WO2019096090A1 - 独立大电能电动设备用的热管理系统 - Google Patents

独立大电能电动设备用的热管理系统 Download PDF

Info

Publication number
WO2019096090A1
WO2019096090A1 PCT/CN2018/115021 CN2018115021W WO2019096090A1 WO 2019096090 A1 WO2019096090 A1 WO 2019096090A1 CN 2018115021 W CN2018115021 W CN 2018115021W WO 2019096090 A1 WO2019096090 A1 WO 2019096090A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature
power
thermostat
thermal management
Prior art date
Application number
PCT/CN2018/115021
Other languages
English (en)
French (fr)
Inventor
庄嘉明
Original Assignee
明创能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明创能源股份有限公司 filed Critical 明创能源股份有限公司
Priority to SG11202003533PA priority Critical patent/SG11202003533PA/en
Priority to US16/755,471 priority patent/US11605849B2/en
Publication of WO2019096090A1 publication Critical patent/WO2019096090A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • a thermal management system for independent large electrical power equipment is provided.
  • Lithium-ion battery Lithium-ion battery
  • Lithium-ion batteries have a very limited service life due to operating temperature and operating environment. After the end of the year, the replacement cost is surprisingly high, mainly due to improper temperature management in the battery core and excessive consumption of lithium ions.
  • electric vehicles Take electric vehicles as an example.
  • the cost of producing electric vehicles usually accounts for three points of the cost of electric vehicles. One, and this is also the replacement cost of replacing the battery core in the future, so the electric car still makes people look down.
  • the battery life of electric vehicles is extremely short compared to the traditional vehicle life.
  • the battery replacement cost of electric vehicles is often much higher than that of traditional vehicles, especially when purchasing electric vehicles.
  • the battery cell will not be able to store the original capacity due to natural decline, reducing the mileage of the electric vehicle's own battery core full of electric energy, and thus creating an electric car.
  • the market layout has been greatly challenged and hindered.
  • the patent application high power thermal management system can control the temperature of the battery core in a very strict temperature range, and can extend the life of the battery system to more than ten years, fully solving the problem of the layout of the electric vehicle market.
  • the heat source not only comes from the battery charging and discharging in the car, the motor runs, and also receives heat energy from the environment.
  • the cell temperature rises from 20 degrees Celsius to 30 degrees Celsius
  • the battery life will be halved when the battery cell
  • the temperature climbs from 30 degrees Celsius to 38 degrees Celsius the battery life will be halved again. The higher the temperature, the faster the life loss rate will be.
  • the internal self-reaction of the battery core will be accelerated, and the temperature will continue to rise, causing the battery negative electrode to collapse, the isolation film burned, the positive and negative electrodes are short-circuited, and the electrolyte is vaporized. , battery bleed valve, high temperature gas leakage, causing fire burning event. It is known that the temperature control system stops operating when the driver's leaving key is pulled out. However, if the heat generated by the self-reaction of the battery core without charge and discharge but the temperature is higher than 60 degrees Celsius, the temperature of the battery core will rise slowly. When the temperature is higher than 100 degrees Celsius, the reaction accelerates, usually less than one.
  • a thermal management device for the battery, trying to adjust the temperature of the battery core with the cooling device and the cooling liquid to improve the safety during use.
  • the current battery cells are generally erected side by side in a box with a plurality of standard lithium batteries, such as 18650, connected in series or in parallel, and each standard lithium battery and an adjacent standard lithium battery are only With a pitch of about 1 mm, it is not possible to provide a cooler between standard lithium batteries. Therefore, as shown in FIG. 1 , a conventional battery thermal management device is configured to reduce the temperature of the coolant in the circulation pipe 80 by the uniform cooling device 8 and to arrange the circulation pipe 80 in the battery core 920 and the battery casing 90.
  • the side absorbs the thermal energy generated by the battery case 90 and the battery cell 920.
  • the coolant is temperature-regulated in synchronization with the battery cell 920 and the battery case 90 in one cycle.
  • the battery case 90 is heated by the external environment, and is even higher than the battery cell 920.
  • the temperature will also constantly increase the temperature of the coolant, so that the refrigeration device needs more power to cool.
  • the battery case has a considerable heat capacity. When the outside of the cell is measured to 30 degrees Celsius and then the refrigeration unit is turned on, the temperature will continue to climb and then slowly cool down, and the battery life will be affected.
  • the main function of the battery in the electric vehicle is to supply electric energy to operate the motor, and also to ensure that the temperature of the battery core is not too high.
  • the refrigeration device needs to extract a large amount of electric energy to operate as described above. Cooling, used to mainly cool the battery casing, but can not directly cool the battery core alone, which will result in improper configuration of the power when the power is poor, can not be effectively configured, especially in the above case when the temperature of the battery casing is higher than the battery core At the same time, the battery core cannot be effectively controlled to operate in the most appropriate temperature range.
  • the coolant is usually delivered by the pumping pressure, when the remaining electric energy is already low, it is also required to operate the pump to deliver a large amount of coolant to the battery casing, which will further deplete the already low electric energy inventory.
  • it does not help to maintain the normal operation and use of the electric equipment under low power, and it is more difficult to ensure that the battery core is maintained within an effective operating temperature range.
  • the rising battery core temperature will continue to accelerate battery degradation and battery capacity decline, and also increase the maintenance cost of electric equipment using this thermal management solution.
  • the battery core temperature is continuously lowered to an excessively low temperature state if it is excessively cooled, it is ensured that the electrolyte in the battery core is not subjected to a high temperature due to storage and discharge, and a vaporization of the electrolyte causes a series of chain reactions;
  • the discharge efficiency of the core makes the performance power of the electric equipment operation be discounted. All of the above will cause the cost, reliability, safety, mileage and driving performance to be affected.
  • the battery core cannot be maintained in a preferred temperature range, so that the performance of the battery core is deteriorated; on the other hand, the charging and discharging frequency is increased, and the service life is further shortened. Therefore, under the maintenance of the thermal management system partially cooled by air, the battery life of the battery core is only two years; on the contrary, the battery core under the liquid cooling thermal management system is extended for nearly ten years in the cold zone climate. . However, the same liquid cooling thermal management system, if in a subtropical climate, the battery life maintained is reduced to only four years, especially compared to traditional lead-acid batteries using fossil fuel vehicles, electric vehicles comprehensive The expensive price of replacing the battery core is even more impressive.
  • An object of the present invention is to provide a thermal management system for an independent large electric power electric device, which detects the temperature of the battery core and measures the remaining power of the battery core, so that when the electric quantity is sufficient, the large thermostat is operated. Ensure that the battery core is maintained at the optimum operating temperature, reducing the battery core decay rate and improving the battery core discharge efficiency to extend the battery life and the rate of use.
  • Another object of the present invention is to provide a thermal management system for an independent large electric power electric device, wherein the sensor detects the remaining battery power, and when the remaining power is too low, only the small thermostat is operated, thereby improving The total operating hours of electric equipment to maintain a long battery life.
  • a further object of the present invention is to provide a thermal management system for an independent large electric power electric device, by obtaining environmental physical changes, estimating future temperature changes, adjusting the battery core temperature in advance, and ensuring that the battery cells are maintained at an optimum working condition. Temperature, greatly improve the efficiency of the use of electrical energy, reduce the risk of damage to the battery core package.
  • Still another object of the present invention is to provide a thermal management control method for an independent large electric power electric device, which determines the operation of the small thermostat and/or the large thermostat by sensing the temperature of the battery core and the remaining electric power.
  • the small thermostat and/or the large thermostat determines the operation of the small thermostat and/or the large thermostat by sensing the temperature of the battery core and the remaining electric power.
  • Still another object of the present invention is to provide a thermal management control method for an independent large electric power electric device, obtain an environmental physical change amount and estimate a temperature change amount of the electric device, thereby accurately maintaining the battery core at an ideal working temperature, which is substantially Extend the life of the battery core and reduce the operating cost of the electric equipment.
  • the present invention provides a thermal management system for an independent large electric power electric device for maintaining a plurality of battery cells in a predetermined temperature range, wherein the battery cells are disposed in at least one battery casing, and the foregoing battery cells
  • the thermal management system comprises: a temperature regulating device comprising at least one small thermostat and at least one large thermostat having a power greater than the aforementioned small thermostat, the aforementioned small thermostat and the aforementioned large temperature adjustment
  • the device respectively thermally connects the battery core and the battery casing, and at least one selected switch for selectively switching the small thermostat or the large thermostat;
  • a sensing device includes at least one temperature for sensing the temperature of the battery core a sensor, and at least one power sensor for sensing the remaining battery power of the battery core, and respectively outputting a temperature signal corresponding to the temperature of the battery core, and a power signal corresponding to the remaining battery power of the battery core; and receiving the temperature signal And a micro-processing device for the electric energy signal, wherein the micro
  • a thermal management system for another independent large electric power electric device of the present invention is for maintaining a plurality of battery cells in a predetermined temperature range, wherein the battery cells are installed in at least one battery case, and the battery cells are For driving the above-mentioned independent large electric power electric device, the thermal management system comprises: a temperature regulating device comprising at least one small thermostat thermally connected to the battery core; and a set of sensing devices including at least one sensing temperature of the battery core a temperature sensor, and at least one environment sensor for sensing ambient environment information, and respectively outputting a temperature signal corresponding to the temperature of the battery core and an environmental signal corresponding to the environmental information; and receiving the temperature signal and the environmental signal And a micro processing device that instructs whether the temperature adjustment device is turned on according to the temperature signal and the environmental signal.
  • the temperature control device and the sensing device disclosed by the present invention enable an independent electric device that cannot obtain power support from the outside, especially a large electric power device using hundreds of amps or several kilowatts, which can be measured and/or Estimate the external environmental heat source, measure the remaining power of the battery pack and the physical changes of the external environment as the benchmark for switching the thermostat, and effectively pre-adjust the battery pack temperature to ensure that the battery operating environment temperature can be accurately maintained when the battery is fully charged. It can greatly improve the service life and efficiency of the battery core, improve the continuous operation time of the electric equipment, and effectively exhaust the power stored in the battery pack when the electric equipment is about to be impacted or turned over, and quickly reduce the battery pack to a low temperature state. In order to avoid the crisis of the chain reaction caused by the vaporization of the internal electrolyte generated by the high temperature of the battery core, it is possible to achieve the above purpose by providing excellent safety.
