WO2019093329A1 - 流体装置 - Google Patents

流体装置 Download PDF

Info

Publication number
WO2019093329A1
WO2019093329A1 PCT/JP2018/041191 JP2018041191W WO2019093329A1 WO 2019093329 A1 WO2019093329 A1 WO 2019093329A1 JP 2018041191 W JP2018041191 W JP 2018041191W WO 2019093329 A1 WO2019093329 A1 WO 2019093329A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
valve
electrode
flow path
value
Prior art date
Application number
PCT/JP2018/041191
Other languages
English (en)
French (fr)
Inventor
杉浦 博之
林 豊
内藤 建
征明 井上
Original Assignee
高砂電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高砂電気工業株式会社 filed Critical 高砂電気工業株式会社
Priority to EP18875498.0A priority Critical patent/EP3708972A4/en
Priority to US16/625,855 priority patent/US11112026B2/en
Priority to JP2019552811A priority patent/JP7122762B2/ja
Priority to CN201880040687.8A priority patent/CN110770546B/zh
Priority to SG11201912711XA priority patent/SG11201912711XA/en
Publication of WO2019093329A1 publication Critical patent/WO2019093329A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/061Sliding valves
    • F16K31/0613Sliding valves with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/005Electrical or magnetic means for measuring fluid parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0075For recording or indicating the functioning of a valve in combination with test equipment
    • F16K37/0091For recording or indicating the functioning of a valve in combination with test equipment by measuring fluid parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/584Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters constructions of electrodes, accessories therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/588Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters combined constructions of electrodes, coils or magnetic circuits, accessories therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/64Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by measuring electrical currents passing through the fluid flow; measuring electrical potential generated by the fluid flow, e.g. by electrochemical, contact or friction effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/363Electromagnetic valves specially adapted for anti-lock brake and traction control systems in hydraulic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/044Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with movable valve members positioned between valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/029Electromagnetically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0041Electrical or magnetic means for measuring valve parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2514Self-proportioning flow systems
    • Y10T137/2521Flow comparison or differential response
    • Y10T137/2529With electrical controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Definitions

