execution intervals can be considered. For example, the control unit 100 may select one execution interval according to the user's input. Alternatively, the control unit 100 may select one execution interval from a plurality of execution intervals based on the mounting position shift amount γ position of the bump pattern P of the part Wp inspected in the inspection process. In this configuration, based on the positional deviation of the bump pattern P inspected in the executed inspection process, the execution interval of the inspection process after the executed inspection process can be made appropriate.
 具体的には、前回の検査処理での実装位置ずれ量γ(絶対値)と比較して今回の検査処理での実装位置ずれ量γ(絶対値)が所定値以上増加した場合には検査処理の実行間隔を短くし、逆に当該所定値以上減少した場合には検査処理の実行間隔を長くしてもよい。 Specifically, when the mounting positional deviation amount γ (absolute value) in the current inspection processing is increased by a predetermined value or more as compared to the mounting positional deviation amount γ (absolute value) in the previous inspection processing, the inspection processing The execution interval of the inspection process may be shortened, and conversely, the execution interval of the inspection process may be lengthened when it decreases by the predetermined value or more.
 あるいは、2回以上の実行済みの検査処理における実装位置ずれ量γの移動平均と所定の閾値とを比較した結果に基づき、検査処理の実行間隔を変更しても良い。つまり、移動平均が閾値を超えると検査処理の実行間隔を長くし、移動平均が閾値以下となると検査処理の実行間隔を短くする。 Alternatively, the execution interval of the inspection process may be changed based on the result of comparing the moving average of the mounting positional deviation amount γ in two or more executed inspection processes with a predetermined threshold. That is, when the moving average exceeds the threshold, the execution interval of the inspection process is lengthened, and when the moving average becomes equal to or less than the threshold, the execution interval of the inspection process is shortened.
 また、上記実施形態では、撮像画像Ibから部品Wpの裏面Sbを認識する部品裏面認識(ステップS101)に基づき、部品Wpの表面Saと裏面Sbとの位置関係を示す表裏位置ずれ量αが求められる(ステップS303)。この際、表裏位置ずれ量αを求める具体的方法はこれに限られない。つまり、部品Wpを側方から撮像して、図3の「側面視」に示すような画像を撮像することで、表裏位置ずれ量αを求めることができる。 In the above embodiment, the front / back positional deviation amount α indicating the positional relationship between the front surface Sa and the back surface Sb of the component Wp is obtained based on component back surface recognition (step S101) for recognizing the back surface Sb of the component Wp from the captured image Ib. (Step S303). At this time, the specific method for obtaining the front and back positional deviation amount α is not limited to this. That is, the front and back positional deviation amount α can be obtained by imaging the part Wp from the side and imaging an image as shown in “side view” in FIG. 3.
 また、上記実施形態では、表裏位置ずれ量α、パターン位置ずれ量βおよび実装部品裏面中心Cbmに基づき、基板1に実装された部品WpのバンプパターンPの位置ずれが検査される(ステップS405)。しかしながら、ダイシングでの切断精度が良好で、表面Saと裏面Sbとの位置ずれが僅少である場合には、かかる制御は不要である。 In the above embodiment, the positional deviation of the bump pattern P of the component Wp mounted on the substrate 1 is inspected based on the front and back positional deviation amount α, the pattern positional deviation amount β, and the mounting component back surface center Cbm (step S405). . However, when the cutting accuracy in dicing is good and the positional deviation between the front surface Sa and the rear surface Sb is minimal, such control is unnecessary.
