WO2019095116A1 - 可诱导发光的聚氨酯及其制备方法 - Google Patents

可诱导发光的聚氨酯及其制备方法 Download PDF

Info

Publication number
WO2019095116A1
WO2019095116A1 PCT/CN2017/110950 CN2017110950W WO2019095116A1 WO 2019095116 A1 WO2019095116 A1 WO 2019095116A1 CN 2017110950 W CN2017110950 W CN 2017110950W WO 2019095116 A1 WO2019095116 A1 WO 2019095116A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminated
group
hydroxyl
amino
polyurethane
Prior art date
Application number
PCT/CN2017/110950
Other languages
English (en)
French (fr)
Inventor
阮长顺
刘娟
马宇飞
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2017/110950 priority Critical patent/WO2019095116A1/zh
Publication of WO2019095116A1 publication Critical patent/WO2019095116A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52

Definitions

  • the invention relates to the technical field of polyurethane polymer materials, in particular to a polyurethane capable of inducing luminescence and a preparation method of the above-mentioned luminescence-inducing polyurethane.
  • Polyurethane is a type of multi-block polymer rich in urethane bonds (—NHCOO—) consisting of a soft segment with a lower softening temperature and a hard segment with a higher softening temperature. Therefore, its molecular structure has good designability.
  • the soft segments and hard segments of different structures and different proportions of soft and hard segments can be selected, and polyurethane materials with different properties can be designed and synthesized, which has good processability and is widely used. In the chemical, electronics, construction, automotive, aerospace, textile, medical and other fields.
  • the soft segment region is a biodegradable material such as biodegradable polylactic acid (PLA) or polycaprolactone (PCL), the biodegradable polyurethane can be synthesized.
  • PLA biodegradable polylactic acid
  • PCL polycaprolactone
  • biodegradable polyurethane is widely used in artificial heart and auxiliary devices, artificial skin, artificial blood vessels, bone repair materials and the like.
  • visualization has attracted wide attention from scholars at home and abroad due to its high sensitivity and rapid response.
  • Fluorescent biomaterials are widely used in cell imaging, biosensing, immunology, drug controlled release and tissue engineering, and material ontology visualization. However, there is little research, so the visualization of the bulk of polyurethane materials is imminent.
  • the earliest fluorescent visualization material is an organic dye.
  • organic dyes are only used for fluorescent markers in vitro due to the potential cytotoxicity of the aromatic ring structure contained therein, and cannot be used in living organisms.
  • Quantum dots are also a good fluorescent visualization material, but most of the quantum dots are heavy metal compounds. In addition to the potential nanotoxicity, there are certain heavy metal toxicity.
  • Fluorescent protein is a kind of photoprotein expressed by the body itself, and there is no cytotoxicity, but there is a problem of overexpression of fluorescent protein and aggregation of proteins.
  • Biodegradable Fluorescent Imaging Polymer is a new fluorescent visualization material that appeared in 2009 with a molecular weight of approximately 1400 Da, which was subsequently introduced into materials such as polylactic acid, but was not easily introduced into organisms due to the uncertainty of BPLP structure.
  • Degradable polyurethane structure is a new fluorescent visualization material that appeared in 2009 with a molecular weight of approximately 1400 Da, which was subsequently introduced into materials such as polylactic acid, but was not easily introduced into organisms due to the uncertainty of BPLP structure.
  • Degradable polyurethane structure is a new fluorescent visualization material that appeared in 2009 with a molecular weight of approximately 1400 Da, which was subsequently introduced into materials such as polylactic acid, but was not easily introduced into organisms due to the uncertainty of BPLP structure.
  • An object of the present invention is to provide a method for preparing a luminescent-inducing polyurethane and a luminescence-inducing urethane according to the above-mentioned drawbacks of the prior art.
  • the object of the present invention can be achieved by the following technical measures:
  • the present invention provides a luminescence-inducing polyurethane which has a hydroxyl group, a carboxyl group or an amino terminated polymer, a polyisocyanate and a chain extender represented by the formula (II) as a structural unit.
  • X 1 represents a hydroxyl group, a carboxyl group or an amino group.
  • the polyurethane is obtained by reacting a first polymer represented by the formula (I), a polyisocyanate substance and a chain extender represented by the formula (II).
  • X 1 represents a hydroxyl group, a carboxyl group or an amino group
  • Y represents a polyester or a polyether component
  • X 1 represents a hydroxyl group, a carboxyl group or an amino group.
  • the first polymer comprises a hydroxyl terminated polylactic acid, a hydroxyl terminated polycaprolactone, a hydroxyl terminated polyglycolide, a hydroxyl terminated lactic acid and ⁇ -caprolactone copolymer, a hydroxyl terminated lactic acid and Glycolic acid copolymer, hydroxyl terminated ⁇ -caprolactone and glycolic acid copolymer, hydroxyl terminated lactic acid, ⁇ -caprolactone and glycolic acid copolymer, carboxyl terminated polylactic acid, carboxyl terminated polyglycolide, carboxyl One or more of a blocked lactic acid and ⁇ -caprolactone copolymer, polytetrahydrofuran, polyethylene glycol, amino terminated polyethylene glycol or a polyol thereof, a polyamine, or a polybasic acid.
  • the polyisocyanate material comprises 1,6-hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, 4,4-dicyclohexylmethane diisocyanate, 4,4-di One or more of phenylmethane diisocyanate, toluene diisocyanate, benzene dimethylene diisocyanate, triphenylmethane triisocyanate, and L-lysine triisocyanate.
  • the ratio of the number of moles of the hydroxyl, carboxyl or amino terminated polymer to the number of moles of polyisocyanate is 1.0: (1.0 to 2.0); the number of moles of chain extender with the hydroxyl, carboxyl or amino terminated polymer
  • the ratio of the number of moles is (0.0 to 1.0): 1.0; the total of the number of moles of the hydroxyl group, carboxyl group or amino group-terminated polymer and the number of moles of the chain extender is equal to the number of moles of the polyisocyanate.
  • the invention also provides a preparation method of a bulk inducible luminescent polyurethane, characterized in that the method comprises the following steps:
  • the isocyanate-terminated prepolymer is prepared by reacting a hydroxyl, carboxyl or amino terminated polymer with a polyisocyanate;
  • the isocyanate-terminated prepolymer is reacted with the chain extender represented by the formula (II) to prepare a luminescence-inducing polyurethane;
  • X 1 represents a hydroxyl group, a carboxyl group or an amino group.
  • the polyisocyanate is used in an amount of from 1.0 to 2.0 times the number of moles of the hydroxyl, carboxyl or amino terminated polymer;
  • the chain extender is used in an amount of from 0.0 to 1.0 times the number of moles of the hydroxyl, carboxyl or amino terminated polymer;