  • FIG. 1 is a schematic diagram of a battery pack thermal management device of the prior art.
  • FIG. 2 is a perspective exploded view of the thermal management system of the first preferred embodiment of the thermal management system for the independent large electric power electric device of the present invention.
  • FIG. 3 is a block diagram of the thermal management of the embodiment of Figure 2.
  • Figure 4 is a flow chart showing the operation of the embodiment of Figure 2.
  • Figure 5 is a flow chart showing a second preferred embodiment of the thermal management system for the independent large electrical power device of the present invention.
  • Figure 6 is a parallel cross-sectional view of the temperature regulating device of the embodiment of Figure 5.
  • Figure 7 is a block diagram of a third preferred embodiment of a thermal management system for an independent large electrical power plant of the present invention.
  • Figure 8 is a perspective view of the third preferred embodiment of Figure 7.
  • FIG. 9 is a flow chart showing the execution of a temperature priority environment sensing device system of a thermal management system for an independent large electric power electric device according to the present invention.
  • Figure 10 is a block diagram of a fourth preferred embodiment of a thermal management system for an independent large electrical power device of the present invention.
  • Figure 11 is a cross-sectional view of the fourth preferred embodiment of Figure 9.
  • Figure 12 is a cross-sectional view showing a fifth preferred embodiment of the thermal management system for the independent large electric power electric device of the present invention.
  • Thermostat 1 (1) 1 (4) Miniature thermostat 10 (1) 10 (2) 10 (3)
  • GPS 240 (4) Memory 242 (4)
  • FIG. 2 is a perspective view showing the disassembly of the thermal management system of the first preferred embodiment of the thermal management system for the independent large electric power electric device of the present invention.
  • the electric device in the embodiment is an electric passenger car, for example. Referring to FIG. 3 together, when the passenger car is driving on the road in the summer afternoon, the external environment such as the heat radiation of sunlight is transmitted into the battery casing 90 (1) by the electric vehicle casing 94 (1) , and the motor running in the vehicle. a battery cell 920 (1) another heat source external battery cells 920 (1) itself gradually warmed by the discharge process, the battery case 90 (1) and the battery cell 920 (1) by an external heat source and the external environment of the vehicle Influence, the operating environment temperature gradually increases.
  • the battery core 920 (1) is exemplified here as a standard lithium battery such as 18650.
  • a temperature sensor 20 (1) is provided for each battery pack 92 (1) for sensing the temperature of the battery cell 920 (1) in each battery pack 92 (1) ;
  • each of the battery pack 92 (1) further is provided with one pair of battery pack 92 should be (1) the power sensor 22 (1), for measuring the residual amount of the battery pack 92 (1).
  • the aforementioned temperature sensor 20 (1) and the power sensor 22 (1) are collectively referred to as a sensing device 2 (1) to measure the internal temperature of the battery pack 92 (1) . With the remaining charge, and output the signal to a micro-processing device (not shown in the figure).
  • a micro-processing device not shown in the figure.
  • those skilled in the art can easily set the above-mentioned power sensors to the respective circuit control boards corresponding to each battery pack, or collectively set in a single circuit, and even corresponding to each battery core arrangement, without hindering the present invention. Implementation.
  • the temperature control device 1 (1) includes a small thermostat 10 (1) , a large thermostat 12 (1) , a set of selective switching thermostat 10 (1) and large temperature adjustment
  • the selector switch ( 14 ) of the selector 12 (1) selects the changeover switch 14 (1) as an example of a solenoid valve.
  • the small thermostat 10 (1) and the large thermostat 12 (1) are thermally coupled to the battery cell 920 (1) through the internal heat conduction channel 161 (1) of the heat conduction channel 16 (1) , respectively , and conduct heat through the outside.
  • the passage 162 (1) thermally connects the battery casing 90 (1) .
  • the water pump 11 (1) is used as a supercharging device to drive the coolant to operate.
  • the coolant is mixed with antifreeze such as ethylene glycol or propylene glycol and water to prevent the coolant from freezing when the temperature is extremely low, which is advantageous for maintaining a flowable state at a very low temperature, and having a large heat capacity of the coolant.
  • a coolant that thermally connects the large temperature regulator 12 (1) is housed inside the battery case 90 (1) .
  • the cooling liquid heat capacity itself is relatively large, in accordance with the cooling mode, the conventional electric vehicle, electric car just cool the garage stationary state, running into the sun exposure of the road, the battery pack 92 (1) will be surrounded by a cooling liquid Without a significant increase in temperature, the temperature regulating device 1 (1) will not open.
  • the temperature control device 1 (1) that is turned on at this time will not be able to load.
  • the combined effects of the solar radiant heat source, the external radiant heat source of the vehicle, the motor heat source and the operating heat of the battery pack itself will continue to heat up in a very significant range until the operating environment temperature of the battery cell 920 (1) is increased by ten. After the temperature control device 1 (1) is powerfully operated, the temperature can be gradually reduced back to the desired value.
  • the microprocessor when the electric vehicle is started, the microprocessor will start performing system-wide detection in step 50, and then in step 51, it is measured via temperature sensor 20 (1) and Collecting the temperature of the battery case 90 (1) and the battery cell 920 (1) and outputting a temperature signal to the micro-processing device, and the micro-processing device performs calculation of the input thermal energy, and judges according to how to achieve the heat balance, and determines whether the temperature adjustment needs to be started.
  • Device 1 (1) If the temperature adjustment device 1 (1) needs to be turned on, the power signal of the battery cell 920 (1) detected by the power sensor 22 (1) is further received in step 52 for judging each battery pack.
  • the large thermostat 12 (1) is instructed to operate at step 55, and the battery casing 90 (1) and the battery pack 92 (1) are simultaneously cooled.
  • the temperature regulating device 1 (1) of the present invention will be more than In the case of the current electric vehicle, the temperature adjustment is started earlier in step 55, and the process returns to step 50 to repeat the cycle.
  • the heat capacity of the coolant can effectively buffer a small amount of intrusive heat energy, outside the battery pack 92 (1)
  • the effect of the heat source will be greatly isolated at the battery casing 90 (1) , and the operating environment temperature of the battery cell 920 (1) can be effectively controlled, for example, in the range of plus or minus one degree Celsius, greatly extending the battery cell 920 ( 1) The service life; and the large thermostat does not need to operate excessively, so that limited electric energy is effectively used.
  • step 53 a warning is issued by a warning device (not shown), for example, by the microprocessor according to the booking process.
  • the inner speaker emits a warning tone to inform the driver.
  • step 54 the small thermostat 10 (1) is simply operated, and the circulation passage 18 (1) is used to make the cooling liquid enter a small cycle of the partial pipe, and only the temperature adjustment of the battery pack 92 (1) is performed regardless of the battery casing 90. (1) .
  • the energy used to regulate the temperature should be limited to the low standard that allows the battery core 920 (1) to maintain operation, save energy to extend the distance traveled by the vehicle, and reduce the probability of anchoring on the side of the road.
  • the electric vehicle is different from the general gasoline and diesel vehicle, and there is a dangerous chain reaction in which the battery is overheated and the electrolyte in the battery core 920 (1) is vaporized and ruptured, and the adjacent battery core is short-circuited. Revealed that even if the final electric vehicle still broke down on the roadside and caused a battery cell to rupture under the sun exposure, the power of all the battery packs 92 (1) was exhausted, and even the battery cell 920 (1) was short-circuited. There is no power to continue to release, there is no risk of causing a large number of fires to release a large amount of rapid release of electrical energy.
  • the selection of the switch is Take the three-way two-position reversing solenoid valve as an example, and the judgment process first considers the temperature signal and then considers the electric quantity signal, but the above description is not a limitation of the present invention, and the selection of the switching switch can be easily replaced with a mechanical directional control valve or other directions. Control valve; coolant and water pump can be replaced with other corresponding accessories, only need to be able to selectively adjust the temperature of the battery casing and battery pack according to temperature and power or other reference information, the above replacement does not hinder this Implementation of the invention.
  • the temperature signal and the power signal are not necessary to distinguish the order.
  • the power detecting step 51' is executed first, and the battery detector 920 (2) is detected by a power detector (not shown), and the power signal is output to the microprocessor; and then step 52 is performed.
  • the temperature of the aforementioned battery case 90 (2) and/or the aforementioned battery pack 92 (2) is detected by a temperature sensor (not shown), and a temperature signal is output to the microprocessor.
  • the large thermostat 12 is operated according to step 55' (2) ) , the battery casing 90 (2) and the battery pack 92 (2) temperature synchronization is reduced, and even the battery casing 90 (2) temperature is lowered slightly below the battery cell 920 (2) temperature, so that the external environment and the heat source of the motor Effects can not enter the battery case, to ensure that the battery cell 920 (2) only by the operating environment temperature of the battery cell 920 (2) Effect of heat itself.
  • the difference between the so-called large thermostat 12 (2) and the small thermostat 10 (2) in this example is that the large thermostat 12 (2) includes both the above cooler and the two heat conduction channels, when the amount of electricity when sufficient, both to obtain good temperature control; relatively small thermostat 10 (2) only comprises an inner heat conduction path 161 above cooler 920 and the corresponding battery cell (2) at (2).
  • the cooler is only for the internal heat conduction channel 161 (2) which consumes less power, and the temperature of the battery cell 920 (2) is guaranteed. Do not lose control and do everything in your power to extend the mileage that the passenger car can exercise until it is driven at the storage station.
  • the parallel connection of the battery core or the battery casing through the heat conduction channel is by no means a limitation of the present invention.
  • Those skilled in the art can easily replace the parallel connection manner according to the design of the battery pack as a means for adjusting the temperature of the battery core or the battery casing, according to the battery casing.
  • the design of the internal structure of the battery core, or the change of the thermal conduction channel circulation structure according to the requirements of the electric device or the battery core, and the thermal conduction path connection of the low thermal resistance material are not hindered from the implementation of the present invention.
  • a warning signal is issued to the warning device by the microprocessor in step 53', and a warning text prompt is displayed on, for example, the electric vehicle display panel, and the temperature adjustment device at this time is
  • the command can only operate the small thermostat 10 (2) in step 54', and perform the extended endurance mode cooling as in the previous embodiment, thereby saving the electric energy consumed by the temperature regulating device as much as possible, and supplying the saved electric energy to the motor to operate the vehicle to The nearest power station, and repeating the above-described process loop step 50' performs a full system test.
  • warning device of this example is replaced with a buzzer, a speaker, a multimedia audio-visual device, a GSM/UMTS/LTE data exchange device to send a short message or an email, etc.
  • it can be reached to remind the driver to go to the power storage station as soon as possible to store electricity. Remind the effect, reduce the permanent decay caused by over-discharge of the battery core, and improve the service life of the battery core.
  • the battery core since the electrolyte inside the battery core has a relatively high specific heat capacity, the battery core accumulates internal heat energy due to storage or discharge, and it takes a period of time to gradually convey to the outer package position of the battery core, so that the battery core outer layer
  • the package has a certain temperature drop inside the core of the battery core, so the temperature signal detected by the temperature sensor generally disposed in the outer package of the battery core is actually a backward indicator relative to the core temperature of the battery core;
