WO2019092980A1 - 蓄電モジュールの製造方法及び蓄電モジュール - Google Patents

蓄電モジュールの製造方法及び蓄電モジュール Download PDF

Info

Publication number
WO2019092980A1
WO2019092980A1 PCT/JP2018/033671 JP2018033671W WO2019092980A1 WO 2019092980 A1 WO2019092980 A1 WO 2019092980A1 JP 2018033671 W JP2018033671 W JP 2018033671W WO 2019092980 A1 WO2019092980 A1 WO 2019092980A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
electrode
laminate
portions
storage module
Prior art date
Application number
PCT/JP2018/033671
Other languages
English (en)
French (fr)
Inventor
正博 山田
耕二郎 田丸
貴文 山▲崎▼
崇 酒井
紘樹 前田
直人 守作
浩生 植田
昭人 柘植
耕司 塚本
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to US16/761,649 priority Critical patent/US11515596B2/en
Priority to JP2019551901A priority patent/JP7344123B2/ja
Priority to DE112018005400.4T priority patent/DE112018005400T5/de
Priority to CN201880070261.7A priority patent/CN111279535B/zh
Publication of WO2019092980A1 publication Critical patent/WO2019092980A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0486Frames for plates or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/517Methods for interconnecting adjacent batteries or cells by fixing means, e.g. screws, rivets or bolts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • One aspect of the present invention relates to a method of manufacturing a storage module and a storage module.
  • Such a storage module includes a stacked body formed by stacking a plurality of bipolar electrodes. On the side surface of the laminate, a resin group is provided which seals between the bipolar electrodes adjacent in the stacking direction. An electrolytic solution is accommodated in an internal space formed between adjacent bipolar electrodes.
  • One aspect of the present invention aims to provide a method of manufacturing a storage module and a storage module capable of effectively suppressing the leakage of an electrolytic solution.
  • an electrode plate, a positive electrode provided on one surface of the electrode plate, and a plurality of bipolar electrodes each having a negative electrode provided on the other surface of the electrode plate are stacked Preparing the laminated body, and a plurality of first seal portions provided on the edge of each electrode plate and having projecting portions respectively projecting from the end of the electrode plate, and an outer edge in the laminating direction of the laminated body
  • the length of the overhanging portion of the one or more first seal portions included in the portion is shorter than the length of the overhanging portion of the first seal portion not included in the outer edge portion.
  • the length of the overhanging portion of the one or more first seal portions included in the outer edge portion of the laminate is greater than the length of the overhanging portion of the first seal portion not included in the outer edge portion.
  • the one or more overhangs are processed to be short. Thereby, deformation such as curling is suppressed as compared with the overhanging portion of the first seal portion not included in the outer edge portion of the overhang portion of the one or more first seal portions included in the outer edge portion .
  • the possibility that the overhanging portion of the one or more first seal portions included in the outer edge portion may curl up and block the flow path of the resin material is reduced.
  • the resin material easily flows into the space corresponding to the flange portion (portion covering at least a part of the outer surface of the first seal portion located at the lamination end of the laminate in the second seal portion).
  • the seal members (the first seal portion and the second seal portion) for sealing the side surface of the stack can be formed with high accuracy. Thereby, adjacent bipolar electrodes can be appropriately sealed, and leakage of the electrolytic solution can be effectively suppressed.
  • adjacent overhanging portions may be joined together by heating the overhanging portions of the plurality of first seal portions included in the outer edge portion.
  • the strength of the overhanging portions can be improved by joining adjacent overhanging portions with heat.
  • the overhanging portions of the plurality of first seal portions included in the outer edge portion are set so that the length of the overhanging portion of the first seal portion becomes shorter as the first seal portion closer to the lamination end You may process it.
  • the length of the overhanging portion where the risk of blocking the flow path of the resin material to the space corresponding to the flange portion is large becomes shorter.
  • the ends of the plurality of first seals included in the outer edge may have an R shape. In this case, the pressure resistance performance of the storage module can be effectively improved.
  • An electricity storage module is a laminate including an electrode plate, a positive electrode provided on one surface of the electrode plate, and a plurality of bipolar electrodes each having a negative electrode provided on the other surface of the electrode plate. And a plurality of first seal portions provided at the edge of each electrode plate and having an overhanging portion projecting from the end of the electrode plate, and the periphery of the plurality of first seal portions when viewed from the lamination direction of the laminate And a second seal portion covering at least a part of the outer side surface in the stacking direction of the first seal portion located at the stack end of the stack.
  • the length of the overhanging portion of the one or more first seal portions included in the outer edge portion in the stacking direction of the laminate is shorter than the length of the overhanging portion of the first seal portion not included in the outer edge portion.
  • the length of the overhanging portion of the one or more first seal portions included in the outer edge portion of the stack is shorter than the length of the overhang portion of the first seal portion not included in the outer edge portion.
  • the resin material flows into the space corresponding to the flange portion (portion covering at least a part of the outer side surface of the first seal portion located at the lamination end of the laminate in the second seal portion). It will be easier.
  • the seal members (first seal portion and second seal portion) for sealing the side surface of the laminate can be formed with high accuracy. Thereby, adjacent bipolar electrodes can be appropriately sealed, and leakage of the electrolytic solution can be effectively suppressed.
  • a storage module includes a stacked body formed by stacking a plurality of electrodes, and a seal portion provided on the stacked body so as to surround an edge portion of the electrode when viewed from the stacking direction of the stacked body.
  • the electrode includes a plurality of bipolar electrodes, a negative electrode termination electrode, and a positive electrode termination electrode.
  • the bipolar electrode includes an electrode plate, a positive electrode provided on the first surface of the electrode plate, and a negative electrode provided on the second surface opposite to the first surface of the electrode plate.
  • the negative electrode terminal electrode includes an electrode plate and a negative electrode provided on the second surface of the electrode plate, and is disposed at one end of the laminate in the lamination direction so that the second surface is located inside the laminate. .
  • the positive electrode terminal electrode includes an electrode plate and a positive electrode provided on the first surface of the electrode plate, and is disposed at the other end of the laminate in the lamination direction so that the first surface is positioned inside the laminate There is.
  • the seal portion is connected to the first seal portion so as to surround the plurality of first seal portions provided at the edge portion of each of the plurality of electrodes and the plurality of first seal portions when viewed from the stacking direction. And a seal portion.
  • the second seal portion abuts on a first end seal portion which is a first seal portion provided at an edge portion of the negative electrode end electrode on one end side of the laminate, and overlaps the first end seal portion when viewed from the lamination direction And the second end seal portion which is the first seal portion provided on the edge of the positive electrode end electrode on the other end side of the laminated body, and the second end as viewed from the lamination direction And a second flange portion having a portion overlapping the seal portion.
  • the pair of the first flange portion and the negative electrode terminal electrode and at least one of the pair of the second flange portion and the positive electrode terminal electrode have portions overlapping with each other as viewed in the stacking direction.
  • the storage module generates gas inside by being used.
  • the internal pressure in the storage module is increased by the gas.
  • pressure from the inside to the outside acts on the outermost layer of the laminate (one end or the other end of the laminate) along the laminating direction.
  • the first seal portion (the first end seal portion or the second end seal portion) having a relatively low strength is the fragile portion. Then, for example, when such a fragile portion receives the pressure and is deformed from the inside to the outside, there is a high possibility that the electrolytic solution stored in the storage module may leak from the deformed portion.
  • At least one of the pair of the first flange portion and the negative electrode termination electrode and the pair of the second flange portion and the positive electrode termination electrode is a stack of laminates. It has a part which mutually overlaps seeing from the direction. That is, in at least one of the two sets, the members (the first flange portion and the negative electrode end electrode) are not to be subjected to the pressure only by the fragile portion (the first end seal portion or the second end seal portion). A set or set of a second flange portion and a positive electrode end electrode is disposed. As a result, the pressure resistance strength of the storage module is improved, and the risk of leakage of the electrolyte as described above is reduced. Therefore, according to the storage module, the leakage of the electrolytic solution can be effectively suppressed.
  • At least the first flange portion and the negative electrode terminal electrode may have portions overlapping with each other as viewed in the stacking direction.
  • an alkaline aqueous solution used as the electrolytic solution
  • leakage of the electrolytic solution from the end (other end) on the negative electrode side of the laminate tends to occur due to a so-called alkaline creep phenomenon. Therefore, according to the above configuration, the pressure resistance at the negative electrode side end of the storage module can be improved and the restraint pressure can be increased, so that the leakage of the electrolytic solution can be more effectively suppressed.
  • FIG. 1 It is a schematic sectional drawing which shows one Embodiment of an electrical storage apparatus provided with an electrical storage module. It is a schematic sectional drawing which shows one Embodiment of the electrical storage module of 1st Embodiment. It is a principal part expanded sectional view of the electrical storage module shown by FIG. It is a figure for demonstrating the manufacturing process of the electrical storage module shown by FIG. It is a figure for demonstrating the manufacturing process of the electrical storage module shown by FIG. It is a figure for demonstrating the manufacturing process of the electrical storage module shown by FIG. It is a figure for demonstrating the manufacturing process of the electrical storage module shown by FIG. It is a figure for demonstrating the manufacturing process of the electrical storage module which concerns on a comparative example. It is a schematic sectional drawing which shows the electrical storage module which concerns on a 1st modification.
  • FIG. 1 It is a schematic sectional drawing which shows the electrical storage module which concerns on a 2nd modification. It is the schematic which shows an analysis model. It is a figure which shows the analysis result by the analysis model shown by FIG. It is a schematic sectional drawing which shows one Embodiment of the electrical storage module of 2nd Embodiment. It is a principal part expanded sectional view of the electrical storage module shown by FIG.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a power storage device provided with a power storage module.
  • the storage device 10 shown in the figure is used, for example, as a battery of various vehicles such as a forklift, a hybrid car, and an electric car.
  • the storage device 10 includes a plurality of (three in the present embodiment) storage modules 12, but may include a single storage module 12.
  • the storage module 12 is, for example, a bipolar battery.
  • the storage module 12 is, for example, a secondary battery such as a nickel hydrogen secondary battery or a lithium ion secondary battery, but may be an electric double layer capacitor.
  • the following description exemplifies a nickel-hydrogen secondary battery.
  • the plurality of storage modules 12 may be stacked via a conductive plate 14 such as a metal plate, for example. As viewed from the stacking direction D1 (Z direction), the storage module 12 and the conductive plate 14 have, for example, a rectangular shape. Details of each storage module 12 will be described later.
  • the conductive plates 14 are also disposed outside the storage modules 12 positioned at both ends in the stacking direction D ⁇ b> 1 of the storage modules 12. Conductive plate 14 is electrically connected to adjacent power storage module 12. Thereby, the plurality of power storage modules 12 are connected in series in the stacking direction D1.
  • the positive electrode terminal 24 is connected to the conductive plate 14 positioned at one end in the stacking direction D1, and the negative electrode terminal 26 is connected to the conductive plate 14 positioned at the other end.
  • the positive electrode terminal 24 may be integral with the conductive plate 14 to be connected.
  • the negative electrode terminal 26 may be integral with the conductive plate 14 to be connected.
  • the positive electrode terminal 24 and the negative electrode terminal 26 extend in a direction (X direction) intersecting the stacking direction D1.
  • the charge and discharge of the power storage device 10 can be performed by the positive electrode terminal 24 and the negative electrode terminal 26.
  • Conductive plate 14 can also function as a heat sink for releasing the heat generated in storage module 12. By passing a refrigerant such as air through the plurality of air gaps 14 a provided inside the conductive plate 14, the heat from the storage module 12 can be efficiently released to the outside.
  • Each void 14a extends, for example, in a direction (Y direction) intersecting the stacking direction D1.
  • the conductive plate 14 is smaller than the storage module 12 when viewed from the stacking direction D1, but may be the same as or larger than the storage module 12.
  • the storage device 10 may include a restraint member 16 for restraining the storage modules 12 and the conductive plates 14 stacked alternately in the stacking direction D1.
  • the constraining member 16 includes a pair of constraining plates 16A and 16B and a connecting member (bolt 18 and nut 20) that interconnects the constraining plates 16A and 16B.
  • An insulating film 22 such as a resin film, for example, is disposed between the restraint plates 16A and 16B and the conductive plate 14.
  • Each restraint plate 16A, 16B is made of, for example, a metal such as iron.
  • each of the restraint plates 16A, 16B and the insulating film 22 has, for example, a rectangular shape.
  • the insulating film 22 is larger than the conductive plate 14, and the restraint plates 16 ⁇ / b> A and 16 ⁇ / b> B are larger than the storage module 12.
  • an insertion hole H1 through which the shaft of the bolt 18 is inserted is provided at a position outside the storage module 12.
  • an insertion hole H2 through which the shaft portion of the bolt 18 is inserted is provided at a position outside the storage module 12 at the edge of the restraint plate 16B.
  • the insertion hole H1 and the insertion hole H2 are located at the corners of the restraint plates 16A, 16B.
  • One restraint plate 16A is abutted against the conductive plate 14 connected to the negative electrode terminal 26 via the insulating film 22, and the other restraint plate 16B is attached to the conductive plate 14 connected to the positive electrode terminal 24. It is hit through.
  • the bolt 18 is, for example, passed through the insertion hole H1 from one restraint plate 16A side to the other restraint plate 16B side, and a nut 20 is screwed into the tip of the bolt 18 projecting from the other restraint plate 16B. There is.
  • the insulating film 22, the conductive plate 14 and the storage module 12 are sandwiched to form a unit, and a restraint load is applied in the stacking direction D1.
  • FIG. 2 is a schematic cross-sectional view showing the storage module 12.
  • FIG. 3 is an enlarged sectional view of an essential part of the storage module 12. Specifically, FIG. 3 shows one side in the X direction (the left side in FIG. 2) of the outer edge (each of the upper edge and the lower edge) in the stacking direction D1 of the laminate constituting the storage module It is the figure which expanded and showed the part of.
  • FIG. 2 which shows schematic structure of an electrical storage module
  • the storage module 12 includes a stacked body 30 in which a plurality of bipolar electrodes (electrodes) 32 are stacked.
  • the laminate 30 has, for example, a rectangular shape as viewed in the stacking direction D1 of the bipolar electrode 32.
  • a separator 40 may be disposed between adjacent bipolar electrodes 32.
  • the bipolar electrode 32 includes an electrode plate 34, a positive electrode 36 provided on one surface of the electrode plate 34, and a negative electrode 38 provided on the other surface of the electrode plate 34.
  • the positive electrode 36 of one bipolar electrode 32 faces the negative electrode 38 of one bipolar electrode 32 adjacent in the stacking direction D1 with the separator 40 interposed therebetween, and the negative electrode 38 of one bipolar electrode 32 is a separator 40.
  • an electrode plate 34 (a negative electrode terminal electrode) having the negative electrode 38 disposed on the inner surface is disposed at one end of the laminate 30.
  • a positive electrode 36 is disposed on the inner surface at the other end of the laminate 30.
  • the electrode plate 34 (positive electrode terminal electrode) is disposed.
  • the negative electrode 38 of the negative electrode termination electrode faces the positive electrode 36 of the uppermost bipolar electrode 32 with the separator 40 interposed therebetween.
  • the positive electrode 36 of the positive electrode terminal electrode faces the negative electrode 38 of the lowermost bipolar electrode 32 via the separator 40.
  • the electrode plates 34 of these terminal electrodes are connected to the adjacent conductive plates 14 (see FIG. 1).
  • the storage module 12 includes a frame 50 that holds the edge 34 a of the electrode plate 34 on the side surface 30 a of the stack 30 extending in the stacking direction D 1.