  • the present invention relates to a fluid device including a flow path through which liquid flows.
  • various fluid devices having a fluid flow path are known.
  • fluidic devices include switching valves such as valves, three-way valves, and four-way valves, pumps for pumping fluid into the flow paths and pumps for suctioning the fluid, and manifolds provided with a plurality of flow paths.
  • switching valves such as valves, three-way valves, and four-way valves
  • pumps for pumping fluid into the flow paths and pumps for suctioning the fluid
  • manifolds provided with a plurality of flow paths.
  • a precise valve is employed as a fluid apparatus (see, for example, Patent Document 1).
  • valve there is a valve provided with a valve body driven to move back and forth by an electromagnetic force, and a valve seat against which the valve body is pressed.
  • the valve body is pressed against the valve seat to close the flow path, but when the valve body recedes from the valve seat, a gap is generated between the two and the flow path is opened.
  • the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a fluid apparatus having a function of detecting whether or not a liquid flowing state is appropriate.
  • the present invention is a fluidic device comprising a flow path through which liquid flows, As an electrode for measuring the degree of electrical continuity of the liquid in the upstream flow path flowing in and the liquid in the downstream flow path flowing out, the first liquid electrically contacting the upstream liquid And a second electrode which is in electrical contact with the downstream fluid.
  • the fluid device of the present invention includes a first electrode electrically connected to the upstream liquid and a second electrode electrically connected to the downstream liquid.
  • the combination of the first electrode and the second electrode can be used to measure the degree of electrical conduction between the upstream fluid and the downstream fluid.
  • the degree of electrical conduction between the upstream side liquid and the downstream side liquid can be measured relatively easily by using the first and second electrodes.
  • the degree of electrical continuity corresponds to the presence or absence of the liquid flowing through the flow channel of the fluid device and the flow rate. Therefore, if the degree of electrical conduction is measured, it is possible to detect liquid leakage, liquid flow rate, and the like.
  • the fluid device of the present invention is suitable for measuring the degree of electrical continuity between the upstream side liquid and the downstream side liquid, and it is easy to detect liquid leakage, clogging, and the like.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure of a solenoid valve in Example 1;
  • FIG. 2 is a perspective view showing the cross-sectional structure of the flow passage portion in the first embodiment.
  • FIG. 2 is a block diagram of a control unit incorporated in the solenoid valve according to the first embodiment.
  • FIG. 7 is an explanatory view showing an open valve state in the first embodiment.
  • FIG. 7 is a perspective view showing the cross-sectional structure of another flow passage in the first embodiment.
  • Sectional drawing which shows the cross-section of a solenoid valve provided with a slider in Example 1 (closed state).
  • Sectional drawing (open state) which shows the cross-section of a solenoid valve provided with a slider in Example 1.
  • FIG. 7 is a perspective view showing a manifold in Example 2;
  • FIG. 16 is a perspective view of a manifold viewed from the tube connection surface side in the second embodiment.
  • FIG. 7 is a cross-sectional view showing an electrode of a manifold in Example 2;
  • FIG. 14 is a circuit diagram showing an equivalent circuit of an electrical path between electrodes in Example 3.
  • the graph which shows an alternating current signal, an intermediate signal, and a detection signal in Example 3.
  • FIG. FIG. 16 is a block diagram of a control unit in a fourth embodiment. The graph which shows an alternating current signal, an intermediate signal, and a detection signal in Example 4.
  • FIG. 7 is a perspective view showing a manifold in Example 2
  • FIG. 16 is a perspective view of a manifold viewed from the tube connection surface side in the second embodiment.
  • FIG. 7 is a cross-sectional view showing an electrode of a manifold in Example 2;
  • FIG. 14 is a circuit diagram showing an equivalent circuit
  • the fluid device of the present invention is provided with a switching valve such as a valve, a three-way valve or a four-way valve, a pump for pumping the fluid into the flow passage or a pump for suctioning the fluid, and a pipe or tube having a flow passage There is a manifold etc.
  • a pipe or tube having a flow path a straight single pipe may be used, or a branch pipe or a collecting pipe having a branch portion or a merging portion of the flow path may be used.
  • the subject of the present invention is a variety of fluidic devices having fluid flow paths.
  • a fluid apparatus includes a circuit that measures the degree of electrical conduction between the first electrode and the second electrode to detect the presence or absence of liquid flowing in the flow path. ing.
  • the fluid device is a valve or the like that shuts off the flow of liquid, it is possible to detect a liquid leak when there is liquid flowing through the flow path in the state where the flow is shut off.
  • a fluid device includes a circuit that measures the degree of electrical conduction between the first electrode and the second electrode to detect the amount of liquid flowing in the flow path.
  • the flow path is a path through which liquid flows, and also serves as a path of electricity using liquid as a medium. Therefore, the degree of electrical conduction varies depending on, for example, the area of the flow path. If the area (especially the minimum area) of the flow path is increased, the flow rate is increased and the degree of electrical conduction is increased. By measuring the degree of electrical conduction, the amount of liquid flowing through the flow path can be detected.
  • the fluid apparatus can set a state in which the flow of the liquid is blocked, and in the state in which the flow of the liquid is blocked, the upstream liquid and the downstream liquid are It has a structure that is electrically isolated.
  • the first electrode and the second electrode are electrically insulated in a state in which the flow of the liquid is interrupted. For example, when the first electrode and the second electrode are electrically conducted in the shutoff state, it can be determined that the flow of the liquid is occurring, and the determination of the liquid leakage is facilitated.
  • the flow rate can be adjusted by alternately switching the shutoff state and the open state in a fast cycle.
  • the flow path is opened and the flow of the liquid is shut off so that the electric conduction degree is small. And periodically occur repeatedly.
  • the occupation ratio of the period in which the flow path is opened and the degree of electrical conduction becomes large becomes large, the average value of the degree of electrical conduction becomes large, and the flow The amount (flow rate) of liquid flowing through the passage increases. Therefore, if the degree of electrical conduction is measured, the amount of liquid flowing through the flow path can be detected.
  • the fluid device is a valve provided with a seal portion for blocking the flow of liquid in the middle of the flow path
  • the first and second electrodes are electrodes for measuring the degree of electrical conduction between the upstream side liquid and the downstream side liquid adjacent to each other across the seal portion in the flow path. In this case, it is possible to measure the degree of electrical conduction between the upstream liquid and the downstream liquid adjacent to each other with the seal portion interposed therebetween.
  • the valves include valves of various analyzers and inspection devices handling chemical solutions and sample liquids, valves of hydraulic machines operating with hydraulic pressure etc. as driving sources, valves of industrial machines such as refrigeration systems using fluid as medium, and so on. And valves for products for general consumers such as faucets such as kitchens and washbasins.
  • the seal portion in the valve includes a valve seat and a valve body, and the valve body is pressed against the valve seat to close the valve to shut off the flow of the fluid and when a gap is generated between the valve seat and the valve body It may be open.
  • this seal portion crystals may be deposited at the contact point between the valve seat and the valve body, and the crystal may fall into a state where the contact point between the valve seat and the valve body is trapped.
  • the valve body includes a movable member that is displaced by the action of an electromagnetic force generated in response to energization, and a drive unit that drives the valve body by the displacement of the movable member, a hole that forms the flow path, and the valve seat It may be a valve having a formed flow path portion made of a non-conductive material.
  • the drive unit may be a solenoid using a coil wound with an electric wire, or may be a solenoid using a laminated steel plate.
  • the displacement of the movable member may be linear displacement, rotational displacement, rotational displacement or the like.
  • a driving unit that includes a cylindrical coil wound with an electric wire and a columnar plunger inserted in the coil, the valve unit being driven by axial movement of the plunger, and the flow path It may be a valve having a flow passage portion made of a nonconductive material in which a hole is bored and the valve seat is formed.
  • the upstream side liquid and the downstream side liquid are electrically insulated in a closed state, or both are electrically shorted. It is easy to realize such a structure. For example, even when the liquid on either one of the liquid on the upstream side and the liquid on the downstream side is in electrical contact with the conductive member that constitutes the drive unit, If electrical insulation with the liquid on the other side is ensured by the flow path, an electrical short circuit between the liquid on the upstream side and the liquid on the downstream side via the conductive member can be avoided.
  • Example 1 a small solenoid valve 1 (valve) having a leak detection function is illustrated as an example of the fluid device.
  • the contents will be described with reference to FIGS. 1 to 8.
  • the solenoid valve 1 which is an example of a fluid apparatus is a valve in which the seal part 1S which includes the valve seat 110 and the valve body 25 is provided in the middle of the flow path 11 through which the liquid flows.
  • the solenoid valve 1 is configured such that the valve body 25 presses against the valve seat 110 to close the valve, and a gap is generated between the valve seat 110 and the valve body 25 to open the valve.
  • the solenoid valve 1 measures the degree of electrical conduction between the liquid on the upstream side and the liquid on the downstream side of the flow path 11, here, the liquid on the upstream side of the valve seat 110 and the valve body 25 in the flow path 11 and the liquid on the downstream side.
  • the first electrode 141 electrically connected to the upstream liquid and the second electrode 142 electrically connected to the downstream liquid are provided as the electrodes 14 for measuring the The contents will be described in detail below.
  • the solenoid valve 1 illustrated in FIG. 1 includes a drive unit 2 including a plunger 21 for driving a valve body 25, a flow passage unit 10 in which a flow passage 11 is formed, and a control unit 3 (see FIG. 3). And to be described later).
  • a structure attached to the outer peripheral surface of the drive unit 2 a structure provided with a space inside the drive unit 2 (case 20), etc. Can be adopted.
  • the drive unit 2 is configured by inserting and arranging a cylindrical plunger 21 inside a cylindrical coil 22 around which a wire is wound.
  • the coil 22 is fixed to the inside of a bottomed cylindrical metal case 20.
  • the winding ends at both ends of the coil 22 are taken out of the case 20 so that they can be connected to the control unit 3 fixed to the outside of the case 20, for example.
  • the plunger 21 is a cylindrical component made of a ferromagnetic material.
  • the plunger 21 is incorporated coaxially with a cylindrical spring 210 disposed in a compressed state on the bottom side of the case 20.
  • the plunger 21 is urged toward the protruding side in the axial direction by the urging force of the spring 210.
  • a screw hole 211 for screwing in the cylindrical valve body 25 is formed in the tip end surface of the plunger 21.
  • the valve body 25 is a component in which a rubber seal member 251 is combined with a shaft 252 which is a resin molded product.
  • a membrane-like flange 253 is integrally formed at an intermediate portion in the axial direction, and a mounting structure for mounting the seal member 251 is provided at the tip.
  • the seal member 251 has a disk shape, and the surface opposite to the shaft portion 252 is a seal surface that presses against the valve seat 110. All the valve bodies 25 including the seal member 251, the flange 253, etc. are formed of a nonconductive material.
  • the flange 253 of the valve body 25 is configured such that the outer peripheral portion thereof is liquid-tightly fixed between the drive portion 2 and the flow path portion 10 There is.
  • the flange 253 functions to prevent the liquid leakage to the drive unit 2 side in the assembled state and to allow the axial displacement of the valve body 25 according to the elastic deformation.
  • the flow path unit 10 has a short, substantially cylindrical outer shape, as shown in FIGS. 1 and 2, and is attached to the end face of the drive unit 2 similarly having a substantially cylindrical shape.
  • the flow passage portion 10 is a resin processed product of a nonconductive resin material.
  • a bottomed hole 15 is bored at the center, and the other surface 10B has two attachment holes 140 for attaching the electrode 14 It is drilled in place.
  • the openings 111 and 117 of the flow passage 11 are formed at two positions facing each other.
  • a screw thread is formed on the inner peripheral surface of each of the openings 111 and 117, and piping (not shown) can be screwed.
  • the flow passage 11 is formed by the flow passage 11A on the inflow side forming one opening 111 and the flow passage 11B on the outflow side forming the other opening 117.
  • the flow path 11 is not linear, and in the flow path portion 10, the bottomed hole 15 of the surface 10A where the flow path 11A on the inflow side and the flow path 11B on the outflow side form an attachment surface for the drive portion 2 It communicates through.
  • the flow path 11A on the inflow side is bored in the center of the bottomed hole 15 so as to be in communication with the horizontal hole 112 in the radial direction reaching the center from the outer peripheral surface of the flow path portion 10 and the horizontal hole 112.
  • An axial longitudinal hole 113 is formed.
  • the vertical hole 113 constituting the inflow side flow passage 11A opens in the bottomed hole 15 in a state of being surrounded by a cylindrical edge erected from the bottom surface of the bottomed hole 15.
  • the cylindrical edge functions as a valve seat 110 against which the valve body 25 described above is pressed.
  • the flow path 11A on the inflow side is a path from the opening portion 111 on the outer peripheral surface of the flow path portion 10 to the valve seat 110 via the inside of the flow path portion 10.
  • the inner peripheral surface of the flow path 11A on the inflow side is entirely formed of a nonconductive resin material, whereby electrical insulation with the drive unit 2 side is realized.
  • the flow passage 11B on the outflow side communicates with the horizontal hole 116 from the outer peripheral surface of the flow passage portion 10 to a position on the near side of the center and the bottom surface of the bottomed hole 15 And a vertical hole 115 perforated at the outer periphery of the lens.
  • the vertical hole 115 forming the flow passage 11B on the outflow side and the above-mentioned vertical hole 113 forming the flow passage 11A on the inflow side are separated by a cylindrical edge portion functioning as the valve seat 110.
  • the flow path 11B on the outflow side is a path from the opening 117 in the outer peripheral surface of the flow path 10 through the inside of the flow path 10 to the bottomed hole 15 and to the valve seat 110 in the bottomed hole 15 ing. Since the bottomed hole 15 is opened on the surface 10A that forms the mounting surface for the drive unit 2, the later-described liquid-tight structure using the valve body 25 is adopted in the flow passage 11B on the outflow side.