  • a temperature sensor that is transmitted to the outer package of the cell through a coolant having a relatively high heat capacity also causes a temperature drop between the battery case and the cell.
  • the temperature sensor disposed in the battery case also produces the same time drop for the operating environment temperature of the battery cell. This is the independent large-scale electric power equipment such as electric vehicles, which cannot accurately and constantly maintain the maximum temperature of the battery pack in an ideal operating environment.
  • the thermal management system of the third preferred embodiment of the present invention is disposed in a field independent charging station 96 (3) as shown in FIGS. 7 and 8.
  • the thermal management system of this example includes a set of temperature regulating devices. (not shown), a set of sensing devices (not shown), and a set of microprocessing devices 3 (3) .
  • the threshold can also be via dynamic calculation due to the battery core, coolant, battery casing, etc.
  • the calorific value, heat capacity, heat transfer efficiency, and temperature profile of each device component are known. Therefore, in this example, the estimated parameters such as solar radiation intensity and tarmac radiation intensity are added to the external environment. And the measured temperature signal is continuously analyzed by Regression Analysis as a parameter for practical use.
  • the plurality of battery cells 920 (3) are installed in, for example, a basement, and the basement becomes the battery casing 90 (3) as defined in this example, and each group of battery cells 920 ( 3) A corresponding temperature sensor 20 (3) and a Thermoelectric Cooling Chip (TCC), which is exemplified as a temperature regulating device, are respectively disposed.
  • the thermoelectrically cooled wafer in this example is moved by the energy (Electron and hole) of the carrier carried by the N-type semiconductor material and the P-type semiconductor material, and the carrier energy is continuously moved and accumulated. At the upper end, the upper end temperature will rise, and the lower end temperature will gradually decrease.
  • thermoelectric cooling wafer directly contacts the cold surface 100 (3) to the package surface of the battery cell 920 (3) , and bonds the hot surface 102 (3) to the heat conduction channel, thereby conducting heat conduction.
  • thermoelectric refrigeration wafer 10 (3) itself is small, and without the heat-conducting cooling liquid channel by heat conduction, the battery cell 920 can (3) consisting of a battery pack 92 (3) is more space, In order to place more cells 920 (3) in the same space to increase the power reserve capacity.
  • thermoelectric refrigerated wafer 10 (3) when the thermoelectric refrigerated wafer 10 (3) is operated, there is no noise generated by the operation of the mechanical components, the simple structure has no maintenance requirement, and the service life is long, because the thermoelectric material can recover waste heat as power generation and is more environmentally friendly.
  • the thermoelectrically cooled wafer 10 (3) is connected in parallel, and even if one of the wafers is damaged, the other wafers can continue to operate.
  • thermoelectrically cooled wafers in this example are disposed corresponding to each set of battery cells, they belong to the small thermostats in the temperature control device in the foregoing embodiments.
  • the microprocessor will be used as the management core from step 60. 3 (3)
  • the communication device acts as the environmental sensor 24 (3) in the sensing device, and in step 61, it undertakes to receive the work from the environmental signal provided by, for example, the meteorological unit, so as to Environmental information on the temperature and rainfall in the area is provided to the microprocessor 3 (3) .
  • the micro-processing device 3 (3) receives the temperature signal and the environmental signal transmitted from the temperature sensor 20 (3) and the environmental sensor 24 (3) at each battery cell in step 62, not only according to the electric device
  • the existing temperature condition inside can further calculate the ambient heat source and the self-heating amount in the next few hours according to the reservation parameter evaluation in step 63, thereby obtaining an estimated temperature value, and then pre-sending the coolant and the battery core 920 in step 64.
  • the method for pre-evaluating the future thermal energy control disclosed by the present invention does not have to wait for the actual temperature to rise, and then rushes to start the temperature regulating device, resulting in an improper thermal management cycle in which the operating environment temperature is out of control and then excessively cooled and too cold.
  • the heat insulation layer with high thermal resistance such as rubber and fireproof cotton interlayer is additionally disposed on the wall portion of the basement, so that the external heat source cannot easily affect the ambient temperature of the battery core, thereby improving the operation of the battery core. Predictability of ambient temperature.
  • the fourth preferred embodiment of the present invention is to place the thermal management system on a fixed-travel bus. Because of the fixed driving route, electric buses of the electric class have better control of the parameters of the travel and the external environment of the vehicle.
  • the temperature signal directly measured by the direct measurement is used as the basis for determining the start, run or stop of the temperature control device 1 (4) , and the data can be adjusted by using the data such as the power signal, the temperature signal, and the external environmental signal as a reference.
  • Set the threshold range to ensure that battery pack 92 (4) is maintained at the optimum operating temperature. When the power is sufficient, the operating environment temperature of the battery cell 920 (4) is extremely well maintained within a range of, for example, plus or minus one degree Celsius.
  • the electric bus is used in the cold zone climate zone, in the nighttime charging process, for example, it is necessary to take into consideration the high temperature generated by the battery cell 920 (4) during charging, and also consider the car body. Whether it is affected by external low temperature in the low temperature environment, for example, after the battery core 920 (4) is charged, it is gradually cooled down to even below the freezing point, which is dangerous. Therefore, regardless of whether the vehicle is in a running state, the thermal management of the power supply section continues to operate, and when the vehicle is not charging and traveling, it is more necessary to heat the battery cell 920 (4) from time to time to ensure that the operating environment temperature is, for example, 17 degrees Celsius. about.
  • the same parts as the foregoing embodiment such as the temperature regulating device 1 (4) , the sensing device (not shown), and the microprocessing device 3 (4) , will not be repeated, but the consideration is large.
  • the bus stops at the stop station at the end of each trip, and there is no proper timing to charge.
  • the battery pack 92 (4) must be charged in the neutral position of the rest, enter the battery core.
  • the charging current of 920 (4) is generally set to be quite high, and the current is significantly larger than the discharge current during normal driving, so that the calorific value during charging is also increased correspondingly, which is higher than the heating process during normal driving, so that the charging process
  • the cooling in the shape is more important.
  • thermoelectrically cooled wafer when the high temperature generated on the side of the battery cell 920 (4) is much higher than the opposite side, the temperature difference can be used to generate electricity by the thermoelectric effect, thereby further saving energy consumption;
  • the reverse current is applied to achieve the heating effect, so that when the bus operates in a cold zone, the operating environment temperature of the battery cell 920 (4) is not too cold and damages the battery cell 920 (4) , and even an accident occurs.
  • the large thermostat 12 (4) in the example further comprises a set of coolant pipes leading to the interior of the vehicle body, and the heat generated by the battery casing 90 (4) and the battery pack 92 (4) is cooled by the thermoelectric switch via the switch. The thermal energy carried by the wafer is stored in the cooling liquid.
  • the core comprises sensing a temperature of the battery temperature sensor, a set of environmental sensor 24, and (4)
  • the environment sensor 24 in this embodiment (4) comprises a large
  • the global positioning system 240 (4) built in the passenger car stores the memory 242 (4) of the map database, the clock circuit 244 (4) , and inputs the average temperature of each season in the memory, for example.
  • the microprocessor 3 (4) will determine the location of the electric bus according to the information transmitted by the global positioning device system 240 (4) and the map data.
  • the clock circuit 244 (4) comparing the average temperature of the position stored in the memory 242 (4) , estimating the environmental parameters that need to be faced during driving, and evaluating the inside and outside of the vehicle.
  • one or more temperature sensors can be added to monitor the temperature inside and outside the vehicle body, and the dynamics. Regression confirms the calculation result. It can also be further combined with the power sensor of the foregoing embodiment to make the smart driving vehicle easier to implement.
  • the sensing device further includes an acceleration gauge 246 (4) for allowing the microprocessor device 3 (4) to use the vehicle controller (VCU) and the battery management system (BMS) by acceleration measurement. And the aforementioned acceleration gauge three-way message to determine the vibration amplitude to confirm whether the bus is impacted or overturned.
  • the microprocessor 3 (4) will immediately instruct the temperature adjustment device 1 (4) The maximum efficiency operation, on the one hand, cools the battery pack 92 (4) , maintains the battery pack 92 (4) in a low temperature state, and prevents the battery core 920 (4) from generating high temperature due to the foregoing conditions, resulting in the electrolyte of the battery core 920 (4) .
  • Outflow or vaporization breaks through the battery core 920 (4) package, or the battery core 920 (4) package is damaged by external force, even if the breakage is damaged, because the battery cell 920 (4) at this time has cooled to a low temperature state, It is also difficult for the electrolyte to flow out immediately to produce a chain reaction of combustion until the electricity consumes light.
  • the present invention proposes to comprehensively judge the temperature signal and the power signal, and pre-evaluate the environmental impact, so that the operating environment temperature of the battery cell is no longer simply based on the current temperature data.
  • the priority order of the electric equipment can be integrated and considered. In the case that the power is about to be insufficient, the endurance of the electric equipment is preferentially provided, so that the electric equipment does not easily stop.
  • the heat source assessment inside and outside the environment is more integrated, and it is estimated that the thermal energy of the battery core will be in and out, and the temperature regulation will be performed in advance to avoid the predictable thermal shock effect, so as to maintain the operating temperature of the battery core at a minimum temperature, for example, one degree Celsius.
  • the rapid cooling and cooling will not only greatly reduce the risk of fire and burst, but also release the stored energy quickly and reduce the energy stored in the battery core. Caused by burning and bursting, good risk and damage control.
  • the fifth preferred embodiment of the present invention immerses the battery pack 92 (5) in the cooling liquid, eliminating most of the conduction.
  • the battery pack 92 (5) immersed in the cooling oil so that the heat transfer area increases maximized, so that heat transfer efficiency
  • the cooling oil is insulated by the coolant release.
  • the water is pumped by the pump 11 (5) to push the cooling oil so that the cooling oil can flow in the heat conducting passage, and the cooling oil 104 (5) is cooled by the temperature regulating device.
  • the same portions as those of the foregoing embodiment, such as the temperature regulating device, the sensing device, and the microprocessing device, will not be described in detail.
  • those skilled in the art can choose to immerse or partially soak the battery pack into the coolant or with some heat conduction channels for planning and design, or with any heat exchange temperature control device and set the auxiliary heat dissipation components (such as The heat dissipation fins, the heat dissipation fan, and the like are not hindered from the practice of the present invention.
  • the cooling oil has an insulating effect, it can provide an electric device such as when it is damaged by an uncontrollable external force, and the battery pack is also damaged by an external force, thereby causing electrolyte percolation, and the low temperature of the percolating flow has a high volatility electrolyte at this time and the cooling oil
  • the characteristics of the high-flame point of the cooling oil continue to ensure that the electric equipment and the surrounding environment are in a safe state, and the electrolyte that overflows due to the damage of the electric equipment causes a second accident, so that the risk control of the present invention is improved to a higher level. Safety level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种独立大电能电动设备用的热管理系统,供将电池芯保持在预定温度范围,其中电池芯是被装置于电池外壳中,以及电池芯是供驱动独立大电能电动设备,该热管理系统包括:调温装置,包括小型与大型调温器,分别导热连结电池芯和电池外壳,及选择切换调温器的选择切换开关;感测装置,包括温度感测器及电量感测器,并供分别输出对应电池芯的温度信号及对应电池芯的电量信号;及接收信号的微处理装置依照温度信号指令调温装置是否开启,以及当调温装置需开启时,依照电量信号指令上述选择切换开关,决定切换至开启小型和/或大型调温器。