  • the frame 50 is provided around the laminated body 30 as viewed in the laminating direction D1. Specifically, the frame 50 is configured to surround the side surface 30 a of the stacked body 30.
  • the frame 50 is provided at the edge 34 a of each electrode plate 34, and has a plurality of first seal portions 52 each having an overhang portion 52 b projecting from the end 34 b of the electrode plate 34, and a plurality of them as viewed from the stacking direction D 1 And a second seal portion 54 provided around the first seal portion 52.
  • the first seal portion 52 constituting the inner wall of the frame 50 is provided from one surface of the electrode plate 34 of each bipolar electrode 32 (here, the surface on which the positive electrode 36 is formed) to the end surface of the electrode plate 34 at the edge 34a. ing.
  • each first seal portion 52 is provided over the entire circumference of the edge portion 34 a of the electrode plate 34 of each bipolar electrode 32. Adjacent first seal portions 52 abut each other on a surface extending outside the other surface (here, the surface on which the negative electrode 38 is formed) of the electrode plate 34 of each bipolar electrode 32. As a result, the edge 34 a of the electrode plate 34 of each bipolar electrode 32 is buried and held in the first seal portion 52.
  • the edge 34 a of the electrode plate 34 disposed at both ends of the laminated body 30 is also buried in the first seal portion 52 and held.
  • the first seal portion 52 is also provided on the outer side surface (surface connected to the conductive plate 14) of the positive electrode terminal electrode. That is, the edge portion 34a of the positive electrode termination electrode is formed of the first seal portion 52 (the first seal portion 52 provided at the bottom of FIG. 2) provided on the outer surface of the positive electrode termination electrode; It is held in a state of being buried in the first seal portion 52 provided on the side.
  • an electrolytic solution (not shown) made of an alkaline solution such as a potassium hydroxide aqueous solution is accommodated.
  • sticker part 54 which comprises the outer wall of the frame 50 is a cylindrical part which extends the lamination direction D1 as an axial direction.
  • the second seal portion 54 extends over the entire length of the stack 30 in the stacking direction D1.
  • the second seal portion 54 covers the outer side surface of the first seal portion 52 extending in the stacking direction D1.
  • the second seal portion 54 is formed by injection molding described later.
  • the second seal portion 54 has a rectangular annular flange portion 54a extending inward at each of both ends in the stacking direction D1.
  • the flange portion 54 a is a portion covering at least a part of the outer side surface in the stacking direction D 1 of the first seal portion 52 located at the stacking end of the stack 30.
  • the stacked body 30 is sandwiched by flange portions 54 a formed at both end portions in the stacking direction D1.
  • the electrode plate 34 is a rectangular metal foil made of, for example, nickel. Alternatively, the electrode plate 34 may be a nickel plated steel plate.
  • the edge portion 34 a of the electrode plate 34 is an uncoated region on which the positive electrode active material and the negative electrode active material are not coated, and the uncoated region is buried in the first seal portion 52 constituting the inner wall of the frame 50. It is an area to be held.
  • a positive electrode active material which comprises the positive electrode 36 nickel hydroxide is mentioned, for example.
  • a negative electrode active material which comprises the negative electrode 38 a hydrogen storage alloy is mentioned, for example.
  • the formation region of the negative electrode 38 on the other surface of the electrode plate 34 is one size larger than the formation region of the positive electrode 36 on one surface of the electrode plate 34.
  • the separator 40 is formed, for example, in a sheet shape.
  • Examples of the material for forming the separator 40 include porous films made of polyolefin resins such as polyethylene (PE) and polypropylene (PP), and woven or non-woven fabrics made of polypropylene and the like.
  • the separator 40 may be reinforced with a vinylidene fluoride resin compound or the like.
  • the separator 40 is not limited to a sheet but may be a bag.
  • a resin material which comprises the frame 50 a polypropylene (PP), polyphenylene sulfide (PPS), or modified polyphenylene ether (modified PPE) etc. are mentioned, for example.
  • PP polypropylene
  • PPS polyphenylene sulfide
  • modified PPE modified polyphenylene ether
  • the length d1 of the overhanging portion 52b of the one or more first seal portions 52 included in the outer edge E in the stacking direction D1 of the laminate 30 is not included in the outer edge E.
  • the length d2 of the overhang portion 52b of the first seal portion 52 is shorter.
  • the length of the overhanging portion 52b is the length from the end 34b of the electrode plate 34 to the end 52a of the overhanging portion 52b (that is, the tip of the first seal portion 52).
  • the outer edge portion E is a part of the outer side in the stacking direction D1 of the stacked body 30, and is a portion including at least the outermost electrode plate 34 (positive electrode termination electrode or negative electrode termination electrode) in the stacked body 30.
  • the outer edge portion E1 including the negative electrode termination electrode includes a negative electrode termination electrode and three electrode plates 34 adjacent to the negative electrode termination electrode.
  • the outer edge E2 including the positive electrode termination electrode includes a positive electrode termination electrode and three electrode plates 34 adjacent to the positive electrode termination electrode.
  • the corner of the outer edge E1 formed by the plurality of (four in this case) first seal portions 52 has a chamfered shape.
  • a chamfered shape is obtained by forming the overhanging portion 52b of the first seal portion 521 provided on the negative electrode terminal electrode before processing and three first seal members provided on the three electrode plates 34 adjacent to the negative electrode terminal electrode.
  • the rectangular isosceles triangular area corresponding to the corner of the area is removed.
  • the lengths d11 to d14 of the overhanging portions 52b of the first seal portions 521 to 524 Is shorter than the length d2 of the overhang portion 52b of the first seal portion 52 which is not included in the outer edge portion E at all.
  • the width t1 in the stacking direction D1 of the portion where the plurality of first seal portions 52 and the plurality of electrode plates 34 overlap in the stack 30 is the overhang portion 52b of the plurality of first seal portions 52 in the stack 30.
  • the configuration at the outer edge E2 of the storage module 12 is the same as the configuration at the outer edge E1 described above. Specifically, as shown in FIG. 3, the configuration at the outer edge E2 of the storage module 12 is substantially symmetrical to the configuration at the outer edge E1 of the storage module 12. That is, the corner in the outer edge E2 formed by the plurality of (four in this case) first seal portions 52 is chamfered in the same manner as the corner in the outer edge E1.
  • Such a shape is obtained by forming the overhanging portion 52b of the first seal portion 525, 526 provided on the positive electrode end electrode before processing and the two first seals provided on the two electrode plates 34 adjacent to the positive electrode end electrode.
  • the rectangular isosceles triangle corresponding to the corner of the area is removed.
  • the length of the overhanging portion 52b of each of the first seal portions 525 to 528 is shorter than the length d2 of the overhanging portion 52b of the first seal portion 52 not included in the outer edge portion E.
  • the stacked body 30 and the plurality of first seal portions 52 are prepared.
  • the laminated body 30 is obtained by laminating a plurality of bipolar electrodes 32 each having the first seal portion 52 formed in advance on the edge portion 34 a of the electrode plate 34 via the separator 40.
  • the stacked body 30 is formed, for example, by stacking the plurality of bipolar electrodes 32 and the separators 40 such that the positions of the end portions 52 a of the plurality of first seal portions 52 are aligned. Thereby, the laminated body 30 which the position of the edge part 52a of several 1st seal
  • each overhanging portion 52 b of the one or more first seal portions 52 included in the outer edge E (the outer edge E 1 and the outer edge E 2) in the stacking direction D 1 of the laminate 30 Is processed.
  • the length of the overhang portion 52b of one or more first seal portions 52 (here, four first seal portions 521 to 524) included in the outer edge portion E1 is included in the outer edge portion E.
  • the overhanging portion 52b of the one or more first seal portions 52 is processed so as to be shorter than the length d2 of the overhanging portion 52b of the first seal portion 52 which is not present.
  • the rectangular isosceles triangle region R1 corresponding to the corner of the region is removed.
  • Such a chamfered shape is the extent to which the edge 34a of the electrode plate 34 is not exposed (ie, the extent to which the edge 34a of the electrode plate 34 is covered by the first seal portion 52 is maintained )
  • the length d3 of one side other than the oblique side of the region R1 is a predetermined ratio (for example, three quarters) of the length d2 (the amount of projection from the end 34b of the overhang portion 52b) predetermined as a design value.
  • the upper limit may be set.
  • the length d3 may be set with an upper limit of 1.5 mm, which is three quarters of the length d2.
  • the end portions 52a of the plurality of first seal portions 52 at the outer edge portion E1 are C surfaces processed at C1.5.
  • the number of first seal portions 52 forming the chamfered shape may vary depending on the length d3.
  • the chamfered shape (region R1) is formed by the four first seal portions 52, but when the length d3 is made shorter than this, one to three first The sealing portion 52 may form a chamfered shape.
  • the chamfered shape (region R1) can be formed, for example, by heating the end of the overhanging portion 52b before processing of each of the first seal portions 521 to 524.
  • the region corresponding to the region R1 in the region where the overhang portions 52b before processing of each of the first seal portions 521 to 524 are combined is removed by being heated and melted.
  • the overhanging portions 52b of the adjacent first seal portions 52 are fixed (welded) by heat, and the strength of the overhanging portions 52b included in the outer edge E1 can be improved. Thereby, it is possible to suppress deformation (peeling, curling up, etc.) of the overhanging portion 52b due to the pressure of the resin material RM flowing in at the time of the injection molding process described later.
  • the length of the overhanging portion 52 b of the first seal portion 52 becomes shorter as the first seal portion 52 is closer to the lamination end of the laminated body 30 by the chamfering process described above. Then, the overhanging portions 52b of the four first seal portions 52 (first seal portions 521 to 524) included in the outer edge E1 are processed. Specifically, “d11 ⁇ d12 ⁇ d13 ⁇ d14” is established for the lengths d11 to d14 of the overhang portions 52b of the first seal portions 521 to 524.
  • the outer edge E2 is also processed in the same manner as the outer edge E1. That is, the length of the overhang portion 52b of one or more first seal portions 52 (here, four first seal portions 525 to 528 in this case) included in the outer edge portion E2 is not included in the outer edge portion E.
  • the overhanging portion 52b of the one or more first seal portions 52 is processed so as to be shorter than the length d2 of the overhanging portion 52b of the seal portion 52. Specifically, by processing similar to the processing to the outer edge portion E1 as described above, the corner of the area of the first seal portions 525 to 528 including the overhanging portion 52b before processing.
  • the rectangular isosceles triangle region R2 corresponding to the portion is removed.
  • injection molding in which the resin material RM is circulated in the mold M is performed.
  • the resin material RM flows into the space formed between the mold M and the plurality of first seal parts 52 through the opening Ma provided in the mold M, so that the second seal 54 (see FIG. 3). ) Is formed.
  • the first seal portion 52 here, the first seal portion 521 provided on the negative electrode termination electrode and the first seal portion 525 provided on the positive electrode termination electrode located at the lamination end of the laminate 30 by the injection molding
  • the second seal portion 54 is formed such that the second seal portion 54 covers at least a part of the outer side surface in the stacking direction D1. That is, the second seal portion 54 having the flange portion 54a (see FIG. 3) is formed by the injection molding.
  • the step (preparation step) of preparing the stacked body 30 and the plurality of first seal portions 52, and the outer edge E in the stacking direction D1 of the stacked body 30 As described above, in the method of manufacturing the storage module according to the present embodiment, the step (preparation step) of preparing the stacked body 30 and the plurality of first seal portions 52, and the outer edge E in the stacking direction D1 of the stacked body 30.
  • a process (processing process) of processing the overhanging portion 52b of the one or more first seal portions 52 included in the length d2 is shorter than the length d2 of the overhanging portion 52b of the first seal portion 52 not included in the outer edge E
  • the first seal part seen from the laminating direction D1 Forming a second seal portion 54 provided around the periphery 52 and covering at least a part of the outer surface in the stacking direction of the first seal portion 52 located at the stacking end of the stack 30 (the second seal portion 54 (injection And a molding step).
  • the length d1 of the overhanging portion 52b of the one or more first seal portions 52 included in the outer edge E of the stacked body 30 is not included in the outer edge E
  • the one or more overhanging portions 52b (in the present embodiment, as an example, the overhanging of the four first seal portions 521 to 524 included in the outer edge E1 so as to be shorter than the length d2 of the overhanging portion 52b)
  • the overhanging portions 52b) of the four first seal portions 525 to 528 included in the portion 52b and the outer edge E2 are processed.
  • the overhanging portion 52b of the one or more first seal portions 52 included in the outer edge portion E is curled up, etc., compared to the overhanging portion 52b of the first seal portion 52 not included in the outer edge portion E Deformation is suppressed.
  • the possibility that the overhanging portions 52b of the one or more first seal portions 52 included in the outer edge E of the laminate 30 may curl up and block the flow path of the resin material RM is reduced. Ru.
  • the resin in the space corresponding to the flange portion 54a (a portion covering at least a part of the outer surface of the first seal portion 52 located at the lamination end of the laminate 30 in the second seal portion 54)
  • Material RM can be made easy to pour.
  • the seal members (the first seal portion 52 and the second seal portion 54) that seal (seal) the side surface 30a of the stacked body 30 can be formed with high accuracy.
  • the above effect is supplemented with reference to the comparative example shown in FIG.
  • the said comparative example is an example which implemented the injection molding process immediately after the preparatory process mentioned above. That is, in the comparative example, processing (heating, cutting, etc.) is not performed on the overhanging portion 52b of the first seal portion 52 included in the outer edge portion of the laminate 30 in the stacking direction D1.
  • the length is equal to the length of the overhanging portion 52b of the first seal portion 52 not included in the outer edge.
  • the first seal portion 52 provided on the termination electrode is provided on the flange portion 54a on each (or one) of the negative electrode termination electrode side and the positive electrode termination electrode side.
  • the processing step by heating the overhanging portions 52b of the plurality of first seal portions 52 included in the outer edge portion E, the adjacent overhanging portions 52b are welded (joined).
  • the strength of the overhanging portions 52b of the plurality of first seal portions 52 included in the outer edge portion E can be improved by welding adjacent overhanging portions 52b to each other by heat.
  • deformation such as curling
  • blocking of the flow path of the resin material RM to the space corresponding to the flange portion 54a can be effectively suppressed.
  • the 52 overhang portions 52b are processed.
  • the length of the overhanging portion 52b ie, the overhanging portion 52b of the first seal portion 52 closer to the laminated end
  • which is likely to block the flow path of the resin material RM to the space S corresponding to the flange portion 54a is shorter.
  • the storage module 12 is formed by stacking a plurality of bipolar electrodes 32 each having an electrode plate 34, a positive electrode 36 provided on one surface of the electrode plate 34, and a negative electrode 38 provided on the other surface of the electrode plate 34. And a plurality of first seal portions 52 provided at the edge portion 34a of each electrode plate 34 and having overhang portions 52b each protruding from the end portion 34b of the electrode plate 34; A second seal portion which is provided around the plurality of first seal portions 52 when viewed from the stacking direction D1 and covers at least a part of the outer surface in the stacking direction D1 of the first seal portion 52 located at the stacking end of the stack 30 And 54.
  • the length d1 of the overhanging portion 52b of the one or more first seal portions 52 included in the outer edge portion E in the stacking direction D1 of the laminate 30 is the overhang portion of the first seal portion 52 not included in the outer edge portion E It is shorter than the length d2 of 52b.
  • the length d 1 of the overhanging portion 52 b of the one or more first seal portions 52 included in the outer edge E of the stacked body 30 is not included in the outer edge E. It is shorter than the length d2 of the portion 52b.
  • the possibility that the overhang portions 52b of the one or more first seal portions 52 included in the outer edge portion E may curl up and block the flow path of the resin material RM is reduced. That is, in the injection molding, the space S corresponding to the flange portion 54a (a portion of the second seal portion 54 which covers at least a part of the outer surface of the first seal portion 52 located at the lamination end of the laminate 30). , The resin material RM is easy to flow into. As described above, according to the storage module 12, the seal members (the first seal portion 52 and the second seal portion 54) for sealing the side surface 30a of the stacked body 30 can be formed with high accuracy.
