WO2019093776A1 - 에리불린 메실산염의 제조 중간체 및 그의 제조방법 - Google Patents

에리불린 메실산염의 제조 중간체 및 그의 제조방법 Download PDF

Info

Publication number
WO2019093776A1
WO2019093776A1 PCT/KR2018/013510 KR2018013510W WO2019093776A1 WO 2019093776 A1 WO2019093776 A1 WO 2019093776A1 KR 2018013510 W KR2018013510 W KR 2018013510W WO 2019093776 A1 WO2019093776 A1 WO 2019093776A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
reaction
carried out
group
Prior art date
Application number
PCT/KR2018/013510
Other languages
English (en)
French (fr)
Inventor
신현익
이기영
오창영
Original Assignee
연성정밀화학(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연성정밀화학(주) filed Critical 연성정밀화학(주)
Priority to US16/762,355 priority Critical patent/US11142509B2/en
Priority to CN201880072643.3A priority patent/CN111328328B/zh
Priority to EP18877106.7A priority patent/EP3712141B1/en
Priority to JP2020526128A priority patent/JP6967811B2/ja
Publication of WO2019093776A1 publication Critical patent/WO2019093776A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/10Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/12Radicals substituted by oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/357Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having two or more oxygen atoms in the same ring, e.g. crown ethers, guanadrel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/22Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains four or more hetero rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to novel intermediates for the preparation of eribulinyl mesylate and to processes for their preparation.
  • the eribulin mesylate of Formula 1 is an active pharmaceutical ingredient (API) of Halaven, a treatment for breast cancer.
  • U.S. Patent No. 6,214,865 discloses a process for preparing an eriburyl mesylate of Formula (1) using a compound of Formula (2) as a core intermediate, as shown in Scheme 1 below.
  • the preparation method has a problem that the synthesis route is very long and the yield is low.
  • U.S. Patent No. 7,982,060 discloses a method for preparing a compound of Formula (2) using a compound of Formula (5) as shown in Reaction Scheme 3 below.
  • the inventors of the present invention have conducted intensive studies to solve the above problems in the production of the compound of Formula 2, which is a key intermediate of the eriburin mesylate. As a result, it has been found that the compound of Formula 2 can be produced at high yield and high purity And the present invention has been completed.
  • one object of the present invention is to provide a compound of formula (6), which is an intermediate for the preparation of eriburin mesylate.
  • Another object of the present invention is to provide a process for preparing the compound of formula (6) with high yield and high purity.
  • Still another object of the present invention is to provide an intermediate used for preparing the compound of formula (2) using the compound of formula (6).
  • One embodiment of the present invention relates to a compound of formula (6), which is an intermediate for the preparation of eriburin mesylate.
  • R 3 represents a silyl protecting group, in particular t-butyldimethylsilyl
  • Ar represents an aryl group, particularly phenyl.
  • silyl protecting groups used herein include, but are not limited to, trimethylsilyl (TMS), triethylsilyl (TES), t-butyldimethylsilyl (TBS), t-butyldiphenylsilyl (TBDPS), and the like.
  • an aryl group includes both an aromatic group and a heteroaromatic group and a partially reduced derivative thereof.
  • the arromatic group is a simple or fused ring of 5 to 15 members
  • the heteroaromatic group means an aromatic group containing at least one of oxygen, sulfur or nitrogen.
  • Exemplary aryl groups include phenyl, benzyl, naphthyl, pyridinyl, furanyl, thiophenyl, indolyl, quinolinyl, imidazolinyl, ), Oxazolyl, thiazolyl, tetrahydronaphthyl, and the like, but are not limited thereto.
  • One embodiment of the present invention relates to a method for producing the compound of Chemical Formula 6,
  • R 1 represents a leaving group
  • R 2 represents a benzoyl group or an acetyl group
  • Pv represents a pivaloyl group
  • Ar represents an aryl group
  • R 3 represents a silyl protecting group
  • the leaving group used in the present invention includes, but is not limited to, p-toluenesulfone group, methanesulfone group, trifluoromethanesulfone group and the like.
  • Reaction Scheme 4 exemplifies the representative method, but the reaction reagent, the reaction conditions, and the like may be changed as required.
  • Step 1 Synthesis of the compound of formula (8)
  • the compound of formula (8) can be prepared by selectively sulfonating the primary hydroxy group of the compound of formula (7).
  • the sulfonylation reaction can be carried out by reacting the compound of formula (VII) with p-toluenesulfonyl halide, methanesulfonyl halide, trifluoromethanesulfonic anhydride or the like under basic conditions.
  • triethylamine 4-dimethylaminopyridine, pyridine and the like can be used, and triethylamine is particularly preferable.
  • reaction solvent methylene chloride, chloroform, tetrahydrofuran and the like can be used, and methylene chloride is particularly preferable.
  • the reaction temperature is preferably at room temperature.
  • the resulting compound of formula 8 is purified by recrystallization using heptane and toluene.
  • the recrystallization may be carried out by adding toluene to the compound of formula (8), heating to 50 ⁇ , cooling to 20 - 30 ⁇ and adding heptane.
  • the compound of formula (9) can be prepared by cyclizing the compound of formula (8) under basic conditions.
  • potassium carbonate sodium carbonate, cesium carbonate and the like can be used, and potassium carbonate is particularly preferable.
  • reaction solvent methanol, ethanol, isopropanol and the like can be used, and methanol is particularly preferable.
  • the reaction temperature is preferably about 45 to 50 ⁇ ⁇ .
  • the compound of formula (10) can be prepared by allylating the compound of formula (9).
  • the allylation reaction can be carried out using Grignard reagent, for example, vinyl magnesium bromide, vinyl magnesium chloride, and the like.
  • reaction solvent methylene chloride, chloroform, tetrahydrofuran and the like can be used, and tetrahydrofuran is particularly preferable.
  • the reaction temperature is preferably carried out under reflux conditions.
  • the resulting compound of formula (10) is purified by recrystallization using heptane and toluene.
  • the recrystallization can be carried out by adding heptane and toluene to the compound of formula (10), heating at 50 ⁇ and cooling to 20 ⁇ .
  • the compound of formula (11) can be prepared by methylating the hydroxy group of the compound of formula (10).
  • the methylation reaction can be carried out by reacting the compound of formula (10) with a methyl halide, for example, iodomethane under basic conditions.
  • a methyl halide for example, iodomethane under basic conditions.
  • sodium hydride lithium hydride and the like can be used, and sodium hydride is particularly preferable.
  • tetrahydrofuran, dimethylformamide and the like can be used as a reaction solvent, and particularly, dimethylformamide is preferable.
  • the reaction temperature is suitably room temperature.
  • the compound of formula (12) can be prepared by stereoselectively dihydroxylating the alkenyl group of the compound of formula (11).
  • the dihydroxygenation reaction can be carried out using a chiral agent and an oxidizing agent.
  • Examples of the chiral agent include hydroquinin anthraquinone-1,4-diyl diether ((DHQ) 2 AQN), hydroquinidine anthraquinone-1,4-diyl diether ((DHQD) 2 AQN) And hydroquininanthraquinone-1,4-diyl diether is particularly preferred.
  • potassium oxalate K 2 OsO 4
  • osmium tetraoxide OsO 4
  • potassium osmate is particularly preferable.
  • a mixed solvent of butanol and water is suitable as a reaction solvent.
  • the reaction temperature is preferably about 0 ⁇ ⁇ .
  • the compound of formula (13) can be prepared by protecting the hydroxy group of the compound of formula (12).
  • the protecting reaction may be carried out by reacting the compound of formula (12) with a benzoyl halide or an acetyl halide under basic conditions.
  • N-methylmorpholine triethylamine, potassium carbonate, 4-dimethylaminopyridine and the like can be used, and N-methylmorpholine and 4-dimethylaminopyridine are particularly suitable.
  • reaction solvent toluene, dimethylformamide and the like can be used, and toluene is particularly preferable.
  • the reaction temperature is preferably about 75 ⁇ .
  • the compound of formula (14) can be prepared by subjecting the compound of formula (13) to a Hosomi-Sakurai reaction.
  • Said Hosmi-Sakurai reaction can be carried out by reacting the compound of formula 13 with allylsilane, for example allyltrimethylsilane, in the presence of a Lewis acid.
  • allylsilane for example allyltrimethylsilane
  • titanium chloride As the Lewis acid, titanium chloride, boron trifluoride diethyl ether and the like can be used, and particularly, titanium chloride is suitable.
  • reaction solvent toluene, methylene chloride, chloroform and the like can be used, and toluene is particularly suitable.
  • the reaction temperature is suitably room temperature.
  • the resulting compound of formula (14) is purified by recrystallization using alcohol and heptane.
  • the recrystallization can be performed by adding an alcohol to the compound of formula (14), heating at 60 ⁇ , adding heptane, and cooling to 20 ⁇ .
  • the compound of formula (15) can be prepared by dihydroxylation, oxidation, and reduction of an alkene group of the compound of formula (14).
  • the dihydroxylation reaction can be carried out using potassium osmate.
  • reaction solvent a mixed solvent of water and acetonitrile is suitable as the reaction solvent, and the reaction temperature is suitably room temperature.
  • the oxidation reaction may be carried out using sodium diiodate (NaIO 4 ), lead tetraacetate (Pb (C 2 H 3 O 2 ) 4 ), or the like. Particularly, it is preferable to perform using sodium periodate.
  • reaction solvent a mixed solvent of methylene chloride and a saturated sodium hydrogen carbonate solution is suitable as the reaction solvent, and the reaction temperature is suitably room temperature.
  • the reduction reaction may be carried out using sodium borohydride.
  • reaction solvent methanol, ethanol, isopropanol and the like can be used, and methanol is particularly preferable.
  • the reaction temperature is preferably -5 to 5 ⁇ ⁇ .
  • the compound of formula (16) can be prepared by selectively protecting the primary hydroxy group of the compound of formula (15).
  • the protecting reaction can be carried out by reacting the compound of formula (15) with pivaloyl halide, specifically pivaloyl chloride, pivaloyl bromide, pivaloyl iodide or the like, under basic conditions.
  • pivaloyl halide specifically pivaloyl chloride, pivaloyl bromide, pivaloyl iodide or the like
  • pyridine triethylamine, 4-methylaminopyridine and the like can be used, and particularly pyridine is preferable.
  • reaction solvent tetrahydrofuran, methylene chloride, chloroform and the like can be used, and methylene chloride is particularly preferable.
  • the reaction temperature is suitably room temperature.
  • the compound of formula (17) can be prepared by the oxidation reaction of the hydroxy group of the compound of formula (16).
  • the oxidation reaction may be carried out in the presence of an oxidizing agent such as des-martin periodin (DMP).
  • DMP des-martin periodin
  • reaction solvent methylene chloride, chloroform and the like can be used, and methylene chloride is particularly preferable.
  • the reaction temperature is suitably room temperature.
  • the compound of formula 18 can be prepared by the methanation of the compound of formula 17.
  • the methanation may be performed using Wittig, Tebbe, Nysted, or the like, but is not limited thereto. Particularly, it is preferable to perform using Nystat agent.
  • tetrahydrofuran is suitable as a reaction solvent.
  • the reaction temperature is suitably room temperature.
  • the compound of formula (19) can be prepared by boron hydride addition and oxidation reaction of the compound of formula (18).
  • the boron hydride addition reaction can be carried out using borane, thexylborane, 9-BBN or the like. Particularly, it is preferable to carry out the reaction using dicylborane.
  • reaction temperature is preferably -5 to 0 ⁇ ⁇ .
  • the oxidation reaction may be performed using hydrogen peroxide, sodium perborate, or the like. Particularly sodium perborate.
  • the reaction temperature is suitably room temperature.
  • the compound of formula (20) can be prepared by the oxidation reaction of the hydroxy group of the compound of formula (19).
  • the oxidation reaction may be carried out in the presence of an oxidizing agent such as des-martin periodin (DMP).
  • DMP des-martin periodin
  • reaction solvent methylene chloride, chloroform and the like can be used, and methylene chloride is particularly preferable.
  • the reaction temperature is suitably room temperature.
  • the compound of formula 21 can be prepared by isomerizing the compound of formula 20.
  • the isomerization reaction may be carried out in the presence of a base.
  • triethylamine 4-dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) and the like can be used, and triethylamine is particularly preferable.
  • DBU 1,8-diazabicyclo [5.4.0] undec-7-ene
  • reaction solvent methylene chloride, chloroform and the like can be used.
  • methylene chloride is preferably used.
  • the reaction temperature is suitably about 30 to 35 ⁇ ⁇ .
  • the compound of formula (22) can be prepared by a reduction reaction of the compound of formula (21).
  • the reduction reaction may be performed using sodium borohydride, lithium borohydride or the like. Particularly, it is preferable to use sodium borohydride.
  • reaction solvent methanol, ethanol, isopropanol and the like can be used, and methanol is particularly preferable.
  • the reaction temperature is preferably 0 ° C.
  • the compound of formula 23 can be prepared by sulfonylating the hydroxy group of the compound of formula 22.
  • the sulfonylation reaction can be carried out by reacting the compound of the formula (22) with p-toluenesulfonyl halide, methanesulfonyl halide, trifluoromethanesulfonic anhydride or the like under basic conditions.
  • triethylamine, 4-dimethylaminopyridine, pyridine and the like can be used, and pyridine is particularly preferable.
  • reaction solvent methylene chloride, chloroform, tetrahydrofuran and the like can be used, and methylene chloride is particularly preferable.
  • the reaction temperature is preferably 0 ° C.
  • the compound of formula 24 can be prepared by substituting the leaving group of the compound of formula 23 with a sulfide.
  • the substitution reaction is carried out using lithium thiophenolate, sodium thiophenolate, sodium p-thiocresolate, sodium 4-methoxyphenyl thiolate, sodium 2-naphthalene thiolate, sodium quinoline-8-thiolate and the like .
  • reaction solvent methylene chloride, chloroform, tetrahydrofuran and the like can be used, and tetrahydrofuran is particularly preferable.
  • the reaction temperature is preferably 0 ° C.
  • the compound of formula (25) can be prepared by selective deprotection of the benzoyl group or the acetyl group of the compound of formula (24).
  • the deprotection reaction may be carried out under basic conditions.
  • magnesium methoxide sodium methoxide, sodium hydroxide and the like can be used, and magnesium methoxide is particularly suitable.
  • reaction solvent methanol, ethanol, isopropanol and the like can be used, and methanol is particularly preferable.
  • the reaction temperature is suitably room temperature.
  • the compound of formula 26 can be prepared by protecting the hydroxy group of the compound of formula 25.
  • the protecting reaction can be carried out by reacting the compound of the formula (25) with t-butyldimethylsilyl chloride, triethylsilyltrifluoromethane sulfonate, chlorotriethylsilane or the like under a basic condition.
  • imidazole triethylamine, 4-dimethylaminopyridine and the like can be used, and imidazole is particularly suitable.
  • reaction solvent methylene chloride, chloroform, dimethylformamide and the like can be used, and methylene chloride is particularly preferable.
  • the reaction temperature is suitably room temperature.
  • the compound of formula (27) can be prepared by deprotecting the pivaloyl group of the compound of formula (26).
  • the deprotection reaction may be performed using lithium aluminum hydride, sodium bis (2-methoxyethoxy) aluminum dihydride, diisobutyl aluminum hydride (DIBAL-H), or the like. Particularly, it is preferable to carry out the reaction using diisobutyl aluminum hydride.
  • reaction solvent methylene chloride, toluene, tetrahydrofuran and the like can be used, and tetrahydrofuran is particularly preferable.
  • the reaction temperature is preferably -5 to 0 ⁇ ⁇ .
  • the compound of formula (6) can be prepared by the oxidation reaction of the hydroxy group of the compound of formula (27).
  • the oxidation reaction may be carried out in the presence of an oxidizing agent such as des-martin periodin (DMP).
  • DMP des-martin periodin
  • reaction solvent methylene chloride, chloroform and the like can be used, and methylene chloride is particularly preferable.
  • the reaction temperature is suitably room temperature.
  • One embodiment of the present invention relates to a compound of formula (26), which is a production intermediate of the compound of formula (6).
  • Pv represents a pivaloyl group
  • R 3 represents a silyl protecting group, in particular t-butyldimethylsilyl
  • Ar represents an aryl group, particularly phenyl.
  • One embodiment of the present invention relates to a compound of formula (27), which is a production intermediate of the compound of formula (6).
  • R 3 represents a silyl protecting group, in particular t-butyldimethylsilyl
  • Ar represents an aryl group, particularly phenyl.
  • the compound of formula (6) according to one embodiment of the present invention can be effectively used to prepare the compound of formula (2) which is a key intermediate of the eriburin mesylate.
  • one embodiment of the present invention relates to a process for preparing the compound of formula (2)
  • R 3 represents a silyl protecting group
  • Ar represents an aryl group
  • Ms represents a methanesulfonyl group
  • Pv represents pivalo diarrhea.
  • Reaction Scheme 5 exemplifies the representative method, but the reaction reagent, the reaction conditions, and the like may be changed as required.
  • the compound of formula (29) can be prepared by reacting the compound of formula (6) with the compound of formula (28) in a Nozaki-Hiyama-chsi reaction.
  • the Nozaki-Hiyama-Chushi reaction can be carried out in the presence of chromium (II) chloride, nickel (II) chloride, a base and a ligand.
  • triethylamine As the base, triethylamine, proton sponge and the like can be used, and triethylamine is particularly suitable.
  • the ligand used was (S) -N- (2- (4-isopropyl-4,5-dihydrooxazol-2-yl) -6-methylphenyl) methanesulfonimide, (S) -N- (2- (4-tert-butoxycarbonyl) phenyl) Isopropyl-4,5-dihydrooxazol-2-yl) -6-methylphenyl) methanesulfonimide are suitable.
  • reaction solvent methylene chloride, acetonitrile, tetrahydrofuran, dimethoxyethane and the like can be used, and a mixed solvent of tetrahydrofuran and dimethoxyethane is particularly preferable.
  • the reaction temperature is preferably about 10 to 35 ⁇ ⁇ .
  • the compound of formula 30 can be prepared by cyclizing the compound of formula 29 at the base.
  • lithium bis (trimethylsilyl) amide sodium bis (trimethylsilyl) amide, potassium bis (trimethylsilyl) amide and the like can be used, and potassium bis (trimethylsilyl) amide is particularly suitable.
  • reaction solvent toluene, tetrahydrofuran, methyl t-butyl ether and the like can be used, and tetrahydrofuran is particularly preferable.
  • the reaction temperature is preferably about -20 ⁇ .
  • the compound of formula (31) can be prepared by the oxidation reaction of the compound of formula (30).
  • the oxidation reaction may be carried out using 3-chloroperbenzoic acid, hydrogen peroxide, urea hydrogen peroxide, or the like. Particularly, it is preferable to use urea hydrogen peroxide.
  • methanol, ethanol, isopropanol and the like can be used as a reaction solvent, and ethanol is particularly preferable.
  • the reaction temperature is suitably room temperature.
  • the compound of formula (2) can be prepared by deprotecting the pivaloyl group of the compound of formula (31).
  • the deprotection reaction may be carried out using lithium aluminum tetra hydride, sodium bis (2-methoxyethoxy) aluminum dihydride, diisobutyl aluminum hydride (DIBAL-H) and the like. Particularly, it is preferable to carry out the reaction using diisobutyl aluminum hydride.
  • reaction solvent methylene chloride, tetrahydrofuran, toluene and the like can be used, and toluene is particularly preferable.
  • the reaction temperature is preferably -65 ° C or less.
  • One embodiment of the present invention relates to a compound of formula (29), which is a production intermediate of the compound of formula (2).
  • R 3 represents a silyl protecting group, in particular t-butyldimethylsilyl
  • Ar represents an aryl group, especially phenyl
  • Ms represents a methanesulfonyl group
  • Pv represents pivalo diarrhea.
  • the compound of formula (6) which is a new production intermediate of eriburin mesylate, can be prepared with high yield and high purity.
  • the compound of formula (2) can be prepared in high yield and high purity using the compound of formula (6).
  • the compound of formula 10 (14.2 kg) was dissolved in dimethylformamide (71 L) and then cooled to 0 ⁇ ⁇ .
  • Iodomethane (18.12 kg) was slowly added thereto, and the mixture was stirred at 20 to 30 ° C for 2 hours.
  • a 15% aqueous solution of ammonium chloride (71 L) and ethyl acetate (71 L) were added and stirred for 15 minutes.
  • the organic layer was separated, washed twice with a 15% aqueous solution of ammonium chloride (71 L) and washed with water (71 L).
  • the organic layer was concentrated under reduced pressure to obtain the compound of Formula 11 (14.6 kg, 95.9%).
  • Reactor 1 was charged with 1M titanium tetrachloride (306 L) and toluene (93.12 L) and cooled to 0 ° C or lower. Titanium isopropoxide (30.20 L) was added dropwise while maintaining the temperature below 25 ° C. The reaction solution was warmed to room temperature and stirred for 0.5 hour. (31.04 kg), toluene (217.28 L) and allyltrimethylsilane (51.87 L) were added to Reactor 2, and the mixture was stirred at room temperature for 10 minutes, cooled to 0 ⁇ ⁇ , Respectively. After further stirring at room temperature for 1 hour, the solution was cooled to -5 deg.
  • Nitriding agent (36.2 kg) and tetrahydrofuran (66.88 L) were cooled to -10 ° C and the compound of formula (17a) (8.36 kg) was added to dissolve in tetrahydrofuran (16.72 L).
  • 1M titanium tetrachloride (17.46 L) was added dropwise while keeping the temperature below 5 ° C.
  • the reaction solution was warmed to room temperature and stirred for 1.5 hours.
  • the reaction solution was cooled to -10 DEG C, and 1N hydrochloric acid (83.6 L) and ethyl acetate (83.6 L) were added and stirred for 15 minutes or longer.
  • the organic layer was separated and washed three times with water (83.6 L).
  • reaction solution was filtered, water (25.75 L) and ethyl acetate (51.5 L) were added, and the mixture was stirred for 15 minutes or more.
  • the organic layer was separated and washed with a 20% aqueous solution of ammonium chloride (25.75 L).
  • the compound of Formula 20a (4.54 kg) was dissolved in methylene chloride (45.4 L), triethylamine (1.3 L) was added, and the mixture was stirred at room temperature for about 17 hours. Water (45.4 L) was added and stirred for 15 minutes or longer. The organic layer was separated and washed sequentially with 1N hydrochloric acid (45.4 L) and water (45.4 L). The organic layer was concentrated under reduced pressure and the compound of Formula 21a (4.56 kg) was used in the next reaction without further purification.
  • the compound of formula 22a (3.16 kg) was dissolved in methylene chloride (31.6 L) and pyridine (0.76 L) and cooled to 0 ⁇ ⁇ . Trifluoromethanesulfonic anhydride (1.47 L) was added dropwise and the mixture was stirred for 1 hour. Washed successively with 1N hydrochloric acid (31.6 L) and 8% aqueous sodium bicarbonate solution (31.6 L). The separated organic layer was concentrated under reduced pressure and the compound of Formula 23a (3.93 kg) was used in the next reaction without further purification.
  • the compound of formula 29a (179 g) was dissolved in tetrahydrofuran (1 L) and cooled to -20 ⁇ ⁇ .
  • 0.5 M potassium bis (trimethylsilyl) amide (1 L) was added dropwise and the mixture was stirred for 1.5 hours.
  • 7% sodium chloride solution (1 L) was added dropwise.
  • heptane (1 L) was added and stirred for 20 minutes.
  • the organic layer was separated and the aqueous layer was re-extracted with methyl t-butyl ether (1 L).
  • the combined organic layers were washed with 2% sodium chloride solution (0.5 L) and the organic layer was concentrated.
  • the compound of formula 31a (240 g) was dissolved in toluene (1 L) and cooled to -65 ⁇ ⁇ . 1.2 M diisobutyl aluminum hydride (0.5 L) was added dropwise. Methanol (30 mL) was added dropwise and the temperature was raised to room temperature. 1N hydrochloric acid (2.4 L) was added thereto and the organic layer was separated. The aqueous layer was re-extracted with methyl t-butyl ether (3 L). The combined organic layers were washed with 9% sodium bicarbonate solution (0.8 L) and the aqueous layer was extracted again with methyl t-butyl ether (1 L).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)