Description

独立大电能电动设备用的热管理系统 技术领域
一种独立大电能电动设备用的热管理系统。
背景技术
世界对于能源的需求,在全球气候暖化与变迁下,逐渐由石化燃料转向可再生资源作为取代的动力来源,达到减少温室气体的排放,希冀减缓全球暖化的趋势,同时改善空气品质。随着蓄电芯的发展,电能正日渐取代汽油作为主要的动力来源。
然而,采以电能作为动力的电动汽车,所用的电池芯常选用锂离子电池(Lithium-ion battery)作为电能的供应源,锂离子电池却因工作温度与运作的环境使得使用年限非常有限,同时年限终结后的重置成本又高的惊人,主要因电池芯内温度管理不当,锂离子耗损过快,就以电动汽车为例,生产电动汽车成本通常电池芯就占电动汽车的造价成本三分之一,且这也是未来更换电池芯的重置成本,故而电动汽车仍让人们望之却步。
此外,电动汽车的电池芯年限相较于传统汽车年限而言极为短暂,遑论电动汽车的电池芯更换费用往往相较于传统汽车的保养费用更是高出许多,尤其就在购入电动汽车的短短数年后,电池芯随着使用时间与运作环境等,自然衰退将无法蓄存原来的电容量,降低了电动汽车本身电池芯蓄满电能下够行驶的里程,也就造就电动汽车于市场布局上受到巨大的挑战与阻碍。本专利申请大电能热管理系统可将电芯温度管控于非常严苛的温度范围,可延长电池系统寿命至十年以上,充分解决电动汽车市场布局的问题。
电动汽车于行驶下,热源不仅来自于车内的电池充放,马达运转,也会从 环境接收热能,当电芯温度从摄氏20度攀升到摄氏30度,电池寿命会减半,当电芯温度从摄氏30度攀升到摄氏38度,电池寿命会再减半,温度越高,寿命减损倍率更快。而且,如果电池芯上没有设置保护装置或保护装置没有及时切断回路,将使电池芯内部自我反应加速,温度持续升高而造成电池负极瓦解,隔离膜烧毁,正负极短路,电解液气化,电池泄阀,高温气体外泄,造成火烧车事件。公知温控系统在驾驶离座钥匙拔离时停止运作。然而电芯在没有充放电但是温度高于摄氏60度时自我反应所产生的热量若无法排除,电芯温度会因此缓慢上升,当温度高于摄氏100度时,反应加速,通常在不到一小时即会造成电池负极瓦解,电池泄阀,高温气体外泄,造成火灾。这是所有锂离子电池系统共同的特性,也是目前电动车及手机在待用时自燃的主要原因。
基于电池芯在高温状态下易有安全疑虑,有业者提出关于电池的热管理装置,试图以致冷装置与冷却液调节电池芯的温度,提升使用时的安全性。受限于目前的电池芯一般是以多个标准锂电池例如18650,共同并排竖立在一个盒中,彼此串接或并接,且每一个标准锂电池和相邻的标准锂电池间,仅有约1毫米的间距,无法在标准锂电池之间设置冷却器。因此,如图1所示为一种现有的电池热管理装置,是以一致冷装置8降低循环管80内的冷却液温度,并将循环管80路径设置于电池芯920与电池外壳90一侧,藉以吸收电池外壳90与电池芯920所产生的热能。然而这种设计,冷却液是在一次循环内同步对电池芯920与电池外壳90进行温度调节,例如在夏天的烈日下,则电池外壳90受外部环境影响而不断升温,甚至高于电池芯920的温度,也会不断拉高冷却液的温度,使致冷装置需要耗费更大的功率来进行冷却。电池外壳有相当的热容量,等到电芯外部测到摄氏30度再开启制冷装置,温度会继续爬升再缓慢降温,同时对电芯寿命造成影响。
但电动车内的电池主要功能是供应电能让马达运转,也要同时确保电池芯的温度不致过高,考量当电池的电量低于一定水准时,致冷装置却需要如上述情况抽取大量电能运作致冷,用来主要降温电池外壳,而无法直接单独对电池芯进行冷却,这会造成电能贫乏时的配置顺序失当,不能有效地配置,尤其如上述情况当电池外壳的温度更高于电池芯时,也让电池芯无法有效的被控制在最适当的温度范围内操作。
更进一步,由于冷却液通常是藉由泵浦的压力输送,当剩余电能已经偏低,还要耗费在泵浦的运转而输送大量冷却液至电池外壳,将进一步损耗已经偏低的电能存量,却无助于在低电量下维持电动设备的正常运转与使用,更难确保电池芯是被维持在有效的工作温度范围内。在长期的使用过程中,屡屡攀升的电池芯温度将不断加速电池劣化以及电池芯的电容量衰退,也让采用此解决热管理方案的电动设备维护成本变相增加。
但如果过度冷却而因此将电池芯温度持续降至过度低温的状态时,虽能确保电池芯内电解液不至因蓄放电的高温,而产生电解液汽化导致一连串的连锁反应;但会降低电池芯的放电效率,使得电动设备运转的性能功率打折扣,以上都说明将使得成本、可靠性、安全性、行驶里程、驾驶性能皆受到影响。
由于上述现行热管理系统的无效率与能量配置使用顺序错误,一方面无法将电池芯维持于较佳的温度范围,使得电池芯性能劣化;另方面提高充放电频率,更进一步减短使用年限。因此在部分通过空气冷却的热管理系统维护下,电池芯的使用年限仅区区两年;相反地,部分采用液态冷却的热管理系统下的电池芯,在寒带气候下使用年限延长达近十年。但同样的液态冷却热管理系统,如果是在亚热带气候下,所维护的电池芯使用寿命又再度减短到仅有四年,尤其相较于传统使用石化燃料车辆的铅酸蓄电池,电动车全面更换电池芯的昂贵 价格更显得十分可观。
当然,这类电池芯常应用于发电设施,由于铅酸蓄电池特性反应速度迟缓,且使用的年限经常于数年就已衰退到不堪使用,因此随着电池芯技术发展,环保意识抬头,新的电池芯技术逐渐扩展成为风力、太阳能设施及发电厂的电能储存设备,虽然使用年限延长却也带来较高的重置成本,本专利大电能热管理系统可将电芯温度管控于非常严苛的温度范围,可延长电池系统寿命至十年以上,加速锂离子电池替代铅酸蓄电池的市场发展。
基于前述,如何在上述动辄数百安培电流输出的独立大电能电动设备中,维持电池芯温度于最适工作温度,提供电池芯的使用安全性,延长电池芯的使用年限以及沿用率,以提升总工作运转时数就是本发明所要达成的目的。
发明内容
本发明之一目的,在于提供一种独立大电能电动设备用的热管理系统,既侦测电池芯的温度,也量测电池芯剩余电量,以便在电量充分时,让大型调温器运转,确保电池芯维持于最适工作温度,降低电池芯衰退速度与提升电池芯放电效率,以延长电池芯的使用年限与沿用率。
本发明的另一目的,在于提供一种独立大电能电动设备用的热管理系统,藉由感测器侦测电池芯剩余电量,在剩余电量过低时,仅让小型调温器运转,提高电动设备总运转时数,藉以维持较长的续航力。
本发明的再一目的,在于提供一种独立大电能电动设备用的热管理系统,藉由获得环境物理变化量,预估未来温度改变,提前调节电池芯温度,确保电池芯维持于最适工作温度,大幅提高电能的使用效率,降低电池芯封装破损风险。
本发明的又另一目的,在于提供一种独立大电能电动设备的热管理控制方 法,藉由感测电池芯温度及剩余电量,决定让小型调温器和/或大型调温器运转,在电量充裕时确保电池芯在理想工作温度,电量较低时则在尽力维持电池芯提供较长的续航力。
本发明的又再一目的,在于提供一种独立大电能电动设备的热管理控制方法,获得环境物理变化量并估算该电动设备的温度变化量,藉以精准动态维持电池芯在理想工作温度,大幅延长电池芯的使用寿命,降低电动设备的操作成本。
为达上述目的,本发明提供一种独立大电能电动设备用的热管理系统,供将复数的电池芯保持在一预定温度范围,其中前述电池芯设置于至少一电池外壳中,以及前述电池芯供驱动上述电动设备,该热管理系统包括:一调温装置,包括至少一小型调温器与至少一功率大于前述小型调温器的大型调温器,前述小型调温器和前述大型调温器分别导热连结上述电池芯和上述电池外壳,及至少一组选择切换上述小型调温器或上述大型调温器的选择切换开关;一感测装置,包括至少一感测上述电池芯温度的温度感测器,及至少一感测上述电池芯剩余电量的电量感测器,并供分别输出对应上述电池芯温度的温度信号,及对应上述电池芯剩余电量的电量信号;以及一接收上述温度信号及上述电量信号的微处理装置,该微处理装置依照上述温度信号指令起始、持续或停止上述调温装置,或依上述电量信号指令上述选择切换开关,决定开启上述小型调温器或上述大型调温器。
此外,本发明的另一种独立大电能电动设备用的热管理系统,供将复数电池芯保持在一预定温度范围,其中前述电池芯是被装置于至少一电池外壳中,以及前述电池芯是供驱动上述独立大电能电动设备,该热管理系统包括:一调温装置,包括至少一导热连结上述电池芯的小型调温器;一组感测装置,包括 至少一个感测上述电池芯温度的温度感测器,及至少一个感测周边环境资讯的环境感测器,并供分别输出对应上述电池芯温度的温度信号及对应上述环境资讯的环境信号;及一接收上述温度信号及上述环境信号的微处理装置,该微处理装置依照上述温度信号及上述环境信号,指令上述调温装置是否开启。
通过本发明所揭示的调温装置以及感测装置,使本身无法由外部取得电能支援的独立电动设备,尤其是运用上百安培或数千瓦的大电能电动设备,可以藉由量测和/或推估外部环境热源、量测电池组的剩余电量以及外部环境物理变化量作为切换选择调温器的基准,以及有效预调节电池组温度,确保当电量充分时,可以精准维持电池芯操作环境温度,大幅提升电池芯使用寿命及效率,提高电动设备持续运转的时间;更得以于电动设备即将受到冲击或翻转时,有效地大量耗尽电池组所储存电能,而将电池组迅速降低至低温状态,避免电池芯因高温所产生的内部电解液汽化,而造成连锁反应的危机,藉以提供绝佳的安全性,一举达成上述目的。
附图说明
图1是公知技术的电池包热管理装置示意图。
图2是本发明独立大电能电动设备用的热管理系统第一较佳实施例的热管理系统的立体分解示意图。
图3是图2实施例的热管理方块图。
图4是图2实施例的操作流程图。
图5是本发明独立大电能电动设备用的热管理系统第二较佳实施例的流程图。
图6是图5实施例的调温装置并联剖视图。
图7是本发明独立大电能电动设备用的热管理系统第三较佳实施例的方块 图。
图8是图7第三较佳实施例的立体示意图。
图9是本发明独立大电能电动设备用的热管理系统的温度优先环境感测装置系统执行流程图。
图10是本发明独立大电能电动设备用的热管理系统第四较佳实施例的方块图。
图11是图9第四较佳实施例剖视图。
图12是本发明独立大电能电动设备用的热管理系统第五较佳实施例的剖视图。
符号说明
调温装置1 (1)1 (4)                小型调温器10 (1)10 (2)10 (3)
冷面100 (3)                     热面102 (3)
冷却油104 (5)
水泵11 (1)11 (5)                  大型调温器12 (1)12 (2)12 (4)
选择切换开关14 (1)14 (2)          导热通道16 (1)16 (5)
内部导热通道161 (1)161 (2)        外部导热通道162 (1)162 (2)
循环通道18 (1)
感测装置2 (1)2 (3)2 (4)             温度感测器20 (1)20 (3)
电量感测器22 (1)               环境感测器24 (3)24 (4)
全球定位系统240 (4)            记忆体242 (4)