  • a plurality of (in this case, two) first seal portions 52A included in the outer edge portions of the upper and lower sides of the stacked body 30 As mentioned above, although 1st Embodiment of this invention was described in detail, this invention is not limited to the said embodiment.
  • a step-like notch shape may be formed by cutting a part of the overhanging portion 52b along a direction parallel to the stacking direction D1. Even in such a configuration, curling up of the overhanging portion 52b of the first seal portion 52A included in the outer edge portion can be suppressed, and the resin material can be easily poured into the space corresponding to the flange portion 54a in the injection molding process. it can.
  • the shape of the end 52a of the one or more first seal parts 52 included in the outer edge part E may not necessarily be formed by heat processing, for example, the tension of the one or more first seal parts 52 You may form by cutting of the outgoing part 52b.
  • the end portions 52a of the plurality of first seal portions 52 included in the outer edge portion E may have an R shape. That is, the surface formed by the end portions 52a of the plurality of first seal portions 52 included in the outer edge portion E is not limited to the C surface formed by the C surface processing as described above, and is formed by the R surface processing It may be an R surface (rounded surface).
  • the R-surface process can be performed, for example, by pressing a heat plate having an R-shape formed on the end portions 52 a of the plurality of first seal portions 52.
  • the R-surface processing may be another processing method, for example, a mechanical cutting process.
  • the R surface is formed by the end portions 52a of the four first seal portions 52B1 to 52B4.
  • an R surface 54b corresponding to the shape of the end 52a of the first seal 52B1 to 52B4 is formed in a portion of the second seal 54 which is in contact with the end 52a of the first seal 52B1 to 52B4.
  • a part of the area combined with the overhanging portion 52b before processing is removed by R-surface processing.
  • an R surface is formed by the end portions 52a of the four first seal portions 52B5 to 52B8.
  • an R surface portion 54b corresponding to the shape of the end 52a of the first seal portion 52B5 to 52B8 is formed in a portion of the second seal portion 54 in contact with the end portion 52a of the first seal portion 52B5 to 52B8.
  • FIG. 10 is a schematic view showing an analysis model SM.
  • the analysis model SM performs an operation when the electrode plate 34 of the positive electrode terminal electrode and the first seal portion 52 provided on the electrode plate 34 push up the flange portion 54 a of the second seal portion 54 due to the increase in internal pressure of the storage module. It is an example of the model prepared for simulating.
  • the analysis model SM is different from the actual storage module configuration.
  • the thickness (length in the stacking direction D1) of the flange portion 54a is set to 1.13 mm.
  • the overhanging length of the flange portion 54a (the distance between the base end portion and the tip end portion of the flange portion 54a) is set to 4.1 mm.
  • the distance between the tip of the flange portion 54a and the conductive plate 14 is set to 0.5 mm.
  • the first seal portion 52 and the conductive plate 14 are in contact with each other.
  • FIG. 11 is a graph showing an analysis result by the above-described analysis model SM.
  • the analysis result shown in FIG. 11 shows the central portion (region A1 in FIG. 10) of the R-surface portion 54b and the bonding portion (region A2 in FIG. 10) between the first seal portion 52 and the second seal portion 54.
  • the graph G1 shows the relationship between the internal pressure of the internal space S1 at the time of reaching the criteria of the region A1 and the R size
  • the graph G2 shows the internal pressure of the internal space S1 at the time of reaching the criteria of the region A2 and the R size It shows the relationship with
  • the broken line portions of the graphs G1 and G2 are estimated values obtained by extrapolation based on calculation results corresponding to other R sizes.
  • the pressure resistance performance is improved as the R size of the R surface portion 54 b is larger in any of the regions A1 and A2 susceptible to the increase in the internal pressure of the storage module.
  • the analysis result to be obtained was obtained.
  • the internal pressure at the time when the area A1 breaks (compared to the case where the R-surface portion 54b is not provided (when the R-size is 0)) It is possible to raise the breaking pressure) from about 0.4 MPa (estimated value) to about 1 MPa, and the internal pressure (breaking pressure) at the time of breakage of the region A2 from about 1.5 MPa (estimated value) to about 2.7 MPa An analytical result was obtained which indicated that it was possible to raise it.
  • the storage module 12B exemplifies a form in which a smooth R shape is formed by the end portions 52a of the plurality (four in this case) of the first seal portions 52, the end portions 52a of the plurality of first seal portions 52 are illustrated.
  • the R shape formed by may be a pseudo R shape formed in steps.
  • the storage module 12C includes the stacked body 130 and the electrodes (a plurality of bipolar electrodes 132, a negative electrode termination electrode 132A, and a positive electrode termination electrode 132B) when viewed from the stacking direction D. And a frame 150 (seal portion) provided on the laminate 130 so as to surround the edge.
  • the stacking direction D of the stacked body 130 coincides with the stacking direction D of the power storage device 10.
  • the stacked body 130 has a side surface 130 a extending in the stacking direction D.
  • the bipolar electrode 132 is provided on the electrode plate 134, the positive electrode 136 provided on the first surface 134a of the electrode plate 134, and the second surface 134b opposite to the first surface 134a of the electrode plate 134.
  • Negative electrode 138 is included.
  • the positive electrode 136 is a positive electrode active material layer formed by applying a positive electrode active material to the electrode plate 134.
  • the negative electrode 138 is a negative electrode active material layer formed by applying the negative electrode active material to the electrode plate 134.
  • the positive electrode 136 of one bipolar electrode 132 is opposed to the negative electrode 138 of another bipolar electrode 132 adjacent in the stacking direction D with the separator 140 interposed therebetween.
  • the negative electrode 138 of one bipolar electrode 132 is opposed to the positive electrode 136 of another bipolar electrode 132 adjacent in the stacking direction D with the separator 140 interposed therebetween.
  • the negative electrode terminal electrode 132 ⁇ / b> A includes an electrode plate 134 and a negative electrode 138 provided on a second surface 134 b of the electrode plate 134.
  • the negative electrode terminal electrode 132A is disposed at one end in the stacking direction D such that the second surface 134b is on the inner side (the center side in the stacking direction D) of the stacked body 130.
  • the negative electrode 138 of the negative electrode terminal electrode 132A is opposed to the positive electrode 136 of the bipolar electrode 132 at one end in the stacking direction D via the separator 140 similar to the separator 40.
  • the positive electrode terminal electrode 132 ⁇ / b> B includes an electrode plate 134 and a positive electrode 136 provided on a first surface 134 a of the electrode plate 134.
  • the positive electrode terminal electrode 132 ⁇ / b> B is disposed at the other end in the stacking direction D such that the first surface 134 a is inside the stacked body 130.
  • the positive electrode 136 of the positive electrode terminal electrode 132 B is opposed to the negative electrode 138 of the bipolar electrode 132 at the other end in the stacking direction D via the separator 140.
  • the conductive plate 14 is in contact with the first surface 134 a of the electrode plate 134 of the negative electrode terminal electrode 132 ⁇ / b> A. Further, the other conductive plate 14 adjacent to the storage module 12C is in contact with the second surface 134b of the electrode plate 134 of the positive electrode terminal electrode 132B.
  • the restraint load from the restraint member 16 is applied to the laminate 130 from the negative electrode termination electrode 132A and the positive electrode termination electrode 132B via the conductive plate 14. That is, the conductive plate 14 is also a constraining member that applies a constraining load to the stacked body 130 along the stacking direction D.
  • the frame body 150 is formed in a rectangular tube shape as a whole by, for example, an insulating resin.
  • the frame 150 is provided on the side surface 130 a of the laminate 130 so as to surround the edge 134 c of the electrode plate 134.
  • the frame 150 holds the edge 134 c at the side surface 130 a.
  • the frame body 150 includes a plurality of first seal parts 151 welded to the edge part 134c, and a single seal part 151 joined to the first seal part 151 so as to surround the first seal part 151 from the outside along the side surface 130a. And a second seal portion 152.
  • the first seal portion 151 When viewed in the stacking direction D, the first seal portion 151 has a rectangular annular shape, and is continuously provided over the entire circumference of the edge portion 134 c.
  • the first seal portion 151 is welded to the first surface 134 a of the electrode plate 134 and is airtightly joined.
  • the first seal portion 151 is welded, for example, by ultrasonic waves or heat.
  • the first seal portion 151 is a film having a predetermined thickness (length in the stacking direction D). The end face of the electrode plate 134 is exposed from the first seal portion 151.
  • a part of the inside of the first seal part 151 is located between the edge parts 134c of the electrode plates 134 adjacent to each other in the stacking direction D, and a part of the outside protrudes from the electrode plate 134 to the outside. .
  • the first seal portion 151 is embedded in the second seal portion 152 at a part of the outer side. The first seal portions 151 adjacent to each other along the stacking direction D are separated from each other.
  • the second seal portion 152 is provided outside the stacked body 130 and the first seal portion 151, and constitutes an outer wall (housing) of the storage module 12C.
  • the second seal portion 152 is formed, for example, by injection molding of a resin, and extends along the stacking direction D along the entire length of the stack 130.
  • the second seal portion 152 has a tubular (annular) shape extending with the stacking direction D as an axial direction.
  • the second seal portion 152 is welded (joined) to the outer surface of the first seal portion 151, for example, by heat at the time of injection molding.
  • the second seal portion 152 together with the first seal portion 151, between the bipolar electrodes 132 adjacent to each other along the stacking direction D, between the negative electrode terminal electrode 132A and the bipolar electrodes 132 adjacent to each other along the stacking direction D, And between the positive electrode terminal electrode 132B and the bipolar electrode 132 which mutually adjoin along the lamination direction D, it each seals.
  • airtightly partitioned internal spaces V are formed between the bipolar electrode 132, between the negative electrode termination electrode 132A and the bipolar electrode 132, and between the positive electrode termination electrode 132B and the bipolar electrode 132, respectively.
  • an electrolytic solution (not shown) made of an alkaline aqueous solution such as a potassium hydroxide aqueous solution is accommodated.
  • the electrolytic solution is impregnated in the separator 140, the positive electrode 136 and the negative electrode 138.
  • the first seal portion 151 and the second seal portion 152 are, for example, an insulating resin, and may be made of polypropylene (PP), polyphenylene sulfide (PPS), modified polyphenylene ether (modified PPE), or the like.
  • PP polypropylene
  • PPS polyphenylene sulfide
  • modified PPE modified polyphenylene ether
  • the second seal portion 152 has a first flange portion 153 joined to a first end seal portion 151A, which is a first seal portion 151 provided on the edge of the negative electrode terminal electrode 132A at one end side in the stacking direction D ing.
  • the first end seal portion 151A is welded to the first surface 134a of the electrode plate 134 of the negative electrode end electrode 132A.
  • the first flange portion 153 has a portion overlapping with the first end seal portion 151A when viewed in the stacking direction D.
  • the first flange portion 153 is formed in a rectangular ring shape extending inward as viewed from the stacking direction D on one end side of the stacked body 130.
  • the first flange portion 153 is in contact with the outer surface of the first end seal portion 151A (the surface opposite to the surface welded to the first surface 134a of the electrode plate 134).
  • the first flange portion 153 is welded to the outer surface of the first end seal portion 151A.
  • the second seal portion 152 has the second flange portion 154 joined to the second end seal portion 151B which is the first seal portion 151 provided on the edge of the positive electrode terminal electrode 132B on the other end side in the stacking direction D. doing.
  • the second end seal portion 151B is welded to the second surface 134b of the electrode plate 134 of the positive electrode end electrode 132B.
  • the second flange portion 154 has a portion overlapping with the second end seal portion 151 B when viewed in the stacking direction D.
  • the second flange portion 154 is formed in a rectangular ring shape extending inward as viewed from the stacking direction D on the other end side of the stacked body 130.
  • the second flange portion 154 is in contact with the outer surface of the second end seal portion 151 B (the surface opposite to the surface welded to the second surface 134 b of the electrode plate 134).
  • the second flange portion 154 is welded to the outer surface of the second end seal portion 151B.
  • the first flange portion 153 and the negative electrode terminal electrode 132 ⁇ / b> A have a portion 153 a overlapping each other when viewed in the stacking direction D. That is, when viewed in the stacking direction D, the inner end 153 b of the first flange portion 153 is located more inward than the end 134 d of the electrode plate 134 of the negative electrode terminal electrode 132 A.
  • the portion 153 a is formed in a rectangular frame shape over the entire periphery of the edge portion of the electrode plate 134 of the negative electrode terminal electrode 132 A when viewed in the stacking direction D.
  • the width w of the portion 153a (that is, the width of the portion where the first flange portion 153, the first end seal portion 151A, and the negative electrode end electrode 132A overlap when viewed in the stacking direction D) is, for example, the thickness of the first end seal portion 151A. It is set to about 10 times the length (the length in the stacking direction D).
  • the storage module 12C generates gas in its inside (each internal space V) by being used.
  • the internal pressure in the storage module 12C is increased by the gas.
  • pressure from the inside to the outside acts along the stacking direction D in the outermost layer of the stack 130 (one end or the other end of the stack 130) due to the structure of the storage module 12C. (See arrow in FIG. 13).
  • the first seal portion 151 (the first end seal portion 151A or the second end seal portion 151B) having a relatively low strength is a weak portion.
  • the electrolytic solution stored in the storage module 12C may leak from the deformed portion.
  • the set of the first flange portion 153 and the negative electrode terminal electrode 132A has a portion overlapping with each other as viewed from the stacking direction D (portion overlapping with the portion 153a as viewed from the stacking direction D)
  • each member a set of the first flange portion 153 and the negative electrode terminal electrode 132A
  • the pressure resistance strength of the storage module 12C is improved, and the deformation of the fragile portion is suppressed.
  • the risk of leakage of the electrolyte as described above is reduced. Therefore, according to the storage module 12C, the leakage of the electrolytic solution can be effectively suppressed.
  • the pair of the second flange portion 154 and the positive electrode terminal electrode 132B also overlaps with each other when viewed from the stacking direction D, similarly to the pair of the first flange portion 153 and the negative electrode terminal electrode 132A. It has a lap part).
  • the presence of the overlapping portion on both the negative electrode termination electrode 132A side and the positive electrode termination electrode 132B side can effectively improve the withstand voltage strength of the storage module 12C.
  • the restraint pressure in the stacking direction D of the storage module 12C can be improved, and as a result, leakage of the electrolyte solution from the negative electrode termination electrode 132A side or the positive electrode termination electrode 132B side can be effectively suppressed.
  • At least one of the pair of the first flange portion 153 and the negative electrode terminal electrode 132A and the pair of the second flange portion 154 and the positive electrode terminal electrode 132B has a portion overlapping each other as viewed in the stacking direction D. It is also good. Also in such a case, the pressure resistance and the restraint pressure of the storage module 12C can be improved, and as a result, the leakage of the electrolytic solution can be suppressed.
  • the width w of the portion 153a (that is, the width of the portion where the first flange portion 153, the first end seal portion 151A, and the negative electrode end electrode 132A overlap when viewed in the stacking direction D) saturates the pressure resistance of the storage module 12C. It is preferable to set the size to be in a state (a state in which the pressure resistance does not increase with a certain amount or more with respect to the increase amount of the width w).
  • the material cost of the second seal portion 152 can be reduced by setting the size (width w) of the overlapping portion to a necessary and sufficient size.
  • the leak of the electrolyte solution of an electrical storage module can be effectively suppressed also in any of 1st Embodiment and 2nd Embodiment.
  • the first embodiment and the second embodiment may be combined with each other. In that case, the effects of both the effects of the first embodiment and the effects of the second embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本発明は、電解液の漏液を効果的に抑制できる蓄電モジュールの製造方法及び蓄電モジュールを提供することを目的とする。 一実施形態の蓄電モジュール(12)の製造方法は、積層体(30)と複数の第1シール部(52)とを準備する工程と、積層体(30)の積層方向(D1)における外縁部(E)に含まれる一又は複数の第1シール部(52)の張出部分(52b)の長さが、外縁部(E)に含まれない第1シール部(52)の張出部分(52b)の長さよりも短くなるように、当該一又は複数の第1シール部(52)の張出部分(52b)を加工する工程と、型枠(M)内に樹脂材料(RM)を流通させる射出成形によって、積層方向(D1)から見て第1シール部(52)の周囲に設けられ、積層体(30)の積層端に位置する第1シール部(52)の積層方向(D1)における外側面の少なくとも一部を第2シール部(54)が覆う第2シール部(54)を形成する工程と、を含む。