Abstract

본 발명은 에리불린 메실산염의 제조 중간체인 화학식 6의 화합물을 고수율 및 고순도로 제조하는 방법 및 이를 위한 중간체에 관한 것이다.

Description

에리불린 메실산염의 제조 중간체 및 그의 제조방법
본 발명은 에리불린 메실산염을 제조하기 위한 신규 중간체 및 이를 제조하는 방법에 관한 것이다.
하기 화학식 1의 에리불린 메실산염은 유방암 치료제인 할라벤 (Halaven)의 활성 제약 성분 (active pharmaceutical ingredient, API)이다.
[화학식 1]
Figure PCTKR2018013510-appb-I000001
미국 특허 제6,214,865호에는 하기 반응식 1에 도시된 바와 같이, 하기 화학식 2의 화합물을 핵심 중간체로 이용하여 화학식 1의 에리불린 메실산염을 제조하는 방법이 기재되어 있다.
[반응식 1]
Figure PCTKR2018013510-appb-I000002
또한, 하기 반응식 2에 도시된 바와 같이, 하기 화학식 4의 화합물을 이용하여 화학식 2의 화합물을 제조하는 방법이 기재되어 있다.
[반응식 2]
Figure PCTKR2018013510-appb-I000003
그러나, 상기 제조방법은 합성 경로가 매우 길고 수율이 낮은 문제점이 있다.
한편, 미국 특허 제7,982,060호에는 하기 반응식 3에 도시된 바와 같이, 하기 화학식 5의 화합물을 이용하여 화학식 2의 화합물을 제조하는 방법이 기재되어 있다.
[반응식 3]
Figure PCTKR2018013510-appb-I000004
그러나, 상기 제조방법은 화학식 5의 화합물의 제조 공정이 복잡하고 수율이 저하되는 문제점이 있다.
본 발명자들은 에리불린 메실산염의 핵심 중간체인 상기 화학식 2의 화합물의 제조에 있어서 상기한 문제점을 해결하고자 예의 연구 검토한 결과, 하기 화학식 6의 화합물을 이용하여 화학식 2의 화합물을 고수율 및 고순도로 제조할 수 있음을 알아내고, 본 발명을 완성하게 되었다.
따라서, 본 발명의 한 목적은 에리불린 메실산염의 제조 중간체인 하기 화학식 6의 화합물을 제공하는 것이다.
본 발명의 다른 목적은 상기 화학식 6의 화합물을 고수율 및 고순도로 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 제조방법에 사용되는 중간체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 화학식 6의 화합물을 이용하여 상기 화학식 2의 화합물을 제조하는데 사용되는 중간체를 제공하는 것이다.
본 발명의 일 실시형태는 에리불린 메실산염의 제조 중간체인 하기 화학식 6의 화합물에 관한 것이다.
[화학식 6]
Figure PCTKR2018013510-appb-I000005
상기 식에서,
R3는 실릴 보호기, 특히 t-부틸다이메틸실릴을 나타내고,
Ar은 아릴기, 특히 페닐을 나타낸다.
본 명세서에서 사용되는 실릴 보호기는 트리메틸실릴 (TMS), 트리에틸실릴 (TES), t-부틸다이메틸실릴 (TBS), t-부틸디페닐실릴 (TBDPS) 등이 포함되나 이에 한정되는 것은 아니다.
본 명세서에서 사용되는 아릴기는 아로메틱기와 헤테로아로메틱기 및 그들의 부분적으로 환원된 유도체를 모두 포함한다. 상기 아로메틱기는 5원 내지 15원의 단순 또는 융합 고리형이며, 헤테로아로메틱기는 산소, 황 또는 질소를 하나 이상 포함하는 아로메틱기를 의미한다. 대표적인 아릴기의 예로는 페닐, 벤질, 나프틸, 피리디닐(pyridinyl), 푸라닐(furanyl), 티오페닐(thiophenyl), 인돌릴(indolyl), 퀴놀리닐(quinolinyl), 이미다졸리닐(imidazolinyl), 옥사졸릴(oxazolyl), 티아졸릴(thiazolyl), 테트라히드로나프틸 등이 있으나 이에 한정되는 것은 아니다.
본 발명의 일 실시형태는 상기 화학식 6의 화합물의 제조방법에 관한 것으로, 본 발명의 제조방법은
(i) 하기 화학식 7의 화합물의 일차 하이드록시기를 선택적으로 술포닐화시켜 하기 화학식 8의 화합물을 수득하는 단계;
(ii) 하기 화학식 8의 화합물을 고리화하여 하기 화학식 9의 화합물을 수득하는 단계;
(iii) 하기 화학식 9의 화합물을 알릴화시켜 하기 화학식 10의 화합물을 수득하는 단계;
(iv) 하기 화학식 10의 화합물의 하이드록시기를 메틸화하여 하기 화학식 11의 화합물을 수득하는 단계;
(v) 하기 화학식 11의 화합물의 알켄기를 입체선택적 디하이드록시화시켜 하기 화학식 12의 화합물을 수득하는 단계;
(vi) 하기 화학식 12의 화합물의 하이드록시기를 보호화하여 하기 화학식 13의 화합물을 수득하는 단계;
(vii) 하기 화학식 13의 화합물을 호소미-사쿠라이 (Hosomi-Sakurai) 반응시켜 하기 화학식 14의 화합물을 수득하는 단계;
(viii) 하기 화학식 14의 화합물의 알켄기를 디하이드록시화, 산화 반응 및 환원 반응시켜 하기 화학식 15의 화합물을 수득하는 단계;
(ix) 하기 화학식 15의 화합물의 일차 하이드록시기를 선택적으로 보호화하여 하기 화학식 16의 화합물을 수득하는 단계;
(x) 하기 화학식 16의 화합물의 하이드록시기를 산화 반응시켜 하기 화학식 17의 화합물을 수득하는 단계;
(xi) 하기 화학식 17의 화합물을 메테닐화하여 하기 화학식 18의 화합물을 수득하는 단계;
(xii) 하기 화학식 18의 화합물을 수소화붕소 첨가 및 산화 반응시켜 하기 화학식 19의 화합물을 수득하는 단계;
(xiii) 하기 화학식 19의 화합물의 하이드록시기를 산화 반응시켜 하기 화학식 20의 화합물을 수득하는 단계;
(xiv) 하기 화학식 20의 화합물을 이성질화하여 하기 화학식 21의 화합물을 수득하는 단계;
(xv) 하기 화학식 21의 화합물을 환원 반응시켜 하기 화학식 22의 화합물을 수득하는 단계;
(xvi) 하기 화학식 22의 화합물의 하이드록시기를 술포닐화시켜 하기 화학식 23의 화합물을 수득하는 단계;
(xvii) 하기 화학식 23의 화합물의 이탈기를 설피드로 치환시켜 하기 화학식 24의 화합물을 수득하는 단계;
(xviii) 하기 화학식 24의 화합물의 벤조일기 또는 아세틸기를 선택적으로 탈보호화하여 하기 화학식 25의 화합물을 수득하는 단계;
(xix) 하기 화학식 25의 화합물의 하이드록시기를 보호화시켜 하기 화학식 26의 화합물을 수득하는 단계;
(xx) 하기 화학식 26의 화합물의 피발로일기를 탈보호화하여 하기 화학식 27의 화합물을 수득하는 단계; 및
(xxi) 하기 화학식 27의 화합물의 하이드록시기를 산화 반응시키는 단계를 포함한다.
[화학식 7]
Figure PCTKR2018013510-appb-I000006
[화학식 8]
Figure PCTKR2018013510-appb-I000007
[화학식 9]
Figure PCTKR2018013510-appb-I000008
[화학식 10]
Figure PCTKR2018013510-appb-I000009
[화학식 11]
Figure PCTKR2018013510-appb-I000010
[화학식 12]
Figure PCTKR2018013510-appb-I000011
[화학식 13]
Figure PCTKR2018013510-appb-I000012
[화학식 14]
Figure PCTKR2018013510-appb-I000013
[화학식 15]
Figure PCTKR2018013510-appb-I000014
[화학식 16]
Figure PCTKR2018013510-appb-I000015
[화학식 17]
Figure PCTKR2018013510-appb-I000016
[화학식 18]
Figure PCTKR2018013510-appb-I000017
[화학식 19]
Figure PCTKR2018013510-appb-I000018
[화학식 20]
Figure PCTKR2018013510-appb-I000019
[화학식 21]
Figure PCTKR2018013510-appb-I000020
[화학식 22]
Figure PCTKR2018013510-appb-I000021
[화학식 23]
Figure PCTKR2018013510-appb-I000022
[화학식 24]
Figure PCTKR2018013510-appb-I000023
[화학식 25]
Figure PCTKR2018013510-appb-I000024
[화학식 26]
Figure PCTKR2018013510-appb-I000025
[화학식 27]
Figure PCTKR2018013510-appb-I000026
상기 식에서,
R1은 이탈기를 나타내며,
R2는 벤조일기 또는 아세틸기를 나타내고,
Pv는 피발로일기를 나타내며,
Ar은 아릴기를 나타내고,
R3는 실릴 보호기를 나타낸다.
본 명세서에서 사용되는 이탈기는 p-톨루엔술폰기, 메탄술폰기, 트리플루오르화메탄술폰기 등이 포함되나 이에 한정되는 것은 아니다.
이하, 본 발명의 제조방법을 하기 반응식 4를 참조로 보다 상세히 설명한다. 하기 반응식 4에 기재된 방법은 대표적으로 사용된 방법을 예시한 것일 뿐 반응 시약, 반응조건 등은 경우에 따라 얼마든지 변경될 수 있다.
[반응식 4]
Figure PCTKR2018013510-appb-I000027
제1단계: 화학식 8의 화합물의 합성
화학식 8의 화합물은 화학식 7의 화합물의 일차 하이드록시기를 선택적으로 술포닐화시켜 제조할 수 있다.
상기 술포닐화 반응은 염기 조건에서 화학식 7의 화합물을 p-톨루엔술포닐 할라이드, 메탄술포닐 할라이드, 트리플루오르화메탄술포닉 언하이드라이드 등과 반응시켜 수행될 수 있다.
상기 염기로는 트리에틸아민, 4-디메틸아미노피리딘, 피리딘 등이 사용될 수 있고, 특히 트리에틸아민이 바람직하다.
이때, 반응 용매로는 메틸렌클로라이드, 클로로포름, 테트라하이드로푸란 등이 사용될 수 있고, 특히 메틸렌클로라이드가 바람직하다.
반응 온도는 실온에서 수행하는 것이 바람직하다.
본 발명의 일 실시형태에 따르면, 생성된 화학식 8의 화합물을 헵탄과 톨루엔을 이용하여 재결정하여 정제한다. 상기 재결정은 화학식 8의 화합물에 톨루엔을 부가하여 50℃로 가열한 다음, 20 내지 30℃로 냉각하고 헵탄을 부가하여 수행할 수 있다.
제2단계: 화학식 9의 화합물의 합성
화학식 9의 화합물은 화학식 8의 화합물을 염기 조건에서 고리화하여 제조할 수 있다.
상기 염기로는 탄산칼륨, 탄산나트륨, 탄산세슘 등이 사용될 수 있고, 특히 탄산칼륨이 바람직하다.
이때, 반응 용매로는 메탄올, 에탄올, 이소프로판올 등이 사용될 수 있고, 특히 메탄올이 바람직하다.
반응 온도는 약 45 내지 50℃가 바람직하다.
제3단계: 화학식 10의 화합물의 합성
화학식 10의 화합물은 화학식 9의 화합물을 알릴화시켜 제조할 수 있다.
상기 알릴화 반응은 그리나르제 (Grignard reagent), 예를 들어 비닐 마그네슘 브로마이드, 비닐 마그네슘 클로라이드 등을 사용하여 수행될 수 있다.
이때, 반응 용매로는 메틸렌클로라이드, 클로로포름, 테트라히드로푸란 등이 사용될 수 있고, 특히 테트라히드로푸란이 바람직하다.
반응 온도는 환류 조건에서 수행하는 것이 바람직하다.
본 발명의 일 실시형태에 따르면, 생성된 화학식 10의 화합물을 헵탄과 톨루엔을 이용하여 재결정하여 정제한다. 상기 재결정은 화학식 10의 화합물에 헵탄과 톨루엔을 부가하여 50℃에서 가열한 다음 20℃로 냉각하여 수행할 수 있다.
제4단계: 화학식 11의 화합물의 합성
화학식 11의 화합물은 화학식 10의 화합물의 하이드록시기를 메틸화하여 제조할 수 있다.
상기 메틸화 반응은 염기 조건에서 화학식 10의 화합물을 메틸 할라이드, 예를 들어 아이오도메탄과 반응시켜 수행될 수 있다.
상기 염기로는 소듐 하이드라이드, 리튬 하이드라이드 등이 사용될 수 있고, 특히 소듐 하이드라이드가 바람직하다.
이때, 반응 용매로는 테트라하이드로푸란, 다이메틸포름아미드 등이 사용될 수 있고, 특히 다이메틸포름아미드가 바람직하다.
반응 온도는 실온이 적합하다.
제5단계: 화학식 12의 화합물의 합성
화학식 12의 화합물은 화학식 11의 화합물의 알켄기를 입체선택적 디하이드록시화시켜 제조할 수 있다.
상기 디하이드록시화 반응은 카이랄제와 산화제를 사용하여 수행될 수 있다.
상기 카이랄제로는 하이드로퀴닌 안트라퀴논-1,4-다이일 다이에테르 ((DHQ)2AQN), 하이드로퀴니딘 안트라퀴논-1,4-다이일 다이에테르 ((DHQD)2AQN) 등이 사용될 수 있고, 특히 하이드로퀴닌 안트라퀴논-1,4-다이일 다이에테르가 바람직하다.
상기 산화제로는 오스뮴산칼륨 (K2OsO4), 사산화오스뮴 (OsO4) 등이 사용될 수 있고, 특히 오스뮴산칼륨이 바람직하다.
이때, 반응 용매로는 부탄올과 물의 혼합 용매가 적합하다.
반응 온도는 약 0℃가 바람직하다.
제6단계: 화학식 13의 화합물의 합성
화학식 13의 화합물은 화학식 12의 화합물의 하이드록시기를 보호화하여 제조할 수 있다.
상기 보호화 반응은 염기 조건에서 화학식 12의 화합물을 벤조일 할라이드 또는 아세틸 할라이드와 반응시켜 수행될 수 있다.
상기 염기로는 N-메틸모르폴린, 트리에틸아민, 탄산칼륨, 4-디메틸아미노피리딘 등이 사용될 수 있고, 특히 N-메틸모르폴린과 4-디메틸아미노피리딘이 적합하다.
이때, 반응 용매로는 톨루엔, 다이메틸포름아미드 등이 사용될 수 있고, 특히 톨루엔이 바람직하다.