  • a fixing structure for the drive unit 2 is provided on the surface 10A corresponding to the attachment surface of the flow passage unit 10 with respect to the drive unit 2.
  • the flow path unit 10 is assembled to the drive unit 2 with high reliability by using this fixing structure.
  • a holding portion 150 for fixing the outer peripheral portion of the flange 253 of the valve body 25 in combination with the end face of the drive portion 2 is formed on the outer periphery of the bottomed hole 15. There is.
  • the holding portion 150 holds the outer peripheral portion of the flange 253 in a liquid-tight manner when the flow path portion 10 is fixed to the drive portion 2.
  • the flange 253 acts to restrict the leakage of the liquid in the bottomed hole 15 to the drive unit 2 side, and constitutes a fluid-tight structure of the flow passage 11B on the outflow side.
  • the flow path 11B on the outflow side is a path from the opening 117 at the outer peripheral surface of the flow path 10 to the bottomed hole 15 via the inside of the flow path 10.
  • the inner peripheral surface of the flow passage 11B on the outflow side including the inner peripheral surface of the bottomed hole 15 is all formed of a nonconductive resin material. Further, the internal space of the bottomed hole 15 is held in a fluid-tight manner by the flange 253 (valve body 25) made of a nonconductive resin material, so that the internal liquid does not come in contact with the drive portion 2 side. Therefore, the liquid in the flow path 11B on the outflow side is also electrically insulated from the drive unit 2 side.
  • valve body 25 When the flow path portion 10 is assembled to the drive portion 2, the valve body 25 in a state in which the outer peripheral portion of the flange 253 is held by the holding portion 150 is in a state of projecting inside the bottomed hole 15. In this state, the seal member 251 forming the tip of the valve body 25 presses against the valve seat 110 surrounding the inflow side channel 11A. When the valve body 25 driven forward and backward by the drive unit 2 pushes against the valve seat 110 of the flow passage unit 10, the flow passage 11A on the inflow side and the flow passage 11B on the outflow side are blocked and closed. You can set the valve state.
  • the seal member 251 When the seal member 251 is in a closed state in which the seal member 251 is in contact with the valve seat 110, the liquid is accumulated on the upstream side of the valve seat 110 and the liquid is also accumulated on the downstream side. Therefore, in the valve closed state, the first electrode 141 is immersed in the upstream liquid, and the second electrode 142 is immersed in the downstream liquid.
  • both the flow passage 11A on the inflow side and the flow passage 11B on the outflow side are electrically isolated from the drive unit 2 side. Furthermore, the valve body 25 and the valve seat 110 which form the communication location of the flow path 11A and the flow path 11B are formed of a nonconductive material. Thus, in the solenoid valve 1, in the valve closed state where the flow passage 11A on the inflow side and the flow passage 11B on the outflow side are blocked, the flow passage 11A on the inflow side and the flow passage 11B on the outflow side are also electrically disconnected. A (insulated) structure is realized.
  • a pair of electrodes 14 is embedded in two mounting holes 140 on the surface 10B opposite to the mounting surface with respect to the drive unit 2.
  • One electrode 141 projects into the flow passage 11 through the inner peripheral wall surface of the horizontal hole 112 forming the flow passage 11A on the inflow side which is the upstream side in the flow direction of the liquid in the flow passage.
  • the other electrode 142 projects into the flow passage 11 through the inner peripheral wall surface of the horizontal hole 116 forming the flow passage 11B on the outflow side which is the downstream side in the flow direction of the liquid in the flow passage.
  • Each electrode 14 is fluid-tightly held in the mounting hole 140 via a gasket 145. Signal lines extended from the electrodes 14 are connected to the control unit 3.
  • the control unit 3 illustrated in FIG. 3 is a unit that electromagnetically drives the plunger 21 in response to the energization of the coil 22 and outputs a leak signal indicating occurrence of liquid leakage at the time of valve closing. As described above, the control unit 3 is attached to the outside of the case 20 of the drive unit 2 in a state of being accommodated in a case not shown, for example.
  • the control unit 3 includes a drive circuit 31 that controls energization of the coil 22 and a detection circuit (circuit) 32 that detects a liquid leak at the time of valve closing.
  • the drive circuit 31 is a circuit for driving the plunger 21 backward in the axial direction opposite to the flow passage portion 10.
  • the drive circuit 31 performs energization to the coil 22 in response to the reception of the open signal from the external device 4, thereby electromagnetically driving the plunger 21 (see FIG. 1).
  • the valve body 25 separates from the valve seat 110 of the flow path portion 10 to form a gap, and the flow path 11A on the inflow side flows out through this gap. It will be in the valve open state which the flow path 11B of the side connects (refer FIG. 4).
  • the biasing force of the spring 210 causes the plunger 21 to axially project toward the flow passage 10, whereby the valve body 25 is pressed against the valve seat 110 of the flow passage 10.
  • the inflow side flow passage 11A and the outflow side flow passage 11B are closed.
  • the detection circuit 32 is a circuit including a signal generation unit 321 that generates an alternating current signal, a signal processing unit 322 that processes a detection signal, and a determination unit 323 that determines liquid leakage.
  • the detection circuit 32 applies an alternating current signal adjusted to a predetermined voltage to the first electrode 141, and detects liquid leakage according to the magnitude of the current generated in the second electrode 142.
  • the signal generation unit 321 is a circuit unit that generates an AC signal of a predetermined voltage to be applied to the first electrode 141.
  • the alternating current signal for example, a signal periodically changing at a frequency of 1 KHz can be used. If an alternating current signal is applied to the electrode 141, electrolysis or precipitation of crystals that may occur at the electrode can be suppressed in advance. If precipitation of crystals can be suppressed, accumulation of salts and the like can be avoided, and changes in sensitivity characteristics of the electrode can be suppressed. In addition, if the electrolysis is suppressed, it is possible to suppress the change in the properties of the liquid flowing through. As described above, by applying the alternating current signal to the electrode 141 in advance, it is possible to prevent various problems from occurring if electrolysis or crystal deposition that may occur in the electrode is suppressed in advance.
  • the alternating current signal that acts on the first electrode 141 a square wave alternating current (voltage) in which a positive value period and a negative value period appear alternately alternately is adopted.
  • the AC signal various signals such as a sine wave, a triangle wave, and a pulse wave can be adopted.
  • an alternating current signal with a frequency of 1 kHz is adopted, but the frequency of the alternating current signal may be set selectively as appropriate.
  • application of an AC signal of a predetermined voltage can suppress the possibility of the influence of fluctuation of the power supply voltage and the like on the output potential of the detection circuit 32, and can improve detection accuracy.
  • expressions such as applying an alternating current signal to the first electrode 141 or applying a voltage to the first electrode 141 apply voltage between the first electrode 141 and the second electrode 142. Means.
  • the signal processing unit 322 is a circuit unit that takes in the current generated in the second electrode 142 as a detection signal, and converts the current into a detection signal (voltage) that the determination unit 323 can easily handle.
  • the current generated in the second electrode 142 is between the first electrode 141 and the second electrode 142 in accordance with the voltage applied between the first electrode 141 and the second electrode 142. It means the current flowing.
  • the signal processing unit 322 amplifies the AC detection signal (current) generated in the second electrode 142 when the above-described AC signal (voltage) is applied to the first electrode 141, and the detection signal after amplification.
  • the function of generating a detection signal includes a peak hold circuit holding the maximum value of the intermediate signal, a peak hold circuit holding the minimum value of the intermediate signal, and a difference circuit generating a difference value between the maximum value and the minimum value , And is realized by the signal processing unit 322.
  • the signal processing unit 322 having the above three functions obtains an intermediate signal of the AC voltage by current / voltage conversion based on the AC detection signal (AC current) generated at the second electrode 142, and the intermediate signal It converts into the detection signal of the direct current voltage showing the size of the amplitude of, and outputs it.
  • the function of generating the intermediate signal may include a function of removing the low frequency component and the high frequency component by a band pass filter.
  • a band pass filter about the frequency characteristic of this band pass filter, it is good to set up corresponding to the frequency of the exchange signal which signal generation part 321 generates.
  • a band pass filter for selectively passing frequencies around 1 kHz.
  • the determination unit 323 is a circuit unit that performs threshold processing on the detection signal (voltage value) converted by the signal processing unit 322 and determines liquid leakage.
  • the determination unit 323 executes threshold processing of the detection signal in the valve-closing period in which the above-described open signal is not received. Then, if the voltage value of the detection signal exceeds a predetermined threshold value, it is determined that the liquid leaks.
  • the control unit 3 outputs a leak signal indicating that the fluid leak is detected to the external device 4.
  • the solenoid valve 1 as the fluid device of the present embodiment configured as described above, the electricity of the liquid on the upstream side in the flow path 11A on the inflow side and the liquid on the downstream side in the flow path 11B on the outflow side According to the degree of continuity, it is possible to detect the liquid leakage under the valve closed state. According to this solenoid valve 1, for example, even in the handling of a liquid in which crystals are likely to be deposited, it is possible to early detect a liquid leak that may occur due to a seal failure caused by the crystals deposited on the valve seat 110.
  • the solenoid valve 1 If maintenance or the like of the solenoid valve 1 is carried out according to the occurrence of a leak signal representing a fluid leak, the fluid leakage symptom occurring in the valve seat 110, the valve body 25 or the like becomes severe, or the fluid is supplied from the solenoid valve 1. It is possible to prevent in advance problems and the like of an external device (not shown) that operates.
  • the solenoid valve 1 provided with the control unit 3 may be omitted.
  • opening / closing control of the solenoid valve 1 is performed via a power line for energizing the coil 22 and detection of liquid leakage or the like is performed via a signal line connected to the electrode 14.
  • the liquid on the inflow side upstream of the valve seat 110 and the valve body 25 and the liquid on the outflow side downstream of the valve seat 110 and the valve body 25 are electrically connected through the forming material of the flow path portion 10 and the drive portion 2. It does not lead to In the valve closed state, it is possible to ensure high electrical insulation between the upstream side inflow side liquid and the downstream side outflow side liquid.
  • the liquid on the inflow side and the liquid on the outflow side may be electrically connected via the components of the solenoid valve 1 in the valve closed state.
  • the magnitude of the electrical resistance through the component parts of the solenoid valve 1 may be such a size that the electrical resistance of the liquid can be treated as a finite value.
  • the magnitude of the electrical resistance through the components of the solenoid valve 1 is sufficiently larger than the electrical resistance of the liquid (the conductivity of the components of the solenoid valve 1 with respect to the conductivity of the liquid Can be ignored).
  • the solenoid valve 1 which opens the valve by driving the valve body 25 electromagnetically has been exemplified
  • the configuration in which the degree of electrical conduction between the inflow side liquid and the outflow side liquid is measured to detect the liquid leakage is It is applicable to various valves such as a manual valve and a valve using a stepping motor.
  • the detection circuit 32 determines the presence or absence of liquid leakage by threshold processing regarding the voltage value of the detection signal. Instead of this, it is also possible to measure the flow rate of the liquid according to the magnitude of the voltage value of the detection signal. Further, for example, in the case of driving the solenoid valve 1 by duty control in which opening and closing are periodically repeated, the valve opening degree is estimated according to the temporal average value of the voltage value of the detection signal It is also possible to calculate the flow rate by estimating the valve opening degree from the ratio of the period in which the voltage value of the detection signal is Hi and the period in Lo.
  • the detection circuit 32 with a threshold setting unit for appropriately setting the threshold applied to the above-mentioned threshold processing.
  • a method of setting the threshold value by the threshold value setting unit for example, there is the following method.
  • (Setting method 1) A method of setting a threshold by multiplying the magnitude (voltage value) of the detection signal when the solenoid valve 1 is closed by a coefficient.
  • this coefficient for example, a value exceeding 1.0, such as 1.1 or 1.2, can be set.
  • (Setting method 2) A method of setting a threshold by multiplying the magnitude (voltage value) of a detection signal when the solenoid valve 1 is open by a coefficient.
  • this coefficient for example, a value such as 1/10 or 1/100 can be set.
  • the threshold value is set by multiplying the value obtained by dividing the magnitude (voltage value) of the detection signal when the solenoid valve 1 is closed by the magnitude (voltage value) of the detection signal when the solenoid valve 1 is open. how to. As this coefficient, for example, a value exceeding 1.0, such as 1.1 or 1.2, can be set.
  • the target of the threshold processing in this case is a value obtained by dividing the magnitude of the detection signal of the target by the magnitude (voltage value) of the detection signal when the solenoid valve 1 is opened.
  • the threshold processing using the threshold set as described above may be processing by a digital circuit or processing by an analog circuit.
  • a plurality of amplification factors may be provided for the function of the signal processing unit 322 that amplifies the detection signal of alternating current generated in the electrode 14.
  • the amplification factor is small including the amplification factor 1
  • a weak detection signal may be missed.
  • saturation may occur when a large detection signal is generated.
  • a plurality of amplification factors are provided, it is possible to select and process a detection signal whose magnitude after amplification is in an appropriate range. Such a configuration is effective when the electrical conductivity of the liquid to be handled is unknown or varied, and helps to improve versatility.
  • a detection signal of a voltage value is illustrated as a detection signal generated by the signal processing unit 322 and used by the determination unit 323 for liquid leakage determination. If it is a detection signal of voltage value, for example, even when this detection signal is output as it is to an external device, the handling on the receiving side is relatively easy, and the circuit configuration for handling the detection signal is simplified. it can.