  • the total number of moles of the hydroxyl group, carboxyl group or amino group-terminated polymer and the number of moles of the chain extender is equal to the number of moles of the polyisocyanate.
  • stannous octoate is used as a catalyst, and the amount of stannous octoate is 0.001 to 0.01 times the number of moles of the hydroxyl group, the carboxyl group or the amino group-terminated polymer.
  • the polymerization temperature is from 60 ° C to 80 ° C.
  • the polymerization temperature is from 0 ° C to 50 ° C; the isocyanate-terminated hard segment prepolymer and the hydroxyl group, carboxyl group or amino group
  • the polymerization temperature is from 60 ° C to 90 ° C.
  • the bulk-inducible luminescent polyurethane of the present invention comprises a thiazolidine bicyclic repeating unit capable of inducing luminescence, and at the same time, the above-mentioned thiazolidine bicyclic repeating unit has good biocompatibility and can be metabolized by the body.
  • FIG. 1 is a schematic view showing the preparation of an inducible luminescent polyurethane according to an embodiment of the present invention.
  • Fig. 2 is an FT-IR chart of the luminescence-inducing polyurethane of Example 1 of the present invention.
  • Fig. 3 is a 1 H-NMR chart of the luminescence-inducing polyurethane of Example 1 of the present invention.
  • Example 4 is a photo-imaging diagram of an inducible luminescent polyurethane solution of Example 1 of the present invention.
  • Fig. 5 is a photo-imaging diagram of an inducible luminescent polyurethane film of Example 1 of the present invention.
  • Figure 6 is a graph showing the excitation and emission spectra of thiazopyridine dicarboxylic acid and the inductively luminescent polyurethane of Example 1.
  • Fig. 7 is a 1 H NMR chart of the luminescence-inducing polyurethane of Example 4 of the present invention.
  • Figure 8 is a photo-imaging diagram of an inducible luminescent polyurethane film of Example 4 of the present invention.
  • polyhydric alcohol, polyamine, and polybasic acid described in the specification of the present invention are those having a hydroxyl group, an amino group or a carboxyl group of three or more.
  • the luminescence-inducing polyurethane of the present invention has a hydroxyl group, a carboxyl group or an amino terminated polymer material, a polyisocyanate and a chain extender as structural units. That is, the polyurethane is obtained by reacting a hydroxyl group, a carboxyl group or an amino terminated polymer, a polyisocyanate substance and a chain extender, that is, the polyurethane passes through the first polymer, polyisocyanate substance and formula represented by the formula (I). (L) obtained by the chain extender reaction,
  • X 1 represents a hydroxyl group, a carboxyl group or an amino group
  • Y represents a polymer
  • X 1 represents a hydroxyl group, a carboxyl group or an amino group.
  • the hydroxyl, carboxyl or amino terminated polymeric material of the present invention is a diol, diester or diamine having a number average molecular weight of from 500 to 20,000.
  • the molecular weight of the hydroxyl group, carboxyl group or amino terminated polymer material of the present invention is 500 or more; preferably, 700 or more; more preferably 1,000 or more.
  • the molecular weight of the hydroxyl group, carboxyl group or amino terminated polymer material of the present invention is 20,000 or less; preferably, 1,000 or less.
  • Examples of the polymer material which is blocked by a hydroxyl group, a carboxyl group or an amino group include a polyoxyalkylene glycol, a polyoxyalkylene diester, a polyoxyalkylene diamine, a polyester diol, a polyester diester, a polyester diamine, and a poly Ether diol, polyether diester, polyether diamine, polybutadiene diol, polybutadiene diester, polybutadiene diamine, other polyols, polyamines, polybasic acids, and two or more thereof Mixtures, etc.
  • hydroxyl, carboxyl or amino terminated polymer material it may include a hydroxyl terminated polylactic acid (HO-PLA-OH), a hydroxyl terminated polycaprolactone (HO-PCL-OH), and a hydroxyl terminated poly(ethylene).
  • HO-PLA-OH hydroxyl terminated polylactic acid
  • HO-PCL-OH hydroxyl terminated polycaprolactone
  • hydroxyl terminated poly(ethylene) hydroxyl terminated poly(ethylene).
  • Lactide (HO-PGA-OH), hydroxyl terminated lactic acid and ⁇ -caprolactone copolymer, hydroxyl terminated lactic acid and glycolic acid copolymer, hydroxyl terminated ⁇ -caprolactone and glycolic acid copolymer, hydroxyl terminated Lactic acid, ⁇ -caprolactone and glycolic acid copolymer, carboxyl-terminated polylactic acid (HOOC-PLA-COOH), carboxyl-terminated polyglycolide (HOOC-PGA-COOH), carboxyl-terminated lactic acid and ⁇ -hexane
  • PTMG polytetrahydrofuran
  • PEG polyethylene glycol
  • amino terminated polyethylene glycol (NH 2 -PEG-NH 2 )
  • other polyols polyamines or polybasic acidskind.
  • the chain extender of the present invention is a thiazolidine bicyclic substance having a thiazole ring and a pyridine ring. The two are connected side by side, and the above-mentioned thiazolidine bicyclic structure is a structure capable of inducing luminescence, and as a chain extender, it is introduced into a polyurethane main chain to obtain a luminescent-inducing polyurethane, thereby realizing visualization of the polyurethane.
  • 5-oxo-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]pyridine-3,7-dicarboxylic acid (-oxo-2) can be exemplified.
  • 3-dihydro-5H-[1,3]thiazolo[3,2-a]pyridine-3,7-dicarboxylic acid, TPA as shown in formula IIa
  • 5-oxo-2,3-dihydro-5H -[1,3]thiazolo[3,2-a]pyridine-3,7-diol shown by Formula IIb
  • 5-oxo-2,3-dihydro-5H-[1,3]thiazole And [3,2-a]pyridine-3,7-diamine (shown by formula IIc).
  • the chain extender of the above thiazolidine bicyclic structure can be synthesized from citric acid and cysteine, has good biocompatibility, and can be metabolized by the body.
  • the chain extender may be used singly or in combination of two or more.
  • the polyisocyanate of the present invention reacts with a hydroxyl, carboxyl or amino terminated polymeric material and may also react with a chain extender. Further, the polyisocyanate may be used singly or in combination of two or more.
  • the polyisocyanate is an aliphatic isocyanate, an aromatic isocyanate or an ester cycloisocyanate.
  • examples of the aliphatic isocyanate include 1,6-hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, and 4,4-dicyclohexylmethane diisocyanate.
  • examples of the isocyanate include 4,4-diphenylmethane diisocyanate, toluene diisocyanate, benzene dimethylene diisocyanate, and triphenylmethane triisocyanate.
  • the luminescence-inducing polyurethane of the present invention is produced by reacting a hydroxyl group, a carboxyl group or an amino terminated polymer, a polyisocyanate, and a chain extender represented by the formula (II) to prepare an luminescence-inducing polyurethane.
  • a first polymer represented by the formula (I) is reacted with a polyisocyanate material to prepare an isocyanate group-terminated prepolymer;
  • the isocyanate-terminated prepolymer is reacted with a chain extender represented by the formula (II) to prepare a luminescent-inducing polyurethane.