반응 온도는 약 75℃가 적합하다.
제7단계: 화학식 14의 화합물의 합성
화학식 14의 화합물은 화학식 13의 화합물을 호소미-사쿠라이 (Hosomi-Sakurai) 반응시켜 제조할 수 있다.
상기 호소미-사쿠라이 반응은 루이스산 존재 하에서 화학식 13의 화합물을 알릴실란, 예를 들어 알릴트리메틸실란과 반응시켜 수행될 수 있다.
상기 루이스산으로는 염화티타늄, 보론 트리플로라이드 다이에틸 에테르 등이 사용될 수 있고, 특히 염화티타늄이 적합하다.
이때, 반응 용매로는 톨루엔, 메틸렌클로라이드, 클로로포름 등이 사용될 수 있고, 특히 톨루엔이 적합하다.
반응 온도는 실온이 적합하다.
본 발명의 일 실시형태에 따르면, 생성된 화학식 14의 화합물을 알코올과 헵탄을 이용하여 재결정하여 정제한다. 상기 재결정은 화학식 14의 화합물에 알코올을 부가하여 60℃에서 가열한 다음 헵탄을 부가하고 20℃로 냉각하여 수행할 수 있다.
제8단계: 화학식 15의 화합물의 합성
화학식 15의 화합물은 화학식 14의 화합물의 알켄기를 디하이드록시화, 산화 반응 및 환원 반응시켜 제조할 수 있다.
상기 디하이드록시화 반응은 오스뮴산칼륨을 사용하여 수행될 수 있다.
이때, 반응 용매는 물과 아세토니트릴의 혼합용매가 적합하고, 반응 온도는 실온이 적합하다.
상기 산화 반응은 과요오드산나트륨 (NaIO4), 리드테트라아세테이트 (Pb(C2H3O2)4) 등을 사용하여 수행될 수 있다. 특히, 과요오드산나트륨을 사용하여 수행하는 것이 바람직하다.
이때, 반응 용매는 메틸렌클로라이드와 포화 탄산수소나트륨 용액의 혼합용매가 적합하고, 반응 온도는 실온이 적합하다.
상기 환원 반응은 수소화 붕소 나트륨를 사용하여 수행될 수 있다.
이때, 반응 용매로는 메탄올, 에탄올, 이소프로판올 등이 사용될 수 있고, 특히 메탄올이 바람직하다.
반응 온도는 -5 내지 5℃가 적합하다.
제9단계: 화학식 16의 화합물의 합성
화학식 16의 화합물은 화학식 15의 화합물의 일차 하이드록시기를 선택적으로 보호화하여 제조할 수 있다.
상기 보호화 반응은 염기 조건에서 화학식 15의 화합물을 피발로일 할라이드, 구체적으로 피발로일 클로라이드, 피발로일 브로마이드, 피발로일 아이오다이드 등과 반응시켜 수행될 수 있다.
상기 염기로는 피리딘, 트리에틸아민, 4-메틸아미노피리딘 등이 사용될 수 있고, 특히 피리딘이 바람직하다.
이때, 반응 용매로는 테트라히드로푸란, 메틸렌클로라이드, 클로로포름 등이 사용될 수 있고, 특히 메틸렌클로라이드가 바람직하다.
반응 온도는 실온이 적합하다.
제10단계: 화학식 17의 화합물의 합성
화학식 17의 화합물은 화학식 16의 화합물의 하이드록시기를 산화 반응시켜 제조할 수 있다.
상기 산화 반응은 데스-마틴 퍼아이오디난 (DMP)과 같은 산화제의 존재 하에 수행될 수 있다.
이때, 반응 용매로는 메틸렌클로라이드, 클로로포름 등이 사용될 수 있고, 특히 메틸렌클로라이드가 바람직하다.
반응 온도는 실온이 적합하다.
제11단계: 화학식 18의 화합물의 합성
화학식 18의 화합물은 화학식 17의 화합물을 메테닐화시켜 제조할 수 있다.
상기 메테닐화는 위티그 (Wittig), 테베 (Tebbe), 니스테드 (Nysted) 반응 등을 사용하여 수행될 수 있으나, 이에 제한되는 것은 아니다. 특히, 니스테드제를 사용하여 수행하는 것이 바람직하다.
이때, 반응 용매로는 테트라하이드로푸란이 적합하다.
반응 온도는 실온이 적합하다.
제12단계: 화학식 19의 화합물의 합성
화학식 19의 화합물은 화학식 18의 화합물을 수소화붕소 첨가 및 산화 반응시켜 제조할 수 있다.
상기 수소화붕소 첨가 반응은 보레인, 덱실보란 (Thexylborane), 9-BBN 등을 사용하여 수행될 수 있다. 특히, 덱실보란을 사용하여 수행하는 것이 바람직하다.
이때, 반응 용매로는 테트라히드로푸란이 적합하고, 반응 온도는 -5 내지 0℃가 적합하다.
상기 산화 반응은 과산화수소, 과붕산나트륨 등을 사용하여 수행될 수 있다. 특히 과붕산나트륨를 사용하여 수행하는 것이 바람직하다.
반응 온도는 실온이 적합하다.
제13단계: 화학식 20의 화합물의 합성
화학식 20의 화합물은 화학식 19의 화합물의 하이드록시기를 산화 반응시켜 제조할 수 있다.
상기 산화 반응은 데스-마틴 퍼아이오디난 (DMP)과 같은 산화제의 존재 하에 수행될 수 있다.
이때, 반응 용매로는 메틸렌클로라이드, 클로로포름 등이 사용될 수 있고, 특히 메틸렌클로라이드가 바람직하다.
반응 온도는 실온이 적합하다.
제14단계: 화학식 21의 화합물의 합성
화학식 21의 화합물은 화학식 20의 화합물을 이성질화하여 제조할 수 있다.
상기 이성질화 반응은 염기의 존재 하에 수행될 수 있다.
상기 염기로는 트리에틸아민, 4-디메틸아미노피리딘, 1,8-디아자비사이클로[5.4.0]운덱-7-엔 (DBU) 등이 사용될 수 있으며, 특히 트리에틸아민이 바람직하다.
이때, 반응 용매로는 메틸렌클로라이드, 클로로포름 등이 사용될 수 있고, 특히 메틸렌클로라이드를 사용하는 것이 바람직하다.
반응 온도는 약 30 내지 35℃가 적합하다.
제15단계: 화학식 22의 화합물의 합성
화학식 22의 화합물은 화학식 21의 화합물을 환원 반응시켜 제조할 수 있다.
상기 환원 반응은 수소화 붕소 나트륨, 수소화 붕소 리튬 등을 사용하여 수행될 수 있다. 특히, 수소화 붕소 나트륨을 사용하여 수행하는 것이 바람직하다.
이때, 반응 용매로는 메탄올, 에탄올, 이소프로판올 등이 사용될 수 있고, 특히 메탄올이 바람직하다.
반응 온도는 0℃가 적합하다.
제16단계: 화학식 23의 화합물의 합성
화학식 23의 화합물은 화학식 22의 화합물의 하이드록시기를 술포닐화시켜 제조할 수 있다.
상기 술포닐화 반응은 염기 조건에서 화학식 22의 화합물을 p-톨루엔술포닐 할라이드, 메탄술포닐 할라이드, 트리플루오르화메탄술포닉 언하이드라이드 등과 반응시켜 수행될 수 있다.
상기 염기로는 트리에틸아민, 4-디메틸아미노피리딘, 피리딘 등이 사용될 수 있고, 특히 피리딘이 바람직하다.
이때, 반응 용매로는 메틸렌클로라이드, 클로로포름, 테트라하이드로푸란 등이 사용될 수 있고, 특히 메틸렌클로라이드가 바람직하다.
반응 온도는 0℃가 적합하다.
제17단계: 화학식 24의 화합물의 합성
화학식 24의 화합물은 화학식 23의 화합물의 이탈기를 설피드로 치환시켜 제조할 수 있다.
상기 치환 반응은 리튬 티오페놀레이트, 소듐 티오페놀레이트, 소듐 p-티오크레졸레이트, 소듐 4-메톡시페닐티오레이트, 소듐 2-나프탈렌티오레이트, 소듐 퀴놀린-8-티오레이트 등을 사용하여 수행될 수 있다.
이때, 반응 용매로는 메틸렌클로라이드, 클로로포름, 테트라하이드로푸란 등이 사용될 수 있고, 특히 테트라하이드로푸란이 바람직하다.
반응 온도는 0℃가 적합하다.
제18단계: 화학식 25의 화합물의 합성
화학식 25의 화합물은 화학식 24의 화합물의 벤조일기 또는 아세틸기를 선택적 탈보호화하여 제조할 수 있다.
상기 탈보호화 반응은 염기 조건에서 수행될 수 있다.
상기 염기로는 마그네슘 메톡사이드, 소듐 메톡사이드, 소듐 하이드록사이드 등이 사용될 수 있고, 특히 마그네슘 메톡사이드가 적합하다.
이때, 반응 용매로는 메탄올, 에탄올, 이소프로판올 등이 사용될 수 있고, 특히 메탄올이 바람직하다.
반응 온도는 실온이 적합하다.
제19단계: 화학식 26의 화합물의 합성
화학식 26의 화합물은 화학식 25의 화합물의 하이드록시기를 보호화시켜 제조할 수 있다.
상기 보호화 반응은 염기 조건에서 화학식 25의 화합물을 t-부틸다이메틸실릴 클로라이드, 트리에틸실릴 트리플루오로메탄설포네이트, 클로로트리에틸실란 등과 반응시켜 수행될 수 있다.
상기 염기로는 이미다졸, 트리에틸아민, 4-다이메틸아미노피리딘 등이 사용될 수 있고, 특히 이미다졸이 적합하다.
이때, 반응 용매로는 메틸렌클로라이드, 클로로포름, 디메틸포름아미드 등이 사용될 수 있고, 특히 메틸렌클로라이드가 바람직하다.
반응 온도는 실온이 적합하다.
제20단계: 화학식 27의 화합물의 합성
화학식 27의 화합물은 화학식 26의 화합물의 피발로일기를 탈보호화하여 제조할 수 있다.
상기 탈보호화 반응은 리튬 알루미늄 하이드라이드, 소듐 비스(2-메톡시에톡시)알루미늄 다이하이드라이드, 다이이소부틸알루미늄 하이드라이드 (DIBAL-H) 등을 사용하여 수행될 수 있다. 특히, 다이이소부틸알루미늄 하이드라이드를 사용하여 수행하는 것이 바람직하다.
이때, 반응 용매로는 메틸렌클로라이드, 톨루엔, 테트라히드로푸란 등이 사용될 수 있고, 특히 테트라히드로푸란이 바람직하다.
반응 온도는 -5 내지 0℃가 적합하다.
제21단계: 화학식 6의 화합물의 합성
화학식 6의 화합물은 화학식 27의 화합물의 하이드록시기를 산화 반응시켜 제조할 수 있다.
상기 산화 반응은 데스-마틴 퍼아이오디난 (DMP)과 같은 산화제의 존재 하에 수행될 수 있다.
이때, 반응 용매로는 메틸렌클로라이드, 클로로포름 등이 사용될 수 있고, 특히 메틸렌클로라이드가 바람직하다.
반응 온도는 실온이 적합하다.
본 발명의 일 실시형태는 상기 화학식 6의 화합물의 제조 중간체인 하기 화학식 26의 화합물에 관한 것이다.
[화학식 26]
Figure PCTKR2018013510-appb-I000028
상기 식에서,
Pv는 피발로일기를 나타내고,
R3는 실릴 보호기, 특히 t-부틸다이메틸실릴을 나타내며,
Ar은 아릴기, 특히 페닐을 나타낸다.
본 발명의 일 실시형태는 상기 화학식 6의 화합물의 제조 중간체인 하기 화학식 27의 화합물에 관한 것이다.
[화학식 27]
Figure PCTKR2018013510-appb-I000029
상기 식에서,
R3는 실릴 보호기, 특히 t-부틸다이메틸실릴을 나타내고,
Ar은 아릴기, 특히 페닐을 나타낸다.
본 발명의 일 실시형태에 따른 화학식 6의 화합물은 에리불린 메실산염의 핵심 중간체인 화학식 2의 화합물을 제조하는데 효과적으로 사용될 수 있다.
따라서, 본 발명의 일 실시형태는 하기 화학식 2의 제조방법에 관한 것으로, 본 발명의 제조방법은
(xxii) 하기 화학식 6의 화합물을 하기 화학식 28의 화합물과 노자키-히야마-키시 반응시켜 하기 화학식 29의 화합물을 수득하는 단계;
(xxiii) 하기 화학식 29의 화합물을 고리화하여 하기 화학식 30의 화합물을 수득하는 단계;
(xxiv) 하기 화학식 30의 화합물을 산화 반응시켜 하기 화학식 31의 화합물을 수득하는 단계; 및
(xxv) 하기 화학식 31의 화합물의 피발로일기를 탈보호화하는 단계를 포함한다.
[화학식 2]
Figure PCTKR2018013510-appb-I000030
[화학식 6]
Figure PCTKR2018013510-appb-I000031
[화학식 28]
Figure PCTKR2018013510-appb-I000032
[화학식 29]
Figure PCTKR2018013510-appb-I000033
[화학식 30]
Figure PCTKR2018013510-appb-I000034
[화학식 31]
Figure PCTKR2018013510-appb-I000035
상기 식에서,
R3는 실릴 보호기를 나타내고
Ar은 아릴기를 나타내며
Ms는 메탄술포닐기를 나타내고,
Pv는 피발로일기를 나타낸다.
이하, 본 발명의 제조방법을 하기 반응식 5를 참조로 보다 상세히 설명한다. 하기 반응식 5에 기재된 방법은 대표적으로 사용된 방법을 예시한 것일 뿐 반응 시약, 반응조건 등은 경우에 따라 얼마든지 변경될 수 있다.
[반응식 5]
Figure PCTKR2018013510-appb-I000036
제22단계: 화학식 29의 화합물의 합성
화학식 29의 화합물은 화학식 6의 화합물을 화학식 28의 화합물과 노자키-히야마-키시 반응시켜 제조할 수 있다.
상기 노자키-히야마-키시 반응은 크로뮴(II)클로라이드, 니켈(II)클로라이드, 염기와 리간드의 존재 하에 수행될 수 있다.
상기 염기로는 트리에틸아민, 프로톤 스펀지 등이 사용될 수 있고, 특히 트리에틸아민이 적합하다.
상기 리간드로는 (S)-N-(2-(4-이소프로필-4,5-디하이드로옥사졸-2-일)-6-메틸페닐)메탄 설폰이미드, (S)-N-(2-(4-이소프로필-4,5-디하이드로옥사졸-2-일)-6-메톡시페닐)메탄 설폰이미드 등이 사용될 수 있고, 특히 (S)-N-(2-(4-이소프로필-4,5-디하이드로옥사졸-2-일)-6-메틸페닐)메탄 설폰이미드가 적합하다.
이때, 반응 용매로는 메틸렌클로라이드, 아세토니트릴, 테트라히드로푸란, 디메톡시에탄 등이 사용될 수 있고, 특히 테트라히드로푸란과 디메톡시에탄의 혼합용매가 바람직하다.
반응 온도는 약 10 내지 35 ℃가 적합하다.
제23단계: 화학식 30의 화합물의 합성
화학식 30의 화합물은 화학식 29의 화합물을 염기 조건에서 고리화하여 제조할 수 있다.
상기 염기로는 리튬 비스(트리메틸실릴)아미드, 소듐 비스(트리메틸실릴)아미드, 포타슘 비스(트리메틸실릴)아미드 등이 사용될 수 있으며, 특히 포타슘 비스(트리메틸실릴)아미드가 적합하다.
이때, 반응 용매로는 톨루엔, 테트라히드로푸란, 메틸 t-부틸 에테르 등이 사용될 수 있고, 특히 테트라히드로푸란이 바람직하다.
반응 온도는 약 -20 ℃가 적합하다.
제24단계: 화학식 31의 화합물의 합성