Description

蓄電モジュールの製造方法及び蓄電モジュール
 本発明の一側面は、蓄電モジュールの製造方法及び蓄電モジュールに関する。
 従来の蓄電モジュールとして、電極板の一方面に正極が形成され、他方面に負極が形成されたバイポーラ電極を備えた、いわゆるバイポーラ型の蓄電モジュールが知られている(特許文献1参照)。このような蓄電モジュールは、複数のバイポーラ電極を積層してなる積層体を備えている。積層体の側面には、積層方向に隣り合うバイポーラ電極間をシールする樹脂群が設けられている。隣り合うバイポーラ電極間に形成された内部空間には、電解液が収容される。
特開2005-5163号公報
 上述したような蓄電モジュールにおいては、電解液の漏れ等を防止するために、隣り合うバイポーラ電極間に形成された内部空間を気密に確保することが求められる。
 本発明の一側面は、電解液の漏液を効果的に抑制できる蓄電モジュールの製造方法及び蓄電モジュールを提供することを目的とする。
 本発明の一側面に係る蓄電モジュールの製造方法は、電極板、電極板の一方面に設けられた正極、及び電極板の他方面に設けられた負極をそれぞれ有する複数のバイポーラ電極が積層されてなる積層体と、各電極板の縁部に設けられ、電極板の端部から張り出す張出部分をそれぞれ有する複数の第1シール部と、を準備する工程と、積層体の積層方向における外縁部に含まれる一又は複数の第1シール部の張出部分の長さが、外縁部に含まれない第1シール部の張出部分の長さよりも短くなるように、一又は複数の第1シール部の張出部分を加工する工程と、型枠内に樹脂材料を流通させる射出成形によって、積層体の積層方向から見て第1シール部の周囲に設けられ、積層体の積層端に位置する第1シール部の積層方向における外側面の少なくとも一部を覆う第2シール部を形成する工程と、を含む。
 この蓄電モジュールの製造方法では、積層体の外縁部に含まれる一又は複数の第1シール部の張出部分の長さが外縁部に含まれない第1シール部の張出部分の長さよりも短くなるように、当該一又は複数の張出部分が加工される。これにより、外縁部に含まれる一又は複数の第1シール部の張出部分は、外縁部に含まれない第1シール部の張出部分と比較して、捲れ上がり等の変形が抑制される。その結果、射出成形時において、外縁部に含まれる一又は複数の第1シール部の張出部分が捲れ上がって樹脂材料の流路を塞いでしまう虞が低減される。すなわち、射出成形時において、フランジ部(第2シール部のうち、積層体の積層端に位置する第1シール部の外側面の少なくとも一部を覆う部分)に対応する空間に樹脂材料が流れ込み易くなる。以上により、この蓄電モジュールの製造方法によれば、積層体の側面をシールするシール部材(第1シール部及び第2シール部)を精度良く形成することができる。これにより、隣り合うバイポーラ電極間を適切にシールすることができ、電解液の漏液を効果的に抑制できる。
 加工する工程においては、外縁部に含まれる複数の第1シール部の張出部分を加熱することによって、隣り合う張出部分同士を接合させてもよい。この場合、隣り合う張出部分同士を熱によって接合することにより張出部分の強度を向上させることができる。これにより、射出成形時に流入する樹脂材料の圧力によって、外縁部に含まれる第1シール部の張出部分が変形すること(剥がれ、捲れ上がり等)を一層抑制することができ、フランジ部に対応する空間への樹脂材料の流路が塞がれることを効果的に抑制することができる。
 加工する工程においては、積層端に近い第1シール部ほど、当該第1シール部の張出部分の長さが短くなるように、外縁部に含まれる複数の第1シール部の張出部分を加工してもよい。この場合、フランジ部に対応する空間への樹脂材料の流路を塞ぐ虞が大きい張出部分(すなわち、積層端に近い第1シール部の張出部分)ほど、その長さが短くなるように加工されることにより、フランジ部に対応する空間への樹脂材料の流路が塞がれることを効果的に抑制することができる。
 外縁部に含まれる複数の第1シール部の端部は、R形状をなしていてもよい。この場合、蓄電モジュールの耐圧性能を効果的に向上させることができる。
 本発明の一側面に係る蓄電モジュールは、電極板、電極板の一方面に設けられた正極、及び電極板の他方面に設けられた負極をそれぞれ有する複数のバイポーラ電極が積層されてなる積層体と、各電極板の縁部に設けられ、電極板の端部から張り出す張出部分をそれぞれ有する複数の第1シール部と、積層体の積層方向から見て複数の第1シール部の周囲に設けられ、積層体の積層端に位置する第1シール部の積層方向における外側面の少なくとも一部を覆う第2シール部と、を備える。積層体の積層方向における外縁部に含まれる一又は複数の第1シール部の張出部分の長さが、外縁部に含まれない第1シール部の張出部分の長さよりも短い。
 この蓄電モジュールでは、積層体の外縁部に含まれる一又は複数の第1シール部の張出部分の長さが外縁部に含まれない第1シール部の張出部分の長さよりも短い。これにより、当該蓄電モジュールの製造時において、外縁部に含まれる一又は複数の第1シール部の張出部分は、外縁部に含まれない第1シール部の張出部分と比較して、捲れ上がり等の変形が抑制される。その結果、射出成形時において、外縁部に含まれる一又は複数の第1シール部の張出部分が捲れ上がって樹脂材料の流路を塞いでしまう虞が低減される。すなわち、射出成形時において、フランジ部(第2シール部のうち、積層体の積層端に位置する第1シール部の外側面の少なくとも一部を覆う部分)に対応する空間に、樹脂材料が流れ込み易くなる。以上により、この蓄電モジュールによれば、積層体の側面をシールするシール部材(第1シール部及び第2シール部)を精度良く形成することができる。これにより、隣り合うバイポーラ電極間を適切にシールすることができ、電解液の漏液を効果的に抑制できる。
 本発明の他の側面に係る蓄電モジュールは、複数の電極が積層されてなる積層体と、積層体の積層方向から見て電極の縁部を包囲するように積層体に設けられたシール部と、を備える。電極は、複数のバイポーラ電極と、負極終端電極と、正極終端電極と、を含む。バイポーラ電極は、電極板と、電極板の第1面に設けられた正極と、電極板の第1面の反対側の第2面に設けられた負極と、を含む。負極終端電極は、電極板と当該電極板の第2面に設けられた負極とを含み、第2面が積層体の内側に位置するように、積層方向における積層体の一端に配置されている。正極終端電極は、電極板と当該電極板の第1面に設けられた正極とを含み、第1面が積層体の内側に位置するように、積層方向における積層体の他端に配置されている。シール部は、複数の電極の各々の縁部に設けられた複数の第1シール部と、積層方向から見て複数の第1シール部を包囲するように第1シール部に接合された第2シール部と、を含む。第2シール部は、積層体の一端側において負極終端電極の縁部に設けられた第1シール部である第1終端シール部に当接すると共に、積層方向から見て第1終端シール部と重なる部分を有する第1フランジ部と、積層体の他端側において正極終端電極の縁部に設けられた第1シール部である第2終端シール部に当接すると共に、積層方向から見て第2終端シール部と重なる部分を有する第2フランジ部と、を含む。第1フランジ部と負極終端電極との組及び第2フランジ部と正極終端電極との組の少なくとも一方の組は、積層方向から見て互いに重なる部分を有している。
 蓄電モジュールは、使用されることにより、その内部にガスを発生させる。当該ガスにより蓄電モジュール内の内圧が上昇する。このような内圧の上昇が生じると、積層体の最外層(積層体の一端又は他端)において、積層方向に沿って内側から外側への圧力が作用することになる。この場合、積層体の最外層に配置された部材のうち比較的強度が低い第1シール部(第1終端シール部又は第2終端シール部)が脆弱部となる。そして、例えば、このような脆弱部が上記圧力を受けて内側から外側に向けて変形すると、当該変形部分から蓄電モジュール内部に蓄えられた電解液が漏出するおそれが高くなる。一方、上述した本発明の他の側面に係る蓄電モジュールでは、第1フランジ部と負極終端電極との組及び第2フランジ部と正極終端電極との組の少なくとも一方の組が、積層体の積層方向から見て互いに重なる部分を有している。すなわち、上記2つの組の少なくとも一方において、脆弱部(第1終端シール部又は第2終端シール部)のみで上記圧力を受けることがないように各部材(第1フランジ部と負極終端電極との組又は第2フランジ部と正極終端電極との組)が配置されている。これにより、蓄電モジュールの耐圧強度の向上が図られており、上述したような電解液が漏出するおそれが低減されている。従って、上記蓄電モジュールによれば、電解液の漏液を効果的に抑制できる。
 上記蓄電モジュールにおいて、少なくとも、第1フランジ部及び負極終端電極は、積層方向から見て互いに重なる部分を有していてもよい。電解液としてアルカリ水溶液が用いられる蓄電モジュールにおいては、いわゆるアルカリクリープ現象によって、積層体の負極側の端部(他端)からの電解液の漏液が発生し易くなる。このため、上記構成によれば、蓄電モジュールの負極側の端部における耐圧強度を向上させて拘束圧を高めることができるため、電解液の漏液をより一層効果的に抑制できる。
 本発明の一側面によれば、電解液の漏液を効果的に抑制できる蓄電モジュールの製造方法及び蓄電モジュールを提供することができる。
蓄電モジュールを備える蓄電装置の一実施形態を示す概略断面図である。 第1実施形態の蓄電モジュールの一実施形態を示す概略断面図である。 図2に示される蓄電モジュールの要部拡大断面図である。 図2に示される蓄電モジュールの製造工程を説明するための図である。 図2に示される蓄電モジュールの製造工程を説明するための図である。 図2に示される蓄電モジュールの製造工程を説明するための図である。 比較例に係る蓄電モジュールの製造工程を説明するための図である。 第1の変形例に係る蓄電モジュールを示す概略断面図である。 第2の変形例に係る蓄電モジュールを示す概略断面図である。 解析モデルを示す概略図である。 図10に示される解析モデルによる解析結果を示す図である。 第2実施形態の蓄電モジュールの一実施形態を示す概略断面図である。 図12に示される蓄電モジュールの要部拡大断面図である。
 以下、添付図面を参照しながら本発明の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。図面にはXYZ直交座標系が示される。
[第1実施形態]
[蓄電装置の構成]
 図1は、蓄電モジュールを備える蓄電装置の一実施形態を示す概略断面図である。同図に示される蓄電装置10は、例えばフォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリとして用いられる。蓄電装置10は、複数(本実施形態では3つ)の蓄電モジュール12を備えるが、単一の蓄電モジュール12を備えてもよい。蓄電モジュール12は例えばバイポーラ電池である。蓄電モジュール12は、例えばニッケル水素二次電池、リチウムイオン二次電池等の二次電池であるが、電気二重層キャパシタであってもよい。以下の説明では、ニッケル水素二次電池を例示する。
 複数の蓄電モジュール12は、例えば金属板等の導電板14を介して積層され得る。積層方向D1(Z方向)から見て、蓄電モジュール12及び導電板14は例えば矩形形状を有する。各蓄電モジュール12の詳細については後述する。導電板14は、蓄電モジュール12の積層方向D1において両端に位置する蓄電モジュール12の外側にもそれぞれ配置される。導電板14は、隣り合う蓄電モジュール12と電気的に接続される。これにより、複数の蓄電モジュール12が積層方向D1に直列に接続される。積層方向D1において、一端に位置する導電板14には正極端子24が接続されており、他端に位置する導電板14には負極端子26が接続されている。正極端子24は、接続される導電板14と一体であってもよい。負極端子26は、接続される導電板14と一体であってもよい。正極端子24及び負極端子26は、積層方向D1に交差する方向(X方向)に延在している。これらの正極端子24及び負極端子26により、蓄電装置10の充放電を実施できる。
 導電板14は、蓄電モジュール12において発生した熱を放出するための放熱板としても機能し得る。導電板14の内部に設けられた複数の空隙14aを空気等の冷媒が通過することにより、蓄電モジュール12からの熱を効率的に外部に放出できる。各空隙14aは例えば積層方向D1に交差する方向(Y方向)に延在する。積層方向D1から見て、導電板14は、蓄電モジュール12よりも小さいが、蓄電モジュール12と同じかそれより大きくてもよい。
