WO2019092877A1 - 電力変換装置およびその制御方法 - Google Patents

電力変換装置およびその制御方法 Download PDF

Info

Publication number
WO2019092877A1
WO2019092877A1 PCT/JP2017/040705 JP2017040705W WO2019092877A1 WO 2019092877 A1 WO2019092877 A1 WO 2019092877A1 JP 2017040705 W JP2017040705 W JP 2017040705W WO 2019092877 A1 WO2019092877 A1 WO 2019092877A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
generator
power
inverter
synchronous generator
Prior art date
Application number
PCT/JP2017/040705
Other languages
English (en)
French (fr)
Inventor
輝 菊池
佳澤 李
智道 伊藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2017/040705 priority Critical patent/WO2019092877A1/ja
Publication of WO2019092877A1 publication Critical patent/WO2019092877A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power converter and a control method thereof.
  • the introduction of distributed power sources such as solar power generation systems and wind power generation systems has progressed in power systems. These distributed power supplies are often connected to the power system via a power converter.
  • the power conversion device include a power conversion device for solar power generation, a power conversion device for wind power generation, and the like.
  • the power conversion device for solar power generation converts direct current power generated by a solar panel into alternating current power of a commercial frequency to supply power to a power system.
  • the power conversion device for wind power generation converts alternating current power generated by the wind power generator into alternating current power of a commercial frequency to supply power to the electric power system.
  • the distributed power supply connected to the electric power system via such a power conversion device does not have the synchronization power. Therefore, when the introduction rate of the distributed power supply in the power system increases, the synchronization power of the entire power system is insufficient. If the synchronization power is insufficient, the power system becomes unstable, such as the synchronous generator being out of phase or greatly shaking when disturbance occurs.
  • a method of improving the stability of the power system by introducing a distributed power supply to which the synchronization power is applied to the power system.
  • the control unit 12 is configured to control the power conversion unit 3 so that the power conversion unit 3 operates as a virtual generator”. Have been described.
  • a power converter includes an inverter that converts input DC power into AC power, and a control unit that controls the inverter, and the control unit simulates a synchronous generator.
  • the synchronous generator simulation computing unit that executes the calculation to be performed, the DC voltage monitoring unit that monitors the DC voltage input to the inverter, and the parameter value used in the synchronous generator simulation computing unit according to the DC voltage And a parameter value setting unit to be set.
  • the power converter can be operated stably.
  • FIG. 7 is a diagram showing another example of operation waveforms in the first embodiment.
  • FIG. 21 is a block diagram of a wind power generation system according to a ninth embodiment of the present invention.
  • FIG. 1 is a block diagram of a power conversion device 101 according to a first embodiment of the present invention.
  • the power conversion device 101 includes a voltage detector 2, an inverter 3, a voltage detector 4, a current detector 5, and a control unit 6.
  • the power conversion device 101 is connected between the DC power supply 7 and the power system 8. That is, the DC power supply 7 is connected to the DC unit 3 a of the inverter 3, and the power system 8 is connected to the AC unit 3 b of the inverter 3.
  • the inverter 3 includes a plurality of switching elements, smoothing capacitors, etc. (not shown), converts the DC power supplied from the DC power supply 7 into AC power by PWM (Pulse Width Modulation) modulation, and converts it into the power system 8. Supply.
  • the DC power supply 7 may be anything as long as it is a power supply that outputs a DC voltage.
  • the voltage detector 2 is provided on the output side of the DC power supply 7, detects the output voltage of the DC power supply 7, and outputs the detection result as a DC voltage Vdc.
  • the output voltage of the DC power supply 7 is the same as the DC voltage input to the inverter 3, and the DC voltage Vdc may be considered as the DC voltage input to the inverter 3.
  • the voltage detector 4 is provided in the AC unit 3b of the inverter 3, detects the system voltage of the power system 8, and outputs the detection result as the interconnection point voltage Vac.
  • the current detector 5 detects the output current output from the inverter 3 to the power system 8 and outputs the detection result as the interconnection point current Iac.
  • the DC voltage Vdc, the interconnection point voltage Vac and the interconnection point current Iac are input to the control unit 6.
  • the control unit 6 performs predetermined arithmetic processing based on the input voltage detection value or current detection value, and outputs a gate pulse signal GP for driving the inverter 3.
  • the control unit 6 includes hardware as a general computer, such as a central processing unit (CPU), a digital signal processor (DSP), a random access memory (RAM), and a read only memory (ROM). , A control program executed by the CPU, a microprogram executed by the DSP, various data, and the like are stored. In FIG. 1, the inside of the control unit 6 shows functions implemented by a control program and a microprogram as blocks.