时钟电路244 (4)                加速规246 (4)
微处理装置3 (3)3 (4)             电池外壳90 90 (1)90 (2)90 (3)90 (4)
电池组92 (1)92 (2)92 (3)92 (4)92 (5)     电池芯920 920 (1)920 (2)920 (3)920 (4)
电动车外壳94 (1)               独立充电站96 (3)
致冷装置8                   循环管80
50~55、50’~55’、60~64步骤
具体实施方式
有关本发明前述及其他技术内容、特点与功效,在以下配合参考图式的较佳实施例的详细说明,将可清楚呈现;此外,于各实施例中,相同的元件将以相似的标号表示。
如图2所示,为本发明独立大电能电动设备用的热管理系统第一较佳实施例的热管理系统的拆解立体示意图,本实施例中的电动设备是以电动小客车为例,请一并参考图3,当小客车行驶于夏日午后的道路上,外部环境例如太阳光的热辐射藉由电动车外壳94 (1)传导入电池外壳90 (1),车内运转的马达是电池芯920 (1)外部的另一热源,电池芯920 (1)本身也因放电过程逐渐升温,电池外壳90 (1)与电池芯920 (1)受到上述外部环境及车内的外部热源影响,操作环境温度逐渐升高。
电池芯920 (1)在此是以标准锂电池例如18650为例,为便于作业,例如数十个电池芯920 (1)会被整并为一个电池组92 (1),而电动车的电源则是由数十至数百个电池组92 (1)共同组合而成。且本例中,对于每个电池组92 (1)皆设有温度感测器20 (1),用以感测各电池组92 (1)内的电池芯920 (1)温度;在本例中,每一电池组92 (1)另设置有一个对应该电池组92 (1)的电量感测器22 (1),供量测该电池组92 (1)的剩余电量。为便于说明起见,在此将前述温度感测器20 (1)和电量感测器22 (1),共同称为感测装置2 (1),以量测电池组92 (1)的内部温度与剩余电量,并且输出信号至一个微处理装置(未揭示于图)。当然熟知本技术领域人士可轻易将上述电量感测器分别设置于对应每一电池组的各别电路控制板,或集中设置于单一回路,甚至对应每一电池芯设置,均无碍于本发明实施。
在本例中,调温装置1 (1)包括一个小型调温器10 (1)、一个大型调温器12 (1)、一组提供选择切换小型调温器10 (1)与大型调温器12 (1)的选择切换开关14 (1),在本例中选择切换开关14 (1)是以电磁阀为例。并且该小型调温器10 (1)和该大型调温器12 (1)分别通过导热通道16 (1)的内部导热通道161 (1)导热连结于该电池芯920 (1)与通过外部导热通道162 (1)导热连结该电池外壳90 (1),本例中是以水泵11 (1)作为增压装置,驱动冷却液运行。冷却液在此以乙二醇或丙二醇等抗冻剂与水混合而成,防止冷却液于温度极低时冻结,利于极低温状态下维持可流动的状态,藉由冷却液热容量大的特性,吸收较多的热能,并以水泵11 (1)产生压力推动冷却液,使冷却液可在导热通道16 (1)内流动,用小型调温器10 (1)或大型调温器12 (1)冷却冷却液。电池外壳90 (1)内则容纳有导热连接大型调温器12 (1)的冷却液。由于冷却液本身的热容量相当大,依照现有电动车的冷却模式,电动车刚由车库中阴凉的静止状态,行驶进入太阳曝晒下的道路时,电池组92 (1)会受到冷却液的包围而没有明显升温,调温装置1 (1)因而不会开启。
但是,随太阳光所发热能、柏油路面辐射热和马达所发热能共同影响,当冷却液已经被逐步升温例如摄氏两三度之后,此时才开启的调温装置1 (1)将无法负荷同时对抗太阳辐射热源、车外环境辐射热源、马达热源以及电池组本身运作放热的共同影响,将会以非常明显的幅度持续升温,直到电池芯920 (1)的操作环境温度被升高十余度,在调温装置1 (1)强力运作下,才能逐渐将温度降回理想的数值。
请一并参照图4所示,在本例中,当电动车被发动,微处理器将于步骤50开始执行全系统检测,随即在步骤51,经由温度感测器20 (1)量测且搜集电池外壳90 (1)和电池芯920 (1)的温度且输出温度信号给微处理装置,由该微处理装置进行输入热能的计算,并依据如何达成热平衡而判断,决定是否需开启调温装置1 (1); 若需要开启调温装置1 (1),便在步骤52进一步接收电量感测器22 (1)所侦测电池芯920 (1)的电量信号进行判断,当各电池组92 (1)储存的电量充裕超过一个预设门槛时,则在步骤55指令大型调温器12 (1)运转,对电池外壳90 (1)和电池组92 (1)同时进行降温。
由于电池外壳90 (1)比电池芯920 (1)更早接收到太阳辐射热源、柏油马路等的辐射热源、以及马达运转的热源影响,因此本发明的调温装置1 (1)将会比现行电动车的情况更早在步骤55启动调温,并且回到步骤50反复循环。更进一步,一旦大型调温器12 (1)同步冷却电池外壳90 (1)和电池组92 (1)时,冷却液的热容量将可以有效缓冲少量入侵的热能,电池组92 (1)外部的热源所造成的影响,将被大幅隔离在电池外壳90 (1)处,也使得电池芯920 (1)的操作环境温度可以被有效控制在例如摄氏正负一度的范围,大幅延长电池芯920 (1)的使用寿命;并且大型调温器无须过度运转,让有限的电能被有效运用。
相反地,当电池组92 (1)的剩余电量有限,不符合预订的电量门槛时,则在步骤53通过警示装置(图未示)发出警告提示,例如由微处理器依照预订流程,由车内音响的扬声器发出警示音通知驾驶人。并且在步骤54单纯运转小型调温器10 (1),以循环通道18 (1)使冷却液体进入部分管道的小循环,仅针对电池组92 (1)进行温度调节,而不顾及电池外壳90 (1)。一方面,当电能有限时,最优先应处理的并不是电池芯920 (1)的寿命问题,而是如何警示驾驶人迅速找寻充电站,并且避免车辆因电量耗尽而抛锚路边;因此在比较得失之下,用以调温的电能,应该被限制在让电池芯920 (1)能维持运作的低标准,尽量节省电能延长车辆行驶距离,降低抛锚在路边的机率。
另方面,电动车相异于一般汽柴油车辆,会有电池过热而让某一电池芯920 (1)中电解液汽化破裂喷出,并且波及邻近电池芯纷纷短路的危险连锁反应,经由 本发明的揭示,即使最终电动车仍然抛锚于路边,并且在太阳曝晒下造成某电池芯破裂,但因所有电池组92 (1)的电能都已经耗尽,邻近电池芯920 (1)即使因而短路,也没有电能可以再继续释放,就无从造成连锁大量急速释放电能的火烧车风险。
当然,如熟悉本技术领域人士所能轻易理解,虽然本例中的小型调温器10 (1)与大型调温器12 (1)都是以液体热交换器为例,选择切换开关则是以三向二位换向电磁阀为例,且判断流程是先考虑温度信号再考虑电量信号,但上述叙述都不是对本发明的限制,选择切换开关可轻易替换为机械式方向控制阀或其他方向控制阀;冷却液与水泵皆可替换为其他对应的配件,仅需可以分别依据温度与电量或其他参考资讯,选择性地调节电池外壳和电池组的温度即可,上述替换都无碍于本发明的实施。
为说明上述流程判断中,温度信号和电量信号并没有区分先后顺序的必要,如图5及图6本发明的第二较佳实施例所示,亦可将前上述步骤顺序调换,在执行全系统检测流程50’后,先执行电量侦测步骤51’,由电量侦测器(图未示)侦测前述电池芯920 (2)电量,并输出电量信号给微处理装置;随后以步骤52’由温度感测器(图未示)侦测前述电池外壳90 (2)和/或前述电池组92 (2)的温度,并输出温度信号给微处理装置。当电量高于预设门槛值时,且温度也高于电池芯920 (2)正常操作环境温度例如摄氏17度逾1度的预设门槛,则依循步骤55’运转大型调温器12 (2),使电池外壳90 (2)与电池组92 (2)温度同步降低,甚至令电池外壳90 (2)温度降至略低于电池芯920 (2)温度,使得外部环境以及马达等热源的影响根本无法进入电池壳体,确保电池芯920 (2)的操作环境温度仅受电池芯920 (2)本身发热影响。
在本实施例中仅有单一的冷却器存在,并且同时供应冷却液给对应各电池芯920 (2)处的内部导热通道161 (2)、以及对应电池外壳90 (2)处的外部导热通道 162 (2)。而在本例中所谓的大型调温器12 (2)和小型调温器10 (2)的差异,乃在于大型调温器12 (2)同时包括上述冷却器和两重导热通道,当电量充裕时,两者均可获得良好的温度调节;相对地,小型调温器10 (2)则仅包括上述冷却器和对应电池芯920 (2)处的内部导热通道161 (2)。藉由选择切换开关14 (2)的运作,当电池组92 (2)电量不足时,冷却器仅单纯针对消耗功率较少的内部导热通道161 (2)作用,保障电池芯920 (2)温度不致失去控制,并尽其所能地延长小客车可行使的里程,直至行驶于蓄电站。
当然,通过导热通道并联电池芯或电池外壳绝非本发明的限制,熟悉本技术领域人士可轻易依据电池组的设计用串联取代并联方式,作为调节电池芯或电池外壳温度的手段,依电池外壳与电池芯内结构设计需求,或依据其电动设备或电池芯使用需求而改变导热通道循环结构方式,配合低热阻材质的导热通道连通皆无碍于本发明的实施。
相对地,如剩余的电量低于预订门槛,就会在步骤53’由微处理装置指令发出警告信号给警告装置,在例如电动车显示面板上显示警告文字提示,且此时的调温装置被指令仅能于步骤54’运转小型调温器10 (2),进行如前一实施例的延长续航力模式冷却,尽量节约调温装置所耗用的电能,将节约的电能供给马达让车辆运行至最近的供电站,并且反复上述流程回路步骤50’执行全系统检测。当然,本例的警示装置即使更换为蜂鸣器、扬声器、多媒体影音设备、GSM/UMTS/LTE数据交换装置发送简讯或电子邮件等,均可达成提醒驾驶人尽速前往蓄电站进行蓄电的提醒功效,降低电池芯过度放电所造成加速永久衰退,提高电池芯的使用年限。
再次强调,由于电池芯内部的电解液具有相当高的比热容,电池芯因蓄电或放电所积累于内部的热能,需要花费一段时间才能逐渐传达到电池芯外层封 装位置,使得电池芯外层封装与电池芯的核心内部具有一定的温度落差,因此一般设置于电池芯外层封装处的温度感测器所侦测的温度信号相对于电池芯的核心温度其实是一个落后指标;相对地,对于来自电池壳体以外的热源,要通过同样有相当高热容量的冷却液而传达到电池芯外层封装处的温度感测器,也会造成电池外壳和电池芯之间的温度落差。所以,单纯凭借电池芯封装处的温度感测器侦测电池芯的操作环境温度,以及凭借电池芯封装处的温度感测器侦测外部环境热源对电池芯的影响,均会有时间落差而造成失真。同样地,设置在电池外壳的温度感测器对于电池芯的操作环境温度也会产生相同的时间落差。这也就是现在电动车等独立大电能电动设备,无法精准且恒定地维持电池封包在一个理想操作环境温度的最大问题。