 蓄電装置10は、交互に積層された蓄電モジュール12及び導電板14を積層方向D1に拘束する拘束部材16を備え得る。拘束部材16は、一対の拘束プレート16A,16Bと、拘束プレート16A,16B同士を連結する連結部材(ボルト18及びナット20)とを備える。各拘束プレート16A,16Bと導電板14との間には、例えば樹脂フィルム等の絶縁フィルム22が配置される。各拘束プレート16A,16Bは、例えば鉄等の金属によって構成されている。積層方向D1から見て、各拘束プレート16A,16B及び絶縁フィルム22は例えば矩形形状を有する。絶縁フィルム22は導電板14よりも大きくなっており、各拘束プレート16A,16Bは、蓄電モジュール12よりも大きくなっている。積層方向D1から見て、拘束プレート16Aの縁部には、ボルト18の軸部を挿通させる挿通孔H1が蓄電モジュール12よりも外側となる位置に設けられている。同様に、積層方向D1から見て、拘束プレート16Bの縁部には、ボルト18の軸部を挿通させる挿通孔H2が蓄電モジュール12よりも外側となる位置に設けられている。積層方向D1から見て各拘束プレート16A,16Bが矩形形状を有している場合、挿通孔H1及び挿通孔H2は、拘束プレート16A,16Bの角部に位置する。
 一方の拘束プレート16Aは、負極端子26に接続された導電板14に絶縁フィルム22を介して突き当てられ、他方の拘束プレート16Bは、正極端子24に接続された導電板14に絶縁フィルム22を介して突き当てられている。ボルト18は、例えば一方の拘束プレート16A側から他方の拘束プレート16B側に向かって挿通孔H1に通され、他方の拘束プレート16Bから突出するボルト18の先端には、ナット20が螺合されている。これにより、絶縁フィルム22、導電板14及び蓄電モジュール12が挟持されてユニット化されると共に、積層方向D1に拘束荷重が付加される。
 図2は、蓄電モジュール12を示す概略断面図である。図3は、蓄電モジュール12の要部拡大断面図である。具体的には、図3は、蓄電モジュールを構成する積層体の積層方向D1における外縁部(上側縁部及び下側縁部の各々)のうち、X方向における一方側(図2の図示左側)の部分を拡大して示した図である。なお、蓄電モジュールの概略構成を示す図2においては、積層体の外縁部の詳細な構成(図3に示される外縁部Eの構成)の図示は省略されている。
 図2及び図3に示されるように、蓄電モジュール12は、複数のバイポーラ電極(電極)32が積層された積層体30を備える。バイポーラ電極32の積層方向D1から見て積層体30は例えば矩形形状を有する。隣り合うバイポーラ電極32間にはセパレータ40が配置され得る。バイポーラ電極32は、電極板34と、電極板34の一方面に設けられた正極36と、電極板34の他方面に設けられた負極38とを含む。積層体30において、一のバイポーラ電極32の正極36は、セパレータ40を挟んで積層方向D1に隣り合う一方のバイポーラ電極32の負極38と対向し、一のバイポーラ電極32の負極38は、セパレータ40を挟んで積層方向D1に隣り合う他方のバイポーラ電極32の正極36と対向している。積層方向D1において、積層体30の一端には、内側面に負極38が配置された電極板34(負極終端電極)が配置され、積層体30の他端には、内側面に正極36が配置された電極板34(正極終端電極)が配置される。負極終端電極の負極38は、セパレータ40を介して最上層のバイポーラ電極32の正極36と対向している。正極終端電極の正極36は、セパレータ40を介して最下層のバイポーラ電極32の負極38と対向している。これら終端電極の電極板34はそれぞれ隣り合う導電板14(図1参照)に接続される。
 蓄電モジュール12は、積層方向D1に延在する積層体30の側面30aにおいて電極板34の縁部34aを保持する枠体50を備える。枠体50は、積層方向D1から見て積層体30の周囲に設けられている。具体的には、枠体50は、積層体30の側面30aを取り囲むように構成されている。枠体50は、各電極板34の縁部34aに設けられ、電極板34の端部34bから張り出す張出部分52bをそれぞれ有する複数の第1シール部52と、積層方向D1から見て複数の第1シール部52の周囲に設けられる第2シール部54と、を備えている。
 枠体50の内壁を構成する第1シール部52は、各バイポーラ電極32の電極板34の一方面(ここでは正極36が形成される面)から縁部34aにおける電極板34の端面にわたって設けられている。積層方向D1から見て、各第1シール部52は、各バイポーラ電極32の電極板34の縁部34a全周にわたって設けられている。隣り合う第1シール部52同士は、各バイポーラ電極32の電極板34の他方面(ここでは負極38が形成される面)の外側に延在する面において当接している。その結果、第1シール部52には、各バイポーラ電極32の電極板34の縁部34aが埋没して保持されている。各バイポーラ電極32の電極板34の縁部34aと同様に、積層体30の両端に配置された電極板34の縁部34aも第1シール部52に埋没した状態で保持されている。具体的には、正極終端電極については、正極終端電極の外側面(導電板14に接続される面)にも、第1シール部52が設けられている。すなわち、正極終端電極の縁部34aは、正極終端電極の外側面に設けられた第1シール部52(図2において1番下に設けられた第1シール部52)と、正極終端電極の一方面に設けられた第1シール部52とに埋没した状態で保持されている。積層方向D1に隣り合う電極板34,34間には、当該電極板34,34と第1シール部52とによって気密に仕切られた内部空間Vが形成されている。当該内部空間Vには、例えば水酸化カリウム水溶液等のアルカリ溶液からなる電解液(不図示)が収容されている。
 枠体50の外壁を構成する第2シール部54は、積層方向D1を軸方向として延在する筒状部である。第2シール部54は、積層方向D1において積層体30の全長にわたって延在する。第2シール部54は、積層方向D1に延在する第1シール部52の外側面を覆っている。第2シール部54は、後述する射出成形によって形成されている。第2シール部54は、積層方向D1における両端部の各々において、内側に延在する矩形環状のフランジ部54aを有している。フランジ部54aは、積層体30の積層端に位置する第1シール部52の積層方向D1における外側面の少なくとも一部を覆う部分である。積層体30は、積層方向D1における両端部に形成されるフランジ部54aによって挟持されている。
 電極板34は、例えばニッケルからなる矩形の金属箔である。或いは、電極板34は、ニッケルめっき鋼板であってもよい。電極板34の縁部34aは、正極活物質及び負極活物質が塗工されない未塗工領域となっており、当該未塗工領域が枠体50の内壁を構成する第1シール部52に埋没して保持される領域となっている。正極36を構成する正極活物質としては、例えば水酸化ニッケルが挙げられる。負極38を構成する負極活物質としては、例えば水素吸蔵合金が挙げられる。電極板34の他方面における負極38の形成領域は、電極板34の一方面における正極36の形成領域に対して一回り大きくなっている。
 セパレータ40は、例えばシート状に形成されている。セパレータ40を形成する材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン等からなる織布又は不織布等が例示される。また、セパレータ40は、フッ化ビニリデン樹脂化合物等で補強されたものであってもよい。なお、セパレータ40は、シート状に限られず、袋状のものを用いてもよい。
 枠体50を構成する樹脂材料としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、又は変性ポリフェニレンエーテル(変性PPE)等が挙げられる。
 図3に示されるように、積層体30の積層方向D1における外縁部Eに含まれる一又は複数の第1シール部52の張出部分52bの長さd1が、外縁部Eに含まれない第1シール部52の張出部分52bの長さd2よりも短い。ここで、張出部分52bの長さとは、電極板34の端部34bから張出部分52bの端部52a(すなわち、第1シール部52の先端部)までの長さである。また、外縁部Eとは、積層体30の積層方向D1における外側の一部分であり、積層体30において最も外側の電極板34(正極終端電極又は負極終端電極)を少なくとも含む部分である。本実施形態では一例として、負極終端電極を含む外縁部E1は、負極終端電極、及び負極終端電極と隣接する3つの電極板34を含んでいる。正極終端電極を含む外縁部E2は、正極終端電極、及び正極終端電極と隣接する3つの電極板34を含んでいる。
 本実施形態では一例として、複数(ここでは4つ)の第1シール部52によって形成される外縁部E1における角部は、面取りされた形状をなしている。このような面取り形状は、負極終端電極に設けられた第1シール部521の加工前の張出部分52bと、負極終端電極と隣接する3つの電極板34に設けられた3つの第1シール部522~524の各々の加工前の張出部分52bとを合わせた領域のうち、当該領域の隅部に相当する直角二等辺三角形状の領域が除去されることによって形成されている。これにより、第1シール部521~524の各々の張出部分52bの長さd11~d14(ここでは一例として平均長さ(すなわち、張出部分52bの積層方向D1における中心部における長さ))は、いずれも外縁部Eに含まれない第1シール部52の張出部分52bの長さd2よりも短くなっている。また、積層体30のうち複数の第1シール部52と複数の電極板34とが重なる部分の積層方向D1における幅t1は、積層体30のうち複数の第1シール部52の張出部分52bが互いに重なる部分の外側端部の積層方向D1における幅t2よりも大きくなっている。
 蓄電モジュール12の外縁部E2における構成は、上述した外縁部E1における構成と同様である。具体的には、図3に示されるように、蓄電モジュール12の外縁部E2における構成は、蓄電モジュール12の外縁部E1における構成とほぼ対称的な構成である。すなわち、複数(ここでは4つ)の第1シール部52によって形成される外縁部E2における角部は、外縁部E1における角部と同様に面取りされた形状をなしている。このような形状は、正極終端電極に設けられた第1シール部525,526の加工前の張出部分52bと、正極終端電極と隣接する2つの電極板34に設けられた2つの第1シール部527,528の各々の加工前の張出部分52bとを合わせた領域のうち、当該領域の隅部に相当する直角二等辺三角形状の領域が除去されることによって形成されている。これにより、第1シール部525~528の各々の張出部分52bの長さは、外縁部Eに含まれない第1シール部52の張出部分52bの長さd2よりも短くなっている。
[蓄電装置の製造方法]
 次に、図4~図6を参照して、図1に示される蓄電装置10の製造方法(蓄電モジュール12の製造方法を含む)の一例について説明する。
(準備工程)
 まず、図4に示されるように、積層体30及び複数の第1シール部52が準備される。例えば、それぞれ第1シール部52が予め電極板34の縁部34aに形成された複数のバイポーラ電極32を、セパレータ40を介して積層することにより、積層体30が得られる。積層体30は、例えば、複数の第1シール部52の端部52aの位置を揃えるようにして、複数のバイポーラ電極32及びセパレータ40を積層することにより形成される。これにより、複数の第1シール部52の端部52aの位置が揃った積層体30が得られる。
(加工工程)
 続いて、図5に示されるように、積層体30の積層方向D1における外縁部E(外縁部E1及び外縁部E2)に含まれる一又は複数の第1シール部52の各々の張出部分52bが加工される。具体的には、外縁部E1に含まれる一又は複数の第1シール部52(ここでは、4つの第1シール部521~524)の張出部分52bの長さが、外縁部Eに含まれない第1シール部52の張出部分52bの長さd2よりも短くなるように、当該一又は複数の第1シール部52の張出部分52bが加工される。ここでは一例として、第1シール部521~524の各々の加工前の張出部分52bを合わせた領域のうち、当該領域の隅部に相当する直角二等辺三角形状の領域R1が除去される。
 このような面取り形状(ここでは領域R1)は、電極板34の縁部34aが露出しない程度(すなわち、電極板34の縁部34aが第1シール部52に被覆された状態が維持される程度)に、任意に定められ得る。例えば、領域R1の斜辺以外の1辺の長さd3は、設計値として予め定められた長さd2(張出部分52bの端部34bからの飛び出し量)の所定割合(例えば4分の3)を上限として定められてもよい。例えば、長さd2が2mmである場合、長さd3は、長さd2の4分の3である1.5mmを上限として設定されてもよい。この場合、外縁部E1における複数の第1シール部52の端部52aは、C1.5で加工されたC面となる。なお、長さd3の大きさにより、面取り形状を形成する第1シール部52の個数は変化し得る。例えば、図5の例では、4つの第1シール部52によって面取り形状(領域R1)が形成されているが、長さd3をこれよりも短くした場合には、1個~3個の第1シール部52によって面取り形状が形成され得る。
 ここで、面取り形状(領域R1)は、例えば、第1シール部521~524の各々の加工前の張出部分52bの端部を加熱することによって形成され得る。例えば、第1シール部521~524の各々の加工前の張出部分52bを合わせた領域のうち領域R1に相当する領域は、加熱されて溶かされることによって除去される。この場合、隣り合う第1シール部52の張出部分52b同士が熱によって固定(溶着)され、外縁部E1に含まれる張出部分52bの強度を向上させることができる。これにより、後述する射出成形工程時に流入する樹脂材料RMの圧力によって当該張出部分52bが変形すること(剥がれ、捲れ上がり等)を抑制することができる。