  • a polyisocyanate is reacted with a chain extender represented by formula (II) to prepare an isocyanate-terminated hard segment prepolymer; and then, the isocyanate-terminated hard segment prepolymer is The hydroxyl, carboxyl or amino terminated polymer reacts to produce a luminescent-inducing polyurethane.
  • the hydroxyl, carboxyl or amino-terminated polymer material is a diol, a diester, a diamine, a polyhydric alcohol, a polybasic acid or a polyamine having a number average molecular weight of 500 to 10,000.
  • Molecular number of isocyanate groups of polyisocyanates Is a hydroxyl group, a carboxyl group or an amino terminated polymer having a hydroxyl group, a carboxyl group or an amino group in a molar ratio of 1.0 to 2.0 times; the hydroxyl group, a carboxyl group or an amino group of the chain extender is a hydroxyl group, a carboxyl group or a hydroxyl group of a hydroxyl group, a carboxyl group or an amino group.
  • stannous octoate is used as a catalyst, and the amount of stannous octoate is the number of moles of the hydroxyl, carboxyl or amino terminated polymer. 0.001 to 0.01 times, the polymerization temperature is 60 ° C to 80 ° C; in the preparation step of the luminescence-inducing polyurethane, the polymerization temperature is 0 ° C to 50 ° C.
  • stannous octoate is used as a catalyst, and the amount of stannous octoate is the number of moles of the hydroxyl, carboxyl or amino terminated polymer. 0.001 to 0.01 times, the polymerization temperature is 60 ° C to 80 ° C; in the preparation step of the luminescence-inducing polyurethane, the polymerization temperature is 60 ° C to 90 ° C.
  • an organic solvent may be used in any step, wherein the organic solvent is not particularly limited, and is, for example, a ketone solvent having 3 to 10 carbon atoms (for example, acetone, methyl ethyl ketone, and Methyl isobutyl ketone), an ester solvent having 2 to 10 carbon atoms (for example, ethyl acetate, butyl acetate, and ⁇ -butyrolactone), and an ether solvent having 4 to 10 carbon atoms (for example, tetrahydrofuran) And diethylene glycol dimethyl ether), an amide solvent having 3 to 10 carbon atoms (for example, N,N-dimethylformamide, N,N-dimethylacetamide (hereinafter abbreviated as DMAC), N-methyl-2-pyrrolidone and N-methylcaprolactam), a sulfoxide solvent having 2 to 10 carbon atoms (for example, dimethyl sulfoxide), and
  • an amide solvent having 3 to 10 carbon atoms, a sulfoxide solvent having 2 to 10 carbon atoms, and the like are preferable, and the number of carbon atoms is more preferable. It is an amide solvent of 3 to 10, etc. Specifically, it is preferably N,N-dimethylformamide or DMAC.
  • the amount of the polyurethane resin to be produced is preferably from 10% by weight to 90% by weight, and more preferably from 20% by weight to 80% by weight.
  • a hydroxyl-terminated polylactic acid (HO-PLA-OH) (having a molecular weight of 500 to 20,000 g/mol) is used as a soft segment, 1,6-hexamethylene diisocyanate (HDI).
  • HDI 1,6-hexamethylene diisocyanate
  • TPA thiazopyridine dicarboxylic acid
  • the ratio of the amount is 0.001:1 to 0.011, the polymerization temperature is 60 to 80 ° C, and the polymerization time is 2 to 6 hours.
  • the active bifunctional small chain extender thiazopyridine pyridine is added, and the reactant is
  • the polymerization temperature is 0 to 50 ° C
  • the polymerization time is 1 to 4 hours.
  • the excitation wavelength is from 200 nm to 760 nm, so that the polyurethane body can induce luminescence, and the high sensitivity and rapid response of the polyurethane material can be visually detected.
  • the above-mentioned inducible luminescent polyurethane material the selected thiazolidine bicyclic substance is synthesized by citric acid and cysteine, has good biocompatibility, and can be metabolized by the body, and adopts soft biocompatibility. Segments can be designed to synthesize materials with good biocompatibility.
  • the polyurethane material is a kind of polymer material with inductive luminescence, which not only has the function of supporting the polymer material, but also realizes the high sensitivity and rapid response visual detection of the polyurethane material body.
  • HO-PLA-OH with a molecular weight of 8000 g/mol is used as a soft segment
  • HDI and TPA are hard segments
  • stannous octoate is used as a catalyst to synthesize a polyurethane material.
  • the ratio of the molar ratio of stannous octoate to HO-PLA-OH is 0.005:1 with the stannous octoate as the catalyst.
  • the temperature was 50 ° C and the polymerization time was 1 to 4 hours.
  • HO-PLA-OH with a molecular weight of 8000 g/mol is used as a soft segment
  • HDI and TPA are hard segments
  • stannous octoate is used as a catalyst to synthesize a polyurethane material.
  • HO-PLA-OH with a molecular weight of 8000 g/mol is used as a soft segment
  • HDI and TPA are hard segments
  • stannous octoate is used as a catalyst to synthesize a polyurethane material.
  • the ratio of the molar ratio of stannous octoate to HO-PLA-OH is 0.011 with the stannous octoate as the catalyst.
  • the temperature was 30 ° C and the polymerization time was 1 to 4 hours.
  • PTMG Polytetrahydrofuran
  • HDI and TPA were hard segments
  • stannous octoate was used as a catalyst to synthesize a polyurethane material.
  • PTMG Polytetrahydrofuran
  • HDI and TPA were hard segments
  • stannous octoate was used as a catalyst to synthesize a polyurethane material.
  • the ratio of the molar ratio of stannous octoate to PTMG is 0.008:1
  • the polymerization temperature is 65° C.
  • the polymerization time is 2.
  • PTMG Polytetrahydrofuran
  • HDI and TPA Hard segment, stannous octoate as a catalyst, synthetic polyurethane material.
  • TPA is an inducible luminescent thiazopyridine dicarboxylic acid
  • the doil has a molecular weight of 8000 Da.
  • TPA-PU hydroxyl-terminated polylactic acid
  • FT-IR figures FT-IR figures
  • TPA-PU is a synthetic inducible emission polyurethane
  • FT-IR figures compared doil
  • TPA-PU of 3417cm -1, 1620cm -1, 1530cm -
  • the characteristic absorption peak of amide appeared at 1 and 519 cm -1 ; in Figure 3, TPA is thiazole pyridine diacid which can induce luminescence, and doil is hydroxy-terminated polylactic acid (HO-PLA-OH) with molecular weight of 8000 Da
  • TPA -PU is a synthetic inducible luminescent polyurethane.
  • TPA-PU synthesized polyurethane
  • Fig. 4 TPA is an inducible luminescent thiazopyridine dicarboxylic acid
  • the doil has a molecular weight of 8000 Da.
  • Hydroxyl-terminated polylactic acid (HO-PLA-OH) TPA-PU is a synthetic inducible luminescent polyurethane, which is excited by ultraviolet light, and TPA-PU can emit blue light.
  • the polyurethane material of Example 4 was successfully synthesized by 1 H NMR, as shown in Figure 7, wherein the soft segment was a hydroxyl terminated polytetrahydrofuran (PTMG) having a molecular weight of 2000 Da, and the PTMG-TPA-PU was a synthetic inducible luminescence.
  • PTMG-TPA-PU has the function of inducing luminescence by photoexcitation of different wavelengths, as shown in Fig. 8, where A: blue light is excited by blue light, and B: blue light is excited by green light. , C: Green light stimulates red light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明涉及聚氨酯聚合材料技术领域,具体涉及一种可诱导发光的聚氨酯以及一种上述可诱导发光的聚氨酯的制备方法,该聚氨酯将羟基、羧基或氨基封端的聚合物、多异氰酸酯和噻唑吡啶二环扩链剂作为结构单元。该制备方法使羟基、羧基或氨基封端的聚合物、多异氰酸酯和式(II)所示的扩链剂反应制备可诱导发光的聚氨酯。本发明的可诱导发光的聚氨酯包括噻唑吡啶二环重复单元,可诱导发光,同时,上述噻唑吡啶二环重复单元具有良好的生物相容性,可被机体代谢。