因此,本发明第三较佳实施例的热管理系统如图7及图8所示,是设置于一个位于野外的独立充电站96 (3),本例的热管理系统包括一组调温装置(图未示),一组感测装置(图未示),及一组微处理装置3 (3)。由于电动车辆日渐盛行,而对于幅员辽阔的国家地区,道路所经过的地区即使是荒郊野外,也必须依照固定里程建设充电站,而且这类充电站并不适合花费巨资由远处拉线供电,因此必须依赖例如太阳能电力或风力发电作为能源供应,并且利用众多电池组92 (3)储存所发电力而供应电动车辆充电使用,此外在独立充电站96 (3)的人员休息区、服务区,也都有赖自身的电力供应运转。在电池组92 (3)每日的充电及放电过程中,电池芯920 (3)都会释放大量热能,加上野外的气候变化,环境温度可以有极大差异,若不能妥善处理操作环境温度等条件,势必造成独立充电站96 (3)必须频繁请人进行维修保养,电池芯920 (3)的寿命也大幅缩短,造成成本暴增及运转的莫大不便。以下将说明如何针对此种独立大电能电动设备的电池芯进行热管理。
当然,熟悉本技术领域人士可轻易以一个固定数值或范围作为上述电池芯 操作环境温度的预设门槛值,但是该门槛也可以是经由动态运算而来,由于电池芯、冷却液、电池外壳等每一装置元件的发热量、热容量、热传导效率、以及温度曲线均为已知,因此在本例中是以前述内容加入外部环境如太阳辐射强度、柏油路面辐射强度等预估参数作为依据进行推算,并且以量测所得的温度信号不断回归分析(Regression Analysis)作为实际运用的参数。
在本例的独立充电站内,多组电池芯920 (3)是被装置于例如一个地下室中,而该地下室就成为本例中所定义的电池外壳90 (3),并且各组电池芯920 (3)分别配置有对应的温度感测器20 (3)和例释为调温装置的热电致冷晶片(Thermoelectric Cooling Chip,TCC)。本例中的热电致冷晶片是藉由N型半导体材料、P型半导体材料内部所载的载子(Carrier)的能量(Electron and hole,电子和电洞)移动,当载子能量不断移动累积于上端时,将使上端温度升高,反之下端温度则逐渐降低,借着电流流动产生一个冷面100 (3)与热面102 (3),且随着电流越大所产生的温度梯度(Temperature Gradient)就越大,用此特性作为冷却手段。故在本例中,部分热电致冷晶片是将冷面100 (3)直接导热接触于电池芯920 (3)的封装表面,并将热面102 (3)与导热通道相接合,藉由导热通道带走热面102 (3)上的温度,以维持热电致冷晶片10 (3)热面102 (3)的温度,在预设门槛值范围内,前述导热通道在此例释为复数的散热鳍片。
一方面,上述热电致冷晶片10 (3)本身体积小,并且无须藉由冷却液与导热通道进行导热,可使电池芯920 (3)所组成的电池组92 (3)得以更节省空间,以便在相同的空间中放置更多的电池芯920 (3)而增大电能储备能力。此外,该热电致冷晶片10 (3)运作时,不会有机械元件运作的噪音的产生,简易的结构无保养的需求且寿命较长,因为热电材料可回收废热作为发电也更为环保。另一方面,本例中采并联方式连结热电致冷晶片10 (3),即使其中一个晶片损坏时,其他晶片仍能持 续运作,当然熟悉本技术领域人士可轻易让电池芯、热电致冷晶片和对应的温度感测器相互组合,共同模组化而构成一个一个完整模块。由于本例中的热电致冷晶片都是对应每一组电池芯设置,因此属于前述实施例中,调温装置里的小型调温器。
由于独立充电站96 (3)原本就会通过通讯装置和远端的管理单位通讯联系,因此请一并参考图9所示,在本例中,会从步骤60在作为管理核心的微处理装置3 (3)指令下,由该通讯装置作为感测装置中的环境感测器24 (3),在步骤61担负起接收来自例如气象单位所提供的环境信号的工作,藉以将例如往后若干小时该地区的温度和降雨等现象的环境资讯提供给微处理装置3 (3)。微处理装置3 (3)在步骤62接收来自各电池芯处的温度感测器20 (3)和环境感测器24 (3)所传来的温度信号和环境信号后,不仅可以依照电动设备内部现有的温度状况,还可以进一步在步骤63依照预订参数评估计算未来数小时内的环境热源及自身发热量,从而获得一个预估温度值,进而在步骤64预先将冷却液和电池芯920 (3)降温例如摄氏一度,利用其热容量作为缓冲,以抵抗随后可能降临的午后高温。
经由本发明所揭示这种预先评估未来热能管制的方法,不必等候实际温度上升,才急忙启动调温装置,导致操作环境温度失控飙高后,再过度降温而过冷的不当热管理循环。尤其是在本实施例中,更在地下室的墙壁部分额外设置例如橡胶及防火棉夹层等热阻值高的隔热层,让外部的热源不能轻易影响电池芯的环境温度,藉以提高电池芯操作环境温度的可预测性。
当然,本发明中所谓的温度调控并不仅限制于单向冷却,本发明第四较佳实施例如图10及图11所示,是将热管理系统设置于一种固定行程的大客车上,这类电动巴士由于行驶路线固定,因此对于行程和车辆外部环境的参数掌握度更好。并非单纯凭借直接量测的温度信号作为调温装置1 (4)起始、运转或停止的 判断依据,而可以藉由电量信号、温度信号以及外部环境信号等数据作为基准,用该基准调整预设门槛值范围,确保电池组92 (4)得以维持于最适工作温度。使得当电量充分时,电池芯920 (4)的操作环境温度被极端妥善地维持在例如摄氏正负一度的范围内。
并且由于在本例中,电动大客车是运用于寒带气候带中,因此在例如夜间充电过程,就需要一方面顾及充电时电池芯920 (4)所发的高温,另方面也需要考量车体本身在低温环境下,是否会被外部低温影响,导致例如电池芯920 (4)充电完毕后,逐步被降温到甚至冰点以下而导致危险。因此,无论车辆是否在行驶状态,对于电源部分的热管理都会持续运作,并且在车辆没有充电和行驶时,更需要时时将电池芯920 (4)加热,以确保操作环境温度在例如摄氏17度左右。
为节约篇幅,热管理系统中,调温装置1 (4)、感测装置(图未示)及微处理装置3 (4)等与前述实施例相同的部分将不再重复赘述,但考量大客车在白天的行驶过程中,除每一次行程结束的停靠总站短暂休息整理,都没有适当时机充电,在必须抓紧休息整理的空档对电池组92 (4)充电的限制条件下,进入电池芯920 (4)的充电电流一般被设定为相当高,电流明显大于一般行驶时的放电电流,使得充电时的发热量也会对应提升,比一般行驶时的放电过程发热更高,使得充电过程中的冷却更形重要。尤其因为热电致冷晶片的特性,当电池芯920 (4)侧所发的高温远高于相反侧面时,甚至会因为热电效应而利用温度差自行发电,更进一步节约耗能;也可以藉由反向通入电流而达成加热的功效,藉以因应大客车在寒带气候下运作时,电池芯920 (4)的操作环境温度不致过冷而损及电池芯920 (4),甚至发生意外。
此外,考量上述充电或行驶时需冷却、以及停止时需保温,可以发现在这种应用状态下,温度调节并不是单纯地冷却,而且车辆行驶时还需要提供车厢 内乘客暖气,因此在本实施例中的大型调温器12 (4)更包括一组通往车体内部的冷却液管道,将电池外壳90 (4)和电池组92 (4)的发热,经由切换开关将上述热电致冷晶片所携带来的热能储存至冷却液中。
而在本实施例的感测装置,则包括感测上述电池芯温度的温度感测器,以及一组环境感测器24 (4),本例中的环境感测器24 (4)包括大客车内建的全球定位系统240 (4)、储存有地图资料库的记忆体242 (4)、时钟电路244 (4),并且在该记忆体中输入例如全球各地的各季节平均温度。当电动巴士依照预订路线进行自动驾驶时,微处理装置3 (4)将会依照全球定位装置系统240 (4)所传来的资料以及地图资料,确定该电动巴士所在位置。并且依照时钟电路244 (4)所提供的日期和时刻,对照记忆体242 (4)中所储存的该位置平均气温,预估在行驶过程中所需面对的环境参数,评估车体内外的热源及可能发生的温度变化,进而指令上述调温装置1 (4)是否开启。当然,如熟悉本技术领域人士所能轻易理解,为求更精准验证当时的车外环境温度与热源,亦可增加一个或多个温度感测器,监控车厢内和车体外部的温度,动态回归确认计算结果。也可以和前述实施例的电量感测器等进一步结合,让智能驾驶车更易于实现。
在本例中,感测装置中更额外包括有一加速规246 (4),藉由加速度量测,让微处理装置3 (4)藉由整车控制器(VCU)、电池管理系统(BMS)及前述加速规三方讯息判断震动幅度,以确认大客车是否受到撞击或翻覆,一旦电动巴士遭受撞击或翻覆的危急事件,微处理装置3 (4)将会立即指令调温装置1 (4)以最大效率运转,一方面藉此冷却电池组92 (4),维持电池组92 (4)于低温状态,避免电池芯920 (4)因前述状况产生高温,导致电池芯920 (4)的电解液流出或汽化撑破电池芯920 (4)封装,抑或电池芯920 (4)封装因外力所产生的损坏,即使破裂损坏,也会因为此时的电池芯920 (4)已经冷却至低温状态,电解液流出也不易立即产生燃烧的连锁反应, 直到电能耗光。
经由上述实施例的揭露,本发明提出将温度信号和电量信号综合判断,以及预先评估环境影响,使得管理电池芯的操作环境温度,不再是单纯以现在所量得的温度数据为准,而可以一并整合考虑电动设备所需要的优先顺序,在电量即将不足的情况下,优先提供延长电动设备的续航力,让电动设备不致轻易停摆。此外,更整合环境内外的热源评估,预估随后将影响电池芯的热能进出,预先进行温度调控,避免可预测的冷热冲击效应,藉以维持电池芯操作环境温度在极小的例如摄氏一度范围内,不仅确保电池芯的运作效率维持高档,还同时大幅延长电池芯的使用寿命,因而明显降低电动设备的使用成本、提高使用效能。尤其是在当对于电动设备无法控制的外力损坏来临时,急遽地强冷降温,不仅可大幅减少燃烧爆裂的风险,更可以尽其所能地迅速释放所储存的电能,减少电池芯所储存能量造成的燃烧与爆裂,进行良好的风险及损害控制。
别于受限于导热通道的结构,仅对于导接处进行导热,本发明第五较佳实施例如图12所示,是将电池组92 (5)浸泡于冷却液,省去大部分导接于电池组92 (5)的导热通道16 (5)结构,及选用特定热导材质的导热通道16 (5),电池组92 (5)浸泡于冷却油让导热面积增加达到最大,让导热效率提高,于本例是以冷却液释例为绝缘的冷却油。藉由水泵11 (5)产生压力推动冷却油,使冷却油可在导热通道流动,用调温装置冷却冷却油104 (5)。在本例热管理系统中,调温装置、感测装置及微处理装置等与前述实施例相同的部分就不再详述。当然,熟悉该技术领域人士可以选择将电池组浸泡或部分浸泡入冷却液或搭配部分导热通道等结构进行规划设计及组合,或搭配任一热交换作用的调温装置及设置附属散热元件(如散热鳍片、散热风扇等),皆无碍于本发明实施。
又因冷却油具有绝缘效果,可提供电动设备如受无法控制外力损坏时,且 电池组也因此外力而破损造成电解液渗流,所渗流的低温却具有高挥发性电解液此时会与冷却油混和,借着冷却油高燃点的特性持续确保电动设备及周遭在安全状态,不至因电动设备损坏而向外溢流的电解液造成第二次事故,使本发明提高损害风险控制达到更高的安全水平。
综合上所述仅为本发明的较佳实施例,并非用来限定本发明的实施例范围。即凡依本发明申请专利范围的内容所为的等校变化与修饰,皆应为本发明专利涵盖的范畴。