 また、本実施形態では一例として、上述したような面取り加工によって、積層体30の積層端に近い第1シール部52ほど、当該第1シール部52の張出部分52bの長さが短くなるように、外縁部E1に含まれる4つの第1シール部52(第1シール部521~524)の張出部分52bが加工される。具体的には、第1シール部521~524の各々の張出部分52bの長さd11~d14について、「d11<d12<d13<d14」が成立している。
 外縁部E2についても外縁部E1と同様に加工される。すなわち、外縁部E2に含まれる一又は複数の第1シール部52(ここでは、4つの第1シール部525~528)の張出部分52bの長さが、外縁部Eに含まれない第1シール部52の張出部分52bの長さd2よりも短くなるように、当該一又は複数の第1シール部52の張出部分52bが加工される。具体的には、上述したような外縁部E1に対する加工処理と同様の加工処理によって、第1シール部525~528の各々の加工前の張出部分52bを合わせた領域のうち、当該領域の隅部に相当する直角二等辺三角形状の領域R2が除去される。
(射出成形工程)
 続いて、図6に示されるように、型枠M内に樹脂材料RMを流通させる射出成形を実行する。型枠Mに設けられた開口Maを介して、型枠Mと複数の第1シール部52との間に形成される空間に樹脂材料RMが流れ込むことにより、第2シール部54(図3参照)が形成される。当該射出成形によって、積層体30の積層端に位置する第1シール部52(ここでは、負極終端電極に設けられた第1シール部521及び正極終端電極に設けられた第1シール部525)の積層方向D1における外側面の少なくとも一部を第2シール部54が覆うように、第2シール部54が形成される。すなわち、当該射出成形により、フランジ部54a(図3参照)を有する第2シール部54が形成される。
[第1実施形態の作用効果]
 以上述べたように、本実施形態に係る蓄電モジュールの製造方法は、積層体30及び複数の第1シール部52を準備する工程(準備工程)と、積層体30の積層方向D1における外縁部Eに含まれる一又は複数の第1シール部52の張出部分52bの長さd1が、外縁部Eに含まれない第1シール部52の張出部分52bの長さd2よりも短くなるように、一又は複数の第1シール部52の張出部分52bを加工する工程(加工工程)と、型枠M内に樹脂材料RMを流通させる射出成形によって、積層方向D1から見て第1シール部52の周囲に設けられ、積層体30の積層端に位置する第1シール部52の積層方向における外側面の少なくとも一部を第2シール部54が覆う第2シール部54を形成する工程(射出成形工程)と、を含む。
 この蓄電モジュールの製造方法では、積層体30の外縁部Eに含まれる一又は複数の第1シール部52の張出部分52bの長さd1が外縁部Eに含まれない第1シール部52の張出部分52bの長さd2よりも短くなるように、当該一又は複数の張出部分52b(本実施形態では一例として、外縁部E1に含まれる4つの第1シール部521~524の張出部分52b及び外縁部E2に含まれる4つの第1シール部525~528の張出部分52b)が加工される。これにより、外縁部Eに含まれる一又は複数の第1シール部52の張出部分52bは、外縁部Eに含まれない第1シール部52の張出部分52bと比較して、捲れ上がり等の変形が抑制される。その結果、射出成形時において、積層体30の外縁部Eに含まれる一又は複数の第1シール部52の張出部分52bが捲れ上がって樹脂材料RMの流路を塞いでしまう虞が低減される。すなわち、射出成形時において、フランジ部54a(第2シール部54のうち、積層体30の積層端に位置する第1シール部52の外側面の少なくとも一部を覆う部分)に対応する空間に樹脂材料RMを流し込み易くすることができる。以上により、この蓄電モジュールの製造方法によれば、積層体30の側面30aをシール(封止)するシール部材(第1シール部52及び第2シール部54)を精度良く形成することができる。
 図7に示される比較例を参照して、上記効果について補足する。当該比較例は、上述した準備工程の後に直ちに射出成形工程を実施した例である。すなわち、比較例では、積層体30の積層方向D1における外縁部に含まれる第1シール部52の張出部分52bに対する加工(加熱、切削等)が実施されておらず、当該張出部分52bの長さは、外縁部に含まれない第1シール部52の張出部分52bの長さと同一となっている。このため、比較例においては、図7に示されるように、負極終端電極側及び正極終端電極側のそれぞれ(或いは一方)において、終端電極に設けられた第1シール部52が、フランジ部54aに対応する空間Sへの流路を塞ぐように捲れ上がる虞がある。図7の例では、終端電極に設けられた第1シール部52だけでなく、その隣の第1シール部52も捲れ上がっている。このような事態が生じてしまうと、樹脂材料RMが空間Sに適切に流れ込まず、第2シール部54(図3参照)を適切に形成できない虞がある。一方、本実施形態に係る蓄電モジュールの製造方法では、上述した通り、加工工程によって外縁部Eに含まれる第1シール部52の張出部分52bの捲れ上がりを抑制しているため、フランジ部54aに対応する空間Sに樹脂材料RMを適切に流し込むことができる。
 また、加工工程においては、外縁部Eに含まれる複数の第1シール部52の張出部分52bを加熱することによって、隣り合う張出部分52b同士が溶着(接合)させられる。このように、隣り合う張出部分52b同士を熱によって溶着することにより、外縁部Eに含まれる複数の第1シール部52の張出部分52bの強度を向上させることができる。これにより、射出成形時に流入する樹脂材料RMの圧力によって外縁部Eに含まれる複数の第1シール部52の張出部分52bが変形すること(捲れ上がり等)を一層抑制することができる。その結果、フランジ部54aに対応する空間への樹脂材料RMの流路が塞がれることを効果的に抑制することができる。
 また、加工工程においては、積層端に近い第1シール部52ほど、当該第1シール部52の張出部分52bの長さが短くなるように、外縁部Eに含まれる複数の第1シール部52の張出部分52bが加工される。フランジ部54aに対応する空間Sへの樹脂材料RMの流路を塞ぐ虞が大きい張出部分52b(すなわち、積層端に近い第1シール部52の張出部分52b)ほど、その長さが短くなるように加工されることにより、フランジ部54aに対応する空間Sへの樹脂材料RMの流路が塞がれることを効果的に抑制することができる。
 本実施形態に係る蓄電モジュール12は、電極板34、電極板34の一方面に設けられた正極36、及び電極板34の他方面に設けられた負極38をそれぞれ有する複数のバイポーラ電極32が積層されてなる積層体30と、各電極板34の縁部34aに設けられ、電極板34の端部34bから張り出す張出部分52bをそれぞれ有する複数の第1シール部52と、積層体30の積層方向D1から見て複数の第1シール部52の周囲に設けられ、積層体30の積層端に位置する第1シール部52の積層方向D1における外側面の少なくとも一部を覆う第2シール部54と、を備えている。積層体30の積層方向D1における外縁部Eに含まれる一又は複数の第1シール部52の張出部分52bの長さd1は、外縁部Eに含まれない第1シール部52の張出部分52bの長さd2よりも短い。
 この蓄電モジュール12では、積層体30の外縁部Eに含まれる一又は複数の第1シール部52の張出部分52bの長さd1が外縁部Eに含まれない第1シール部52の張出部分52bの長さd2よりも短い。これにより、蓄電モジュール12の製造時において、外縁部Eに含まれる一又は複数の第1シール部52の張出部分52bは、外縁部Eに含まれない第1シール部52の張出部分52bと比較して、捲れ上がり等の変形が抑制される。その結果、射出成形時において、外縁部Eに含まれる一又は複数の第1シール部52の張出部分52bが捲れ上がって樹脂材料RMの流路を塞いでしまう虞が低減される。すなわち、射出成形時において、フランジ部54a(第2シール部54のうち、積層体30の積層端に位置する第1シール部52の外側面の少なくとも一部を覆う部分)に対応する空間Sに、樹脂材料RMが流れ込み易くなる。以上により、蓄電モジュール12によれば、積層体30の側面30aをシールするシール部材(第1シール部52及び第2シール部54)を精度良く形成することができる。
 以上、本発明の第1実施形態について詳細に説明されたが、本発明は上記実施形態に限定されない。例えば、図8に示される第1の変形例に係る蓄電モジュール12Aのように、積層体30の上側及び下側のそれぞれの外縁部に含まれる複数(ここでは2つ)の第1シール部52Aの張出部分52bの一部が積層方向D1に平行な方向に沿って切除されることにより、階段状の切欠き形状が形成されてもよい。このような構成においても、外縁部に含まれる第1シール部52Aの張出部分52bの捲れ上がりを抑制でき、射出成形工程において、フランジ部54aに対応する空間に樹脂材料を流し込み易くすることができる。
 また、外縁部Eに含まれる一又は複数の第1シール部52の端部52aの形状は、必ずしも熱による加工によって形成されなくてもよく、例えば当該一又は複数の第1シール部52の張出部分52bの切削加工によって形成されてもよい。
 また、図9に示される第2の変形例に係る蓄電モジュール12Bのように、外縁部Eに含まれる複数の第1シール部52の端部52aは、R形状をなしていてもよい。すなわち、外縁部Eに含まれる複数の第1シール部52の端部52aにより形成される面は、上述したようなC面加工によって形成されたC面に限られず、R面加工によって形成されたR面(丸みを帯びた面)であってもよい。R面加工は、例えば、R形状が形成された熱板を複数の第1シール部52の端部52aに押し当てること等によって行われ得る。ただし、R面加工は、その他の加工方法であってもよく、例えば機械的な切断処理であってもよい。
 ここでは一例として、負極終端電極に設けられた第1シール部52B1の加工前の張出部分52bと、負極終端電極と隣接する3つの電極板34に設けられた3つの第1シール部52B2~52B4の加工前の張出部分52bとを合わせた領域の一部が、R面加工によって除去されている。これにより、4つの第1シール部52B1~52B4の端部52aによってR面が形成されている。その結果、第2シール部54のうち第1シール部52B1~52B4の端部52aに接する部分には、第1シール部52B1~52B4の端部52aの形状に対応したR面部54bが形成されている。
 同様に、正極終端電極に設けられた第1シール部52B5の加工前の張出部分52bと、正極終端電極と隣接する3つの電極板34に設けられた3つの第1シール部52B6~52B8の加工前の張出部分52bとを合わせた領域の一部が、R面加工によって除去されている。これにより、4つの第1シール部52B5~52B8の端部52aによってR面が形成されている。その結果、第2シール部54のうち第1シール部52B5~52B8の端部52aに接する部分には、第1シール部52B5~52B8の端部52aの形状に対応するR面部54bが形成されている。
 第2シール部54にR面部54bが形成されることにより、蓄電モジュール12Bの耐圧性能を効果的に向上させることができる。これについて、図10及び図11を参照して詳細に説明する。
 図10は、解析モデルSMを示す概略図である。解析モデルSMは、蓄電モジュールの内圧上昇によって、正極終端電極の電極板34と当該電極板34に設けられた第1シール部52とが第2シール部54のフランジ部54aを押し上げる際の動作をシミュレートするために用意されたモデルの一例である。解析モデルSMは、実際の蓄電モジュールの構成とは異なる。解析モデルSMにおいて、フランジ部54aの厚み(積層方向D1における長さ)は、1.13mmに設定されている。フランジ部54aの張出長さ(フランジ部54aの基端部と先端部との間の距離)は、4.1mmに設定されている。フランジ部54aの先端部と導電板14との距離は、0.5mmに設定されている。なお、解析モデルSMでは、実際の蓄電モジュールの構成とは異なり、第1シール部52と導電板14とが接触している。
 図11は、上述した解析モデルSMによる解析結果を示すグラフである。図11に示される解析結果は、R面部54bの中央部分(図10の領域A1)、及び第1シール部52と第2シール部54との接着部分(図10の領域A2)のそれぞれについて、各部分が破断(剥離)する際(クライテリア到達時)の内圧(解析モデルSMの内部空間S1の内圧)とR面部54bのR形状の寸法(円の半径)であるRサイズとの関係を示している。
 図11において、グラフG1は、領域A1のクライテリア到達時における内部空間S1の内圧とRサイズとの関係を示しており、グラフG2は、領域A2のクライテリア到達時における内部空間S1の内圧とRサイズとの関係を示している。グラフG1,G2の破線部分は、他のRサイズに対応する計算結果に基づく外挿によって得られた推定値である。図11に示されるように、解析モデルSMを用いた解析によって、蓄電モジュールの内圧上昇による影響を受けやすいいずれの領域A1,A2においても、R面部54bのRサイズが大きい程、耐圧性能が向上するという解析結果が得られた。具体的には、Rサイズが1mmであるR面部54bを形成することにより、R面部54bが設けられない場合(Rサイズが0の場合)と比較して、領域A1が破断する際の内圧(破壊圧力)を約0.4MPa(推定値)から約1MPaまで上げることが可能であり、領域A2が破断する際の内圧(破壊圧力)を約1.5MPa(推定値)から約2.7MPaまで上げることが可能であることを示す解析結果が得られた。