 つまり、ステップS101、S303を省略して、パターン位置ずれ量βと実装部品裏面中心Cbmとに基づき、基板1に実装された部品WpのバンプパターンPの位置ずれを検査すればよい(ステップS405)。この場合においても、実装された部品Wpの裏面Sbの位置のみならず、部品Wpの表面Saの外形に対するバンプパターンPの位置(パターン位置ずれ量β)にも基づいて、バンプパターンPの位置ずれ(実装位置ずれ量γ)が検査される。その結果、部品Wpの外形に対するバンプパターンPの位置のばらつきによらず、基板1に実装された部品Wpを撮像した撮像画像Imに基づき部品WpのバンプパターンPの位置ずれを的確に検査することが可能となっている。 That is, steps S101 and S303 may be omitted, and the positional deviation of the bump pattern P of the component Wp mounted on the substrate 1 may be inspected based on the pattern positional deviation amount β and the mounting component back surface center Cbm (step S405). . Also in this case, based on not only the position of the back surface Sb of the mounted component Wp, but also the position (pattern displacement amount β) of the bump pattern P with respect to the outer shape of the surface Sa of the component Wp (Mounting positional deviation amount γ) is inspected. As a result, regardless of the variation in the position of the bump pattern P with respect to the outer shape of the component Wp, the positional deviation of the bump pattern P of the component Wp is accurately inspected based on the captured image Im obtained by imaging the component Wp mounted on the substrate 1 Is possible.
 また、上記実施形態では、部品Wpの表面Saを固定カメラ5により撮像して撮像画像Iaを取得する。しかしながら、部品供給位置32の部品Wpを移動カメラ356によって撮像することで、部品Wpの表面Saの撮像画像Iaを取得してもよい。 Further, in the above embodiment, the surface Sa of the component Wp is imaged by the fixed camera 5 to acquire the imaged image Ia. However, the captured image Ia of the surface Sa of the part Wp may be acquired by capturing the part Wp of the part supply position 32 with the moving camera 356.
 また、バンプパターンPの位置ずれの検査が、表面中心Ca、パターン中心Cp、実装部品裏面中心Cbmあるいは裏面中心Cbといった中心位置に基づき実行されていた。しかしながら、位置ずれの検査の基準は、これら中心位置に限られず、部品Wpの表面Sa、裏面SbあるいはバンプパターンP等の位置を代表することができる値、例えば決められた位置に予め設けられているマークの位置等であればよい。 Further, the inspection of the displacement of the bump pattern P is performed based on the center position such as the surface center Ca, the pattern center Cp, the mounted component back surface center Cbm or the back surface center Cb. However, the reference for inspection of misalignment is not limited to these center positions, and is provided in advance at a value that can represent the position of the surface Sa, back surface Sb or bump pattern P of the component Wp, for example, at predetermined positions. It is sufficient if the position of the mark is present.
 部品Wpについても種々の変更が可能である。したがって、バンプパターンPにおけるバンプBの個数および配列を変更してもよい。また。部品Wpの種類は、ダイ(ベアチップ)に限られない。 Various changes can also be made to the part Wp. Therefore, the number and arrangement of the bumps B in the bump pattern P may be changed. Also. The type of the component Wp is not limited to the die (bare chip).
 また、「パターン」は、上記の例のバンプパターンPに限られず、配線パターン等も含む。 Further, the “pattern” is not limited to the bump pattern P in the above example, but also includes a wiring pattern and the like.
 10…部品実装機
 100…制御部
 150…部品検査プログラム
 160…記録媒体
 2…搬送部(基板保持部)
 3…部品供給機構(部品供給部)
 4A、4B…実装部
 IU…撮像ユニット
 Wp…部品
 Sa…表面(第1面)
 Sb…裏面(第2面)
 P…バンプパターン(パターン)
 Ia…撮像画像(第1画像)
 Im…撮像画像(第2画像)
 S101~S103、S105…検査処理
 