화학식 31의 화합물은 화학식 30의 화합물을 산화 반응시켜 제조할 수 있다.
상기 산화 반응은 3-클로로퍼벤조익 에시드, 과산화수소, 우레아 하이드로젠 퍼옥사이드 등을 사용하여 수행될 수 있다. 특히, 우레아 하이드로젠 퍼옥사이드를 사용하여 수행하는 것이 바람직하다.
이때, 반응 용매로는 메탄올, 에탄올, 이소프로판올 등이 사용될 수 있고, 특히 에탄올이 바람직하다.
반응 온도는 실온이 적합하다.
제25단계: 화학식 2의 화합물의 합성
화학식 2의 화합물은 화학식 31의 화합물의 피발로일기를 탈보호화하여 제조할 수 있다.
상기 탈보호화 반응은 리튬 알루미늄 테트라하이드라이드, 소듐 비스(2-메톡시에톡시)알루미늄 다이하이드라이드, 다이이소부틸알루미늄 하이드라이드 (DIBAL-H) 등을 사용하여 수행될 수 있다. 특히, 다이이소부틸알루미늄 하이드라이드를 사용하여 수행하는 것이 바람직하다.
이때, 반응 용매로는 메틸렌클로라이드, 테트라히드로푸란, 톨루엔 등이 사용될 수 있고, 특히 톨루엔이 바람직하다.
반응 온도는 -65 ℃ 이하가 적합하다.
본 발명의 일 실시형태는 상기 화학식 2의 화합물의 제조 중간체인 하기 화학식 29의 화합물에 관한 것이다.
[화학식 29]
Figure PCTKR2018013510-appb-I000037
상기 식에서,
R3는 실릴 보호기, 특히 t-부틸다이메틸실릴을 나타내고,
Ar은 아릴기, 특히 페닐을 나타내며,
Ms는 메탄술포닐기를 나타내고,
Pv는 피발로일기를 나타낸다.
본 발명의 제조방법에 따르면, 에리불린 메실산염의 새로운 제조 중간체인 화학식 6의 화합물을 고수율 및 고순도로 제조할 수 있다. 아울러, 화학식 6의 화합물을 이용하여 화학식 2의 화합물을 고수율 및 고순도로 제조할 수 있다.
이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.
실시예 1: 화학식 8a의 화합물의 제조
Figure PCTKR2018013510-appb-I000038
화학식 7의 화합물 (33 kg)을 메틸렌클로라이드 (330 L)에 가하여 녹인 후, 0℃로 냉각하였다. 트리에틸아민 (21.07 kg)을 5℃ 이하로 유지하면서 가하였다. p-톨루엔술포닐 클로라이드 (36.89 kg)을 천천히 가하였다. 실온으로 승온하여 2시간 교반하였다. 반응의 종결을 확인하고 15% 염화암모늄 수용액 (165 L)를 가하고 15분 교반 후 유기층을 분리하고 감압 농축하였다. 톨루엔 (66 L)를 가하고 50℃로 가열한 다음, 20℃로 냉각하였다. 헵탄 (16.5 L)을 가하고 1시간 교반하였다. 생성된 고체를 여과하고 헵탄:톨루엔 (1:1, 49.5 L)로 세척하였다. 20 내지 30℃에서 진공 건조하여 화학식 8a의 화합물 (40.84 kg, 68.7%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.80 (2H, d, J = 8.1 Hz), 7.36 (2H, d, J = 8.1 Hz), 5.88 (1H, d, J = 3.6 Hz), 4.51 (1H, d, J = 3.3 Hz), 4.38-4.30 (3H, m), 4.14 (1H, m), 2.46 (3H, s), 2.40 (1H, brs), 1.46 (3H, s), 1.30 (3H, s).
실시예 2: 화학식 9의 화합물의 제조
Figure PCTKR2018013510-appb-I000039
화학식 8a의 화합물 (40 kg)을 메탄올 (320 L)에 녹이고 탄산칼륨 (24.1 kg)을 가하였다. 반응액을 45 내지 50℃로 승온한 후 3시간 교반하였다. 실온으로 냉각 후 여과하고 여과액을 감압 농축하였다. 농축액에 물 (200 L)와 메틸렌클로라이드 (400 L)를 가하여 15분 동안 교반하고 유기층을 분리하였다. 황산나트륨을 가하고 여과한 다음, 여과액을 감압 농축하여 화학식 9의 화합물 (18.9 kg, 94.7%)을 수득하고, 추가 정제과정 없이 다음 반응에 사용하였다.
1H NMR (300 MHz, CDCl3): δ 6.28 (1H, d, J = 3.6 Hz), 5.20 (1H, d, J = 3.9 Hz), 5.13-5.10 (1H, m), 4.76-4.72 (2H, m), 4.23 (1H, dd, J = 2.4, 15.6 Hz), 1.42 (3H, s), 1.38 (3H, s).
실시예 3: 화학식 10의 화합물의 제조
Figure PCTKR2018013510-appb-I000040
화학식 9의 화합물 (18.3 kg)을 테트라하이드로푸란 (47.6 L)에 녹인 후 0℃로 냉각하였다. 비닐마그네슘 브로마이드 (212.6 L)을 가하고 70℃로 승온하여 17시간 교반하였다. 반응액을 0℃로 냉각한 뒤 15% 염화암모늄 수용액 (183 L)와 초산에틸 (183 L)를 가하고 15분 교반하였다. 유기층을 분리하고 물 (183 L)로 세척하였다. 유기층을 감압 농축하고 톨루엔 (36.6 L)와 헵탄 (36.6 L)를 가하고 50℃에서 교반하여 완전히 녹였다. 20℃로 냉각한 후 고체가 생성될 때까지 1시간 교반하였다. 헵탄 (36.6 L)를 가하고 1시간 추가 교반하였다. 생성된 고체를 여과하고 헵탄:톨루엔 (1:5, 36.6 L)로 세척하였다. 45℃에서 진공 건조하여 화학식 10의 화합물 (14.2 kg, 59.8%)을 얻었다.
1H NMR (300 MHz, CDCl3) : δ 5.93-5.79 (2H, m), 5.23-5.10 (2H, m), 4.51 (1H, d, J = 3.6 Hz), 4.19 (1H, td, J = 2.4, 7.4 Hz), 4.09 (1H, s), 2.58-2.37 (2H, m), 1.92 (1H, s, J = 4.8 Hz), 1.50 (3H, s), 1.31 (3H, s).
실시예 4: 화학식 11의 화합물의 제조
Figure PCTKR2018013510-appb-I000041
화학식 10의 화합물 (14.2 kg)을 디메틸포름아미드 (71 L)에 녹인 후, 0℃로 냉각하였다. 소듐 하이드라이드 (3.68 kg)과 테트라부틸암모늄 아이오다이드 (1.31 kg)을 차례로 가하였다. 아이오도메탄 (18.12 kg)을 천천히 투입하고 20 내지 30℃에서 2시간 교반하였다. 15% 염화암모늄 수용액 (71 L)와 초산에틸 (71 L)를 가하고 15분 동안 교반하였다. 유기층을 분리하고 15% 염화암모늄 수용액 (71 L)으로 2회 세척하고 물 (71 L)로 세척하였다. 유기층을 감압 농축하여 화학식 11의 화합물 (14.6 kg, 95.9%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 5.89 (1H, d, J = 3.9 Hz), 5.89-5.74 (1H, m), 5.19-5.06 (2H, m), 4.57 (1H, d, J = 3.9 Hz), 4.18 (1H, td, J = 3.0, 7.2 Hz), 3.57 (1H, d, J = 3.0 Hz) 3.41 (3H, s), 2.49-2.43 (2H, m), 1.49 (3H, s), 1.32 (3H, s).
실시예 5: 화학식 12의 화합물의 제조
Figure PCTKR2018013510-appb-I000042
화학식 11의 화합물 (14.6 kg)을 부탄올 (1 L)과 물 (189.4 L)에 녹인 후, (DHQ)2AQN (291.4 g), 페리시안화 칼륨 (76.12 kg)과 포타슘 카보네이트 (32 kg)을 가하고 -5 내지 0℃ 사이로 냉각하였다. 포타슘 오스메이트 디하이드레이트 (75.2 g)를 0℃가 넘지 않게 투입한 다음, 18시간 교반하였다. 반응액에 티오황산나트륨 (37.6 kg)를 가하고 실온으로 승온하여 15시간 교반하였다. 톨루엔 (218.6 L)를 가하고 15분 교반한 다음, 유기층을 분리하였다. 유기층에 20% 염화나트륨 수용액 (145.7 L)를 가하고 15분 교반한 다음 유기층을 분리하고 감압 농축하여 화학식 12의 화합물 (16.88 kg)을 수득하여 추가 정제과정 없이 다음 반응에 사용하였다.
1H NMR (300 MHz, CDCl3) : δ 5.90-5.87 (1H, m), 4.59-4.57 (1H, m), 4.42-4.36 (1H, m), 3.96-3.89 (1H, m), 3.70-3.62 (2H, m), 3.57-3.47 (1H, m), 3.42 (3H, s), 2.00-1.69 (2H, m), 1.50 (3H, s), 1.33 (3H, s).
실시예 6: 화학식 13a의 화합물의 제조
Figure PCTKR2018013510-appb-I000043
화학식 12의 화합물 (16.9 kg)에 톨루엔 (168.8 L), N-메틸모르폴린 (20.63 kg)과 디메틸아미노피리딘 (1.66 kg)을 가하고 5℃ 이하로 냉각하였다. 벤조일 클로라이드 (23.7 L)을 25℃ 이하로 유지하면서 분할 적가하였다. 반응액을 75℃로 승온하여 6시간 교반하였다. 0℃ 이하로 냉각한 후에 1N 염산 (84.4 L)를 천천히 적가하고 15분 교반하였다. 유기층을 분리하고 20% 염화나트륨 수용액 (50.64 L), 5% 탄산수소나트륨 수용액 (50.64 L), 물 (50.64 L)로 차례로 세척하였다. 유기층을 감압 농축하여 얻어진 화학식 13a의 화합물 (31.04 kg)을 추가 정제과정 없이 다음 반응에 사용하였다.
1H NMR (300 MHz, CDCl3): δ 8.06-7.99 (4H, m), 7.58-7.48 (2H, m), 7.45-7.37 (4H, m), 5.89-5.87 (1H, m), 5.68-5.56 (1H, m), 4.69-4.50 (3H, m), 4.34-4.33 (1H, m), 3.70 (0.71H, d, J = 3.2), 3.60 (0.29H, d, J = 3.1) 3.42 (2.09H, s), 3.39 (0.91H, s), 2.33-2.19 (2H, m), 1.40 (3H, s), 1.30 (3H, s).
실시예 7: 화학식 14a의 화합물의 제조
Figure PCTKR2018013510-appb-I000044
반응기 1에 1M 사염화 티타늄 (306 L)와 톨루엔 (93.12 L)를 가하고 0℃ 이하로 냉각하였다. 티타늄 이소프로폭사이드 (30.20 L)를 25℃ 이하를 유지하면서 적가하였다. 반응액을 실온으로 승온하고 0.5시간 교반하였다. 반응기 2에 화학식 13a의 화합물 (31.04 kg) 및 톨루엔 (217.28 L)와 알릴트리메틸실란 (51.87 L)를 가하고 실온에서 10분 교반하고 0℃로 냉각한 다음, 반응기 1로 25℃ 이하를 유지하면서 적가하였다. 실온에서 1시간 추가 교반한 다음, -5℃ 이하로 냉각하고 1N 염산 (186.24 L)을 25℃가 넘지 않게 가하고 15분 교반하였다. 유기층을 분리하고 1N 염산 (93.12 L)와 물 (93.12 L)로 차례로 세척하였다. 유기층을 농축하고 이소프로판올 (62.08 L)를 가하고 다시 감압 농축하였다. 이소프로판올 (31.04 L)를 가하고 60℃에서 교반하여 완전히 녹인 다음, 20℃로 냉각하였다. 고체가 생성될 때까지 1시간 추가 교반하였다. 헵탄 (155.2 L)를 가하고 20℃에서 1시간 교반하였다. 생성된 고체를 여과하고 30℃에서 진공 건조하여 화학식 14a의 화합물 (32.33 kg, 32.33%)을 수득하였다.
1H NMR (300 MHz, CDCl3): δ 8.06-7.99 (4H, m), 7.56-7.51 (2H, m), 7.45-7.38 (4H, m), 5.89-5.75 (1H, m), 5.67-5.59 (1H, m), 5.16-5.06 (2H, m), 4.58-4.55 (2H, m), 4.17-4.15 (1H, m), 3.95-3.97 (1H, m), 3.67-3.62 (2H, m), 3.42 (3H, s), 2.49-2.32 (2H, m), 2.22 (2H, t, J = 6.6 Hz)
실시예 8: 화학식 15a의 화합물의 제조
Figure PCTKR2018013510-appb-I000045
화학식 14a (10.1 kg)을 아세토니트릴 (130 L)에 녹인 다음, 물 (130 L), 페리시안화 칼륨 (26.4 kg), 탄산칼륨 (11.1 kg), 오스뮴산칼륨 (84 g)을 차례로 가하고 실온에서 18시간 교반하였다. 티오황산나트륨 (12.7 kg)을 첨가하고 6시간 추가 교반하였다. 초산에틸 (100 L)를 가하고 15분 이상 교반한 다음 유기층을 분리하였다. 유기층에 물 (50 L)를 가하여 세척하였다. 분리된 유기층을 감압 농축하였다. 메틸렌클로라이드 (109 L)와 8% 탄산수소나트륨 수용액 (5.44 L)를 가하고 -5℃로 냉각하였다. 소듐 퍼아이오데이트 (0.43 kg)을 첨가하고 실온에서 1.5시간 교반하였다. 반응액을 여과하고 여과액을 15% 티오황산나트륨 수용액을 가하여 세척하였다. 분리된 유기층에 황산나트륨을 가하여 탈수하고 여과하여 감압 농축하였다. 메탄올 (80 L)를 가하여 녹인 다음 -5℃로 냉각하였다. 수소화 붕소 나트륨 (1 kg)을 5℃ 이하를 유지하면서 첨가하였다. -5℃에서 1시간 교반한 다음 15% 염화암모늄 수용액 (106 L)을 천천히 첨가하였다. 메탄올을 80% 감압 농축하고 메틸렌클로라이드 (53 L)를 가하여 15분 이상 교반하였다. 유기층을 분리하고 감압 농축하여 화학식 15a의 화합물 (10.22 kg)을 추가 정제과정 없이 다음 반응에 사용하였다.