 なお、蓄電モジュール12Bでは、複数(ここでは4つ)の第1シール部52の端部52aによって滑らかなR形状が形成される形態を例示したが、複数の第1シール部52の端部52aによって形成されるR形状は、階段状に形成された疑似的なR形状であってもよい。
[第2実施形態]
 図12に示されるように、第2実施形態に係る蓄電モジュール12Cは、積層体130と、積層方向Dから見て電極(複数のバイポーラ電極132、負極終端電極132A、及び正極終端電極132B)の縁部を包囲するように積層体130に設けられた枠体150(シール部)と、を有している。積層体130の積層方向Dは、蓄電装置10の積層方向Dと一致している。積層体130は、積層方向Dに延びる側面130aを有している。
 バイポーラ電極132は、バイポーラ電極32と同様に、電極板134、電極板134の第1面134aに設けられた正極136、電極板134の第1面134aの反対側の第2面134bに設けられた負極138を含んでいる。正極136は、正極36と同様に、正極活物質が電極板134に塗工されることにより形成される正極活物質層である。負極138は、負極38と同様に、負極活物質が電極板134に塗工されることにより形成される負極活物質層である。積層体130において、一のバイポーラ電極132の正極136は、セパレータ140を挟んで積層方向Dに隣り合う他のバイポーラ電極132の負極138と対向している。積層体130において、一のバイポーラ電極132の負極138は、セパレータ140を挟んで積層方向Dに隣り合うさらに他のバイポーラ電極132の正極136と対向している。
 負極終端電極132Aは、電極板134、及び電極板134の第2面134bに設けられた負極138を含んでいる。負極終端電極132Aは、その第2面134bが積層体130の内側(積層方向Dについての中心側)になるように、積層方向Dの一端に配置されている。負極終端電極132Aの負極138は、セパレータ40と同様のセパレータ140を介して、積層方向Dの一端のバイポーラ電極132の正極136と対向している。正極終端電極132Bは、電極板134、及び電極板134の第1面134aに設けられた正極136を含んでいる。正極終端電極132Bは、その第1面134aが積層体130の内側になるように、積層方向Dの他端に配置されている。正極終端電極132Bの正極136は、セパレータ140を介して、積層方向Dの他端のバイポーラ電極132の負極138と対向している。
 負極終端電極132Aの電極板134の第1面134aには、導電板14が接触している。また、正極終端電極132Bの電極板134の第2面134bには、蓄電モジュール12Cに隣接する他方の導電板14が接触している。拘束部材16からの拘束荷重は、導電板14を介して負極終端電極132A及び正極終端電極132Bから積層体130に付加される。すなわち、導電板14は、積層方向Dに沿って積層体130に拘束荷重を付加する拘束部材でもある。
 枠体150は、例えば絶縁性の樹脂によって、全体として矩形の筒状に形成されている。枠体150は、電極板134の縁部134cを包囲するように積層体130の側面130aに設けられている。枠体150は、側面130aにおいて縁部134cを保持している。枠体150は、縁部134cに溶着された複数の第1シール部151と、側面130aに沿って第1シール部151を外側から包囲するように第1シール部151に接合された単一の第2シール部152と、を有している。
 第1シール部151は、積層方向Dから見て、矩形環状をなし、縁部134cの全周にわたって連続的に設けられている。第1シール部151は、電極板134の第1面134aに溶着されて気密に接合されている。第1シール部151は、例えば超音波又は熱によって溶着されている。第1シール部151は所定の厚さ(積層方向Dの長さ)を有するフィルムである。電極板134の端面は、第1シール部151から露出している。第1シール部151の内側の一部は、積層方向Dに互いに隣り合う電極板134の縁部134c同士の間に位置しており、外側の一部は、電極板134から外側に張り出している。第1シール部151は、当該外側の一部において第2シール部152に埋設されている。積層方向Dに沿って互いに隣り合う第1シール部151同士は、互いに離間している。
 第2シール部152は、積層体130及び第1シール部151の外側に設けられ、蓄電モジュール12Cの外壁(筐体)を構成している。第2シール部152は、例えば樹脂の射出成型によって形成され、積層方向Dに沿って積層体130の全長にわたって延在している。第2シール部152は、積層方向Dを軸方向として延在する筒状(環状)を呈している。第2シール部152は、例えば、射出成型時の熱によって第1シール部151の外表面に溶着(接合)されている。
 第2シール部152は、第1シール部151と共に、積層方向Dに沿って互いに隣り合うバイポーラ電極132の間、積層方向Dに沿って互いに隣り合う負極終端電極132Aとバイポーラ電極132との間、及び、積層方向Dに沿って互いに隣り合う正極終端電極132Bとバイポーラ電極132との間をそれぞれ封止している。これにより、バイポーラ電極132の間、負極終端電極132Aとバイポーラ電極132との間、及び、正極終端電極132Bとバイポーラ電極132との間には、それぞれ気密に仕切られた内部空間Vが形成されている。この内部空間Vには、例えば水酸化カリウム水溶液等のアルカリ水溶液からなる電解液(不図示)が収容されている。電解液は、セパレータ140、正極136及び負極138内に含浸されている。
 第1シール部151及び第2シール部152は、例えば、絶縁性の樹脂であって、ポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、又は変性ポリフェニレンエーテル(変性PPE)等から構成され得る。
 第2シール部152は、積層方向Dにおける一端側において負極終端電極132Aの縁部に設けられた第1シール部151である第1終端シール部151Aに接合された第1フランジ部153を有している。第1終端シール部151Aは、負極終端電極132Aの電極板134の第1面134aに溶着されている。第1フランジ部153は、積層方向Dから見て第1終端シール部151Aと重なる部分を有している。第1フランジ部153は、積層体130の一端側において、積層方向Dから見て内側に延在する矩形環状に形成されている。第1フランジ部153は、第1終端シール部151Aの外面(電極板134の第1面134aに溶着される面とは反対側の面)に当接している。第1フランジ部153は、第1終端シール部151Aの外面に溶着されている。
 第2シール部152は、積層方向Dにおける他端側において正極終端電極132Bの縁部に設けられた第1シール部151である第2終端シール部151Bに接合された第2フランジ部154を有している。第2終端シール部151Bは、正極終端電極132Bの電極板134の第2面134bに溶着されている。第2フランジ部154は、積層方向Dから見て第2終端シール部151Bと重なる部分を有している。第2フランジ部154は、積層体130の他端側において、積層方向Dから見て内側に延在する矩形環状に形成されている。第2フランジ部154は、第2終端シール部151Bの外面(電極板134の第2面134bに溶着される側の面とは反対側の面)に当接している。第2フランジ部154は、第2終端シール部151Bの外面に溶着されている。
 図13に示されるように、第1フランジ部153及び負極終端電極132Aは、積層方向Dから見て互いに重なる部分153aを有している。すなわち、積層方向Dから見て、第1フランジ部153の内側端部153bは負極終端電極132Aの電極板134の端部134dよりも内側に位置している。部分153aは、積層方向Dから見て、負極終端電極132Aの電極板134の縁部の全周に亘って、矩形枠状に形成されている。部分153aの幅w(すなわち、積層方向Dから見て第1フランジ部153、第1終端シール部151A、及び負極終端電極132Aが重なる部分の幅)は、例えば、第1終端シール部151Aの厚さ(積層方向Dの長さ)の10倍程度に設定される。
 ここで、蓄電モジュール12Cは、使用されることにより、その内部(各内部空間V)にガスを発生させる。当該ガスにより蓄電モジュール12C内の内圧が上昇する。このような内圧の上昇が生じると、蓄電モジュール12Cの構造上、積層体130の最外層(積層体130の一端又は他端)において、積層方向Dに沿って内側から外側への圧力が作用することになる(図13の矢印を参照)。この場合、積層体130の最外層に配置された部材のうち比較的強度が低い第1シール部151(第1終端シール部151A又は第2終端シール部151B)が脆弱部となる。そして、例えば、このような脆弱部が上記圧力を受けて内側から外側に向けて変形すると、当該変形部分から蓄電モジュール12Cの内部に蓄えられた電解液が漏出するおそれが高くなる。
 一方、上述した蓄電モジュール12Cでは、第1フランジ部153と負極終端電極132Aとの組が、積層方向Dから見て互いに重なる部分(積層方向Dから見て部分153aと重なる部分)を有している。すなわち、脆弱部(第1終端シール部151A)のみで上記圧力を受けることがないように各部材(第1フランジ部153と負極終端電極132Aとの組)が配置されている。これにより、蓄電モジュール12Cの耐圧強度の向上が図られており、上記脆弱部の変形が抑制されている。その結果、上述したような電解液が漏出するおそれが低減されている。従って、蓄電モジュール12Cによれば、電解液の漏液を効果的に抑制できる。
 なお、本実施形態では、第2フランジ部154と正極終端電極132Bとの組も、第1フランジ部153と負極終端電極132Aとの組と同様に、積層方向Dから見て互いに重なる部分(オーバーラップ部分)を有している。このように、負極終端電極132A側及び正極終端電極132B側の両方において、オーバーラップ部分が存在することにより、効果的に蓄電モジュール12Cの耐圧強度を向上させることができる。これにより、蓄電モジュール12Cの積層方向Dにおける拘束圧を向上させることができ、その結果として負極終端電極132A側又は正極終端電極132B側からの電解液の漏液を効果的に抑制できる。ただし、第1フランジ部153と負極終端電極132Aとの組及び第2フランジ部154と正極終端電極132Bとの組の少なくとも一方の組が、積層方向Dから見て互いに重なる部分を有していてもよい。このような場合にも、蓄電モジュール12Cの耐圧強度及び拘束圧の向上を図ることができ、その結果として電解液の漏液を抑制できる。
 また、電解液としてアルカリ水溶液が用いられる蓄電モジュール12Cにおいては、いわゆるアルカリクリープ現象によって、積層体130の負極側の端部(他端)からの電解液の漏液が発生し易くなる。このため、蓄電モジュール12Cのように、少なくとも第1フランジ部153及び負極終端電極132Aが積層方向Dから見て互いに重なる部分を有する構成によれば、蓄電モジュール12Cの負極側の端部における耐圧強度を向上させて拘束圧を高めることができるため、アルカリクリープ現象による電解液の漏液をより一層効果的に抑制できる。
 また、部分153aの幅w(すなわち、積層方向Dから見て第1フランジ部153、第1終端シール部151A、及び負極終端電極132Aが重なる部分の幅)は、蓄電モジュール12Cの耐圧強度が飽和状態(幅wの増加量に対して耐圧強度が一定以上上昇しなくなった状態)となる大きさに設定されることが好ましい。重複部分の大きさ(幅w)を必要十分な大きさとすることにより、第2シール部152の材料コストを低減できる。
 以上、本発明の第1実施形態及び第2実施形態について説明したが、第1実施形態及び第2実施形態のいずれにおいても、蓄電モジュールの電解液の漏液を効果的に抑制できる。また、第1実施形態及び第2実施形態は、互いに組み合わせられてもよい。その場合、第1実施形態の効果及び第2実施形態の効果の両方の効果を得ることができる。
 10…蓄電装置、12,12A,12B,12C…蓄電モジュール、30,130…積層体、30a,130a…側面、32,132…バイポーラ電極、34,134…電極板、34a…縁部、34b…端部、36,136…正極、38,138…負極、50,150…枠体、52,52A,52B1~52B8,151,521~528…第1シール部、52b…張出部分、54,152…第2シール部、54a…フランジ部、54b…R面部、132A…負極終端電極、132B…正極終端電極、151A…第1終端シール部、151B…第2終端シール部、153…第1フランジ部、154…第2フランジ部、D1…積層方向、E,E1,E2…外縁部、M…型枠、RM…樹脂材料。