Description

可诱导发光的聚氨酯及其制备方法 技术领域
本发明涉及聚氨酯聚合材料技术领域,具体涉及一种可诱导发光的聚氨酯以及一种上述可诱导发光的聚氨酯的制备方法。
背景技术
聚氨酯(Polyurethane,PU)是一类富含氨基甲酸酯键(–NHCOO–),由软化温度较低的软段和软化温度较高的硬段组成的多嵌段的聚合物。因此其分子结构具有良好的可设计性,选择不同结构的软段、硬段和不同比例的软、硬段,可以设计合成不同性能的聚氨酯材料,从而具有良好的可加工性,被广泛的应用于化工、电子、建筑、汽车、航空、纺织、医疗等各个领域。当软段区域为可生物降解的聚乳酸(PLA)、聚己内酯(PCL)等可生物降解材料时,可合成可生物降解聚氨酯。同时,因为聚氨酯中软、硬段区域的微相分离和氨基甲酸酯键的存在,从而具有良好的生物相容性。因此,生物可降解聚氨酯被广泛的应用于人工心脏及辅助器、人工皮肤、人工血管、骨修复材料等。近年来,可视化因其高灵敏度和快速响应迅速引起国内外学者的广泛关注,荧光生物材料被广泛的应用于细胞成像、生物传感、免疫学、药物控释和组织工程等,而材料本体可视化却鲜有研究,因此聚氨酯材料本体的可视化研究迫在眉睫。
最早出现的荧光可视化物质是有机染料,然而有机染料由于其所含芳香环结构潜在的细胞毒性使其只被应用于体外的荧光标记物,而不能用于活的机体内。量子点也是一种很好的荧光可视化材料,但量子点大多数是重金属化合物,除了存在潜在的纳米毒性外,还存在一定的重金属毒性。荧光蛋白是机体自己表达的一种发光蛋白,不存在细胞毒性,但是会存在荧光蛋白过度表达、蛋白聚集的问题。生物可降解荧光成像聚合物(BPLP)是2009年出现的新的荧光可视化物质,其分子量约为1400Da,随后被引入到聚乳酸等材料上,但是由于BPLP结构的不确定性,不易引入到生物可降解聚氨酯结构中。
鉴于此,克服以上现有技术中的缺陷,提供一种新的本体可诱导发光的聚 氨酯成为本领域亟待解决的技术问题。
发明内容
本发明的目的在于针对现有技术的上述缺陷,提供一种可诱导发光的聚氨酯以及一种上述可诱导发光的聚氨酯的制备方法。
本发明的目的可通过以下的技术措施来实现:
本发明提供了可诱导发光的聚氨酯,该聚氨酯将羟基、羧基或氨基封端的聚合物、多异氰酸酯和式(II)所示扩链剂作为结构单元,
Figure PCTCN2017110950-appb-000001
式(II)中,X1表示羟基、羧基或氨基。
优选地,该聚氨酯通过式(I)所示的第一聚合物、多异氰酸酯物质和式(II)所示的扩链剂反应而得到,
X1—Y—X1  (I)
式(I)中,X1表示羟基、羧基或氨基,Y表示聚酯或聚醚成分;
Figure PCTCN2017110950-appb-000002
式(II)中,X1表示羟基、羧基或氨基。
优选地,所述第一聚合物包括羟基封端聚乳酸,羟基封端聚已内酯,羟基封端聚乙交酯,羟基封端的乳酸和ε-己内酯共聚物,羟基封端的乳酸和羟基乙酸共聚物,羟基封端的ε-己内酯和羟基乙酸共聚物,羟基封端的乳酸、ε-己内酯和羟基乙酸共聚物,羧基封端的聚乳酸,羧基封端的聚乙交酯,羧基封端的乳酸和ε-己内酯共聚物,聚四氢呋喃,聚乙二醇、氨基封端的聚乙二醇或其多元醇、多元胺、多元酸中的一种或多种。
优选地,所述多异氰酸酯物质包括1,6-六亚甲基二异氰酸酯、赖氨酸二异氰酸酯、异佛尔酮二异氰酸酯、4,4-二环已基甲烷二异氰酸酯、4,4-二苯基甲烷二异氰酸酯、甲苯二异氰酸酯、苯二亚甲基二异氰酸酯、三苯甲烷三异氰酸酯、L-赖氨酸三异氰酸酯中的一种或多种。
优选地,羟基、羧基或氨基封端的聚合物的摩尔数与多异氰酸酯的的摩尔数的比值为1.0:(1.0~2.0);扩链剂的摩尔数与羟基、羧基或氨基封端的聚合物的摩尔数的比值为(0.0~1.0):1.0;羟基、羧基或氨基封端的聚合物的摩尔数和扩链剂的摩尔数的合计值与多异氰酸酯的摩尔数相等。
本发明还提供了一种本体可诱导发光的聚氨酯的制备方法,其特征在于,该方法包括如下步骤:
使羟基、羧基或氨基封端的聚合物与多异氰酸酯反应制备异氰酸酯基封端预聚物;和
使所述异氰酸酯基封端预聚物与式(II)所示的扩链剂反应制备可诱导发光的聚氨酯;
其中,
Figure PCTCN2017110950-appb-000003
式(II)中,X1表示羟基、羧基或氨基。
优选地,多异氰酸酯的用量是羟基、羧基或氨基封端的聚合物的摩尔数的1.0~2.0倍;扩链剂的用量是羟基、羧基或氨基封端的聚合物的摩尔数的0.0~1.0倍;羟基、羧基或氨基封端的聚合物的摩尔数和扩链剂的摩尔数的合计值与多异氰酸酯的摩尔数相等。
优选地,在异氰酸酯基封端预聚物的制备步骤中,以辛酸亚锡为催化剂,辛酸亚锡的用量是羟基、羧基或氨基封端的聚合物的摩尔数的0.001~0.01倍。
优选地,在异氰酸酯基封端预聚物或异氰酸酯封端的硬段预聚物的制备步骤中的制备步骤中,聚合温度为60℃~80℃。
优选地,在异氰酸酯基封端预聚物与扩链剂反应制备可诱导发光的聚氨酯的步骤中,聚合温度为0℃~50℃;在异氰酸酯封端的硬段预聚物与羟基、羧基或氨基聚合物反应制备可诱导发光的聚氨酯步骤中,聚合温度为60℃~90℃。
本发明的本体可诱导发光的聚氨酯包括噻唑吡啶二环重复单元,可诱导发光,同时,上述噻唑吡啶二环重复单元具有良好的生物相容性,可被机体代谢。
附图说明
图1是本发明实施例的可诱导发光的聚氨酯的制备原理图。
图2是本发明实施例1的可诱导发光的聚氨酯的FT-IR图。
图3是本发明实施例1的可诱导发光的聚氨酯的1H-NMR图。
图4是本发明实施例1的可诱导发光的聚氨酯溶液的光成像图。
图5是本发明实施例1的可诱导发光的聚氨酯膜的光成像图。
图6是噻唑吡啶二酸与实施例1的可诱导发光的聚氨酯的激发光谱和发射光谱图。
图7是本发明实施例4的可诱导发光的聚氨酯的1H NMR图。
图8是本发明实施例4的可诱导发光的聚氨酯膜的光成像图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了使本揭示内容的叙述更加详尽与完备,下文针对本发明的实施方式与具体实施例提出了说明性的描述;但这并非实施或运用本发明具体实施例的唯一形式。实施方式中涵盖了多个具体实施例的特征以及用以建构与操作这些具体实施例的方法步骤与其顺序。然而,亦可利用其它具体实施例来达成相同或均等的功能与步骤顺序。