DESCRIPTION OF SYMBOLS 10 ... Component mounting machine 100 ... Control part 150 ... Component test | inspection program 160 ... Recording medium 2 ... Transportation part (board holding part)
3 ... Component supply mechanism (component supply unit)
4A, 4B: mounting unit IU: imaging unit Wp: parts Sa: surface (first surface)
Sb: back surface (second surface)
P: Bump pattern (pattern)
Ia: Captured image (first image)
Im: Captured image (second image)
S101 to S103, S105 ... inspection processing

Claims (11)

  1.  パターンが設けられた第1面と前記第1面と反対の第2面とを有する部品を供給する部品供給部と、
     基板を保持する基板保持部と、
     前記部品供給部により供給された前記部品をピックアップして、前記第1面を前記基板側に向けて前記基板に実装する部品実装部と、
     前記部品を撮像する撮像ユニットと、
     前記基板に実装される前の前記部品の前記第1面を前記撮像ユニットにより撮像して第1画像を取得し、前記基板に実装された後の前記部品の前記第2面を前記撮像ユニットにより撮像して第2画像を取得し、前記第1画像および前記第2画像に基づき前記部品について検査を行う検査処理を実行する制御部と
    を備え、
     前記検査処理において、前記制御部は、前記第1面の外形に対する前記パターンの位置を示すパターン位置情報を前記第1画像から求めるとともに、前記基板に実装された前記部品の前記第2面の位置を示す部品位置情報を前記第2画像から求め、前記パターン位置情報と前記部品位置情報とに基づき前記基板に実装された前記部品の前記パターンの位置ずれを検査する部品実装機。
    A component supply unit for supplying a component having a first surface provided with a pattern and a second surface opposite to the first surface;
    A substrate holding unit for holding a substrate;
    A component mounting unit for picking up the component supplied by the component supply unit and mounting the component on the substrate with the first surface facing the substrate side;
    An imaging unit for imaging the part;
    The first surface of the component before being mounted on the substrate is imaged by the imaging unit to obtain a first image, and the second surface of the component after being mounted on the substrate is acquired by the imaging unit A control unit configured to perform an inspection process of performing an inspection on the part based on the first image and the second image by capturing a second image and acquiring the second image;
    In the inspection process, the control unit obtains pattern position information indicating the position of the pattern with respect to the outer shape of the first surface from the first image, and the position of the second surface of the component mounted on the substrate A component mounter for obtaining component position information indicating the second image from the second image, and inspecting a positional deviation of the pattern of the component mounted on the substrate based on the pattern position information and the component position information.
  2.  前記制御部は、前記撮像ユニットに前記部品を撮像させた画像に基づき、前記第1面と前記第2面との位置関係を示す位置関係情報を求め、前記パターン位置情報、前記位置関係情報および前記部品位置情報に基づき、前記基板に実装された前記部品の前記パターンの位置ずれを検査する請求項1に記載の部品実装機。 The control unit obtains positional relationship information indicating a positional relationship between the first surface and the second surface based on an image obtained by causing the imaging unit to capture the component, and the pattern positional information, the positional relationship information, and The component mounter according to claim 1, wherein misalignment of the pattern of the component mounted on the substrate is inspected based on the component position information.
  3.  前記部品供給部は、前記第2面を上方に向けた状態で前記部品を供給し、
     前記検査処理において、前記制御部は、前記部品供給部により供給されて前記部品実装部にピックアップされる前の前記部品の前記第2面を前記撮像ユニットにより撮像して第3画像を取得し、前記第1画像と前記第3画像とに基づき前記位置関係情報を求める請求項2に記載の部品実装機。
    The component supply unit supplies the component with the second surface facing upward,
    In the inspection process, the control unit captures the second surface of the component supplied by the component supply unit and picked up by the component mounting unit by the imaging unit to acquire a third image. The component mounting machine according to claim 2, wherein the positional relationship information is obtained based on the first image and the third image.
  4.  前記制御部は、前記部品実装部により前記部品供給部からピックアップされて前記基板に実装される前の前記部品の前記第1面を前記撮像ユニットにより撮像して前記第1画像を取得して前記検査処理を実行するとともに、前記第1画像に基づき前記パターンの位置を認識した結果に基づき前記基板に前記部品を実装する位置を調整する請求項1ないし3のいずれか一項に記載の部品実装機。 The control unit is configured to pick up the first surface of the component before it is picked up from the component supply unit by the component mounting unit and mounted on the substrate by the imaging unit to obtain the first image and to obtain the first image. The component mounting according to any one of claims 1 to 3, wherein the inspection processing is performed, and the position at which the component is mounted on the substrate is adjusted based on the result of recognizing the position of the pattern based on the first image. Machine.
  5.  前記制御部は、複数の実行間隔のうちから選択した一の実行間隔で、前記検査処理を実行可能である請求項1ないし4のいずれか一項に記載の部品実装機。 The component mounter according to any one of claims 1 to 4, wherein the control unit can execute the inspection process at one execution interval selected from a plurality of execution intervals.