  • a signal line or the like For example, when the signal is output to a communication network such as the Internet via a wireless LAN or the like, the operation state of the solenoid valve 1 can be monitored from the outside.
  • the flow passage portion 10 in which the metal electrode 14 is inserted into the mounting hole 140 is illustrated.
  • the electrodes 14 may be provided by insert molding.
  • the flow path portion 10 may be manufactured by two-color molding using a first resin material exhibiting conductivity and a second resin material having electrical insulation.
  • the main body portion of the flow passage portion 10 is formed of the above-described second resin material, it is preferable that the electrical path functioning as the electrode 14 be formed of the above-described first resin material.
  • the electrode a rubber whose conductivity is enhanced by kneading a conductive material such as carbon nanotube, for example.
  • the electrode made of rubber may be disposed in the resin material by insert molding or the like, or may be press-fit into the mounting hole 140 which has been drilled in advance.
  • press-fitting since the electrode made of rubber is appropriately deformed to function as a sealing material, it is not necessary to separately provide a sealing material in addition to the electrode, and the number of parts can be reduced.
  • the seal portion 1S including the valve seat 110 and the valve body 25 is illustrated.
  • the configuration of the present invention is also applicable to a valve which is a fluid device including a seal portion 1S (FIGS. 6 and 7) including the slider 27 and a seal portion 1S (FIG. 8) including the spool valve 28.
  • the solenoid valve 1 of FIG. 6 is a slide type valve called a slider valve.
  • the seal portion 1S is configured using a partition plate called a slider 27 in which the flow path hole 270 is bored. When the slider 27 moves up and down by the electromagnetic drive and the flow path holes 270 match the flow paths 11A and B, the flow paths 11A and B communicate (FIG.
  • the solenoid valve 1 of FIG. 8 is a sliding valve provided with a cylindrical spool valve 28.
  • a small diameter neck 280 is provided at an intermediate portion of the spool valve 28 that moves up and down by electromagnetic drive.
  • the neck portion 280 functions in the same manner as the flow passage hole 270 of the slider 27 described above, and switches between the communication and blocking of the flow passages 11A and 11B.
  • the fluid device (electromagnetic valve 1) having a structure in which the fluid is also accumulated on the downstream side is illustrated.
  • the first electrode 141 is immersed in the upstream liquid
  • the second electrode 142 is immersed in the downstream liquid.
  • the first electrode 141 and the second electrode 142 may be provided downstream. If there is a liquid leak when the valve is closed, the electrical resistance between the electrodes 141 and 142 is reduced, so that the liquid leak can be detected.
  • the upstream side and the downstream side in which the flow path is filled with the liquid in a flowing state and the liquid is discharged from the flow path and becomes empty in a non-flowing state, the upstream side and the downstream side. It is preferable to provide the first electrode 141 and the second electrode 142 in the flow path without distinguishing the two. Whether or not the liquid flows can be determined by the electrical resistance between the electrodes 141 and 142 or the like. In this case, the first electrode 141 and the second electrode 142 may be at the same position or in different positions in the flow direction of the liquid.
  • Example 2 This example is a configuration example in which an electrode 56 is provided on a manifold 58 as a fluid device based on the configuration of the first embodiment. The contents will be described with reference to FIGS. 9 to 11.
  • the manifold 58 of FIGS. 9 and 10 is a plate-shaped manifold in which a plurality of flow paths 588 (FIG. 11) are provided in a resin flat plate.
  • One of the surfaces of the manifold 58 is a mounting surface 58A on which equipment such as the solenoid valve 581, the four-way valve 585, and the pump 583 is mounted.
  • the open holes 580 in the ground plane 58A are holes for supplying liquid to these devices or for refluxing the liquid flowing out of these devices.
  • the function of the manifold 58 can be changed according to the type of equipment to be attached to the installation surface 58A and the installation location.
  • the tube connection surface 58B which is the surface of the manifold 58 opposite to the installation surface 58A, has a detection circuit 57 (FIG. 10) attached and a plurality of tubes 521 connected.
  • a nipple 552 having a tapered tip and provided with a screw at an intermediate portion is erected for each flow passage 588.
  • the tube 521 is fluid-tightly connected to each flow passage 588 of the manifold 58 by screwing the tightening nut 52 into the nipple 552 in which the tube 521 is externally inserted into the tapered tip.
  • a key-shaped electrode 56 provided with a connector portion 560 at one end is embedded corresponding to each flow path 588.
  • Each electrode 56 embedded by insert molding has a tip on the opposite side to the connector portion 560 exposed to the inner peripheral wall surface of the flow path 588 and a connector portion 560 from the tube connection surface 58B corresponding to the outer peripheral side of the nipple 552 Is protruding.
  • Each connector portion 560 is electrically connected to the detection circuit 57 via a signal line (not shown).
  • a signal line not shown.
  • the tube 521 corresponding to the hole 580 is the upstream tube
  • the tube 521 corresponding to the opening hole 580 connected to the outlet of the solenoid valve 581 is the downstream tube.
  • a flow path of upstream tube 521 ⁇ flow path 588 ⁇ electromagnetic valve 581 ⁇ flow path 588 ⁇ downstream side tube 521 is formed.
  • a “fluid device” in which two electrodes 56 are disposed on the upstream side and the downstream side across the electromagnetic valve 581 is formed in the flow path.
  • Example 3 The present example is an example in which the content of signal processing is changed based on the solenoid valve of the first embodiment in order to improve the accuracy of leak detection. The contents will be described with reference to FIG. 3, FIG. 12 and FIG.
  • the electrical path between the first electrode 141 and the second electrode 142 is, for example, due to the presence of an interface at which the electrodes 141 and 142 are in contact with the liquid, and the same electrical There are stray capacitances and electrical resistance that cause various effects.
  • the electrical path between the first electrode 141 and the second electrode 142 can be represented by the equivalent circuit of FIG.
  • the resistance R1 in the equivalent circuit is an electrical resistance of a path between the electrodes 141 and 142 through which the liquid or the valve seat 110 is interposed.
  • the capacitance C is a stray capacitance between the electrodes 141 and 142.
  • the resistor R2 is an electrical resistance generated by the internal resistance of the electrodes 141 and 142, an electrical wiring, and the like. A stray capacitance (not shown) also exists in the internal resistance and the electrical wiring.
  • the second charging / discharging of the electrostatic capacitance C is performed according to the switching of the positive and negative of the AC voltage (AC signal) applied to the first electrode 141.
  • a slight current flows to the electrode 142 of the
  • the direction of the current generated in the second electrode 152 differs between when the AC signal switches from positive to negative and when the AC signal switches from negative to positive. Therefore, even when the solenoid valve is normally closed, when an alternating current signal is applied to the first electrode 141, an alternating current (intermediate signal) is generated in the second electrode 142.
  • the detection signal which is the amplitude of the intermediate signal, does not become zero even in a normal valve closing state in which no liquid leakage occurs, which may cause erroneous detection of liquid leakage. There is.
  • Example 1 a peak hold circuit that holds the maximum value of the intermediate signal in order to generate a detection signal representing the magnitude of the amplitude of the intermediate signal (AC voltage) generated on the second electrode 142 side. And a peak hold circuit that holds the minimum value of the intermediate signal. Then, a difference value between the maximum value and the minimum value of the intermediate signal is obtained by the difference circuit, and a voltage value corresponding to the difference value is used as a detection signal.
  • the degree of difficulty of the process of discriminating the detection signal generated due to the liquid leakage or the detection signal in the normal valve closing state is high.
  • Threshold In the case of leak detection, in order to suppress false detection under the normal valve closing state, when applying threshold processing to the detection signal (voltage value), consider the magnitude of the detection signal in the normal valve closing state. Threshold must be set.
  • the resistance R1 in the equivalent circuit of FIG. 12 largely fluctuates depending on whether the solenoid valve is in the open state or in the closed state.
  • the electrodes 141 and 142 are in contact with each other through the liquid in the flow path, so the resistance R1 decreases.
  • the closed state the upstream fluid and the downstream fluid are divided by the valve seat 110, the valve body 25 and the like, so that the resistance R1 becomes large.
  • the magnitude of the resistor R1 affects the phase of the intermediate signal on the second electrode 142 side. Comparing the intermediate signal in the state where the valve opening resistance R1 is sufficiently large with the intermediate signal in the state where the valve opening resistance R1 is small, a phase difference of 90 degrees occurs (see FIG. 13). .
  • R1 at the time of valve opening is RLo
  • R1 at the valve closing time is R1c
  • the reactance value due to the interelectrode capacitance is Xc
  • the condition that produces a phase difference of 90 degrees is R1c >> Xc >> RLo.
  • the valve closing is closed when the valve opening intermediate signal is at the maximum value.
  • the intermediate signal at the time of valve becomes zero, and when the intermediate signal at the time of valve opening is the minimum value, the intermediate signal at the time of valve closing becomes zero. Therefore, in the configuration of this example, two points at which the intermediate signal at the valve opening time has maximum and minimum values are set so that the detection signal at the valve closing time (voltage value representing the amplitude of the intermediate signal) becomes zero. It is set to the measurement time.
  • the phase shift of the intermediate signal at the time of valve closing is about 90 degrees with respect to the AC voltage (AC signal in FIG. 13A) applied to the first electrode 141. Therefore, the above two measurement times are the first measurement time when a predetermined time equivalent to a 1 ⁇ 4 period has elapsed with reference to the first time when the square wave AC signal switches from negative to positive. A combination of the second measurement time when a predetermined time equivalent to a 1 ⁇ 4 period has elapsed with reference to the second time when the AC signal switches from positive to negative. And, in this example, the difference between the first measurement value, which is the magnitude of the intermediate signal at the first measurement time point, and the second measurement value, which is the magnitude of the intermediate signal at the second measurement time point The value is used as a detection signal.
  • the configuration is employed in which the magnitude of the intermediate signal is measured at two measurement points, and a difference is taken to generate a detection signal.
  • the circuit configuration of the detection circuit 32 can be simplified, and cost reduction can be facilitated.
  • generating said intermediate signal AC voltage
  • a band pass filter for selectively passing frequencies around 1 kHz.
  • a square wave is illustrated as an alternating current signal (AC voltage) applied to the first electrode 141, but the AC signal may be a sine wave or the like.
  • Example 4 This example is an example in which the setting of the measurement time point of the intermediate signal for generating the detection signal is changed based on the configuration of the third embodiment. The contents will be described with reference to FIGS. 14 and 15. While the phase difference between the AC voltage (AC signal) applied to the first electrode 141 and the intermediate signal at valve closing is about 90 degrees, the valve opening for the AC voltage (AC signal) applied to the first electrode 141 The phase shift of the time intermediate signal may vary up to 90 degrees as exemplified in the third embodiment.
  • a time measurement unit 325 for measuring a shift time corresponding to the above-described phase shift is added to the detection circuit 321 that detects a liquid leak.
  • the time measurement unit 325 performs a first point in time when the AC voltage (AC signal) applied to the first electrode 141 switches from negative to positive or from positive
  • the deviation time until the intermediate signal reaches the maximum value or the minimum value is measured based on the second time point when switching to the negative.
  • the time measuring unit 325 for example, repeats the measurement of the intermediate signal with a cycle sufficiently faster than 1 kHz, which is the frequency of the AC signal, to specify the maximum value time point and the minimum value time point. Measure the deviation time.
  • this shift time is handled as a predetermined time for setting the measurement time point.
  • the first measurement time point is a time point at which the above-mentioned deviation time is shifted with reference to the first time point at which the AC voltage (AC signal) applied to the first electrode 141 switches from negative value to positive value.
  • the second measurement time point is set as the point at which the above-mentioned deviation time is shifted on the basis of the second time point at which the AC voltage switches from positive value to negative value. Then, the first measurement value of the intermediate signal is acquired at the first measurement time, and the second measurement value of the intermediate signal is acquired at the second measurement time, and the difference value between the first and second measurement values As a detection signal.
  • the intermediate signal when the valve opens has the maximum value.
  • the detection signal can be maximized at the first measurement time point and the second measurement time point where the minimum value is obtained (measurement pattern A in FIG. 15). Assuming that the noise level is random and almost constant, the ratio of signal to noise (S / N ratio) can be maximized by setting the first measurement time point and the second measurement time point.
  • the time points of the maximum value and the minimum value of the intermediate signal at the time of valve opening are set as the measurement time points (measurement pattern A in FIG. 15).
  • the point at which the intermediate signal at valve closing switches from positive to negative and crosses zero at the first measurement time point It is also possible to set a point of time when a negative cross from positive to negative is made as a second point of measurement (measurement pattern B in FIG. 15). As a result, it is possible to obtain a detection signal with high sensitivity in accordance with the degree of leakage from the valve closing state.
  • the phase shift of the intermediate signal (during valve closing) with respect to the alternating voltage (AC signal) applied to the first electrode 141 deviates from about 90 degrees.
  • the measurement timing of the intermediate signal can be appropriately set, and thereby, the magnitude of the detection signal at the time of valve closing can be brought close to zero.
  • the other configurations and effects are the same as in the third embodiment.
  • Solenoid valve (valve, fluid device) 1S seal portion 10 flow path portion 11 flow path 11A flow path 11B inflow side flow path 110 flow side 110 valve seat 141 first electrode 142 second electrode 15 bottomed hole 2 drive portion 21 plunger 22 coil 25 valve body 27 Slider 28 Spool valve 3 Control unit 31 Drive circuit 32 Detection circuit (circuit) 56 electrode 58 manifold (fluid device)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Transportation (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Magnetically Actuated Valves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Volume Flow (AREA)