本发明说明书中所述的多元醇、多元胺以及多元酸,为羟基、氨基或羧基数量大于等于三的物质。
本发明的可诱导发光的聚氨酯将羟基、羧基或氨基封端的聚合物材料、多异氰酸酯和扩链剂作为结构单元。也就是说,该聚氨酯通过羟基、羧基或氨基封端的聚合物、多异氰酸酯物质和扩链剂反应而得到,即:该聚氨酯通过式(I)所示的第一聚合物、多异氰酸酯物质和式(II)所示的扩链剂反应而得到,
X1—Y—X1  (I)
式(I)中,X1表示羟基、羧基或氨基,Y表示聚合物;
Figure PCTCN2017110950-appb-000004
式(II)中,X1表示羟基、羧基或氨基。
本发明的羟基、羧基或氨基封端的聚合物材料为数均分子量为500~20000的二醇、二酯或二胺。为了保证聚氨酯的伸长率,本发明的羟基、羧基或氨基封端的聚合物材料的分子量为500以上;优选地,为700以上;更优选地,为1000以上。为了保证聚氨酯的拉伸强度,本发明的羟基、羧基或氨基封端的聚合物材料的分子量为20000以下;优选地,为1000以下。
作为羟基、羧基或氨基封端的聚合物材料,例如可以列举出聚氧化烯二醇、聚氧化烯二酯、聚氧化烯二胺、聚酯二醇、聚酯二酯、聚酯二胺、聚醚二醇、聚醚二酯、聚醚二胺、聚丁二烯二醇、聚丁二烯二酯、聚丁二烯二胺、其他多元醇、多元胺、多元酸和它们的两种以上的混合物等。
进一步地,作为羟基、羧基或氨基封端的聚合物材料,可以包括羟基封端聚乳酸(HO-PLA-OH),羟基封端聚已内酯(HO-PCL-OH),羟基封端聚乙交酯(HO-PGA-OH),羟基封端的乳酸和ε-己内酯共聚物,羟基封端的乳酸和羟基乙酸共聚物,羟基封端的ε-己内酯和羟基乙酸共聚物,羟基封端的乳酸、ε-己内酯和羟基乙酸共聚物,羧基封端的聚乳酸(HOOC-PLA-COOH),羧基封端的聚乙交酯(HOOC-PGA-COOH),羧基封端的乳酸和ε-己内酯共聚物,聚四氢呋喃(PTMG),聚乙二醇(PEG)、氨基封端的聚乙二醇(NH2-PEG-NH2)、其他多元醇、多元胺或多元酸中的一种或多种。
本发明的扩链剂为噻唑吡啶二环类物质,具有一个噻唑环和一个吡啶环, 二者并列连接,上述的噻唑吡啶二环结构为可诱导发光的结构,以其作为扩链剂,将其引入至聚氨酯主链以得到可诱导发光的聚氨酯,实现聚氨酯的可视化。
作为扩链剂可以列举出5-氧代-2,3-二氢-5H-[1,3]噻唑并[3,2-a]吡啶-3,7-二羧酸(5-oxo-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]pyridine-3,7-dicarboxylic acid,TPA,式IIa所示)、5-氧代-2,3-二氢-5H-[1,3]噻唑并[3,2-a]吡啶-3,7-二醇(式IIb所示)、5-氧代-2,3-二氢-5H-[1,3]噻唑并[3,2-a]吡啶-3,7-二胺(式IIc所示)。上述噻唑吡啶二环结构的扩链剂可以由柠檬酸和半胱氨酸合成,具有良好的生物相容性,且可被机体代谢。
Figure PCTCN2017110950-appb-000005
Figure PCTCN2017110950-appb-000006
Figure PCTCN2017110950-appb-000007
扩链剂可以单独以单独的使用一种,也可以将两种以上混合使用。
本发明的多异氰酸酯与羟基、羧基或氨基封端的聚合物材料发生反应,也可以与扩链剂发生反应。进一步地,多异氰酸酯可以单独的使用一种,也可以将两种以上混合使用。
多异氰酸酯为脂肪族异氰酸酯、芳香族异氰酸酯或酯环族异氰酸酯。其中,作为脂肪族异氰酸酯可以列举出1,6-六亚甲基二异氰酸酯、赖氨酸二异氰酸酯、异佛尔酮二异氰酸酯、及4,4-二环已基甲烷二异氰酸酯等,作为芳香族异氰酸酯可以列举出4,4-二苯基甲烷二异氰酸酯、甲苯二异氰酸酯、苯二亚甲基二异氰酸酯及三苯甲烷三异氰酸酯等。
本发明的可诱导发光的聚氨酯的制备方法如下:使羟基、羧基或氨基封端的聚合物、多异氰酸酯和式(II)所示的扩链剂反应制备可诱导发光的聚氨酯。
具体地,请参阅图1所示,在第一种优选实施方式中,首先,使式(I)所示的第一聚合物与多异氰酸酯物质反应制备异氰酸酯基封端预聚物;然后,使所述异氰酸酯基封端预聚物与式(II)所示的扩链剂反应制备可诱导发光的聚氨酯。在第二种优选实施方式中,首先,使多异氰酸酯与式(II)所示的扩链剂反应制备异氰酸酯封端的硬段预聚物;然后,使所述异氰酸酯封端的硬段预聚物与羟基、羧基或氨基封端的聚合物反应制备可诱导发光的聚氨酯。在上述制备方法中,羟基、羧基或氨基封端的聚合物材料为数均分子量为500~10000的二醇、二酯、二胺、多元醇、多元酸或多元胺。多异氰酸酯的异氰酸酯基摩尔数 是羟基、羧基或氨基封端的聚合物的羟基、羧基或氨基摩尔数的1.0~2.0倍;扩链剂的羟基、羧基或氨基摩尔数是羟基、羧基或氨基封端的聚合物的羟基、羧基或氨基摩尔数的0.0~1.0倍;羟基、羧基或氨基封端的聚合物的羟基、羧基或氨基摩尔数和扩链剂的羟基、羧基或氨基摩尔数的合计值与多异氰酸酯的异氰酸酯基摩尔数相等。
进一步地,在第一种优选实施方式中,在异氰酸酯基封端预聚物的制备步骤中,以辛酸亚锡为催化剂,辛酸亚锡的用量是羟基、羧基或氨基封端的聚合物的摩尔数的0.001~0.01倍,聚合温度为60℃~80℃;在可诱导发光的聚氨酯的制备步骤中,聚合温度为0℃~50℃。
进一步地,在第一种优选实施方式中,在异氰酸酯封端的硬段预聚物制备步骤中,以辛酸亚锡为催化剂,辛酸亚锡的用量是羟基、羧基或氨基封端的聚合物的摩尔数的0.001~0.01倍,聚合温度为60℃~80℃;在可诱导发光的聚氨酯的制备步骤中,聚合温度为60℃~90℃。