  • CPU central processing unit
  • DSP digital signal processor
  • RAM random access memory
  • ROM read only memory
  • control unit 6 includes DC voltage monitoring unit 9, field voltage correction unit 10, generator model calculation unit 11, rotor model calculation unit 12, current control unit 13, and PWM control unit 14. Have.
  • the generator model calculation unit 11 and the rotor model calculation unit 12 both simulate the operation of the synchronous generator.
  • the rotor model calculation unit 12 performs calculations based on mechanical relational expressions such as torque and angular velocity of the synchronous generator to simulate the motion state of the rotor of the synchronous generator.
  • the generator model calculation unit 11 executes an operation based on electrical relational expressions such as voltage, current, magnetic flux, etc. in each part of the synchronous generator to simulate the electric state of the synchronous generator.
  • the rotor model calculation unit 12 outputs the mechanical angular velocity ⁇ M, using the machine input set value TM and the electrical output torque TE as input signals.
  • the machine input set value TM is a value that simulates, for example, an output torque of a motor etc. that drives the synchronous generator.
  • the generator model calculation unit 11 uses the field voltage command value Vf, the interconnection point voltage Vac, and the mechanical angular velocity ⁇ M as input signals, the electrical output torque TE, the output current command value Iac *, Output
  • the output current command value Iac * is a command value for the interconnection point current Iac.
  • the current control unit 13 performs current control such that the interconnection point current Iac approaches the output current instruction value Iac * based on the output current instruction value Iac * and the interconnection point current Iac, and the output voltage instruction value Output Vac *.
  • the PWM control unit 14 outputs the gate pulse signal GP based on the output voltage command value Vac *.
  • the inverter 3 performs PWM modulation, but the gate pulse signal GP is a signal that controls the on / off timing in this PWM modulation.
  • the field voltage correction unit 10 receives the field voltage reference command value Vf0, which is the reference value of the field voltage command value Vf, and the field voltage correction value ⁇ Vf, which is the correction value for the field voltage reference value Vf.
  • a field voltage command value Vf is output.
  • the field voltage reference command value Vf0 is a constant in the present embodiment.
  • the DC voltage monitoring unit 9 monitors the DC voltage Vdc of the inverter 3 and outputs a field voltage correction value ⁇ Vf based on the DC voltage Vdc. The details will be described later.
  • FIG. 2 is a diagram showing an example of operation waveforms according to this embodiment, and illustrates waveforms of an inverter input power Pin, a DC voltage Vdc, a field voltage command value Vf, an internally induced electromotive force Eq, and an inverter output power Pout.
  • the inverter input power Pin is the power input from the DC power supply 7 to the inverter 3.
  • the inverter output power Pout is the power output from the inverter 3 to the power system 8.
  • the internally induced electromotive force Eq is a value used in the generator model calculation unit 11 (see FIG. 1), and represents internally induced electromotive force in the simulated synchronous generator.
  • the inverter input power Pin is Pin1
  • the inverter output power Pout is Pout1
  • the DC voltage Vdc is Vdc1
  • the field voltage command value Vf is Vf1
  • the internally induced electromotive force Eq is Eq1.
  • the power conversion apparatus 101 (see FIG. 1) is in a steady state, and the inverter input power Pin and the inverter output power Pout have substantially equal values. That is, the difference (Pin ⁇ Pout) between the two is a loss in the inverter 3.
  • the inverter input power Pin rises from the power Pin1 to the power Pin2 in a step-like manner.
  • the inverter output power Pout output from the inverter 3 to the power system 8 hardly changes, and almost maintains the previous power Pout1.
  • the smoothing capacitor (not shown) provided in the DC portion 3 a of the inverter 3 is charged by the difference between Pin 2 and Pout 1.
  • the DC voltage Vdc starts to rise.
  • the DC voltage monitoring unit 9 sets the field voltage correction value ⁇ Vf so as to increase the field voltage command value Vf. Then, after “t2”, when “Vdc ⁇ Vdc_U” gradually increases, DC voltage monitoring unit 9 gradually increases field voltage command value Vf.
  • the field voltage of the synchronous generator rises, the internal induced electromotive force of the synchronous generator rises and the generator output increases. Therefore, the internally induced electromotive force Eq rises corresponding to the field voltage command value Vf.
  • the output current command value Iac * (see FIG. 1) output from the generator model calculation unit 11 increases after time t2, and the inverter output power Pout also increases from time t2. start.
  • the inverter output power Pout increases, the rise of the DC voltage Vdc starts to be suppressed.
  • the field voltage command value Vf further increases, the DC voltage Vdc of the inverter 3 starts to decrease.
  • DC voltage monitoring unit 9 adjusts field voltage correction value ⁇ Vf such that DC voltage Vdc of inverter 3 approaches predetermined voltage Vdc1.