Abstract

液が流れる流路(11)の途中に弁座(110)と弁体(25)とが設けられ、弁座(110)に弁体(25)が押し当たって閉弁し、弁座(110)と弁体(25)との間に隙間が生じて開弁する流体装置である電磁弁(1)は、流路(11)中における弁座(110)及び弁体(25)の上流側の液と下流側の液との電気的な導通度合いを計測するための電極として、上流側の液と電気的に導通する第1の電極(141)と、下流側の液と電気的に導通する第2の電極(142)と、を備え、第1及び第2の電極(141、142)を用いて液漏れの検出を容易に実施できる。

Description

流体装置
 本発明は、液が流れる流路を備える流体装置に関する。
 従来より、液の流路を有する各種の流体装置が知られている。このような流体装置としては、例えば、バルブや三方弁や四方弁などの切替弁、流体を流路に圧送したり流体を吸引するポンプや、複数の流路を設けたマニフォールド等がある。例えば薬液やサンプル液などを取り扱う各種の分析装置や検査装置などでは、液の流量を精度高く管理する必要があるため、流体装置として精密なバルブが採用されている(例えば特許文献1参照)。
 例えば、このバルブとしては、電磁力によって進退駆動される弁体と、この弁体が押し当たる弁座と、を備えるものがある。このバルブ等では、弁座に弁体が押し当たって流路が閉じられる一方、弁座から弁体が後退すると両者間に隙間が生じて流路が開かれる。
特開2016-75300号公報
 しかしながら、前記バルブなどの従来の流体装置では、次のような問題がある。すなわち、取り扱う液によっては結晶が析出し易い性状を有するものがあり、定期的なメンテナンスが必要である一方、メンテナンスが不十分であると、液漏れや詰まり等のトラブルが発生するおそれがある。
 本発明は、前記従来の問題点に鑑みてなされたものであり、液が流れる状態が適切か否かを検知する機能を備えた流体装置を提供しようとするものである。
 本発明は、液が流れる流路を備える流体装置であって、
 流入する上流側の流路中の液と、流出する下流側の流路中の液と、の電気的な導通度合いを計測するための電極として、前記上流側の液と電気的に接する第1の電極と、前記下流側の液と電気的に接する第2の電極と、を設けた流体装置にある。
 本発明の流体装置は、前記上流側の液と電気的に導通する第1の電極と、前記下流側の液と電気的に導通する第2の電極と、を備えている。該第1の電極と該第2の電極との組み合わせは、上流側の液と下流側の液との電気的な導通度合いの計測に利用できる。
 本発明の流体装置では、前記第1及び前記第2の電極を利用することで比較的容易に、前記上流側の液と前記下流側の液との電気的な導通度合いを計測できる。この電気的な導通度合いは、流体装置の流路を流れる液の有無や流量に応じたものである。したがって、この電気的な導通度合いを計測すれば、液漏れや液の流量等の検知が可能となる。
 このように本発明の流体装置は、前記上流側の液と前記下流側の液との電気的な導通度合いの計測に適したものであり、液漏れや詰まりなどの検知が容易である。
実施例1における、電磁弁の断面構造を示す断面図。 実施例1における、流路部の断面構造を示す斜視図。 実施例1における、電磁弁に組み込まれる制御ユニットのブロック図。 実施例1における、開弁状態を示す説明図。 実施例1における、他の流路部の断面構造を示す斜視図。 実施例1における、スライダーを備える電磁弁の断面構造を示す断面図(閉状態)。 実施例1における、スライダーを備える電磁弁の断面構造を示す断面図(開状態)。 実施例1における、スプール弁を備える電磁弁の断面構造を示す断面図(閉状態)。 実施例2における、マニフォールドを示す斜視図。 実施例2における、チューブ接続面側から見込むマニフォールドの斜視図。 実施例2における、マニフォールドの電極を示す断面図。 実施例3における、電極間の電気的な経路の等価回路を示す回路図。 実施例3における、交流信号、中間信号、検出信号を示すグラフ。 実施例4における、制御ユニットのブロック図。 実施例4における、交流信号、中間信号、検出信号を示すグラフ。
 本発明の流体装置としては、バルブや三方弁や四方弁などの切替弁、流体を流路に圧送したり流体を吸引するポンプのほか、流路を有するパイプやチューブ、複数の流路を設けたマニフォールド等がある。さらに、流路を有するパイプやチューブとしては、直線的な単管であっても良く、流路の分岐箇所や合流箇所を有する分岐管あるいは集合管であっても良い。本発明の対象は、流体が流れる流路を有する様々な流体装置である。
 本発明における好適な一態様の流体装置は、前記第1の電極と前記第2の電極との間の電気的な導通度合いを計測して前記流路を流れる液の有無を検知する回路を備えている。
 例えば前記流体装置が液の流れを遮断するバルブ等の場合、流れを遮断する状態のときに流路を流れる液が有るときには、液漏れを検知できる。
 本発明における好適な一態様の流体装置は、前記第1の電極と前記第2の電極との間の電気的な導通度合いを計測して前記流路を流れる液の量を検知する回路を備えている。
 前記流路は、液が流れる経路であると共に、液を媒体とした電気の経路となる。そのため、前記電気的な導通度合いは、例えば前記流路の面積等に応じて異なってくる。前記流路の面積(特に最小面積)が大きくなれば、流量が増えると共に、前記電気的な導通度合いが大きくなる。前記電気的な導通度合いを計測すれば、前記流路を流れる液の量を検知できる。
 本発明における好適な一態様の流体装置は、液の流れが遮断された状態を設定可能であり、当該液の流れが遮断された状態において、前記上流側の液と前記下流側の液とが電気的に絶縁される構造を備えている。
 この場合には、液の流れが遮断された状態において前記第1の電極と前記第2の電極とが電気的に絶縁される。例えば遮断状態において前記第1の電極と前記第2の電極とが電気的に導通する場合には、液の流れが生じているという判断が可能となり、液漏れの判断が容易になる。
 例えば液の流れが遮断された遮断状態と流路が開放された開放状態とを切り替え可能な流体装置の場合、遮断状態と開放状態とを速い周期で交互に切り替えることで、流量を調節できる。このように遮断状態と開放状態とを交互に切り替える場合、前記流路が開放されて前記電気的な導通度合いが大きくなる期間と、前記液の流れが遮断されて前記電気的な導通度合いが小さくなる期間と、が周期的に繰返し発生する。一周期をなす期間のうち、前記流路が開放されて前記電気的な導通度合いが大きくなる期間の占有割合が大きくなると、前記電気的な導通度合いの平均的な値が大きくなると共に、前記流路を流れる液の量(流量)が大きくなる。したがって、前記電気的な導通度合いを計測すれば、前記流路を流れる液の量を検知できる。
 本発明における好適な一態様の流体装置は、液の流れを遮断するためのシール部が前記流路の途中に設けられたバルブであり、
 前記第1及び第2の電極は、前記流路中において前記シール部を挟んで隣り合う上流側の液と下流側の液との電気的な導通度合いを計測するための電極である。
 この場合には、前記シール部を挟んで隣り合う上流側の液と下流側の液との電気的な導通度合いの計測が可能になる。バルブとしては、薬液やサンプル液などを取り扱う各種の分析装置や検査装置などのバルブのほか、油圧等を駆動源として動作する液圧装置や流体を媒体とする冷凍装置などの産業機械のバルブや、キッチンや洗面台等の水栓などの一般消費者向けの製品のバルブ等でも有用である。
 バルブにおけるシール部は、弁座と弁体とを含み、弁座に弁体が押し当たって閉弁して液の流れを遮断し、弁座と弁体との間に隙間が生じたときに開弁するものであっても良い。
 このシール部の場合、弁座と弁体との接触箇所に結晶が析出し、弁座と弁体との接触箇所に結晶が挟まった状態に陥ることがあり、これに起因して微少な液漏れが生じるおそれがある。この微少な液漏れを精度高く検出すれば、析出した結晶を取り除くメンテナンス作業の必要性を早期に把握できる。そして、早期のメンテナンス作業によれば、トラブルの重症化等を未然に回避できる。
 通電に応じて生じる電磁力の作用によって変位する可動部材を含み、該可動部材の変位によって前記弁体を駆動する駆動部と、前記流路をなす孔が穿設されていると共に前記弁座が形成された非導電性材料よりなる流路部と、を有するバルブであっても良い。前記駆動部は、電線が巻回されたコイルを利用するソレノイドであっても良く、積層鋼板を利用するソレノイドであっても良い。前記可動部材の変位としては、直線的に進退する変位であっても良いし、回転変位であっても良いし、回動変位などであっても良い。
 また、電線が巻回された筒状のコイル及び該コイルに内挿配置された柱状のプランジャ、を含み、該プランジャの軸方向の進退によって前記弁体を駆動する駆動部と、前記流路をなす孔が穿設されていると共に前記弁座が形成された非導電性材料よりなる流路部と、を有するバルブであっても良い。
 前記非導電性材料よりなる流路部を採用する場合には、閉弁した状態において前記上流側の液と前記下流側の液とが電気的に絶縁される構造や、両者が電気的に短絡しない構造等の実現が容易である。例えば、前記上流側の液および前記下流側の液のうちのいずれか一方の側の液が前記駆動部を構成する導電性部材と電気的に接触する場合であっても、当該導電性部材と他方の側の液との電気的な絶縁を前記流路部によって確保すれば、当該導電性部材を介在した前記上流側の液と前記下流側の液との電気的な短絡を回避できる。
 本発明の実施の形態につき、以下の実施例を用いて具体的に説明する。
(実施例1)
 本例では、漏れ検知機能を備える小型の電磁弁1(バルブ)を流体装置の一例として例示している。この内容について、図1~図8を参照して説明する。
 流体装置の一例をなす電磁弁1は、液が流れる流路11の途中に弁座110と弁体25とを含むシール部1Sが設けられ、液の流れを遮断可能なバルブである。この電磁弁1は、弁座110に弁体25が押し当たって閉弁し、弁座110と弁体25との間に隙間が生じて開弁するように構成されている。
 電磁弁1は、流路11の上流側の液と下流側の液、ここでは流路11中の弁座110及び弁体25の上流側の液と下流側の液との電気的な導通度合いを計測するための電極14として、上流側の液と電気的に導通する第1の電極141と、下流側の液と電気的に導通する第2の電極142と、を備えている。
 以下に、この内容について詳しく説明する。
 図1に例示する電磁弁1は、弁体25を駆動するためのプランジャ21を含む駆動部2と、流路11が形成された流路部10と、制御ユニット3(図3を参照して後述する。)と、を含んで構成されている。なお、図1において図示を省略する制御ユニット3の組付け構造としては、駆動部2の外周面に取り付ける構造や、駆動部2(ケース20)の内側にスペースを設けて内部に収容する構造等を採用できる。
 駆動部2は、電線が巻回された円筒状のコイル22の内側に、円柱状のプランジャ21を内挿配置して構成されている。コイル22は、有底円筒状の金属製のケース20の内側に固定されている。コイル22の両端の巻回端は、例えばケース20の外側に固定される制御ユニット3に結線できるよう、ケース20の外側に取り出される。
 プランジャ21は、強磁性材料よりなる円柱状の部品である。このプランジャ21は、ケース20の底側に圧縮状態で配置された円筒状のスプリング210に対して同軸をなすように組み込まれている。プランジャ21は、このスプリング210の付勢力により軸方向における突出側に付勢された状態となっている。プランジャ21の先端面には、円柱状の弁体25を螺入するためのネジ孔211が穿設されている。
 弁体25は、樹脂成型品である軸部252に対してゴム製のシール部材251を組み合わせた部品である。軸部252では、軸方向の中間部分に膜状のフランジ253が一体成形されていると共に、シール部材251を取り付けるための取付構造が先端に設けられている。シール部材251は、円盤状をなし、軸部252とは反対側の表面が弁座110に押し当たるシール面となっている。シール部材251やフランジ253等を含めて弁体25はすべて、非導電性材料によって形成されている。
 弁体25のフランジ253は、駆動部2に対して流路部10を取り付けたとき、その外周部が駆動部2と流路部10との間で液密に固定されるように構成されている。このフランジ253は、組付け状態において、駆動部2側への液漏れを防止すると共に、弾性変形に応じて弁体25の軸方向の変位を許容するように機能する。
 流路部10は、図1及び図2のごとく、背の低い略円柱状の外形状を呈しており、同様に略円柱状を呈する駆動部2の端面に取り付けられる。この流路部10は、非導電性樹脂材料による樹脂加工品である。流路部10の表面のうち、駆動部2に対する取付面に当たる表面10Aでは、中心に有底孔15が穿設されており、他方の表面10Bには、電極14を取り付ける取付孔140が2か所穿設されている。また、流路部10の外周面では、対向して位置する2か所に流路11の開口部111、117が形成されている。各開口部111、117の内周面には、ネジ山が形成されており、図示しない配管を螺合可能である。
 流路部10では、一方の開口部111をなす流入側の流路11Aと、他方の開口部117をなす流出側の流路11Bと、により流路11が形成されている。この流路11は直線的なものではなく、流路部10では、流入側の流路11Aと流出側の流路11Bとが、駆動部2に対する取付面をなす表面10Aの有底孔15を介して連通している。
 流入側の流路11Aは、流路部10の外周面から中心まで達する径方向の横孔112と、この横孔112に対して直交して連通するように有底孔15の中心に穿孔された軸方向の縦孔113と、により構成されている。流入側の流路11Aを構成するこの縦孔113は、有底孔15の底面から立設された円筒状の縁部に取り囲まれた状態で有底孔15に開口している。この円筒状の縁部は、上記の弁体25が押し当たる弁座110として機能する。
 流入側の流路11Aは、流路部10の外周面の開口部111から流路部10の内部を経由して弁座110に至るまでの経路となっている。流入側の流路11Aの内周面はすべて非導電性樹脂材料により形成されており、これにより、駆動部2側との電気的な絶縁が実現されている。
 一方、流出側の流路11Bは、流路部10の外周面から中心の手前の位置までの横孔116と、この横孔116に対して直交して連通するように有底孔15の底面の外周に穿孔された縦孔115と、により構成されている。なお、流出側の流路11Bをなすこの縦孔115と、流入側の流路11Aをなす上記の縦孔113とは、弁座110として機能する円筒状の縁部により区画されている。
 流出側の流路11Bは、流路部10の外周面の開口部117から流路部10の内部を経て有底孔15に連通し、有底孔15内部の弁座110に至る経路となっている。有底孔15は、駆動部2に対する取付面をなす表面10Aに開口していることから、流出側の流路11Bでは、弁体25を利用した後述の液密構造が採用されている。
 詳細な図示及び詳しい説明は省略するが、駆動部2に対する流路部10の取付面に当たる表面10Aには、駆動部2に対する固定構造が設けられている。流路部10は、この固定構造を利用して駆動部2に確実性高く組み付けられる。さらに、流路部10の表面10Aにおいて、有底孔15の外周には、駆動部2の端面との組み合わせにより弁体25のフランジ253の外周部を固定するための保持部150が形成されている。この保持部150は、流路部10を駆動部2に固定したとき、フランジ253の外周部を液密に保持する。このフランジ253は、有底孔15の液の駆動部2側への漏出を規制するように作用し、流出側の流路11Bの液密構造を構成している。