进一步地,在上述制备方法中,可以在任意步骤中使用有机溶剂,其中,有机溶剂没有特别的限定,例如为碳原子数为3~10的酮类溶剂(例如丙酮、甲基乙基酮和甲基异丁基酮)、碳原子数为2~10的酯系溶剂(例如乙酸乙酯、乙酸丁酯和γ-丁内酯)、碳原子数为4~10的醚系溶剂(例如四氢呋喃和二乙二醇二甲基醚)、碳原子数为3~10的酰胺系溶剂(例如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺(以下简称为DMAC)、N-甲基-2-吡咯烷酮和N-甲基己内酰胺)、碳原子数为2~10的亚砜系溶剂(例如二甲基亚砜)、碳原子数为1~8的醇系溶剂(例如甲醇、乙醇、异丙醇和辛醇)和碳原子数为4~10的烃系溶剂(例如正丁烷、环己烷、甲苯和二甲苯)等。
在上述列举的溶剂之中,从所得聚氨酯的溶解性的方面出发,优选碳原子数为3~10的酰胺系溶剂和碳原子数为2~10的亚砜系溶剂等,更优选碳原子数为3~10的酰胺系溶剂等。具体地,优选为N,N-二甲基甲酰胺或DMAC。
在使用有机溶剂的情况下,其用量使所制造的聚氨酯树脂的浓度优选为10重量%~90重量%、进一步优选为20重量%~80重量%。
具体地,请参阅图1所示,下面以羟基封端的聚乳酸(HO-PLA-OH)(分子量为500~20000g/mol)作为软段,1,6-六亚甲基二异氰酸酯(HDI)和噻唑吡啶二酸(TPA)作为硬段进行具体说明。
第一步,反应物的摩尔比为HO-PLA-OH:HDI=1.0:1.0~1.0:2.0,以辛酸亚锡为催化剂,辛酸亚锡与端羟基D,L-聚乳酸预聚体的摩尔量之比为0.001:1~0.01:1,聚合温度为60~80℃,聚合时间为2~6小时;第二步,加入活泼双官能团的小分子扩链剂噻唑吡啶二酸,反应物的摩尔比为HO-PLA-OH:TPA=1.0:0.0~1.0:1.0,聚合温度为0~50℃,聚合时间为1~4小时。通过调节三种原料的比例,同时保证三者的摩尔比关系为mol(HO-PLA-OH)+mol(TPA)=mol(HDI),获得一类可诱导发光的聚氨酯材料。通过光诱导,激发波长为200nm~760nm,使聚氨酯本体可诱导发光,实现聚氨酯材料的高灵敏度和快速响应的可视化检测。
上述的可诱导发光的聚氨酯材料,选用的噻唑吡啶二环类物质由柠檬酸和半胱氨酸合成,具有良好的生物相容性,且可被机体代谢,选用生物相容性较好的软段,可设计合成具有良好生物相容性的材料。该类聚氨酯材料是一类本体可诱导发光的高分子材料,不仅具有高分子材料的支撑等功能,而且能实现了聚氨酯材料本体的高灵敏度和快速响应的可视化检测。
实施例1
采用分子量为8000g/mol的HO-PLA-OH为软段,HDI和TPA为硬段,辛酸亚锡为催化剂,合成聚氨酯材料。第一步,反应物的摩尔比为HO-PLA-OH:HDI=1.0:1.2,以辛酸亚锡为催化剂,辛酸亚锡与HO-PLA-OH的摩尔量之比为0.005:1,聚合温度为80℃,聚合时间为2~6小时;第二步,加入活泼双官能团的小分子扩链剂噻唑吡啶二酸,反应物的摩尔比为HO-PLA-OH:TPA=1.0:0.1,聚合温度为50℃,聚合时间为1~4小时。
实施例2
采用分子量为8000g/mol的HO-PLA-OH为软段,HDI和TPA为硬段,辛酸亚锡为催化剂,合成聚氨酯材料。第一步,反应物的摩尔比为HO-PLA-OH: HDI=1.0:1.4,以辛酸亚锡为催化剂,辛酸亚锡与HO-PLA-OH的摩尔量之比为0.003:1,聚合温度为75℃,聚合时间为2~6小时;第二步,加入活泼双官能团的小分子扩链剂噻唑吡啶二酸,反应物的摩尔比为HO-PLA-OH:TPA=1.0:0.4,聚合温度为40℃,聚合时间为1~4小时。
实施例3
采用分子量为8000g/mol的HO-PLA-OH为软段,HDI和TPA为硬段,辛酸亚锡为催化剂,合成聚氨酯材料。第一步,反应物的摩尔比为HO-PLA-OH:HDI=1.0:1.7,以辛酸亚锡为催化剂,辛酸亚锡与HO-PLA-OH的摩尔量之比为0.01:1,聚合温度为70℃,聚合时间为2~6小时;第二步,加入活泼双官能团的小分子扩链剂噻唑吡啶二酸,反应物的摩尔比为HO-PLA-OH:TPA=1.0:0.7,聚合温度为30℃,聚合时间为1~4小时。
实施例4
采用分子量为2000g/mol的聚四氢呋喃(PTMG)为软段,HDI和TPA为硬段,辛酸亚锡为催化剂,合成聚氨酯材料。第一步,反应物的摩尔比为PTMG:HDI=1.0:1.2,以辛酸亚锡为催化剂,辛酸亚锡与PTMG的摩尔量之比为0.001:1,聚合温度为70℃,聚合时间为2~6小时;第二步,加入活泼双官能团的小分子扩链剂噻唑吡啶二酸,反应物的摩尔比为PTMG:TPA=1.0:0.2,聚合温度为40℃,聚合时间为1~4小时。
实施例5
采用分子量为2000g/mol的聚四氢呋喃(PTMG)为软段,HDI和TPA为硬段,辛酸亚锡为催化剂,合成聚氨酯材料。第一步,反应物的摩尔比为PTMG:HDI=1.0:1.5,以辛酸亚锡为催化剂,辛酸亚锡与PTMG的摩尔量之比为0.008:1,聚合温度为65℃,聚合时间为2~6小时;第二步,加入活泼双官能团的小分子扩链剂噻唑吡啶二酸,反应物的摩尔比为PTMG:TPA=1.0:0.5,聚合温度为20℃,聚合时间为1~4小时。
实施例6
采用分子量为2000g/mol的聚四氢呋喃(PTMG)为软段,HDI和TPA为 硬段,辛酸亚锡为催化剂,合成聚氨酯材料。第一步,反应物的摩尔比为PTMG:HDI=1.0:1.8,以辛酸亚锡为催化剂,辛酸亚锡与PTMG的摩尔量之比为0.004:1,聚合温度为60℃,聚合时间为2~6小时;第二步,加入活泼双官能团的小分子扩链剂噻唑吡啶二酸,反应物的摩尔比为PTMG:TPA=1.0:0.8,聚合温度为5℃,聚合时间为1~4小时。
可视化聚氨酯检测实验
实施例1所得聚氨酯材料检测:
通过1H NMR和FT-IR检测实施例1的聚氨酯材料被成功的合成,如图2、3所示,在图2中,TPA为可诱导发光的噻唑吡啶二酸,doil为分子量为8000Da的羟基封端聚乳酸(HO-PLA-OH),TPA-PU为合成的可诱导发光的聚氨酯,FT-IR图中,和doil相比,TPA-PU中3417cm-1、1620cm-1、1530cm-1和519cm-1处出现了酰胺的特征吸收峰;在图3中,TPA为可诱导发光的噻唑吡啶二酸,doil为分子量为8000Da的羟基封端聚乳酸(HO-PLA-OH),TPA-PU为合成的可诱导发光的聚氨酯,1H NMR图中,和doil相比,TPA-PU中1.05ppm处和3.0ppm处出现了HDI中CH2的特征吸收峰。通过紫外激发,观察到合成的聚氨酯(TPA-PU)具有可诱导发光的功能,如图4-6所示,在图4中,TPA为可诱导发光的噻唑吡啶二酸,doil为分子量为8000Da的羟基封端聚乳酸(HO-PLA-OH),TPA-PU为合成的可诱导发光聚氨酯,采用紫外光激发,TPA-PU可以发射蓝色光。