Claims (12)

  1. 一种独立大电能电动设备用的热管理系统,其特征在于,供将复数电池芯保持在一预定温度范围,其中前述电池芯是被装置于至少一电池外壳中,以及前述电池芯是供驱动上述独立大电能电动设备,该热管理系统包括:
    一调温装置,包括至少一小型调温器与至少一功率大于前述小型调温器的大型调温器,前述小型调温器和前述大型调温器分别导热连结上述电池芯和上述电池外壳,及至少一组选择切换上述大/小型调温器的选择切换开关;
    一感测装置,包括至少一个感测上述电池芯温度的温度感测器,及至少一个感测上述电池芯剩余电量的电量感测器,并供分别输出对应上述电池芯温度的温度信号及对应上述电池芯剩余电量的电量信号;及
    一接收上述温度信号及上述电量信号的微处理装置,该微处理装置依照上述温度信号指令上述调温装置是否开启,以及当上述调温装置需开启时,依照上述电量信号指令上述选择切换开关,决定切换至开启上述小型调温器和/或大型调温器。
  2. 如权利要求1所述独立大电能电动设备用的热管理系统,其特征在于,其中上述复数电池芯被区分为多组电池组,而且上述感测装置包括复数分别量测每一前述电池组的温度感测器,及复数分别量测每一前述电池组的剩余电量的电量感测器。
  3. 如权利要求1所述独立大电能电动设备用的热管理系统,其特征在于,其中上述电池组是被容纳于上述电池外壳中,以及该电池外壳内更容纳有导热连接上述大型调温器的冷却液,供浸泡冷却上述电池组。
  4. 如权利要求3所述独立大电能电动设备用的热管理系统,其特征在于,更包括一组水泵,及连接上述电池外壳至前述水泵、供冷却液循环的导热通道,以及一设置连接上述选择切换开关至上述电池外壳的循环通道。
  5. 一种独立大电能电动设备用的热管理方法,其特征在于,供将复数电池芯保持在一预定温度范围,其中前述电池芯是被装置于至少一电池外壳中,前 述电池芯是供驱动上述独立大电能电动设备,以及,该热管理系统包括一调温装置,一感测装置,及一微处理装置,前述调温装置包括至少一小型调温器与至少一功率大于前述小型调温器的大型调温器,前述小型调温器和前述大型调温器分别导热连结上述电池芯和上述电池外壳,及至少一组选择切换上述大/小型调温器的选择切换开关;上述感测装置则包括至少一个感测上述电池芯温度的温度感测器,及至少一个感测上述电池芯剩余电量的电量感测器;上述热管理方法包括下列步骤:
    a)上述温度感测器分别量测上述电池芯温度,并输出一温度信号至上述微处理装置;以及上述电量感测器分别量测上述电池芯剩余电量,并输出一电量信号至上述微处理装置;
    b)上述微处理装置接收上述温度信号及上述电量信号,并依照上述温度信号指令上述调温装置是否开启,以及当上述调温装置需开启时,依照上述电量信号指令上述选择切换开关,决定切换至开启上述小型调温器和/或大型调温器。
  6. 一种独立大电能电动设备用的热管理系统,其特征在于,供将复数电池芯保持在一预定温度范围,其中前述电池芯是被装置于至少一电池外壳中,以及前述电池芯是供驱动上述独立大电能电动设备,该热管理系统包括:
    一调温装置,包括至少一导热连结上述电池芯的小型调温器;
    一组感测装置,包括至少一个感测上述电池芯温度的温度感测器,及至少一个感测周边环境资讯的环境感测器,并供分别输出对应上述电池芯温度的温度信号及对应上述环境资讯的环境信号;及
    一接收上述温度信号及上述环境信号的微处理装置,该微处理装置依照上述温度信号及上述环境信号,指令上述调温装置是否开启。
  7. 如权利要求6所述独立大电能电动设备用的热管理系统,其特征在于,其中上述调温装置更包括:
    至少一功率大于前述小型调温器的大型调温器,前述大型调温器和上述电池外壳导热连结,以及
    至少一组选择切换上述大/小型调温器的选择切换开关,使得上述微处理装置依照上述温度信号及上述环境信号,指令上述选择切换开关,决定切换至开启上述小型调温器和/或大型调温器。
  8. 如权利要求7所述独立大电能电动设备用的热管理系统,其特征在于,其中上述电池组是被容纳于上述电池外壳中,以及该电池外壳内更容纳有导热连接上述大型调温器的冷却液,供浸泡冷却上述电池组。
  9. 如权利要求8所述独立大电能电动设备用的热管理系统,其特征在于,更包括一组水泵,及连接上述电池外壳至前述水泵、供冷却液循环的导热通道,以及一设置连接上述选择切换开关至上述电池外壳的循环通道。
  10. 如权利要求6、7、8、或9所述独立大电能电动设备用的热管理系统,其特征在于,其中上述感测装置更包括一供输出一定位信号至该微处理装置的全球定位系统。
  11. 如权利要求6、7、8、或9所述独立大电能电动设备用的热管理系统,其特征在于,其中上述感测装置更包括一通讯连结上述微处理装置、供接收外部环境气象资讯的通讯装置。
  12. 一种独立大电能电动设备用的热管理方法,其特征在于,供将复数电池芯保持在一预定温度范围,其中前述电池芯是被装置于至少一电池外壳中,前述电池芯是供驱动上述独立大电能电动设备,以及,该热管理系统包括一调温装置,一感测装置,及一微处理装置,前述调温装置包括至少一导热连结上述电池芯的小型调温器;上述感测装置则包括至少一个感测上述电池芯温度的温度感测器,及至少一个感测周边环境资讯的环境感测器;上述热管理方法包括下列步骤:
    a)上述温度感测器分别量测上述电池芯温度,并输出一温度信号至上述微 处理装置;以及上述环境感测器用以感测周边环境资讯,并输出一对应上述环境资讯的环境信号至上述微处理装置;
    b)上述微处理装置接收上述温度信号及上述环境信号,并指令上述调温装置是否开启。
PCT/CN2018/115021 2017-11-20 2018-11-12 独立大电能电动设备用的热管理系统 WO2019096090A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11202003533PA SG11202003533PA (en) 2017-11-20 2018-11-12 Thermal management system for high power electrical equipment
US16/755,471 US11605849B2 (en) 2017-11-20 2018-11-12 Thermal management system for high power electrical equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711153794.5A CN109818101B (zh) 2017-11-20 2017-11-20 独立大电能电动设备用的热管理系统
CN201711153794.5 2017-11-20