 流出側の流路11Bは、流路部10の外周面の開口部117から流路部10の内部を経由して有底孔15に至るまでの経路となっている。有底孔15の内周面を含めて流出側の流路11Bの内周面はすべて非導電性樹脂材料により形成されている。また、有底孔15の内部空間は、非導電性樹脂材料よりなるフランジ253(弁体25)によって液密に保持され、内部の液が駆動部2側と接触しないようになっている。そのため、流出側の流路11Bの液は、駆動部2側と電気的にも絶縁されている。
 駆動部2に流路部10を組み付けたとき、フランジ253の外周部が保持部150によって保持された状態の弁体25が有底孔15の内側に突出する状態となる。この状態では、弁体25の先端をなすシール部材251が、流入側の流路11Aを取り囲む弁座110に押し当たる。このように駆動部2により進退駆動される弁体25が流路部10の弁座110に押し当たることで、流入側の流路11Aと、流出側の流路11Bと、が遮断されて閉弁状態を設定できる。なお、このシール部材251が弁座110に押し当たった閉弁状態の時、弁座110の上流側に液が溜まると共に、下流側にも液が溜まって残る構造になっている。したがって、閉弁状態のときには、第1電極141が上流側の液に浸っていると共に、第2電極142が下流側の液に浸る状態となる。
 電磁弁1では、上記の通り、流入側の流路11A及び流出側の流路11Bが、共に駆動部2側から電気的に絶縁されている。さらに、流路11Aと流路11Bとの連通箇所を形成する弁体25及び弁座110が非導電性材料により形成されている。これにより電磁弁1では、流入側の流路11Aと流出側の流路11Bとが遮断される閉弁状態において、流入側の流路11Aと流出側の流路11Bとが電気的にも遮断(絶縁)される構造が実現されている。
 流路部10では、駆動部2に対する取付面とは反対側の表面10Bの2か所の取付孔140に一対の電極14が埋設されている。一方の電極141は、流路での液の流れ方向における上流側である流入側の流路11Aをなす横孔112の内周壁面を貫通して流路11内に突出している。他方の電極142は、流路での液の流れ方向における下流側である流出側の流路11Bをなす横孔116の内周壁面を貫通して流路11内に突出している。各電極14は、ガスケット145を介して取付孔140に液密に保持されている。なお、各電極14から延設された信号線は制御ユニット3に結線されている。
 図3に例示の制御ユニット3は、コイル22への通電に応じてプランジャ21を電磁駆動すると共に、閉弁時の液漏れ発生を表すリーク信号を出力するユニットである。上記のように、この制御ユニット3は、例えば、図示しないケースに収容された状態で駆動部2のケース20の外側に取り付けられる。
 制御ユニット3は、コイル22への通電を制御する駆動回路31と、閉弁時の液漏れを検知するための検知回路(回路)32と、を含んで構成されている。
 駆動回路31は、流路部10とは反対側の軸方向にプランジャ21を後退駆動するための回路である。駆動回路31は、外部機器4からの開信号の受信に応じてコイル22への通電を実行し、これによりプランジャ21(図1参照。)を電磁的に駆動する。
 流路部10とは反対側にプランジャ21が後退駆動されると、流路部10の弁座110から弁体25が離れて隙間が生じ、この隙間を介して流入側の流路11Aと流出側の流路11Bが連通する開弁状態となる(図4参照。)。一方、コイル22への非通電時では、スプリング210の付勢力によりプランジャ21が流路部10側に軸方向に突出し、これにより流路部10の弁座110に対して弁体25が押し当たって流入側の流路11Aと流出側の流路11Bとが遮断される閉弁状態となる。
 検知回路32は、交流信号を生成する信号生成部321、検出信号を処理する信号処理部322、及び液漏れを判定する判定部323、を含めて構成された回路である。検知回路32は、所定電圧に調整された交流信号を第1の電極141に印加する一方、第2の電極142に生じる電流の大きさに応じて液漏れを検知する。
 信号生成部321は、第1の電極141に印加するための所定電圧の交流信号を生成する回路部である。交流信号としては、例えば周波数1KHzで周期的に変化する信号などを利用できる。交流信号を電極141に印加すれば、電極で起こり得る電解や結晶の析出を未然に抑制できる。結晶の析出を抑制できれば塩などの蓄積を回避でき、電極の感度特性の変化等を抑制できる。また、電解を抑制すれば、流通する液体の性質の変化等を抑制できる。このように交流信号を電極141に印加することで電極で起こり得る電解や結晶の析出を未然に抑制すれば、種々のトラブルの発生を未然に回避できる。
 なお、本例では、第1の電極141に作用する交流信号として、正値の期間と負値の期間が周期的に交互に現れる方形波交流(電圧)を採用している。交流信号としては、正弦波、三角波、パルス波など、様々な信号を採用できる。本例では、周波数1kHzの交流信号を採用しているが、交流信号の周波数は適宜選択的に設定すると良い。また、所定電圧の交流信号を印加すれば、電源電圧の変動等の影響が検知回路32の出力電位に及ぶおそれを抑制でき、検知の精度を向上できる。なお、第1の電極141に交流信号を作用する、あるいは第1の電極141に電圧を印加する等の表現は、第1の電極141と第2の電極142との間に電圧を印加することを意味している。
 信号処理部322は、第2の電極142に生じる電流を検出信号として取り込み、判定部323が取り扱いし易い検出信号(電圧)に変換する回路部である。ここで、第2の電極142に生じる電流は、第1の電極141と第2の電極142との間に印加した電圧に応じて、第1の電極141と第2の電極142との間に流れる電流を意味している。信号処理部322は、第1の電極141に上記の交流信号(電圧)を作用したとき、第2の電極142に生じる交流の検出信号(電流)を増幅する機能と、増幅後の検出信号の大きさを電圧値に変換して中間信号(交流電圧)を生成する機能と、この中間信号の振幅の大きさを示す計測値の一例である検出信号を生成する機能と、を備えている。検出信号を生成する機能は、中間信号の最大値を保持するピークホールド回路と、中間信号の最小値を保持するピークホールド回路と、これら最大値と最小値との差分値を生成する差分回路と、を含む信号処理部322により実現される。
 上記の3つの機能を備える信号処理部322は、第2の電極142に生じた交流の検出信号(交流電流)を元にして、電流/電圧変換によって交流電圧の中間信号を得、その中間信号の振幅の大きさを表す直流電圧の検出信号に変換して出力する。
 なお、上記の中間信号(交流電圧)を生成する機能に、バンドパスフィルタによって低周波成分及び高周波成分を除去する機能を含めることも良い。このバンドパスフィルタの周波数的な特性については、信号生成部321が生成する交流信号の周波数に対応して設定すると良い。例えば周波数1KHzで周期的に変化する交流信号を電極141に作用する場合であれば、1kHz近傍の周波数を選択的に通過させるバンドパスフィルタを採用すると良い。
 判定部323は、信号処理部322が変換した検出信号(電圧値)に関する閾値処理を実行し、液漏れを判定する回路部である。判定部323は、上記の開信号を受信していない閉弁の期間において、検出信号の閾値処理を実行する。そして、検出信号の電圧値が予め定めた閾値を超えていれば、液漏れと判定する。判定部323が液漏れと判定したとき、制御ユニット3は、液漏れを検知した旨を表すリーク信号を外部機器4へ出力する。
 以上のような構成の本例の流体装置としての電磁弁1であれば、流入側の流路11A内の上流側の液と、流出側の流路11B内の下流側の液と、の電気的な導通度合いに応じて、閉弁状態下の液漏れを検知可能である。この電磁弁1によれば、例えば、結晶が析出し易い液の取り扱いにおいても、弁座110に析出した結晶に起因するシール不良によって起こり得る液漏れを早期に検知可能である。
 液漏れを表すリーク信号の発生に応じて電磁弁1のメンテナンス等を実施すれば、弁座110や弁体25等に生じた液漏れ症状の重症化や、電磁弁1から液の供給を受けて動作する図示しない外部装置のトラブル等を未然に回避できる。
 本例では、制御ユニット3を備える電磁弁1を例示したが、制御ユニット3を省略しても良い。この場合には、コイル22に通電する電力線を介して電磁弁1の開閉制御を実施し、電極14に接続された信号線を介して液漏れの検知等を行うと良い。この場合、ノイズ対策を十分に施した上、コイル22への駆動回路31側と、液漏れの検知回路32側と、でGND線を共用することもできる。
 本例の電磁弁1では、非導電性材料の一例をなす樹脂材料よりなる流路部10を採用すると共に、流路11の液が駆動部2の金属製の部品とは接触しない構造を採用している。この電磁弁1では、弁座110及び弁体25よりも上流側の流入側の液と、下流側の流出側の液と、が流路部10の形成材料や駆動部2を介して電気的に導通することがない。閉弁状態においては、上流側の流入側の液と、下流側の流出側の液と、の電気的な絶縁を確実性高く確保できる。
 このような構成に代えて、閉弁状態において、流入側の液と流出側の液とが電磁弁1の構成部品を介在して電気的に導通する構成であっても良い。この場合、この構成部品を介する電気的抵抗の大きさとの比較において、液の電気的抵抗が十分に小さいものであるか否かが問題となる。電磁弁1の構成部品を介する電気的抵抗の大きさが、液の電気的抵抗を有限の値として取り扱いできる程度の大きさであれば良い。さらに、電磁弁1の構成部品を介する電気的抵抗の大きさが、液の電気的抵抗に比して十分に大きいこと(液の電導度に対して、電磁弁1の構成部品の電導度を無視できること)が望ましい。
 この場合には、上記のように電磁弁1の構成部品を介在して電磁弁1の流入側の液と流出側の液とが電気的に導通する構成であっても、両者間の電気的抵抗など電気的な導通度合いを表す指標値が計測可能である。そして、この指標値の変化に応じて液漏れ等を検知できる。
 電磁的に弁体25を駆動して開弁させる電磁弁1を例示したが、流入側の液と流出側の液との電気的な導通度合いを計測して液漏れを検知するという構成は、手動バルブや、ステッピングモータを利用したバルブなど各種のバルブに適用可能である。
 本例では、検出信号の電圧値に関する閾値処理により検知回路32が液漏れの有無を判定する構成を例示している。これに代えて、検出信号の電圧値の大小に応じて液の流量を計測することも良い。また、例えば、開と閉とが周期的に繰り返されるデューティー制御で電磁弁1を駆動する場合であれば、検出信号の電圧値の時間的な平均値に応じて弁開度を推定して流量を算出することも良く、検出信号の電圧値がHiの期間とLoの期間との比率から弁開度を推定して流量を算出することも良い。
 さらに、上記の閾値処理に適用する閾値を適切に設定するための閾値設定部を、検知回路32に設けることも良い。この閾値設定部による閾値の設定方法としては、例えば、以下の方法がある。
(設定方法1)
 電磁弁1が閉弁時の検出信号の大きさ(電圧値)に対して、係数を乗算して閾値を設定する方法。この係数としては、例えば、1.1や1.2など、1.0を超える値を設定できる。
(設定方法2)
 電磁弁1が開弁時の検出信号の大きさ(電圧値)に係数を乗算して閾値を設定する方法。この係数としては、例えば、1/10や1/100などの値を設定できる。
(設定方法3)
 電磁弁1が閉弁時の検出信号の大きさ(電圧値)を、電磁弁1が開弁時の検出信号の大きさ(電圧値)で除算した値に、係数を乗算して閾値を設定する方法。この係数としては、例えば、1.1や1.2など、1.0を超える値を設定できる。なお、この場合の閾値処理の対象は、電磁弁1が開弁時の検出信号の大きさ(電圧値)により対象の検出信号の大きさを除算した値である。
 なお、上記のように設定した閾値を利用する閾値処理は、デジタル回路による処理であっても良く、アナログ回路による処理であっても良い。
 電極14に生じた交流の検出信号を増幅する信号処理部322の機能について、増幅率を複数種類設けることも良い。増幅率1を含めて増幅率が小さいと微弱な検出信号を見逃すおそれが生じる一方、増幅率が大きいと大きな検出信号が発生したときに飽和を生じるおそれがある。増幅率を複数種類設ける場合であれば、増幅後の大きさが適切な範囲にある検出信号を選択して処理できる。このような構成は、取り扱う液の電気伝導度が不明であったり、様々であったりする場合に有効であり、汎用性の向上に役立つ。
 なお、本例では、信号処理部322が生成し、判定部323が液漏れ判定に利用する検出信号として、電圧値の検出信号を例示している。電圧値の検出信号であれば、例えば、この検出信号をそのまま外部機器に出力する場合であっても、受け取り側での取り扱いが比較的容易であり、検出信号を取り扱うための回路構成をシンプルにできる。
 信号処理部322の検出信号、あるいは制御ユニット3のリーク信号を、信号線等で接続されていない外部に出力する手段を設けることも良い。例えば、無線LAN等を介してインターネット等の通信回線網に出力すれば、外部から電磁弁1の動作状態を監視できるようになる。
 本例では、取付孔140に金属製の電極14を嵌入した流路部10を例示している。インサート成形により電極14を設けることも良い。あるいは、図5のように、例えば、導電性を呈する第1の樹脂材料と、電気的な絶縁性を備える第2の樹脂材料と、による2色成形により流路部10を作製することも良い。流路部10の本体部分を上記の第2の樹脂材料により形成する一方、電極14として機能する電気的な経路を上記の第1の樹脂材料により形成すると良い。
 さらに、例えばカーボンナノチューブなどの導電性材料が練り込まれて導電性が高められたゴムを電極として採用することも良い。ゴムよりなる電極は、例えば、インサート成形等により樹脂材料中に配置しても良く、予め穿設された取付孔140に圧入等しても良い。圧入の場合には、ゴムよりなる電極が適度に変形してシール材として機能するため、電極のほかに別途シール材を設ける必要がなくなり部品点数を削減できる。
 本例では、弁座110及び弁体25を含むシール部1Sを例示している。本願発明の構成は、スライダー27を含むシール部1S(図6及び図7)や、スプール弁28を含むシール部1S(図8)、等を備える流体装置であるバルブにも適用可能である。
 図6の電磁弁1はスライダーバルブと呼ばれるスライド式のバルブである。この電磁弁1では、流路孔270が穿設されたスライダー27と呼ばれる仕切り板を利用してシール部1Sが構成されている。電磁駆動によりこのスライダー27が上下動して流路孔270が流路11A・Bに一致すると流路11A・Bが連通し(図7)、流路孔270が流路11A・Bに連通しないときに流路が遮断される(図6)。図6及び図7のスライダーバルブでは、スライダー27の上下動による流路11A・Bの容積変化が構造上ゼロであるため、ポンピングボリュームを回避できるという優れた特性が実現される。
 図8の電磁弁1は、円柱状のスプール弁28を備えるスライド式のバルブである。電磁駆動により上下に進退するスプール弁28の中間部分には、小径の首部280が設けられている。この首部280が上記のスライダー27の流路孔270と同様に機能し、流路11A・Bの連通、遮断を切り替える。