实施例4所得聚氨酯材料检测:
通过1H NMR检测实施例4聚氨酯材料被成功的合成,如图7所示,其中,软段为分子量为2000Da的羟基封端的聚四氢呋喃(PTMG),PTMG-TPA-PU为合成的可诱导发光的聚氨酯,1H NMR图中,和PTMG相比,PTMG-TPA-PU中0.8ppm处和3.1ppm处出现了HDI中CH2的特征吸收峰。通过不同波长的光激发,观察到合成的聚氨酯(PTMG-TPA-PU)具有可诱导发光的功能,如图8所示,其中A:紫外光激发下发蓝光,B:蓝光激发下发绿光,C:绿光激发下发红光。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种可诱导发光的聚氨酯,其特征在于,该聚氨酯将羟基、羧基或氨基封端的聚合物、多异氰酸酯和式(II)所示扩链剂作为结构单元,
    Figure PCTCN2017110950-appb-100001
    式(II)中,X1表示羟基、羧基或氨基。
  2. 根据权利要求1所述的可诱导发光的聚氨酯,其特征在于,羟基、羧基或氨基封端的聚合物包括聚氧化烯二醇、聚氧化烯二酯、聚氧化烯二胺、聚酯二醇、聚酯二酯、聚酯二胺、聚醚二醇、聚醚二酯、聚醚二胺、聚丁二烯二醇、聚丁二烯二酯、聚丁二烯二胺、多元醇、多元胺或多元酸中的一种或多种。
  3. 根据权利要求1所述的可诱导发光的聚氨酯,其特征在于,该聚氨酯通过式(I)所示的第一聚合物、多异氰酸酯物质和式(II)所示的扩链剂反应而得到,
    X1—Y—X1(I)
    式(I)中,X1表示羟基、羧基或氨基,Y表示聚酯或聚醚成分;
    Figure PCTCN2017110950-appb-100002
    式(II)中,X1表示羟基、羧基或氨基。
  4. 根据权利要求1所述的可诱导发光的聚氨酯,其特征在于,所述第一聚合物包括羟基封端聚乳酸,羟基封端聚已内酯,羟基封端聚乙交酯,羟基封端的乳酸和ε-己内酯共聚物,羟基封端的乳酸和羟基乙酸共聚物,羟基封端的ε-己内酯和羟基乙酸共聚物,羟基封端的乳酸、ε-己内酯和羟基乙酸共聚物,羧基封端的聚乳酸,羧基封端的聚乙交酯,羧基封端的乳酸和ε-己内酯共聚物,聚四氢呋喃,聚乙二醇或氨基封端的聚乙二醇、多元醇、多元胺或多元酸中的一种或多种。
  5. 根据权利要求1所述的可诱导发光的聚氨酯,其特征在于,所述多异氰酸酯物质包括1,6-六亚甲基二异氰酸酯、赖氨酸二异氰酸酯、异佛尔酮二异氰酸酯、4,4-二环已基甲烷二异氰酸酯、4,4-二苯基甲烷二异氰酸酯、甲苯二异氰酸酯、苯二亚甲基二异氰酸酯、三苯甲烷三异氰酸酯或L-赖氨酸三异氰酸酯中的一种或多种。
  6. 一种可诱导发光的聚氨酯的制备方法,其特征在于,使羟基、羧基或氨基封端的聚合物、多异氰酸酯和式(II)所示的扩链剂反应制备可诱导发光的聚氨酯;
    其中,
    Figure PCTCN2017110950-appb-100003
    式(II)中,X1表示羟基、羧基或氨基。
  7. 根据权利要求6所述的可诱导发光的聚氨酯的制备方法,其特征在于, 多异氰酸酯的异氰酸酯基摩尔数是羟基、羧基或氨基封端的聚合物的羟基、羧基或氨基摩尔数的1.0~2.0倍;扩链剂的羟基、羧基或氨基摩尔数是羟基、羧基或氨基封端的聚合物的羟基、羧基或氨基摩尔数的0.0~1.0倍;羟基、羧基或氨基封端的聚合物的羟基、羧基或氨基摩尔数和扩链剂的羟基、羧基或氨基摩尔数的合计值与多异氰酸酯的异氰酸酯基摩尔数相等。
  8. 根据权利要求6或7所述的可诱导发光的聚氨酯的制备方法,其特征在于,包括如下步骤:
    步骤a:使羟基、羧基或氨基封端的聚合物与多异氰酸酯反应制备异氰酸酯基封端预聚物;和
    步骤b:使所述异氰酸酯基封端预聚物与式(II)所示的扩链剂反应制备可诱导发光的聚氨酯;
    其中,
    Figure PCTCN2017110950-appb-100004
    式(II)中,X1表示羟基、羧基或氨基。
  9. 根据权利要求6或7所述的可诱导发光的聚氨酯的制备方法,其特征在于,包括如下步骤:
    步骤a’:使多异氰酸酯与式(II)所示的扩链剂反应制备异氰酸酯封端的硬段预聚物;
    步骤b’:使所述异氰酸酯封端的硬段预聚物与羟基、羧基或氨基封端的聚合物反应制备可诱导发光的聚氨酯;
    其中,
    Figure PCTCN2017110950-appb-100005
    式(II)中,X1表示羟基、羧基或氨基。
  10. 根据权利要求8所述的可诱导发光的聚氨酯的制备方法,其特征在于,在步骤a中,以辛酸亚锡为催化剂,辛酸亚锡的用量是羟基、羧基或氨基封端的聚合物的摩尔数的0.001~0.01倍,聚合温度为60℃~80℃;在步骤b中,聚合温度为0℃~50℃。
  11. 根据权利要求9所述的可诱导发光的聚氨酯的制备方法,其特征在于,在步骤a’中,以辛酸亚锡为催化剂,辛酸亚锡的用量是羟基、羧基或氨基封端的聚合物的摩尔数的0.001~0.01倍,聚合温度为60℃~80℃;在步骤b’中,聚合温度为60℃~90℃。
PCT/CN2017/110950 2017-11-14 2017-11-14 可诱导发光的聚氨酯及其制备方法 WO2019095116A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/110950 WO2019095116A1 (zh) 2017-11-14 2017-11-14 可诱导发光的聚氨酯及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/110950 WO2019095116A1 (zh) 2017-11-14 2017-11-14 可诱导发光的聚氨酯及其制备方法