1H NMR (300 MHz, CDCl3): δ 8.06-7.99 (4H, m), 7.58-7.51 (2H, m), 7.45-7.38 (4H, m), 5.68-5.60 (1H, m), 4.61-4.51 (2H, m), 4.18-4.12 (1H, m), 3.95 (1H, dd, J = 2.4, 5.7) 3.87-3.80 (1H, m), 3.76-3.62 (3H, m), 3.41 (3H, s), 2.23-2.17 (2H, m), 1.93-1.86 (2H, m).
실시예 9: 화학식 16a의 화합물의 제조
Figure PCTKR2018013510-appb-I000046
화학식 15a의 화합물 (10.22 kg)에 메틸렌클로라이드 (102 L)와 피리딘 (3.72 L)를 가하여 용해하고 -5 내지 0℃로 냉각하였다. 피발로일 클로라이드 (4.24 L)를 적가하였다. 20 내지 30℃에서 6시간 이상 교반하였다. 15% 염화암모늄 수용액 (102 L)을 가하고 15분 이상 교반한 다음 유기층을 분리하였다. 1N 염산 (51 L), 물 (51 L)로 차례로 세척하였다. 유기층을 감압 농축하고 크로마토그라피 (초산에틸:n-헥산 = 1:4)하여 화학식 16a의 화합물 (8.39 kg, 69.22%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 8.06-7.99 (4H, m), 7.58-7.51 (2H, m), 7.45-7.38 (4H, m), 5.66-5.58 (1H, m), 4.62-4.51 (2H, m), 4.32-4.24 (1H, m), 4.19-4.03 (2H, m), 4.00-3.99 (1H, m), 3.67-3.61 (2H, m), 3.40 (3H, s), 2.21 (2H, t, J = 6.6 Hz), 1.98-1.89 (2H, m), 1.19 (9H, s).
실시예 10: 화학식 17a의 화합물의 제조
Figure PCTKR2018013510-appb-I000047
화학식 16a의 화합물 (8.39 kg)에 메틸렌클로라이드 (125.9 L)를 가하여 녹인 다음, 데스 마틴 퍼아이오디난 (13.46 kg)과 탄산수소나트륨 (2.66 kg)을 첨가하고 실온에서 약 3시간 교반하였다. 10% 티오황산나트륨 수용액 (83.9 L)와 8% 탄산수소나트륨 수용액 (83.9 L)를 천천히 가하고 15분 이상 교반하였다. 유기층을 분리하고 8% 탄산수소나트륨 수용액 (83.9 L)로 세척하였다. 유기층을 여과하고 감압 농축하여 화학식 17a의 화합물 (8.36 kg)을 추가 정제과정 없이 다음 반응에 사용하였다.
1H NMR (300 MHz, CDCl3): δ 8.06-8.00 (H, m), 7.60-7.53 (2H, m), 7.47-7.39 (4H, m), 5.68-5.61 (1H, m), 4.59 (2H, d, J = 4.8 Hz), 4.24-4.11 (3H, m), 3.84 (1H, dd, J = 3.6, 8.6 Hz), 3.61 (1H, d, J = 4.5 Hz), 3.49 (3H, s), 2.40-2.23 (2H, m), 2.17-2.04 (1H, m), 1.95-1.84 (1H, m), 1.17 (9H, s).
실시예 11: 화학식 18a의 화합물의 제조
Figure PCTKR2018013510-appb-I000048
니스테드제 (36.2 kg)과 테트라하이드로푸란 (66.88 L)를 -10℃로 냉각하고 화학식 17a의 화합물 (8.36 kg)을 테트라하이드로푸란 (16.72 L)에 녹여서 첨가하였다. 1M 사염화 티타늄 (17.46 L)을 5℃ 이하를 유지하면서 적가하였다. 반응액을 실온으로 승온하여 1.5시간 교반하였다. 반응액을 -10℃로 냉각하고 1N 염산 (83.6 L)와 초산에틸 (83.6 L)를 가하여 15분 이상 교반하였다. 유기층을 분리하고 물 (83.6 L)로 3회 세척하였다. 유기층을 감압 농축하고 크로마토그라피 (초산에틸:n-헥산 = 1:4)하여 화학식 18a의 화합물 (5.23 kg, 62.79%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 8.06-7.99 (4H, m), 7.58-7.51 (2H, m), 7.45-7.38 (4H, m), 5.68-5.60 (1H, m), 5.27 (1H, d, J = 1.8 Hz), 5.14 (1H, brs), 4.55-4.55 (2H, m), 4.37 (1H, t, J = 6), 4.18-4.09 (2H, m), 3.98-3.93 (2H, m), 3.30 (3H, s), 2.30-2.24 (2H, m), 1.92 (2H, q, J = 6.6), 1.18 (9H, s).
실시예 12: 화학식 19a의 화합물의 제조
Figure PCTKR2018013510-appb-I000049
1M 보란 테트라하이드로푸란 콤플렉스 용액 (21.6 L)를 -5℃로 냉각하고 2,3-디메틸-2-부텐 (2.57 L)를 테트라하이드로푸란 (19.03 L)에 희석하여 첨가하여 2시간 교반하였다. 화학식 18a의 화합물 (5.15 kg)을 테트라하이드로푸란 (43.2 L)에 녹인 후, 0℃ 이하에서 적가하였다. 실온으로 승온 후 1시간 이상 추가 교반하였다. 반응액을 -10℃ 이하로 냉각하고 물 (51.5 L)를 적가하면서 20 내지 30℃로 승온하였다. 과붕산나트륨 테트라하이드레이트 (6.65 kg)을 첨가하고 15시간 이상 교반하였다. 반응액을 여과하고 물 (25.75 L), 초산에틸 (51.5 L)를 가하고 15분 이상 교반하였다. 유기층을 분리하고 20% 염화암모늄 수용액 (25.75 L)로 세척하였다. 유기층을 감압 농축하고 크로마토그라피 (초산에틸:n-헥산 = 1:3)하여 화학식 19a의 화합물 (4.62 kg, 86.7%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 8.07-7.99 (4H, m), 7.58-7.51 (2H, m), 7.46-7.38 (4H, m), 5.70-5.62 (1H, m), 4.63-4.54 (2H, m), 4.23-3.74 (7H, m), 3.51 (3H, s), 2.58-2.49 (1H, m), 2.28-2.14 (3H, m), 1.99-1.87 (1H, m), 1.80-1.69 (1H, m), 1.17 (9H, s).
실시예 13: 화학식 20a의 화합물의 제조
Figure PCTKR2018013510-appb-I000050
화학식 19a의 화합물 (4.56 kg)에 메틸렌클로라이드 (22.8 L)를 가하여 녹이고 5 내지 10℃로 냉각하였다. 데스 마틴 퍼아이오디난 (7.13 kg)과 탄산수소나트륨 (1.41 kg)을 첨가하고 실온에서 약 1시간 교반하였다. 10% 티오황산나트륨 수용액 (45.6 L)와 8% 탄산수소나트륨 수용액 (45.6 L)를 천천히 가하고 30분 이상 교반하였다. 유기층을 분리하고 8% 탄산수소나트륨 수용액 (67.7 L)로 세척하였다. 유기층에 황산나트륨 (2.3 kg)을 가하고 여과한 다음, 감압 농축하여 화학식 20a의 화합물 (4.54 kg)을 추가 정제과정 없이 다음 반응에 사용하였다.
1H NMR (300 MHz, CDCl3): δ 9.8 (1H, d, J = 1.8), 8.06-7.99 (4H, m), 7.58-7.51 (2H, m), 7.46-7.38 (4H, m), 5.67-5.59 (1H, m), 4.61-4.51 (2H, m), 4.21-4.04 (4H, m), 3.94-3.88 (1H, m), 3.35 (3H, s), 2.90-2.86 (1H, m), 2.23 (2H, t, J = 6.7 Hz), 2.08-1.89 (2H, m), 1.18 (9H, s).
실시예 14: 화학식 21a의 화합물의 제조
Figure PCTKR2018013510-appb-I000051
화학식 20a의 화합물 (4.54 kg)을 메틸렌클로라이드 (45.4 L)에 녹이고 트리에틸아민 (1.3 L)를 가하고 실온에서 약 17시간 동안 교반하였다. 물 (45.4 L)를 가하고 15분 이상 교반하였다. 유기층을 분리하고 1N 염산 (45.4 L)과 물 (45.4 L)로 차례로 세척하였다. 유기층을 감압 농축하고 화학식 21a의 화합물 (4.56 kg)을 추가 정제과정 없이 다음 반응에 사용하였다.
1H NMR (300 MHz, CDCl3): δ 9.8 (1H, d, J = 1.8), 8.06-7.99 (4H, m), 7.58-7.51 (2H, m), 7.46-7.38 (4H, m), 5.67-5.59 (1H, m), 4.61-4.51 (2H, m), 4.21-4.04 (4H, m), 3.94-3.88 (1H, m), 3.35 (3H, s), 2.90-2.86 (1H, m), 2.23 (2H, t, J = 6.7 Hz), 2.08-1.89 (2H, m), 1.18 (9H, s).
실시예 15: 화학식 22a의 화합물의 제조
Figure PCTKR2018013510-appb-I000052
화학식 21a의 화합물 (4.56 kg)에 메탄올 (45.6 L)을 가하여 녹인 다음, -10℃로 냉각하였다. 수소화 붕소 나트륨 (476 g)을 5℃가 넘지 않게 분할 첨가하고 0℃에서 약 1시간 동안 교반하였다. 15% 염화암모늄 수용액 (45.6 L)를 적가하고 메틸렌클로라이드 (45.6 L)을 가하고 30분 동안 교반하였다. 유기층을 분리하고 감압 농축하고 크로마토그라피 (초산에틸:n-헥산 = 1:3)하여 화학식 22a의 화합물 (3.16 kg, 69.3%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 8.06-7.99 (4H, m), 7.58-7.51 (2H, m), 7.45-7.38 (4H, m), 5.66-5.59 (1H, m), 4.62-4.51 (2H, m), 4.21-4.04 (2H, m), 3.92-3.86 (1H, m), 3.70-3.68 (1H, m), 3.64-3.60 (2H, m), 3.33 (3H, s), 2.23 (2H, t, J = 6.6 Hz), 2.12 (1H, qd, J = 1.8, 6.8), 1.97-1.89 (3H, m), 1.17 (9H, s).
실시예 16: 화학식 23a의 화합물의 제조
Figure PCTKR2018013510-appb-I000053
화학식 22a의 화합물 (3.16 kg)을 메틸렌클로라이드 (31.6 L)와 피리딘 (0.76 L)에 녹이고 0℃로 냉각하였다. 트리플루오로메탄술포닉 언하이드라이드 (1.47 L)을 적가하고 1시간 교반하였다. 1N 염산 (31.6 L)와 8% 탄산수소나트륨 수용액 (31.6 L)로 차례로 세척하였다. 분리된 유기층을 감압 농축하여 화학식 23a의 화합물 (3.93 kg)을 추가 정제과정 없이 다음 반응에 사용하였다.
1H NMR (300 MHz, CDCl3): δ 8.06-7.97 (4H, m), 7.59-7.52 (2H, m), 7.46-7.34 (4H, m), 5.66-5.55 (1H, m), 4.56 (2H, d, J = 5.4 Hz), 4.47 (2H, d, J = 6.9 Hz), 4.21-4.03 (2H, m), 3.95-3.89 (1H, m), 3.74-3.72 (1H, m), 3.63 (1H, q, J = 6.6 Hz), 3.34 (3H, s), 2.37 (1H, qd, J = 2.2, 6.9 Hz), 2.23 (2H, t, J = 6.6 Hz), 1.95 (2H, q, J = 6.4 Hz), 1.18 (9H, s).
실시예 17: 화학식 24a의 화합물의 제조
Figure PCTKR2018013510-appb-I000054
화학식 23a의 화합물 (3.93 kg)에 테트라하이드로푸란 (39.3 L)을 가하고 -5 내지 0℃로 냉각하였다. 1M 리튬 티오페놀레이트 (9.3 L)를 적가하고 약 2시간 동안 교반하였다. 15% 염화암모늄 수용액 (39.3 L)와 초산에틸 (39.3 L)를 가하고 15분 이상 교반하였다. 유기층을 분리하고 감압 농축하고 크로마토그라피 (초산에틸:n-헥산 = 1:7)하여 화학식 24a의 화합물 (1.59 kg, 43%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 8.07-7.99 (4H, m), 7.56-7.52 (2H, m), 7.51-7.38 (4H, m), 7.32-7.27 (4H, m), 7.22-7.16 (1H, m), 5.64-5.57 (1H, m), 4.16-4.03 (2H, m), 3.98-3.92 (2H, m), 3.71-3.65 (2H, m), 3.29 (3H, s), 2.92 (2H, d, J = 7.5 Hz), 2.23 (1H, t, J = 6.3 Hz), 2.18-2.11 (2H, m), 1.97-1.83 (2H, m), 1.18 (9H, s).
실시예 18: 화학식 25의 화합물의 제조
Figure PCTKR2018013510-appb-I000055
화학식 24a의 화합물 (1.59 kg)을 메탄올 (16 L)에 녹이고 7~8% 마그네슘 메톡사이드 (7.2 L)을 가하였다. 실온에서 약 15시간 교반하였다. 15% 염화암모늄 수용액 (16 L)를 가하고 메탄올을 농축하였다. 메틸렌클로라이드 (16 L)로 추출하고 유기층을 황산나트륨으로 탈수하고 여과 및 감압 농축하였다. 화학식 25a의 화합물 (1.07 kg)을 추가 정제과정 없이 다음 반응에 사용하였다.