 これらスライド式のバルブの場合、シール部1Sに析出した結晶によりスライダー27あるいはスプール弁28の動きが阻害されるおそれが生じる。微少な液漏れを検出すれば、メンテナンス作業の必要性を早期に把握できる。そして、早期のメンテナンス作業によれば、スライダー27等の動きが阻害されて上下動のストロークが不十分になる等の症状が顕在化する状況を未然に回避できる。
 なお、本例では、閉弁状態の時、弁座110の上流側に液が溜まると共に、下流側にも液が溜まって残る構造の流体装置(電磁弁1)を例示している。この流体装置では、閉弁状態のとき、第1電極141が上流側の液に浸っていると共に、第2電極142が下流側の液に浸る状態となる。流体装置の中には、閉弁状態のとき、弁の下流側の液体が排出されて流路が空になる装置もある。このような流体装置の場合、下流側に第1電極141及び第2電極142を設けることも良い。閉弁状態のときに液漏れがあれば、電極141、142間の電気的抵抗が低下するので、液漏れの検知が可能である。また、液が流れる状態において流路が液で満たされる一方、液が流れない状態では流路から液が排出されて空になるパイプやチューブなどの流体装置の場合についても、上流側、下流側を区別することなく、流路中に第1電極141と第2電極142とを設けると良い。電極141、142間の電気的抵抗などによって、液が流れる状態か否かを判別できる。この場合、第1電極141と第2電極142とは、液が流れる方向における同じ位置であっても良く、異なる位置であっても良い。
(実施例2)
 本例は、実施例1の構成に基づいて、流体装置としてのマニフォールド58に電極56を設けた構成例である。この内容について図9~図11を参照して説明する。
 図9及び図10のマニフォールド58は、樹脂製の平板に複数の流路588(図11)を設けたプレート形状のマニフォールドである。マニフォールド58の両面のうちの一方の表面は、電磁弁581や四方弁585やポンプ583などの機器を取り付ける設置面58Aである。接地面58Aの開口孔580は、これらの機器へ液を供給するか、あるいはこれらの機器から流出した液を還流するための孔である。このマニフォールド58では、設置面58Aに取り付ける機器の種類や、取り付ける箇所に応じてマニフォールド58の機能を変更できる。
 設置面58Aとは反対側のマニフォールド58の表面であるチューブ接続面58Bには、検知回路57(図10)が取り付けられていると共に、複数のチューブ521が接続されている。なお、図10では、ポンプ583等の機器の図示を省略している。
 チューブ接続面58Bでは、図11のごとく、テーパー状の先端部を有すると共に中間部にネジ部を設けたニップル552が流路588毎に立設されている。テーパー状の先端部にチューブ521が外挿されたニップル552に対して締付ナット52を螺入することで、マニフォールド58の各流路588に対してチューブ521が液密に接続されている。
 マニフォールド58では、一方の端部にコネクタ部560を設けたカギ形状の電極56が各流路588に対応して埋設されている。インサート成形により埋設された各電極56は、コネクタ部560とは反対側の先端が流路588の内周壁面に露出する一方、ニップル552の外周側に当たるチューブ接続面58Bから他端のコネクタ部560が突出している。各コネクタ部560は、図示しない信号線を介して検知回路57と電気的に接続されている。マニフォールド58では、コネクタ部560の組み合わせを適宜変更することで、液間の電気的な導通度合いを計測する対象の流路588の組み合わせを切替可能である。
 例えば図9のように、設置面58Aの隣接する2つの開口孔580に、機器である電磁弁581の流入口と流出口をそれぞれ接続することで、電磁弁581の流入口と接続された開口孔580に対応するチューブ521が上流側チューブとなり、電磁弁581の流出口と接続された開口孔580に対応するチューブ521が下流側チューブとなる。この場合、上流側チューブ521→流路588→電磁弁581→流路588→下流側チューブ521の流路が形成される。そして、その流路に2つの電極56が電磁弁581を挟んで上流側と下流側に配設された「流体装置」が形成される。
 ここで、従来のマニフォールドなどでは、異常が発生した場合、液漏れ等の異常発生箇所の特定が難しく、どこで液漏れが発生しているのか分からないという問題がある。一方、電極56を備える本例のマニフォールド58であれば、液漏れ等の異常が発生した際、異常発生箇所の特定が容易であり、異常発生箇所に該当するバルブを交換する等のメンテナンス作業を迅速、かつ、的確に実施できる。
 なお、その他の構成及び作用効果については、実施例1と同様である。
(実施例3)
 本例は、実施例1の電磁弁に基づいて、漏れ検知の精度向上のために信号処理の内容を変更した例である。この内容について、図3、図12及び図13を参照して説明する。
 本例の構成を説明するに当たって、まず、第1の電極141と第2の電極142との間の電気的な経路について説明する。第1の電極141と第2の電極142との間の電気的な経路には、電極141、142が液に接する界面の存在等に起因し、電荷を蓄える電子部品であるコンデンサと同様の電気的な作用を生じる浮遊容量や、電気的な抵抗などが存在している。第1の電極141と第2の電極142との間の電気的な経路は、図12の等価回路で表現できる。この等価回路のうちの抵抗R1は、液や弁座110などを介在する電極141、142間の経路の電気的な抵抗である。静電容量Cは、電極141、142間の浮遊容量である。抵抗R2は、電極141、142の内部抵抗や電気配線などで生じる電気的な抵抗である。なお、上記内部抵抗や電気配線にも図示しない浮遊容量が存在している。
 電極141、142間に静電容量Cが存在する場合、第1の電極141に印加する交流電圧(交流信号)の正負の切り換わりに応じて、静電容量Cの充放電のために第2の電極142に僅かな電流が流れる。また、交流信号が正から負への切り換わったときと、交流信号が負から正に切り換わったときと、では、第2の電極152に生じる電流の向きが異なる。それ故、電磁弁の正常な閉弁時であっても、第1の電極141に交流信号を作用すると第2の電極142に交流電流(中間信号)が生じる。これにより、液漏れが発生していない正常な閉弁状態であっても中間信号の振幅である検出信号がゼロにならず、これに起因して液漏れの誤検知が発生するおそれが生じている。
 ここで前出の実施例1では、第2の電極142側で生じる中間信号(交流電圧)の振幅の大きさを表す検出信号を生成するために、中間信号の最大値を保持するピークホールド回路や、中間信号の最小値を保持するピークホールド回路などを利用している。そして、差分回路により中間信号の最大値と最小値との差分値を求め、この差分値に相当する電圧値を検出信号としている。上記のように電磁弁の閉弁時であっても中間信号に振幅が生じるため、検出信号はゼロにならない。そのため、実施例1の構成では、液漏れによって生じた検出信号か、正常な閉弁状態での検出信号か、の区別する処理の難易度が高くなっている。漏れ検知の際、正常な閉弁状態下の誤検知を抑制するためには、検出信号(電圧値)に閾値処理を適用する際、正常な閉弁状態での検出信号の大きさを考慮して閾値を設定する必要がある。
 これに対して、本例では、適切に設定された2点の計測時点での計測値の差分値を検出信号とすることで、正常な閉弁状態における検出信号の大きさがほぼゼロになっている。これにより、漏れ検知の際の閾値処理に適用する閾値の設定が容易となっており、適切な閾値設定によって漏れ検知の精度が向上している。以下、本例における計測時点の設定方法について説明する。
 図12の等価回路における抵抗R1は、電磁弁が開弁状態であるか閉弁状態であるかによって大きく変動する。開弁状態であれば流路中の液を介在して電極141、142が接触するので、抵抗R1が小さくなる。一方、閉弁状態では、上流側の液と下流側の液とが弁座110及び弁体25等によって分断されるので、抵抗R1が大きくなる。このような抵抗R1の大小は、第2の電極142側の中間信号の位相に影響を与える。閉弁時の抵抗R1が十分に大きい状態での中間信号と、開弁時の抵抗R1が小さい状態での中間信号と、を比較すると、90度の位相差が発生する(図13参照。)。なお、開弁時のR1をRLo、閉弁時のR1をR1c、電極間容量によるリアクタンス値をXcと表記すると、90度の位相差を生じる条件は、R1c>>Xc>>RLoである。
 開弁時の中間信号(図13(b))と、閉弁時の中間信号(同図(c))との位相差が90度の場合、開弁時の中間信号が最大値のとき閉弁時の中間信号がゼロとなり、開弁時の中間信号が最小値のとき閉弁時の中間信号がゼロとなる。そこで、本例の構成では、閉弁時の検出信号(中間信号の振幅の大きさを表す電圧値)がゼロとなるよう、開弁時の中間信号が最大値及び最小値となる2点を計測時点に設定している。
 一方、図13に示す通り、第1の電極141に印加する交流電圧(図13(a)の交流信号)に対して閉弁時の中間信号の位相ずれは、約90度である。したがって、上記の2点の計測時点は、方形波の交流信号が負から正に切り換わる第1の時点を基準として1/4周期に相当する所定時間の分だけ経過した第1の計測時点と、交流信号が正から負に切り換わる第2の時点を基準として1/4周期に相当する所定時間の分だけ経過した第2の計測時点と、の組合せとなる。そして、本例では、第1の計測時点での中間信号の大きさである第1の計測値と、第2の計測時点での中間信号の大きさである第2の計測値と、の差分値を検出信号としている。
 本例の構成によれば、電磁弁の閉弁時において、第1の電極141に交流電圧(交流信号)を印加したときの中間信号に振幅を生じても、検出信号の大きさがゼロとなる。一方、電磁弁の閉弁時に液漏れが発生したときには、開弁時の中間信号に近づくため、上記の第1及び第2の計測時点の中間信号の絶対値が大きくなり、差分値である検出信号の値が大きくなる。したがって、本例の構成では、例えばゼロに近い閾値による閾値処理を検出信号の大きさに適用することで、精度高く液漏れを検知可能である。
 さらに、本例では、2点の計測時点で中間信号の大きさを計測し、差分をとって検出信号を生成する構成を採用している。この構成であれば、ピークホールド回路が必要ではないので、検知回路32の回路構成を簡略化でき、コスト削減が容易になる。
 なお、上記の中間信号(交流電圧)を生成する際、バンドパスフィルタを適用して低周波成分及び高周波成分を除去すると良い。このバンドパスフィルタの周波数的な特性については、信号生成部321が生成する交流信号の周波数に対応して設定すると良い。例えば周波数1KHzで周期的に変化する交流信号を電極141に作用する場合であれば、1kHz近傍の周波数を選択的に通過させるバンドパスフィルタを採用すると良い。
 また、本例では、第1の電極141に印加する交流信号(交流電圧)として方形波を例示しているが、交流信号は正弦波等であっても良い。
 なお、その他の構成及び作用効果については、実施例1と同様である。
(実施例4)
 本例は、実施例3の構成に基づいて、検出信号を生成するための中間信号の計測時点の設定を変更した例である。この内容について図14、図15を参照して説明する。
 第1の電極141に印加する交流電圧(交流信号)と閉弁時の中間信号との位相差は約90度である一方、第1の電極141に印加する交流電圧(交流信号)に対する開弁時の中間信号の位相ずれは、実施例3で例示した90度まで変動する場合がある。
 本例では、図14に示す通り、上記の位相ずれに相当するずれ時間を計測するための時間計測部325が、液漏れを検知する検知回路321に追加されている。時間計測部325は、図15のように、電磁弁が開弁状態のとき、第1の電極141に印加する交流電圧(交流信号)が負から正に切り換わる第1の時点、あるいは正から負に切り換わる第2の時点を基準として、中間信号が最大値あるいは最小値に至るまでのずれ時間を計測する。時間計測部325は、例えば、交流信号の周波数である1kHzよりも十分に速い周期で中間信号の計測を繰り返すことで、最大値となる時点、最小値となる時点を特定し、これにより上記のずれ時間を計測する。
 本例の構成では、このずれ時間を、計測時点を設定するための所定時間として取り扱う。図15のごとく、第1の電極141に印加する交流電圧(交流信号)が負値から正値に切り替わる第1の時点を基準として上記のずれ時間の分ずらした時点を第1の計測時点に設定すると共に、交流電圧が正値から負値に切り替わる第2の時点を基準として上記のずれ時間の分ずらした時点を第2の計測時点に設定している。そして、第1の計測時点で中間信号の第1の計測値を取得すると共に、第2の計測時点で中間信号の第2の計測値を取得し、第1及び第2の計測値の差分値を検出信号としている。
 電磁弁が開弁時の中間信号と、電磁弁が閉弁時の中間信号と、の位相ずれは90度ではないが(図15参照。)、開弁時の中間信号が最大値となる前記第1の計測時点、および最小値となる前記第2の計測時点では(図15中の計測パターンA)、検出信号を最大にできる。ノイズレベルがランダム且つほぼ一定と仮定すると、前記第1の計測時点と前記第2の計測時点とを設定すれば、ノイズに対するシグナルの比(S/N比)を最大にできる。
 本例では開弁時の中間信号の最大値と最小値の時点を計測時点に設定している(図15中の計測パターンA)。例えばノイズレベルが相対的に低く開弁と閉弁との判別に影響を与えない条件下では、閉弁時の中間信号が正から負に切り換わってゼロをクロスする時点を第1の計測時点、負から正にクロスする時点を第2の計測時点に設定することもできる(図15中の計測パターンB)。これにより、閉弁状態から漏れの度合いに応じた検出信号を高感度に得ることもできる。
 以上のように、本例の構成によれば、第1の電極141に印加する交流電圧(交流信号)に対する中間信号(閉弁時)の位相ずれが約90度からずれた場合であっても、中間信号の計測時点を適切に設定でき、これにより閉弁時の検出信号の大きさをゼロに近づけることが可能である。
 なお、その他の構成及び作用効果については実施例3と同様である。
 以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。実施例では、バルブなどの機器が流路に介在している流体装置の構成例を説明したが、ポンプや切換弁などの機器が流路に介在している流体装置であっても良く、あるいはバルブやポンプや切換弁などの機器が設けられていない流路である流体装置であっても良い。さらに言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して前記具体例を多様に変形、変更あるいは適宜組み合わせた技術を包含している。
 1 電磁弁(バルブ、流体装置)
 1S シール部
 10 流路部
 11 流路
 11A 流入側の流路
 11B 流出側の流路
 110 弁座
 141 第1の電極
 142 第2の電極
 15 有底孔
 2 駆動部
 21 プランジャ
 22 コイル
 25 弁体
 27 スライダー
 28 スプール弁
 3 制御ユニット
 31 駆動回路
 32 検知回路(回路)
 56 電極
 58 マニフォールド(流体装置)