  6.  前記部品は、ダイシングされたウェハーのダイであり、
     前記複数の実行間隔は、1個のダイを前記基板に実装する度に前記検査処理を実行する第1実行間隔、1枚のウェハー分のダイを前記基板に実装する度に前記検査処理を実行する第2実行間隔および1ロットのウェハー分のダイを前記基板に実装する度に前記検査処理を実行する第3実行間隔の少なくとも1つを含む請求項5に記載の部品実装機。
    The part is a diced wafer die,
    The plurality of execution intervals is a first execution interval to execute the inspection process each time one die is mounted on the substrate, and the inspection process is executed each time a die of one wafer is mounted on the substrate The component mounter according to claim 5, further comprising at least one of a second execution interval and a third execution interval for executing the inspection process each time a die of one lot of wafers is mounted on the substrate.
  7.  前記制御部は、前記検査処理で検査された前記部品の前記パターンの位置ずれに基づき、前記複数の実行間隔のうちから前記一の実行間隔を選択する請求項5または6に記載の部品実装機。 The component mounting machine according to claim 5 or 6, wherein the control unit selects the one execution interval from the plurality of execution intervals based on the positional deviation of the pattern of the component inspected in the inspection process. .
  8.  前記制御部は、前記部品実装部によって前記部品を前記基板に実装する位置を、実行済みの前記検査処理で検査された前記部品の前記パターンの位置ずれに基づき調整する請求項1ないし7のいずれか一項に記載の部品実装機。 The control unit adjusts the position at which the component mounting unit mounts the component on the substrate based on the positional deviation of the pattern of the component inspected in the inspection process that has already been performed. The component mounting machine according to any one of the items.
  9.  基板に実装される前の部品の第1面および前記第1面と反対の第2面のうち、パターンが設けられた前記第1面を撮像して第1画像を取得する工程と、
     前記第1面を前記基板側に向けて前記基板に実装された前記部品の前記第2面を撮像して第2画像を取得する工程と、
     前記第1面の外形に対する前記パターンの位置を示すパターン位置情報を前記第1画像から求める工程と、
     前記基板に実装された前記部品の前記第2面の位置を示す部品位置情報を前記第2画像から求める工程と、
     前記パターン位置情報と前記部品位置情報とに基づき前記基板に実装された前記部品の前記パターンの位置ずれを検査する工程と
    を備える部品検査方法。
    Imaging the first surface on which the pattern is provided among the first surface of the component before being mounted on the substrate and the second surface opposite to the first surface to obtain a first image;
    Imaging the second surface of the component mounted on the substrate with the first surface facing the substrate to obtain a second image;
    Obtaining pattern position information indicating the position of the pattern with respect to the outer shape of the first surface from the first image;
    Obtaining component position information indicating a position of the second surface of the component mounted on the substrate from the second image;
    And inspecting the positional deviation of the pattern of the component mounted on the substrate based on the pattern position information and the component position information.
  10.  基板に実装される前の部品の第1面および前記第1面と反対の第2面のうち、パターンが設けられた前記第1面を撮像して第1画像を取得する工程と、
     前記第1面を前記基板側に向けて前記基板に実装された前記部品の前記第2面を撮像して第2画像を取得する工程と、
     前記第1面の外形に対する前記パターンの位置を示すパターン位置情報を前記第1画像から求める工程と、
     前記基板に実装された前記部品の前記第2面の位置を示す部品位置情報を前記第2画像から求める工程と、
     前記パターン位置情報と前記部品位置情報とに基づき前記基板に実装された前記部品の前記パターンの位置ずれを検査する工程と
    を、コンピューターに実行させる部品検査プログラム。
    Imaging the first surface on which the pattern is provided among the first surface of the component before being mounted on the substrate and the second surface opposite to the first surface to obtain a first image;
    Imaging the second surface of the component mounted on the substrate with the first surface facing the substrate to obtain a second image;
    Obtaining pattern position information indicating the position of the pattern with respect to the outer shape of the first surface from the first image;
    Obtaining component position information indicating a position of the second surface of the component mounted on the substrate from the second image;
    A component inspection program which causes a computer to execute a step of inspecting a positional deviation of the pattern of the component mounted on the substrate based on the pattern position information and the component position information.
  11.  請求項10に記載の部品検査プログラムをコンピューターにより読み出し可能に記憶する記憶媒体。 A storage medium for storing the part inspection program according to claim 10 so as to be readable by a computer.
PCT/JP2017/041470 2017-11-17 2017-11-17 Component mounter, component inspection method, component inspection program, and recording medium WO2019097675A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/041470 WO2019097675A1 (en) 2017-11-17 2017-11-17 Component mounter, component inspection method, component inspection program, and recording medium
JP2019554146A JP6855148B2 (en) 2017-11-17 2017-11-17 Parts mounting machine, parts inspection method, parts inspection program, recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041470 WO2019097675A1 (en) 2017-11-17 2017-11-17 Component mounter, component inspection method, component inspection program, and recording medium