1H NMR (300 MHz, CDCl3): δ 7.36-7.28 (4H, m), 7.24-7.18 (1H, m), 4.14 (2H, t, J = 6.6 Hz), 4.06-4.00 (1H, m), 3.80-3.74 (1H, m), 3.68-3.62 (2H, m), 3.56-3.3.50 (1H, m), 3.28 (3H, s), 3.03-2.90 (2H, m), 2.40 (1H, t, J = 6 Hz), 2.21-2.14 (1H, m), 1.99-1.86 (3H, m), 1.81-1.74 (1H, m), 1.20 (9H, s).
실시예 19: 화학식 26a의 화합물의 제조
Figure PCTKR2018013510-appb-I000056
화학식 25a의 화합물 (1.07 kg)을 메틸렌클로라이드 (11 L)에 녹이고, 이미다졸 (0.854 kg)과 t-부틸다이메틸실릴 클로라이드 (1.13 kg)를 차례로 가하였다. 20 내지 30℃에서 16시간 교반하였다. 물 (11 L)로 2회 세척하고 분리된 유기층에 황산나트륨을 가하고 여과 및 농축하였다. 얻어진 잔류물을 크로마토그라피 (초산에틸:n-헥산 = 1:12)하여 화학식 26a의 화합물 (1.16 kg, 70.7%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.34-7.27 (4H, m), 7.23-7.17 (1H, m), 4.20-4.07 (2H, m), 3.96-3.91 (1H, m), 3.78 (1H, qui, J = 5.1 Hz), 3.67-3.61 (1H, m), 3.60-3.55 (1H, m), 3.48 (1H, dd, J = 5.1, 10.4 Hz), 3.26 (3H, s), 3.00-2.84 (2H, m), 2.15-2.09 (1H, m), 1.98-1.81 (3H, m), 1.78-1.71 (1H, m), 1.19 (9H, s), 0.88 (9H, s), 0.87 (9H, s), 0.07 (6H, d, J = 3.9 Hz), 0.04 (6H, d, J = 1.8 Hz).
실시예 20: 화학식 27a의 화합물의 제조
Figure PCTKR2018013510-appb-I000057
화학식 26a의 화합물 (1.16 kg)을 테트라하이드로푸란 (11.6 L)에 녹인 후, -10℃ 이하로 냉각하였다. 1.2M DIBAL-H (3.2 L)를 5℃가 넘지 않게 적가한 다음, 2시간 동안 교반하였다. 1N 염산 (11.6 L)와 초산에틸 (11.6 L)를 넣고 15 분 교반하였다. 유기층을 분리하고 물 (11.6 L)로 세척하고 분리된 유기층에 황산나트륨을 가하고 여과 및 감압 농축하였다. 얻어진 잔류물을 크로마토그라피 (초산에틸:n-헥산 = 1:5)하여 화학식 27a의 화합물 (0.8 kg, 79.9%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.38-7.23 (4H, m), 7.23-7.18 (1H, m), 3.97-3.92 (1H, m), 3.82-3.72 (4H, m), 3.60-3.55 (2H, m), 3.48 (1H, dd, J = 5.4, 10.2 Hz), 3.28 (3H, s), 3.01-2.88 (2H, m), 2.52 (1H, brs), 2.24-2.17 (1H, m), 2.04-1.89 (2H, m), 1.87-1.74 (2H, m), 0.89 (9H, s), 0.88 (9H, s), 0.07 (6H, d, J = 3.3 Hz), 0.05 (6H, d, J = 1.8 Hz).
실시예 21: 화학식 6a의 화합물의 제조
Figure PCTKR2018013510-appb-I000058
화학식 27a의 화합물 (300 g)에 메틸렌클로라이드 (6 L)를 가하여 녹이고 5℃로 냉각하였다. 데스 마틴 퍼아이오디난 (236.2 g)과 탄산수소나트륨 (85 g)을 첨가하고 실온에서 약 4시간 교반하였다. 10% 티오황산나트륨 수용액 (3 L)와 9% 탄산수소나트륨 수용액 (3 L)를 천천히 가하고 15분 이상 교반하였다. 유기층을 분리하고 황산나트륨을 가하여 여과한 다음, 감압 농축하였다. 얻어진 잔류물을 크로마토그라피 (초산에틸:n-헥산 = 1:5)하여 화학식 6a의 화합물 (234.2 g, 81.3%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 9.75 (1H, t, J = 1.8 Hz) 7.36-7.27 (4H, m), 7.23-7.21 (1H, m), 4.06-3.97 (2H, m), 3.82-3.74 (1H, m), 3.60-3.54 (2H, m), 3.47 (1H, dd, J = 5.4, 10.2 Hz), 3.24 (3H, s), 3.10 (1H, dd, J = 6.6, 13.2 Hz), 2.90 (1H, dd, J = 8.7, 13.2 Hz), 2.81-2.64 (2H, m), 2.20-2.12 (1H, m), 1.99-1.91 (1H, m), 1.81-1.72 (1H, m), 0.89 (9H, s), 0.87 (9H, s), 0.07 (6H, d, J = 3.6 Hz), 0.04 (6H, d, J = 1.2 Hz).
실시예 22: 화학식 29a의 화합물의 제조
Figure PCTKR2018013510-appb-I000059
반응기 내부의 산소 농도를 아르곤 가스를 사용하여 200ppm 이하로 낮추었다. (S)-N-(2-(4-이소프로필-4,5-디하이드로옥사졸-2-일)-6-메틸페닐)메탄 설폰이미드 (248 g)을 테트라히드로푸란 (1.5 L)에 용해하고 20℃로 냉각하였다. 크로뮴(II) 클로라이드 (103 g)과 트리에틸아민 (117 mL)을 차례로 투입하고 35℃로 승온하여 2시간 교반하였다. 다시 5℃ 이하로 냉각한 다음, 니켈(II) 클로라이드 (2.8 g)을 투입하고 화학식 6a의 화합물 (102 g)과 화학식 28의 화합물 (100 g)을 테트라히드로푸란 (0.5 L)에 용해하여 차례로 투입하였다. 실온으로 승온 후 20시간 교반하였다. 5℃로 냉각하고 에틸렌디아민 (157 mL)를 적가하고 1시간 교반하였다. 실온으로 승온 후 물 (1 L)을 투입하고 20분 교반한 다음, 헵탄 (2.5 L)를 투입하고 30분 교반하였다. 유기층을 분리하고 수층을 메틸 t-부틸 에테르 (0.5 L)로 재추출하였다. 합한 유기층을 6% 소듐바이카보네이트 용액 (2 L)와 10% 소듐 클로라이드 용액 (1 L)로 각각 세척하였다. 유기층을 농축하고 헵탄 (2.6 L)로 용해한 후 -10℃로 냉각하고 1시간 교반하였다. 생성된 고체를 여과하였다. 여과액을 농축하고 추가 정제 없이 화학식 29a의 화합물 (179 g, 100%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ7.17-7.43 (5H, m), 5.11-5.21 (1H, m), 4.95-5.00 (1H, m), 4.79-4.86 (3H, m), 4.36 (1H, bs), 4.24 (1H, d, J = 8.7 Hz), 3.96-4.08 (4H, m), 3.72-3.79 (4H, m), 3.46-3.51 (4H, m), 3.27 (3H, s), 2.82-3.06 (4H, m), 2.67 (1H, dd, J = 15.6, 5.4 Hz), 2.16-2.34 (3H, m), 1.40-2.01 (14H, m), 1.19 (9H, s), 1.09 (2H, d, J = 6.9 Hz), 0.89 (9H, s), 0.88 (9H, s), 0.05-0.08 (12H, m)
실시예 23: 화학식 30a의 화합물의 제조
Figure PCTKR2018013510-appb-I000060
화학식 29a의 화합물 (179 g)을 테트라히드로푸란 (1 L)에 용해하고 -20℃로 냉각하였다. 0.5M 포타슘 비스(트리메틸실릴)아미드 (1 L)를 적가하고 1.5시간 교반하였다. 0℃로 승온 후 7% 소듐 클로라이드 용액 (1 L)을 적가하였다. 실온으로 승온 후 헵탄 (1 L)를 투입하고 20분 교반하였다. 유기층을 분리하고 수층을 메틸 t-부틸 에테르 (1 L)로 재추출하였다. 합한 유기층을 2% 소듐 클로라이드 용액 (0.5 L)로 세척하고 유기층을 농축하였다. 얻어진 잔류물을 크로마토그라피 (초산에틸:n-헥산 = 1:20)하여 화학식 30a의 화합물 (84 g, 54.5%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.38-7.29 (4H, m), 7.23-7.17 (1H, m), 4.96-4.95 (2H, m), 4.82-4.79 (2H, m), 4.08-3.89 (3H, m), 3.88-3.83 (1H, m), 3.81-3.69 (2H, m), 3.67-3.59 (1H, m), 3.58-3.3.53 (2H, m), 3.51-3.45 (2H, m), 3.28 (3H, s), 3.01 (1H, dd, J = 4.9, 13.1 Hz), 2.80-2.73 (1H, m), 2.68-2.61 (1H, m), 2.27-2.07 (4H, s), 2.01-1.93 (2H, m), 1.84-1.48 (12H, m), 1.19 (9H, s), 1.07 (3H, d, J = 6.4 Hz), 0.89 (9H, s), 0.88 (9H, s), 0.07 (6H, d, J = 3.6 Hz), 0.04 (6H, d, J = 1.6 Hz).
실시예 24: 화학식 31a의 화합물의 제조
Figure PCTKR2018013510-appb-I000061
화학식 30a의 화합물 (102 g)과 암모늄 몰리브데이트 (9 g)을 에탄올 (1 L)에 용해하고 0℃로 냉각하였다. 우레아 하이드로젠 퍼옥사이드 (64 g)를 분할 투입하고 실온으로 승온 후 12시간 교반하였다. 0℃로 냉각 후 8% 소듐 클로라이드 용액 (2 L)와 10% 소듐 티오설페이트 (2 L)을 적가하였다. 1시간 교반 후 초산에틸(1 L)을 투입하고 30분 교반하였다. 에탄올을 농축하고 수층과 유기층을 분리하였다. 수층을 다시 초산에틸 (1 L)로 재추출하고 합한 유기층을 황산나트륨을 가하고 여과 및 농축하였다. 얻어진 잔류물을 크로마토그라피 (초산에틸:n-헥산 = 1:20)하여 화학식 31a의 화합물 (64 g, 61.6%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.93-7.96 (2H, m), 7.57-7.71 (3H, m), 4.90 (1H, d, J = 1.8 Hz), 4.85 (1 H, s), 4.78 (1H, d, J = 1.2 Hz), 4.67 (1H, d, J = 1.8 Hz), 4.25 (br, 1H), 4.02-4.08 (2H, m), 3.92-4.00 (1H, m), 3.76-3.85 (3H, m), 3.64-3.71 (1H, m), 3.67-3.61 (2H, m), 3.36-3.51 (5H, m), 2.96-3.08 (2H, m), 2.52-2.66 (2H, m), 2.16-2.25 (3H, m), 1.35-2.04 (12H, m), 1.20 (9H, s), 1.03-1.08 (3H, m), 0.89 (18H, s), 0.88 (9H, s), 0.09 (6H, d, J = 1.8 Hz), 0.04 (6H, d, J = 1.8 Hz).
실시예 25: 화학식 2a의 화합물의 제조
Figure PCTKR2018013510-appb-I000062
화학식 31a의 화합물 (240 g)을 톨루엔 (1 L)에 용해하고 -65℃로 냉각하였다. 1.2M 다이이소부틸알루미늄 하이드라이드 (0.5 L)를 적가하였다. 메탄올 (30 mL)을 적가하고 실온으로 승온하였다. 1N 염산 (2.4 L)를 투입하고 유기층을 분리하였다. 수층을 메틸 t-부틸 에테르 (3 L)로 재추출하였다. 합한 유기층을 9% 소듐 바이카보네이트 용액 (0.8 L)로 세척하고 수층을 다시 메틸 t-부틸 에테르 (1 L)로 추출하였다. 합한 유기층을 26% 소듐 클로라이드 용액 (0.8 L)로 세척하고 수층을 다시 메틸 t-부틸 에테르 (0.5 L)로 추출하였다. 합한 유기층을 농축하여 얻어진 잔류물을 크로마토그라피 (헵탄: 메틸 t-부틸 에테르 = 2:1)하여 화학식 2a의 화합물 (201 g, 92%)을 얻었다.
1H NMR (300 MHz, CDCl3): δ 7.93-7.96 (2H, m), 7.58-7.69 (3H, m), 4.91 (1H, d, J = 2.1 Hz), 4.85 (1 H, s), 4.77 (1H, s), 4.67 (1H, d, J = 1.8 Hz), 4.30 (br, 1H), 3.94-4.02 (1H, m), 3.76-3.85 (3H, m), 3.55-3.71 (5H, m), 3.39-3.51 (5H, m), 3.20 (1H, s), 2.97-3.08 (2H, m), 2.52-2.66 (2H, m), 2.43-2.47 (1H, m), 2.16-2.28 (3H, m), 1.97-2.05 (1H, m), 1.37-1.92 (12H, m), 1.23-1.27 (2H, m), 1.04-1.11 (3H, m), 0.89 (18H, s), 0.88 (9H, s), 0.09 (6H, d, J = 2.0 Hz), 0.04 (6H, d, J = 1.9 Hz).