Claims (11)

  1.  液が流れる流路を備える流体装置であって、
     流入する上流側の流路中の液と、流出する下流側の流路中の液と、の電気的な導通度合いを計測するための電極として、前記上流側の液と電気的に接する第1の電極と、前記下流側の液と電気的に接する第2の電極と、を設けた流体装置。
  2.  請求項1において、前記第1の電極と前記第2の電極との間の電気的な導通度合いを計測して前記流路を流れる液の量あるいは有無を検知する回路を備える流体装置。
  3.  請求項2において、前記回路は、正値の電圧と負値の電圧とが周期的に交互に入れ替わる方形波交流の電圧を、前記第1の電極と前記第2の電極との間に印加する信号生成部と、前記第1の電極と前記第2の電極との間の電流の大きさを表す計測値を取得する信号処理部と、前記流路を流れる液の量あるいは有無を判定する判定部と、を備える流体装置。
  4.  請求項3において、前記信号処理部は、前記信号生成部が印加する電圧が負値から正値に切り替わる第1の時点を基準として所定時間ずれた時点で第1の計測値を取得すると共に、前記信号生成部が印加する電圧が正値から負値に切り替わる第2の時点を基準として前記所定時間ずれた時点で第2の計測値を取得し、
     前記回路は、前記第1の計測値と前記第2の計測値との差分値の大きさを、前記電気的な導通度合いを表す指標として計測する流体装置。
  5.  請求項4において、前記回路は、前記流路を液が流れる状態で、前記第1あるいは第2の時点の後、前記信号処理部が取得する計測値が最大値あるいは最小値に至るまでのずれ時間を計測する時間計測部を備え、当該ずれ時間を前記所定時間として設定する流体装置。
  6.  請求項4または5において、前記判定部は、前記差分値に閾値処理を施して前記流路を流れる液の有無を検知するように構成され、
     前記回路は、前記閾値処理に適用する閾値を設定する閾値設定部を備えている流体装置。
  7.  請求項1~6のいずれか1項において、前記流体装置は、液の流れが遮断された状態を設定可能であり、当該液の流れが遮断された状態において、前記上流側の液と前記下流側の液とが電気的に絶縁される構造を備える流体装置。
  8.  請求項1~7のいずれか1項において、前記流体装置は、液の流れを遮断するためのシール部が前記流路の途中に設けられたバルブであり、
     前記第1及び第2の電極は、前記流路中において前記シール部を挟んで隣り合う上流側の液と下流側の液との電気的な導通度合いを計測するための電極である流体装置。
  9.  請求項8において、前記シール部は、弁座と弁体とを含み、弁座に弁体が押し当たって閉弁して液の流れを遮断し、弁座と弁体との間に隙間が生じたときに開弁するように構成されている流体装置。
  10.  請求項9において、通電に応じて生じる電磁力の作用によって変位する可動部材を含み、該可動部材の変位によって前記弁体を駆動する駆動部と、前記流路をなす孔が穿設されていると共に前記弁座が形成された非導電性材料よりなる流路部と、を有する流体装置。
  11.  請求項10において、前記駆動部は、電線が巻回された筒状のコイルに対して、前記可動部材である柱状のプランジャを内挿配置したものであり、該プランジャの軸方向の進退によって前記弁体を駆動するように構成されている流体装置。

     
PCT/JP2018/041191 2017-11-07 2018-11-06 流体装置 WO2019093329A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18875498.0A EP3708972A4 (en) 2017-11-07 2018-11-06 LIQUID DEVICE
US16/625,855 US11112026B2 (en) 2017-11-07 2018-11-06 Fluid device
JP2019552811A JP7122762B2 (ja) 2017-11-07 2018-11-06 流体装置
CN201880040687.8A CN110770546B (zh) 2017-11-07 2018-11-06 流体装置
SG11201912711XA SG11201912711XA (en) 2017-11-07 2018-11-06 Fluid device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-215050 2017-11-07
JP2017215050 2017-11-07

Publications (1)

Publication Number Publication Date
WO2019093329A1 true WO2019093329A1 (ja) 2019-05-16

Family

ID=66437806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041191 WO2019093329A1 (ja) 2017-11-07 2018-11-06 流体装置

Country Status (6)

Country Link
US (1) US11112026B2 (ja)
EP (1) EP3708972A4 (ja)
JP (1) JP7122762B2 (ja)
CN (1) CN110770546B (ja)
SG (1) SG11201912711XA (ja)
WO (1) WO2019093329A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112081991A (zh) * 2019-06-13 2020-12-15 比尔克特韦尔克有限两合公司 阀单元、阀组件和用于检查阀单元的关闭状态的方法
CN118089865A (zh) * 2024-04-29 2024-05-28 鸿舸半导体设备(上海)有限公司 一种半导体厂务设备的管道用流量检测装置及检测方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10993546B2 (en) * 2016-10-28 2021-05-04 Sleep Number Corporation Noise reducing plunger
CN110785635B (zh) * 2017-11-07 2021-01-22 高砂电气工业株式会社 接头系统
DE102017221716A1 (de) * 2017-12-01 2019-06-06 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge sowie Verfahren zum Betreiben einer Bremsanlage
JP7457543B2 (ja) * 2020-03-17 2024-03-28 株式会社小糸製作所 電磁弁および電磁弁を備える車両用クリーナシステム
KR20210128097A (ko) * 2020-04-16 2021-10-26 주식회사 만도 차량용 브레이크 시스템
US11832728B2 (en) 2021-08-24 2023-12-05 Sleep Number Corporation Controlling vibration transmission within inflation assemblies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000300099A (ja) * 1999-04-21 2000-10-31 Orion Mach Co Ltd 乳の流量検出装置
JP2013117241A (ja) * 2011-12-01 2013-06-13 Haruo Kamino ダイヤフラム弁、ダイヤフラム弁のダイヤフラム破損検出方法およびプロセス制御システム
JP2014031861A (ja) * 2012-08-06 2014-02-20 Ricoh Co Ltd 弁の故障検知装置
JP2016075300A (ja) 2014-10-02 2016-05-12 高砂電気工業株式会社 小型電磁弁
US20160377193A1 (en) * 2013-11-26 2016-12-29 Gea Tuchenhagen Gmbh Valve

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4110146A1 (de) * 1991-03-27 1992-10-01 Hoefelmayr Bio Melktech Verfahren und vorrichtung zur messung eines der masse eines milchpfropfens entsprechenden wertes sowie des entsprechenden milchflusses
CN101258386B (zh) * 2005-09-06 2011-11-16 爱科来株式会社 微细流路用流量计和使用其的分析装置、分析装置用盒体
US8356627B2 (en) * 2009-07-23 2013-01-22 Tokyo Keiso Co., Ltd. Three-valves manifold for differential pressure type flow meter
CN202255495U (zh) * 2011-09-14 2012-05-30 武汉市波光系统工程有限责任公司 电磁流量计空管检测装置
CN104649378B (zh) * 2013-11-18 2018-12-07 松下知识产权经营株式会社 液体处理装置及液体处理方法
US9901068B2 (en) * 2016-04-21 2018-02-27 Technologies Holdings Corp. Solenoid actuated shutoff valve
KR20170121824A (ko) * 2016-04-26 2017-11-03 대우조선해양 주식회사 마그네틱 유량계를 구비한 볼 밸브
CN106259000B (zh) * 2016-08-11 2022-04-22 南京丰顿科技股份有限公司 一种奶液的计量装置及其工作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000300099A (ja) * 1999-04-21 2000-10-31 Orion Mach Co Ltd 乳の流量検出装置
JP2013117241A (ja) * 2011-12-01 2013-06-13 Haruo Kamino ダイヤフラム弁、ダイヤフラム弁のダイヤフラム破損検出方法およびプロセス制御システム
JP2014031861A (ja) * 2012-08-06 2014-02-20 Ricoh Co Ltd 弁の故障検知装置
US20160377193A1 (en) * 2013-11-26 2016-12-29 Gea Tuchenhagen Gmbh Valve
JP2016075300A (ja) 2014-10-02 2016-05-12 高砂電気工業株式会社 小型電磁弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3708972A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112081991A (zh) * 2019-06-13 2020-12-15 比尔克特韦尔克有限两合公司 阀单元、阀组件和用于检查阀单元的关闭状态的方法
US11384861B2 (en) * 2019-06-13 2022-07-12 Buerkert Werke Gmbh & Co. Kg Valve unit for dosing fluids, valve assembly with valve unit and method for testing a closed condition of a valve unit
JP7525312B2 (ja) 2019-06-13 2024-07-30 ビュルケルト ヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 流体投与用バルブユニット、バルブユニットを有するバルブアセンブリおよびバルブユニットの閉鎖状態の確認方法
CN118089865A (zh) * 2024-04-29 2024-05-28 鸿舸半导体设备(上海)有限公司 一种半导体厂务设备的管道用流量检测装置及检测方法

Also Published As

Publication number Publication date
JPWO2019093329A1 (ja) 2020-12-10
EP3708972A1 (en) 2020-09-16
CN110770546B (zh) 2021-02-19
EP3708972A4 (en) 2021-08-18
CN110770546A (zh) 2020-02-07
US20200132211A1 (en) 2020-04-30
JP7122762B2 (ja) 2022-08-22
US11112026B2 (en) 2021-09-07
SG11201912711XA (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2019093329A1 (ja) 流体装置
WO2019093331A1 (ja) 継手システム
JP6364470B2 (ja) 検出複素インピーダンスに基づく自動調整機能を有した電磁式流量計
JP7495759B2 (ja) バルブ、及びバルブの異常診断方法
US9243941B2 (en) Magnetic-inductive flowmeter with an empty tube detecting device of an admittance measuring type
US8587326B2 (en) Method for energy-saving operation of a magneto-inductive flow measuring device
US8905067B2 (en) Valve module
CN102741668A (zh) 用于检测容器中流体的灌充液面的传感器系统
US20170115146A1 (en) Magnetic flowmeter with automatic in-situ self-cleaning
US20100082268A1 (en) Method and apparatus for monitoring a switching process and relay module
CN104515555A (zh) 具有饱和检测和/或防饱和的磁性流量计
CN107430015B (zh) 具有减小的电流消耗的磁感应通过流量测量装置
CN110017861A (zh) 内嵌传感器和流体管线系统
CN102748587A (zh) 一种管道流体监控装置和方法
CN101701836B (zh) 一种可用于非满管流量测量的电容式电磁流量计
CN111699367B (zh) 用于操作磁感应流量计的方法
JP2017083180A (ja) 油圧スイッチ
US11384861B2 (en) Valve unit for dosing fluids, valve assembly with valve unit and method for testing a closed condition of a valve unit
US7934431B2 (en) Measuring transducer of a flow measuring device applied in industrial measurements technology
CN212514577U (zh) 传感器设备
CN107635596A (zh) 血液治疗仪
KR20110068509A (ko) 작동위치 검출부를 구비한 포펫형 체크밸브 조립체
JP2018151363A (ja) 流体検出器及びそれを備えた流体検出装置
JP2014098561A (ja) 水位検出装置
JP2017101761A (ja) 電磁弁制御装置および電磁弁システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552811

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018875498

Country of ref document: EP

Effective date: 20200608