Claims (7)

  1.  電極板、前記電極板の一方面に設けられた正極、及び前記電極板の他方面に設けられた負極をそれぞれ有する複数のバイポーラ電極が積層されてなる積層体と、各前記電極板の縁部に設けられ、前記電極板の端部から張り出す張出部分をそれぞれ有する複数の第1シール部と、を準備する工程と、
     前記積層体の積層方向における外縁部に含まれる一又は複数の前記第1シール部の前記張出部分の長さが、前記外縁部に含まれない前記第1シール部の前記張出部分の長さよりも短くなるように、前記一又は複数の前記第1シール部の前記張出部分を加工する工程と、
     型枠内に樹脂材料を流通させる射出成形によって、前記積層体の積層方向から見て前記第1シール部の周囲に設けられ、前記積層体の積層端に位置する前記第1シール部の前記積層方向における外側面の少なくとも一部を覆う第2シール部を形成する工程と、を含む、蓄電モジュールの製造方法。
  2.  前記加工する工程においては、前記外縁部に含まれる複数の前記第1シール部の前記張出部分を加熱することによって、隣り合う前記張出部分同士を接合させる、請求項1に記載の蓄電モジュールの製造方法。
  3.  前記加工する工程においては、前記積層端に近い前記第1シール部ほど、当該第1シール部の前記張出部分の長さが短くなるように、前記外縁部に含まれる複数の前記第1シール部の前記張出部分を加工する、請求項1又は2に記載の蓄電モジュールの製造方法。
  4.  前記外縁部に含まれる複数の前記第1シール部の端部は、R形状をなしている、請求項3に記載の蓄電モジュールの製造方法。
  5.  電極板、前記電極板の一方面に設けられた正極、及び前記電極板の他方面に設けられた負極をそれぞれ有する複数のバイポーラ電極が積層されてなる積層体と、
     各前記電極板の縁部に設けられ、前記電極板の端部から張り出す張出部分をそれぞれ有する複数の第1シール部と、
     前記積層体の積層方向から見て複数の前記第1シール部の周囲に設けられ、前記積層体の積層端に位置する前記第1シール部の前記積層方向における外側面の少なくとも一部を覆う第2シール部と、を備え、
     前記積層体の前記積層方向における外縁部に含まれる一又は複数の前記第1シール部の前記張出部分の長さが、前記外縁部に含まれない前記第1シール部の前記張出部分の長さよりも短い、蓄電モジュール。
  6.  複数の電極が積層されてなる積層体と、
     前記積層体の積層方向から見て前記電極の縁部を包囲するように前記積層体に設けられたシール部と、を備え、
     前記電極は、複数のバイポーラ電極と、負極終端電極と、正極終端電極と、を含み、
     前記バイポーラ電極は、電極板と、前記電極板の第1面に設けられた正極と、前記電極板の前記第1面の反対側の第2面に設けられた負極と、を含み、
     前記負極終端電極は、前記電極板と当該電極板の前記第2面に設けられた負極とを含み、前記第2面が前記積層体の内側に位置するように、前記積層方向における前記積層体の一端に配置されており、
     前記正極終端電極は、前記電極板と当該電極板の前記第1面に設けられた正極とを含み、前記第1面が前記積層体の内側に位置するように、前記積層方向における前記積層体の他端に配置されており、
     前記シール部は、複数の前記電極の各々の縁部に設けられた複数の第1シール部と、前記積層方向から見て前記複数の第1シール部を包囲するように前記第1シール部に接合された第2シール部と、を含み、
     前記第2シール部は、前記積層体の前記一端側において前記負極終端電極の縁部に設けられた前記第1シール部である第1終端シール部に当接すると共に、前記積層方向から見て前記第1終端シール部と重なる部分を有する第1フランジ部と、前記積層体の前記他端側において前記正極終端電極の縁部に設けられた前記第1シール部である第2終端シール部に当接すると共に、前記積層方向から見て前記第2終端シール部と重なる部分を有する第2フランジ部と、を含み、
     前記第1フランジ部と前記負極終端電極との組及び前記第2フランジ部と前記正極終端電極との組の少なくとも一方の組は、前記積層方向から見て互いに重なる部分を有している、蓄電モジュール。
  7.  少なくとも、前記第1フランジ部及び前記負極終端電極は、前記積層方向から見て互いに重なる部分を有している、請求項6に記載の蓄電モジュール。
PCT/JP2018/033671 2017-11-10 2018-09-11 蓄電モジュールの製造方法及び蓄電モジュール WO2019092980A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/761,649 US11515596B2 (en) 2017-11-10 2018-09-11 Electricity-storage module manufacturing method and electricity-storage module
JP2019551901A JP7344123B2 (ja) 2017-11-10 2018-09-11 蓄電モジュールの製造方法及び蓄電モジュール
DE112018005400.4T DE112018005400T5 (de) 2017-11-10 2018-09-11 Herstellungsverfahren eines elektrizitätsspeichermoduls und elektrizitätsspeichermodul
CN201880070261.7A CN111279535B (zh) 2017-11-10 2018-09-11 蓄电模块的制造方法和蓄电模块

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-217329 2017-11-10
JP2017217329 2017-11-10
JP2018-048197 2018-03-15
JP2018048197 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019092980A1 true WO2019092980A1 (ja) 2019-05-16

Family

ID=66439129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033671 WO2019092980A1 (ja) 2017-11-10 2018-09-11 蓄電モジュールの製造方法及び蓄電モジュール

Country Status (5)

Country Link
US (1) US11515596B2 (ja)
JP (1) JP7344123B2 (ja)
CN (1) CN111279535B (ja)
DE (1) DE112018005400T5 (ja)
WO (1) WO2019092980A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190713A (ja) * 2003-12-24 2005-07-14 Nissan Motor Co Ltd バイポーラ電池およびその製造方法。
JP2006508518A (ja) * 2002-11-29 2006-03-09 ナイラー インターナショナル アーベー バイポーラ電池およびその製造方法
JP2017508241A (ja) * 2013-12-30 2017-03-23 グリッドテンシャル エナジー インコーポレイテッドGridtential Energy,Inc. 密閉型バイポーラ電池アセンブリ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE519958C2 (sv) * 2001-09-20 2003-04-29 Nilar Europ Ab Ett bipolärt batteri och en biplåtsammansättning
JP4238645B2 (ja) 2003-06-12 2009-03-18 日産自動車株式会社 バイポーラ電池
SE526127C2 (sv) * 2003-11-14 2005-07-12 Nilar Int Ab En packning, ett bipolärt batteri och en metod för tillverkning av ett bipolärt batteri med en sådan packning
SE530190C2 (sv) 2006-01-17 2008-03-25 Nilar Int Ab Ett batteristapelarrangemang
US9685677B2 (en) 2011-10-24 2017-06-20 Advanced Battery Concepts, LLC Bipolar battery assembly
JP2014232765A (ja) * 2013-05-28 2014-12-11 株式会社村田製作所 蓄電装置
JP2015088605A (ja) * 2013-10-30 2015-05-07 アイシン精機株式会社 蓄電デバイスの製造方法及び蓄電デバイス
JP6487669B2 (ja) * 2014-11-05 2019-03-20 昭和電工パッケージング株式会社 蓄電デバイス
JP6933549B2 (ja) * 2017-08-10 2021-09-08 株式会社豊田自動織機 蓄電モジュール
JP2019040792A (ja) * 2017-08-28 2019-03-14 株式会社豊田自動織機 蓄電モジュールの製造方法及び蓄電モジュール
JP2019061834A (ja) * 2017-09-26 2019-04-18 株式会社豊田自動織機 蓄電モジュールの製造方法及び蓄電モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006508518A (ja) * 2002-11-29 2006-03-09 ナイラー インターナショナル アーベー バイポーラ電池およびその製造方法
JP2005190713A (ja) * 2003-12-24 2005-07-14 Nissan Motor Co Ltd バイポーラ電池およびその製造方法。
JP2017508241A (ja) * 2013-12-30 2017-03-23 グリッドテンシャル エナジー インコーポレイテッドGridtential Energy,Inc. 密閉型バイポーラ電池アセンブリ

Also Published As

Publication number Publication date
JP7344123B2 (ja) 2023-09-13
US11515596B2 (en) 2022-11-29
CN111279535B (zh) 2023-08-25
CN111279535A (zh) 2020-06-12
DE112018005400T5 (de) 2020-06-25
JPWO2019092980A1 (ja) 2020-11-12
US20210184301A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP6586969B2 (ja) 蓄電モジュール
KR102568341B1 (ko) 축전 소자
JP2007250319A (ja) 積層型電池
JP2009123582A (ja) 積層型二次電池
WO2018150700A1 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
JP7088410B2 (ja) 蓄電モジュール
WO2018123503A1 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
CN111201657B (zh) 蓄电模块
JP6911749B2 (ja) 蓄電装置
JP6959514B2 (ja) 蓄電モジュール、蓄電モジュールの製造方法、及び、蓄電装置の製造方法
WO2018123502A1 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
WO2018116729A1 (ja) 蓄電モジュール
JP2019192425A (ja) 蓄電モジュール
JP7161356B2 (ja) 蓄電モジュールの製造方法
US20190260088A1 (en) Energy storage device and method of manufacturing energy storage device
WO2019092980A1 (ja) 蓄電モジュールの製造方法及び蓄電モジュール
JP7164459B2 (ja) 蓄電モジュール
JP7074614B2 (ja) 蓄電モジュール
JP2019129070A (ja) バイポーラ電池の製造方法及びバイポーラ電池
JP2020119669A (ja) 蓄電モジュールの製造方法
JP7503037B2 (ja) 二次電池
JP2019117757A (ja) 蓄電モジュール
JP7172904B2 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
JP6858165B2 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
JP7259261B2 (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551901

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18875278

Country of ref document: EP

Kind code of ref document: A1