Claims (34)

  1. (i) 하기 화학식 7의 화합물의 일차 하이드록시기를 선택적으로 술포닐화시켜 하기 화학식 8의 화합물을 수득하는 단계;
    (ii) 하기 화학식 8의 화합물을 고리화하여 하기 화학식 9의 화합물을 수득하는 단계;
    (iii) 하기 화학식 9의 화합물을 알릴화시켜 하기 화학식 10의 화합물을 수득하는 단계;
    (iv) 하기 화학식 10의 화합물의 하이드록시기를 메틸화하여 하기 화학식 11의 화합물을 수득하는 단계;
    (v) 하기 화학식 11의 화합물의 알켄기를 입체선택적 디하이드록시화시켜 하기 화학식 12의 화합물을 수득하는 단계;
    (vi) 하기 화학식 12의 화합물의 하이드록시기를 보호화하여 하기 화학식 13의 화합물을 수득하는 단계;
    (vii) 하기 화학식 13의 화합물을 호소미-사쿠라이 (Hosomi-Sakurai) 반응시켜 하기 화학식 14의 화합물을 수득하는 단계;
    (viii) 하기 화학식 14의 화합물의 알켄기를 디하이드록시화, 산화 반응 및 환원 반응시켜 하기 화학식 15의 화합물을 수득하는 단계;
    (ix) 하기 화학식 15의 화합물의 일차 하이드록시기를 선택적으로 보호화하여 하기 화학식 16의 화합물을 수득하는 단계;
    (x) 하기 화학식 16의 화합물의 하이드록시기를 산화 반응시켜 하기 화학식 17의 화합물을 수득하는 단계;
    (xi) 하기 화학식 17의 화합물을 메테닐화하여 하기 화학식 18의 화합물을 수득하는 단계;
    (xii) 하기 화학식 18의 화합물을 수소화붕소 첨가 및 산화 반응시켜 하기 화학식 19의 화합물을 수득하는 단계;
    (xiii) 하기 화학식 19의 화합물의 하이드록시기를 산화 반응시켜 하기 화학식 20의 화합물을 수득하는 단계;
    (xiv) 하기 화학식 20의 화합물을 이성질화하여 하기 화학식 21의 화합물을 수득하는 단계;
    (xv) 하기 화학식 21의 화합물을 환원 반응시켜 하기 화학식 22의 화합물을 수득하는 단계;
    (xvi) 하기 화학식 22의 화합물의 하이드록시기를 술포닐화시켜 하기 화학식 23의 화합물을 수득하는 단계;
    (xvii) 하기 화학식 23의 화합물의 이탈기를 설피드로 치환시켜 하기 화학식 24의 화합물을 수득하는 단계;
    (xviii) 하기 화학식 24의 화합물의 벤조일기 또는 아세틸기를 선택적으로 탈보호화하여 하기 화학식 25의 화합물을 수득하는 단계;
    (xix) 하기 화학식 25의 화합물의 하이드록시기를 보호화시켜 하기 화학식 26의 화합물을 수득하는 단계;
    (xx) 하기 화학식 26의 화합물의 피발로일기를 탈보호화하여 하기 화학식 27의 화합물을 수득하는 단계; 및
    (xxi) 하기 화학식 27의 화합물의 하이드록시기를 산화 반응시키는 단계를 포함하는 하기 화학식 6의 화합물의 제조방법:
    [화학식 7]
    Figure PCTKR2018013510-appb-I000063
    [화학식 8]
    Figure PCTKR2018013510-appb-I000064
    [화학식 9]
    Figure PCTKR2018013510-appb-I000065
    [화학식 10]
    Figure PCTKR2018013510-appb-I000066
    [화학식 11]
    Figure PCTKR2018013510-appb-I000067
    [화학식 12]
    Figure PCTKR2018013510-appb-I000068
    [화학식 13]
    Figure PCTKR2018013510-appb-I000069
    [화학식 14]
    Figure PCTKR2018013510-appb-I000070
    [화학식 15]
    Figure PCTKR2018013510-appb-I000071
    [화학식 16]
    Figure PCTKR2018013510-appb-I000072
    [화학식 17]
    Figure PCTKR2018013510-appb-I000073
    [화학식 18]
    Figure PCTKR2018013510-appb-I000074
    [화학식 19]
    Figure PCTKR2018013510-appb-I000075
    [화학식 20]
    Figure PCTKR2018013510-appb-I000076
    [화학식 21]
    Figure PCTKR2018013510-appb-I000077
    [화학식 22]
    Figure PCTKR2018013510-appb-I000078
    [화학식 23]
    Figure PCTKR2018013510-appb-I000079
    [화학식 24]
    Figure PCTKR2018013510-appb-I000080
    [화학식 25]
    Figure PCTKR2018013510-appb-I000081
    [화학식 26]
    Figure PCTKR2018013510-appb-I000082
    [화학식 27]
    Figure PCTKR2018013510-appb-I000083
    [화학식 6]
    Figure PCTKR2018013510-appb-I000084
    상기 식에서,
    R1은 이탈기를 나타내며,
    R2는 벤조일기 또는 아세틸기를 나타내고,
    Pv는 피발로일기를 나타내며,
    Ar은 아릴기를 나타내고,
    R3는 실릴 보호기를 나타낸다.
  2. 제1항에 있어서, 상기 단계 (i)에서 술포닐화 반응은 염기 조건에서 화학식 7의 화합물을 p-톨루엔술포닐 할라이드, 메탄술포닐 할라이드 또는 트리플루오로메탄술포닉 언하이드라이드와 반응시켜 수행되는 제조방법.
  3. 제1항에 있어서, 상기 단계 (ii)에서 고리화 반응은 탄산칼륨, 탄산나트륨 또는 탄산세슘을 사용하여 수행되는 제조방법.
  4. 제1항에 있어서, 상기 단계 (iii)에서 알릴화 반응은 그리나르제 (Grignard reagent)를 사용하여 수행되는 제조방법.
  5. 제1항에 있어서, 상기 단계 (iv)에서 메틸화 반응은 염기 조건에서 화학식 10의 화합물을 메틸 할라이드와 반응시켜 수행되는 제조방법.
  6. 제1항에 있어서, 상기 단계 (v)에서 디하이드록시화 반응은 카이랄제 및 산화제를 사용하여 수행되는 제조방법.
  7. 제6항에 있어서, 상기 카이랄제는 하이드로퀴닌 안트라퀴논-1,4-다이일 다이에테르 ((DHQ)2AQN)이고, 상기 산화제는 오스뮴산칼륨인 제조방법.
  8. 제1항에 있어서, 상기 단계 (vi)에서 보호화 반응은 염기 조건에서 화학식 12의 화합물을 벤조일 할라이드 또는 아세틸 할라이드와 반응시켜 수행되는 제조방법.
  9. 제1항에 있어서, 상기 단계 (vii)에서 호소미-사쿠라이 반응은 루이스산 존재 하에서 화학식 13의 화합물을 알릴실란과 반응시켜 수행되는 제조방법.
  10. 제9항에 있어서, 상기 루이스산은 염화티타늄인 제조방법.
  11. 제1항에 있어서, 상기 단계 (viii)에서 디하이드록시화, 산화 반응 및 환원 반응이 순차적으로 수행되는 제조방법.
  12. 제11항에 있어서, 상기 디하이드록시화 반응은 오스뮴산칼륨을 사용하여 수행되는 제조방법.
  13. 제11항에 있어서, 상기 산화 반응은 과요오드산나트륨을 사용하여 수행되는 제조방법.
  14. 제11항에 있어서, 상기 환원 반응은 수소화 붕소 나트륨을 사용하여 수행되는 제조방법.
  15. 제1항에 있어서, 상기 단계 (ix)에서 보호화 반응은 염기 조건에서 화학식 15의 화합물을 피발로일 할라이드와 반응시켜 수행되는 제조방법.
  16. 제1항에 있어서, 상기 단계 (x)에서 산화 반응은 데스-마틴 퍼아이오디난을 사용하여 수행되는 제조방법.
  17. 제1항에 있어서, 상기 단계 (xi)에서 메테닐화는 니스테드제를 사용하여 수행되는 제조방법.
  18. 제1항에 있어서, 상기 단계 (xii)에서 수소화붕소 첨가 반응은 덱실보란을 사용하여 수행되는 제조방법
  19. 제1항에 있어서, 상기 단계 (xii)에서 산화 반응은 과붕산나트륨을 사용하여 수행되는 제조방법
  20. 제1항에 있어서, 상기 단계 (xiii)에서 산화 반응은 데스-마틴 퍼아이오디난을 사용하여 수행되는 제조방법.
  21. 제1항에 있어서, 상기 단계 (xiv)에서 이성질화 반응은 트리에틸아민의 존재 하에 수행되는 제조방법.
  22. 제1항에 있어서, 상기 단계 (xv)에서 환원 반응은 수소화 붕소 나트륨을 사용하여 수행되는 제조방법.
  23. 제1항에 있어서, 상기 단계 (xvi)에서 술포닐화 반응은 염기 조건에서 화학식 22의 화합물을 p-톨루엔술포닐 할라이드, 메탄술포닐 할라이드 또는 트리플루오르화메탄술포닉 언하이드라이드와 반응시켜 수행되는 제조방법.
  24. 제1항에 있어서, 상기 단계 (xvii)에서 치환 반응은 리튬 티오페놀레이트를 사용하여 수행되는 제조방법.
  25. 제1항에 있어서, 상기 단계 (xviii)에서 탈보호화 반응은 염기 조건에서 수행되는 제조방법.
  26. 제25항에 있어서, 상기 염기는 마그네슘 메톡사이드인 제조방법.
  27. 제1항에 있어서, 상기 단계 (xix)에서 보호화 반응은 염기 조건에서 화학식 25의 화합물을 t-부틸다이메틸실릴 클로라이드, 트리에틸실릴 트리플루오로메탄설포네이트 또는 클로로트리에틸실란과 반응시켜 수행되는 제조방법.
  28. 제1항에 있어서, 상기 단계 (xx)에서 탈보호화 반응은 다이이소부틸알루미늄 하이드라이드를 사용하여 수행되는 제조방법.
  29. 제1항에 있어서, 상기 단계 (xxi)에서 산화 반응은 데스-마틴 퍼아이오디난을 사용하여 수행되는 제조방법.
  30. 하기 화학식 6의 화합물:
    [화학식 6]
    Figure PCTKR2018013510-appb-I000085
    상기 식에서,
    R3는 실릴 보호기를 나타내고,
    Ar은 아릴기를 나타낸다.
  31. 하기 화학식 27의 화합물:
    [화학식 27]
    Figure PCTKR2018013510-appb-I000086
    상기 식에서,
    R3는 실릴 보호기를 나타내고,
    Ar은 아릴기를 나타낸다.
  32. 하기 화학식 26의 화합물:
    [화학식 26]
    Figure PCTKR2018013510-appb-I000087
    상기 식에서,
    Pv는 피발로일기를 나타내고,
    R3는 실릴 보호기를 나타내며,
    Ar은 아릴기를 나타낸다.
  33. 하기 화학식 29의 화합물:
    [화학식 29]
    Figure PCTKR2018013510-appb-I000088
    상기 식에서,
    R3는 실릴 보호기를 나타내고,
    Ar은 아릴기를 나타내며,
    Ms는 메탄술포닐기를 나타내고,
    Pv는 피발로일기를 나타낸다.
  34. 제30항 내지 제33항 중 어느 한 항에 있어서,
    R3는 t-부틸다이메틸실릴을 나타내고,
    Ar은 페닐을 나타내는 화합물.
PCT/KR2018/013510 2017-11-09 2018-11-08 에리불린 메실산염의 제조 중간체 및 그의 제조방법 WO2019093776A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/762,355 US11142509B2 (en) 2017-11-09 2018-11-08 Intermediate for preparing eribulin mesylate and process for preparing the same
CN201880072643.3A CN111328328B (zh) 2017-11-09 2018-11-08 用于制备甲磺酸艾日布林的中间体及其制备方法
EP18877106.7A EP3712141B1 (en) 2017-11-09 2018-11-08 Intermediate for preparing eribulin mesylate and method for preparing same
JP2020526128A JP6967811B2 (ja) 2017-11-09 2018-11-08 エリブリンメシル酸塩の製造中間体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0149015 2017-11-09
KR20170149015 2017-11-09