Publications (1)

Publication Number Publication Date
WO2019095116A1 true WO2019095116A1 (zh) 2019-05-23

Family

ID=66538350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110950 WO2019095116A1 (zh) 2017-11-14 2017-11-14 可诱导发光的聚氨酯及其制备方法

Country Status (1)

Country Link
WO (1) WO2019095116A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB886967A (en) * 1959-01-22 1962-01-10 Ciba Ltd Process for the production of coloured polyurethane plastics
CN102876322A (zh) * 2012-10-24 2013-01-16 上海理工大学 一种稀土聚氨酯类高分子复合发光材料及其制备方法
CN105017288A (zh) * 2015-07-01 2015-11-04 西安交通大学 一种蓝色荧光化合物及其制备方法
CN105377929A (zh) * 2013-06-11 2016-03-02 巴斯夫欧洲公司 用于荧光聚合物的非迁移性光活性二醇
CN105418642A (zh) * 2015-11-03 2016-03-23 西安交通大学 一种含噻唑吡啶酮结构的甲基丙烯酸酯荧光单体及其制备方法
WO2016164437A1 (en) * 2015-04-06 2016-10-13 The Penn State Research Foundation Luminescent compositions and applications thereof
CN106596479A (zh) * 2016-11-29 2017-04-26 福州大学 一种用于游离氯检测的荧光传感器
CN106832175A (zh) * 2017-02-17 2017-06-13 华南理工大学 一种基于咔唑衍生物的双羟基荧光扩链剂及其制备与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB886967A (en) * 1959-01-22 1962-01-10 Ciba Ltd Process for the production of coloured polyurethane plastics
CN102876322A (zh) * 2012-10-24 2013-01-16 上海理工大学 一种稀土聚氨酯类高分子复合发光材料及其制备方法
CN105377929A (zh) * 2013-06-11 2016-03-02 巴斯夫欧洲公司 用于荧光聚合物的非迁移性光活性二醇
WO2016164437A1 (en) * 2015-04-06 2016-10-13 The Penn State Research Foundation Luminescent compositions and applications thereof
CN105017288A (zh) * 2015-07-01 2015-11-04 西安交通大学 一种蓝色荧光化合物及其制备方法
CN105418642A (zh) * 2015-11-03 2016-03-23 西安交通大学 一种含噻唑吡啶酮结构的甲基丙烯酸酯荧光单体及其制备方法
CN106596479A (zh) * 2016-11-29 2017-04-26 福州大学 一种用于游离氯检测的荧光传感器
CN106832175A (zh) * 2017-02-17 2017-06-13 华南理工大学 一种基于咔唑衍生物的双羟基荧光扩链剂及其制备与应用

Similar Documents

Publication Publication Date Title
Marcos-Fernández et al. Synthesis and characterization of biodegradable non-toxic poly (ester-urethane-urea) s based on poly (ε-caprolactone) and amino acid derivatives
US6784273B1 (en) Biomedical polyurethane, its preparation and use
US9611354B2 (en) Biodegradable photoluminescent polymers
Caracciolo et al. Effect of the hard segment chemistry and structure on the thermal and mechanical properties of novel biomedical segmented poly (esterurethanes)
CN104520345B (zh) 高强度聚氨异丁烯聚氨甲酸酯
US9034361B2 (en) Hydroswellable, segmented, aliphatic polyurethanes and polyurethane ureas
US8551519B2 (en) Bioabsorbable surgical articales or components thereof
JP6587318B2 (ja) 超分子生分解性ポリマー
CN101885826B (zh) 基于哌嗪嵌段d,l-聚乳酸的生物可降解聚氨酯材料及制备方法
ES2974903T3 (es) Poliuretanos termoplásticos biodegradables y/o bioabsorbibles
CN107987248B (zh) 可诱导发光的聚氨酯及其制备方法
Noordzij et al. The aza-Michael reaction: towards semi-crystalline polymers from renewable itaconic acid and diamines
US20060205910A1 (en) Polyureaurethane material and method of producing a polyureaurethane material
WO2019095116A1 (zh) 可诱导发光的聚氨酯及其制备方法
EP3545040B1 (en) Polyurethane, method of preparation, and article comprising the polyurethane
CN114133507B (zh) 一种生物基可降解聚氨酯的一锅制备法
Covolan et al. Polyurethane based materials for the production of biomedical materials
CN105073025A (zh) 由具有两个或更多个羧酸基团的单醇和二醇聚合引发剂制备的聚内酯聚合物
JP4135076B2 (ja) ポリアルキレンエーテル鎖含有ジオ−ル化合物、その製造法及びポリウレタン樹脂
US20190276583A1 (en) Modification of Segmented Polyurethane Properties by Copolymerizing with Pendant Functionalized Diols
JP2011213866A (ja) 鎖伸長剤およびその製造方法、および、熱可塑性ポリウレタン樹脂
JP4228274B2 (ja) ポリアルキレンエーテル鎖含有ジオ−ル化合物、その製造法及びポリウレタン樹脂
US20230272148A1 (en) Thermoplastic poly(urethane-urea) polyadducts
US11116211B2 (en) Modification of segmented polyurethane properties by copolymerizing with pendant functionalized diols
JP2003335837A (ja) ポリエステルウレタン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931890

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17931890

Country of ref document: EP

Kind code of ref document: A1