Publications (1)

Publication Number Publication Date
WO2019097675A1 true WO2019097675A1 (en) 2019-05-23

Family

ID=66538950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041470 WO2019097675A1 (en) 2017-11-17 2017-11-17 Component mounter, component inspection method, component inspection program, and recording medium

Country Status (2)

Country Link
JP (1) JP6855148B2 (en)
WO (1) WO2019097675A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599445A (en) * 2020-12-13 2021-04-02 无锡英诺赛思科技有限公司 Reverse fool-proof device for wafer of semiconductor chip mounter
WO2023181346A1 (en) * 2022-03-25 2023-09-28 株式会社Fuji Inspection assistance device, production management system, and inspection assistance method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537195A (en) * 1991-07-30 1993-02-12 Sony Corp Mounting position deciding system
JPH05226900A (en) * 1992-02-18 1993-09-03 Hitachi Ltd Method and device for position inspection
JP2011091181A (en) * 2009-10-22 2011-05-06 Panasonic Corp Component mounting system and mounting state inspection method
JP2014103191A (en) * 2012-11-19 2014-06-05 Panasonic Corp Electronic component mounting system and electronic component mounting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537195A (en) * 1991-07-30 1993-02-12 Sony Corp Mounting position deciding system
JPH05226900A (en) * 1992-02-18 1993-09-03 Hitachi Ltd Method and device for position inspection
JP2011091181A (en) * 2009-10-22 2011-05-06 Panasonic Corp Component mounting system and mounting state inspection method
JP2014103191A (en) * 2012-11-19 2014-06-05 Panasonic Corp Electronic component mounting system and electronic component mounting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599445A (en) * 2020-12-13 2021-04-02 无锡英诺赛思科技有限公司 Reverse fool-proof device for wafer of semiconductor chip mounter
CN112599445B (en) * 2020-12-13 2022-05-20 无锡英诺赛思科技有限公司 Reverse fool-proof device for wafer of semiconductor chip mounter
WO2023181346A1 (en) * 2022-03-25 2023-09-28 株式会社Fuji Inspection assistance device, production management system, and inspection assistance method

Also Published As

Publication number Publication date
JP6855148B2 (en) 2021-04-07
JPWO2019097675A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP5059518B2 (en) Electronic component mounting method and apparatus
JP6513226B2 (en) Electronic parts handling unit
JP6154915B2 (en) Component mounting equipment
JP4995745B2 (en) Component mounting equipment
WO2019097675A1 (en) Component mounter, component inspection method, component inspection program, and recording medium
JP4855347B2 (en) Parts transfer device
JP4824641B2 (en) Parts transfer device
JP2009016673A5 (en)
WO2018173137A1 (en) Component mounting machine and nozzle height control method
JP2002271098A (en) Mounting machine and component mounting method therein
JP5999544B2 (en) Mounting apparatus, mounting position correction method, program, and board manufacturing method
JP2007042766A (en) Mounting device and mounting method of electronic component
JP2008117869A (en) Surface mounting device
JP2007287838A (en) Parts transfer device, mounting machine, and parts transfer device for parts inspection machine
JP5297913B2 (en) Mounting machine
JP6666692B2 (en) Component mounting machine, component suction method
JP2009070976A (en) Component mounting device
JP6086671B2 (en) Die component supply device
JP5220910B2 (en) Component mounting method
JP4712766B2 (en) Parts transfer device
WO2023228322A1 (en) Die pickup method and device
JP6884494B2 (en) Parts transfer device, parts transfer method and component mounting device
WO2024023926A1 (en) Surface mounter and surface mounting method
WO2023079606A1 (en) Component mounting device and component mounting positional deviation determination method
JP4780017B2 (en) Component mounting apparatus and component mounting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932068

Country of ref document: EP

Kind code of ref document: A1