Publications (1)

Publication Number Publication Date
WO2019093776A1 true WO2019093776A1 (ko) 2019-05-16

Family

ID=66439199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013510 WO2019093776A1 (ko) 2017-11-09 2018-11-08 에리불린 메실산염의 제조 중간체 및 그의 제조방법

Country Status (6)

Country Link
US (1) US11142509B2 (ko)
EP (1) EP3712141B1 (ko)
JP (1) JP6967811B2 (ko)
KR (1) KR102177992B1 (ko)
CN (1) CN111328328B (ko)
WO (1) WO2019093776A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214865B1 (en) 1998-06-17 2001-04-10 Eisai Co., Ltd. Macrocyclic analogs and methods of their use and preparation
WO2006076100A2 (en) * 2004-12-09 2006-07-20 Eisai Co. Ltd. Tubulin isotype screening in cancer therapy using halichondrin b analogs
US7982060B2 (en) 2004-06-03 2011-07-19 Eisai R&D Management Co., Ltd. Intermediates for the preparation of analogs of Halichondrin B

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2710545C2 (ru) * 2013-11-04 2019-12-27 Эйсай Ар Энд Ди Менеджмент Ко., Лтд. Реакции макроциклизации и промежуточные соединения и другие фрагменты, пригодные в получении аналогов халихондрина b

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214865B1 (en) 1998-06-17 2001-04-10 Eisai Co., Ltd. Macrocyclic analogs and methods of their use and preparation
US6365759B1 (en) * 1998-06-17 2002-04-02 Eisai Co., Ltd. Intermediate compounds for preparing macrocylcic analogs
US7982060B2 (en) 2004-06-03 2011-07-19 Eisai R&D Management Co., Ltd. Intermediates for the preparation of analogs of Halichondrin B
WO2006076100A2 (en) * 2004-12-09 2006-07-20 Eisai Co. Ltd. Tubulin isotype screening in cancer therapy using halichondrin b analogs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AUSTAD, B. C.: "Process development of Halaven: Synthesis of the C14-C35 fragment via iterative Nozaki-Hiyama-Kishi reaction-Williamson ether cyclization", SYNLETT, 2013, pages 327 - 332, XP055241629, DOI: doi:10.1055/s-0032-1317920 *
PRABHAKAR, P. ET AL.: "A mild and efficient chemoselective protection of primary alcohols as pivaloyl esters using La(N03)3.6H20 as a catalyst under solvent- free conditions", CHEMISTRY LETTERS, vol. 36, no. 6, 3 May 2007 (2007-05-03), pages 732 - 733, XP055606900 *

Also Published As

Publication number Publication date
EP3712141C0 (en) 2023-07-12
EP3712141A4 (en) 2021-06-30
CN111328328B (zh) 2023-05-23
JP2021502390A (ja) 2021-01-28
US11142509B2 (en) 2021-10-12
JP6967811B2 (ja) 2021-11-17
EP3712141B1 (en) 2023-07-12
US20200361890A1 (en) 2020-11-19
CN111328328A (zh) 2020-06-23
KR20190053114A (ko) 2019-05-17
KR102177992B1 (ko) 2020-11-12
EP3712141A1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
WO2016064082A2 (ko) 신규한 아미노알킬벤조티아제핀 유도체 및 이의 용도
WO2017217792A1 (ko) 다이페닐메탄 유도체의 제조방법
WO2012002741A2 (en) Process for the preparation of hmg-coa reductase inhibitors and intermediates thereof
WO2013048177A2 (ko) 셀레노펜-접합 방향족 화합물, 및 이의 제조 방법
WO2018093223A2 (ko) 엘더칼시톨의 제조방법 및 그를 위한 중간체
WO2012081880A2 (ko) 18f 방사성의약품 제조를 위한 고체 지지체에 연결된 전구체 화합물, 이의 제조방법 및 응용
WO2014046441A1 (ko) 돌라스타틴 10 유도체, 그의 제조방법 및 그를 포함하는 항암제 조성물
WO2019074241A1 (ko) 페닐아세틸렌 유도체를 포함하는 pd-1과 pd-l1의 상호작용 억제제
WO2020036382A1 (ko) Sglt 저해제의 합성에 유용한 중간체의 제조
WO2013043002A1 (en) Imide-containing benzothiazole derivative or its salt and pharmaceutical composition comprising the same
WO2017119700A1 (ko) 융합 페닐 환이 포함된 c-글루코시드 유도체 또는 이의 약학적으로 허용 가능한 염, 이의 제조방법 및 이를 포함하는 약학적 조성물
WO2019093776A1 (ko) 에리불린 메실산염의 제조 중간체 및 그의 제조방법
WO2012153991A2 (ko) 스트레커 반응용 촉매를 사용하는 키랄성 α-아미노나이트릴의 제조방법
WO2021194244A1 (ko) 신규한 이노토디올의 제조방법
WO2018004202A1 (ko) 다이페닐메탄 유도체의 제조방법
WO2020067684A1 (ko) (-)-시벤졸린 숙신산염의 신규한 제조 공정
WO2015156645A1 (ko) 호모세린계 화합물의 처리 공정
WO2012157900A2 (ko) 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법
WO2020040614A1 (ko) (3r,5r)-7-[2-(4-플루오로페닐)-5-이소프로필-3-페닐-4-[(4-히드록시메틸페닐아미노)카보닐]-피롤-1-일]-3,5-디히드록시 헵탄산 헤미칼슘염의 제조방법, 이에 사용되는 중간체, 및 중간체의 제조방법
WO2021225233A1 (ko) 혈관 누출 차단제 화합물의 신규 결정형
WO2023136617A1 (ko) Sglt 저해제의 합성에 유용한 중간체의 제조 방법
WO2023113534A1 (ko) (2r, 3s)-2-(벤조[d]이미다졸일프로필)피페리딘-3-올 유도체의 제조 방법
WO2021101003A1 (ko) 연속반응 공정에서의 메탄술포닐화 중간체를 이용한 글리플로진 합성 방법
WO2019132148A1 (ko) 로바릭산 및 그 유사체의 합성방법
WO2016076479A1 (en) Method of preparing silylative-reduced n-heterocyclic compound using organoboron catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018877106

Country of ref document: EP

Effective date: 20200609