Publications (1)

Publication Number Publication Date
WO2019096090A1 true WO2019096090A1 (zh) 2019-05-23

Family

ID=66538514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115021 WO2019096090A1 (zh) 2017-11-20 2018-11-12 独立大电能电动设备用的热管理系统

Country Status (5)

Country Link
US (1) US11605849B2 (zh)
CN (1) CN109818101B (zh)
SG (2) SG10202103483TA (zh)
TW (2) TWI750487B (zh)
WO (1) WO2019096090A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597402A (zh) * 2022-03-31 2022-06-07 广州帝辉汽车用品有限公司 一种耐高温和抗低温型磷酸铁锂电池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI691142B (zh) 2019-06-20 2020-04-11 廣達電腦股份有限公司 智慧電池裝置及充電方法
US20210404827A1 (en) * 2020-06-29 2021-12-30 Rivian Ip Holdings, Llc Battery pre-cooling system and method
KR20220144192A (ko) * 2021-04-19 2022-10-26 현대자동차주식회사 배터리 냉각 시스템 및 배터리 냉각 시스템의 열적 모델 생성 방법
CN113921934B (zh) * 2021-08-23 2024-04-16 岚图汽车科技有限公司 车辆电池温度控制系统、电池温度控制方法及相关设备
CN113921935B (zh) * 2021-08-23 2024-04-16 岚图汽车科技有限公司 车辆电池冷却控制系统、电池冷却控制方法及相关设备
CN114388927B (zh) * 2021-09-27 2024-04-16 岚图汽车科技有限公司 一种动力电池冷却控制方法及相关设备
CN114552064B (zh) * 2022-02-28 2023-11-07 重庆邮电大学 一种电动汽车锂离子电池包冷却系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533933A (zh) * 2009-04-09 2009-09-16 高宾 车用锂动力电池组水冷方法及装置
CN102376995A (zh) * 2010-08-02 2012-03-14 通用汽车环球科技运作有限责任公司 用于电动车辆中蓄电池冷却系统的优化设计和运行的方法
JP2012104458A (ja) * 2010-11-15 2012-05-31 Honda Motor Co Ltd 電池の冷却システムおよび冷却方法
CN206340627U (zh) * 2016-11-16 2017-07-18 哲弗智能系统(上海)有限公司 一种具有风、液冷变换的车载动力电池冷却系统

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871859A (en) * 1997-05-09 1999-02-16 Parise; Ronald J. Quick charge battery with thermal management
KR20040045937A (ko) * 2002-11-26 2004-06-05 현대자동차주식회사 전기 및 하이브리드 자동차용 ni-mh 전지의 열관리장치 및 방법
US9236639B2 (en) * 2003-12-18 2016-01-12 GM Global Technology Operations LLC Thermoelectric methods to control temperature of batteries
JP5076378B2 (ja) * 2006-07-03 2012-11-21 マツダ株式会社 バッテリの温度制御装置
CN103943912B (zh) * 2008-11-12 2018-02-27 江森自控帅福得先进能源动力系统有限责任公司 具有热交换器的电池系统
US8117857B2 (en) * 2009-02-20 2012-02-21 Tesla Motors, Inc. Intelligent temperature control system for extending battery pack life
JP2010205478A (ja) * 2009-03-02 2010-09-16 Toyota Motor Corp 電池温度調節装置
US8377581B2 (en) * 2009-03-27 2013-02-19 GM Global Technology Operations LLC Battery pack for a vehicle
KR101097226B1 (ko) * 2010-02-01 2011-12-21 에스비리모티브 주식회사 배터리 팩
WO2012046594A1 (ja) * 2010-10-06 2012-04-12 日産自動車株式会社 車両用空調装置
US9786961B2 (en) * 2011-07-25 2017-10-10 Lightening Energy Rapid charging electric vehicle and method and apparatus for rapid charging
WO2013090232A2 (en) * 2011-12-14 2013-06-20 Magna E-Car Systems Of America, Inc. Vehicle with traction motor with preemptive cooling of motor fluid circuit prior to cooling of battery fluid circuit
US8620506B2 (en) * 2011-12-21 2013-12-31 Ford Global Technologies, Llc Method and system for thermal management of a high voltage battery for a vehicle
KR20130104615A (ko) * 2012-03-14 2013-09-25 삼성에스디아이 주식회사 배터리 충전 시스템 및 그 충전 방법
KR101420340B1 (ko) * 2012-03-23 2014-07-16 삼성에스디아이 주식회사 차량 운행 시스템, 및 이의 제어방법
US9484605B2 (en) * 2012-04-18 2016-11-01 GM Global Technology Operations LLC System and method for using exhaust gas to heat and charge a battery for a hybrid vehicle
CN103419664B (zh) * 2012-05-22 2015-11-25 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
CN103419656B (zh) * 2012-05-22 2016-03-30 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
KR101340365B1 (ko) 2012-11-22 2013-12-11 자동차부품연구원 배터리 온도 조절 장치
WO2014103007A1 (ja) * 2012-12-28 2014-07-03 日立ビークルエナジー株式会社 組電池
US9553346B2 (en) * 2013-02-09 2017-01-24 Quantumscape Corporation Battery system with selective thermal management
JP6068229B2 (ja) * 2013-03-29 2017-01-25 株式会社日本クライメイトシステムズ 車両用空調装置
GB201309757D0 (en) * 2013-05-31 2013-07-17 Sunamp Ltd Heat battery assemblies and monitoring system therefor
CN203746929U (zh) * 2013-12-29 2014-07-30 长城汽车股份有限公司 一种为混合动力汽车供电的电池系统
JP6187309B2 (ja) * 2014-02-21 2017-08-30 トヨタ自動車株式会社 電動車両の電源装置
US10164303B2 (en) * 2015-10-14 2018-12-25 Ford Global Technologies, Llc Traction battery thermal management systems and methods
US20170232865A1 (en) * 2016-02-11 2017-08-17 Ford Global Technologies, Llc Thermal Management System for Fast Charge Battery Electric Vehicle
CN106129528B (zh) * 2016-08-12 2018-10-30 北京长城华冠汽车科技股份有限公司 一种电动汽车动力电池模组的保温方法和保温装置
CN107230812B (zh) * 2017-05-31 2020-08-07 重庆长安汽车股份有限公司 一种混合动力汽车动力电池的冷却控制系统及方法
CN107181021A (zh) * 2017-07-06 2017-09-19 谢路遥 电动汽车蓄电池的散热装置
KR102365631B1 (ko) * 2018-01-09 2022-02-21 주식회사 엘지에너지솔루션 배터리 모듈
GB2581483A (en) * 2019-02-15 2020-08-26 Avid Tech Limited Energy storage and release in an electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533933A (zh) * 2009-04-09 2009-09-16 高宾 车用锂动力电池组水冷方法及装置
CN102376995A (zh) * 2010-08-02 2012-03-14 通用汽车环球科技运作有限责任公司 用于电动车辆中蓄电池冷却系统的优化设计和运行的方法
JP2012104458A (ja) * 2010-11-15 2012-05-31 Honda Motor Co Ltd 電池の冷却システムおよび冷却方法
CN206340627U (zh) * 2016-11-16 2017-07-18 哲弗智能系统(上海)有限公司 一种具有风、液冷变换的车载动力电池冷却系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597402A (zh) * 2022-03-31 2022-06-07 广州帝辉汽车用品有限公司 一种耐高温和抗低温型磷酸铁锂电池
CN114597402B (zh) * 2022-03-31 2022-11-18 广州帝辉汽车用品有限公司 一种耐高温和抗低温型磷酸铁锂电池

Also Published As

Publication number Publication date
TWI750487B (zh) 2021-12-21
CN109818101A (zh) 2019-05-28
US20210210810A1 (en) 2021-07-08
TW201941487A (zh) 2019-10-16
TW201924134A (zh) 2019-06-16
US11605849B2 (en) 2023-03-14
CN109818101B (zh) 2022-03-29
TWI684300B (zh) 2020-02-01
SG10202103483TA (en) 2021-05-28
SG11202003533PA (en) 2020-05-28

Similar Documents

Publication Publication Date Title
WO2019096090A1 (zh) 独立大电能电动设备用的热管理系统
CN102569938B (zh) 动力电池热管理装置
JP4915969B2 (ja) バッテリパック温度最適化制御システム
CN105576321A (zh) 电池包热管理系统
CN109305060B (zh) 一种电池包热管理系统及其控制方法
US20110091750A1 (en) Temperature Control of a Vehicle Battery
CN103963629A (zh) 车辆热管理系统及其方法
CN102340044A (zh) 电池热管理系统和方法
GB2556881A (en) A method of adaptively controlling an electrical system having a lithium-ion battery
CN108232238A (zh) 一种燃料电池系统、控制方法以及燃料电池汽车
CN101207215B (zh) 燃料电池系统的防冻装置和方法
CN201712554U (zh) 电动汽车热管理系统
CN107196002A (zh) 一种提高锂电池使用性能的温度控制装置
CN207565376U (zh) 一种带有充电加热系统的电动汽车充电桩
CN210379345U (zh) 一种动力电池的液冷系统
Rugh et al. Electric vehicle battery thermal issues and thermal management techniques (presentation)
CN102769144A (zh) 一种燃料电池低温启动的空气加热系统及其控制方法
CN114171761A (zh) 一种质子交换膜燃料电池快速低温启动方法
CN110165326A (zh) 车载电池的温度调节系统和方法
JP2000323185A (ja) 電気車両電源用二次電池の冷却装置
CN106739927A (zh) 一种太阳能电池供电的直流压缩机空调系统
CN207558831U (zh) 一种热电制冷蓄热蓄冷电池
CN104114955A (zh) 热电联供系统的控制装置及控制方法
CN206180060U (zh) 一种锂电池的温度控制装置
KR102480994B1 (ko) 전기자동차용 배터리 온도조절 시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878335

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18878335

Country of ref document: EP

Kind code of ref document: A1