  • field voltage command value Vf is stabilized at voltage Vf2 at time t3.
  • the inverter input power Pin is Pin2
  • the DC voltage Vdc is Vdc1
  • the field voltage command value Vf is Vf2
  • the internally induced electromotive force Eq is Eq2
  • the inverter output power Pout is Pout2. Stabilize.
  • the power conversion apparatus 101 see FIG. 1) is in the steady state again, and the inverter input power Pin and the inverter output power Pout become substantially equal.
  • FIG. 3 is a diagram showing another example of operation waveforms in the present embodiment.
  • the inverter input power Pin is Pin3
  • the DC voltage Vdc is Vdc1
  • the field voltage command value Vf is Vf3
  • the internally induced electromotive force Eq is Eq3
  • the inverter output power Pout is Pout3.
  • the state is a steady state before time t1, the inverter input power Pin and the inverter output power Pout are substantially equal, and the difference between them is the loss generated in the inverter 3.
  • the inverter input power Pin is lowered stepwise from the power Pin3 to the power Pin4.
  • the inverter output power Pout output from the inverter 3 to the power system 8 hardly changes, and almost maintains the previous power Pout3.
  • the smoothing capacitor (not shown) provided in the DC portion 3 a of the inverter 3 is discharged by the difference between the power Pout 3 and the power Pin 4.
  • the DC voltage Vdc starts to fall.
  • the DC voltage monitoring unit 9 sets the field voltage correction value ⁇ Vf so as to lower the field voltage command value Vf. Then, after “t2”, when “Vdc_L ⁇ Vdc” gradually increases, DC voltage monitoring unit 9 gradually reduces field voltage command value Vf.
  • the internal induced electromotive force of the synchronous generator decreases and the generator output also decreases. Therefore, the internally induced electromotive force Eq drops corresponding to the field voltage command value Vf.
  • the output current command value Iac * (see FIG. 1) output from the generator model calculation unit 11 decreases after time t2, and the inverter output power Pout also decreases from time t2. start.
  • the inverter output power Pout decreases, the drop of the DC voltage Vdc starts to be suppressed.
  • the field voltage command value Vf is further lowered, the DC voltage Vdc of the inverter 3 starts to rise.
  • the DC voltage monitoring unit 9 adjusts the field voltage command value Vf such that the DC voltage Vdc of the inverter 3 approaches the voltage Vdc1.
  • the field voltage command value Vf is stabilized at the voltage Vf4
  • the internally induced electromotive force Eq is stabilized at Eq4
  • the inverter output power Pout is stabilized at Pout4.
  • the inverter input power Pin and the inverter output power Pout become substantially equal, and the DC voltage Vdc of the inverter 3 is also maintained near the voltage Vdc1.
  • control unit (6) is a synchronous generator simulation computing unit (11, 12) that executes calculation for simulating a synchronous generator, and a direct current input to the inverter (3).
  • the parameter value setting unit (10) sets the parameter value (Vf) according to the DC voltage (Vdc), so the operation of the power conversion device (101) can be stably continued. Therefore, it becomes easy to apply an unstable energy source of output as the DC power supply 7 like a solar power generation system or a wind power generation system.
  • FIG. 4 is a block diagram of a power converter 102 according to a second embodiment of the present invention.
  • symbol may be attached
  • a mechanical input correction unit 25 and a DC voltage monitoring unit 29 are provided instead of the DC voltage monitoring unit 9 and the field voltage correction unit 10 in the first embodiment (see FIG. 1). .
  • the field voltage command value Vf supplied to the generator model calculation unit 11 is a constant in the present embodiment.
  • the machine input correction unit 25 and the DC voltage monitoring unit 29 vary the machine input set value TM according to the DC voltage Vdc. That is, DC voltage monitoring unit 29 receives DC voltage Vdc as input, and outputs machine input correction value ⁇ TM.
  • the machine input correction unit 25 receives the machine input reference set value TM0 and the machine input correction value ⁇ TM as an input, and outputs the machine input set value TM described above.
  • the machine input reference set value TM0 is a constant in the present embodiment.
  • the DC voltage monitoring unit 29 monitors the DC voltage Vdc of the inverter 3 and outputs the machine input correction value ⁇ TM based on the DC voltage Vdc. Moreover, the calculation content in the generator model calculating part 11 and the rotor model calculating part 12 is the same as that of the thing of 1st Embodiment.
  • FIG. 5 is a diagram showing an example of operation waveforms according to this embodiment, and illustrates waveforms of an inverter input power Pin, a DC voltage Vdc, a machine input set value TM, an internal phase angle ⁇ , and an inverter output power Pout.
  • the internal phase angle ⁇ is a parameter calculated by the generator model calculator 11 (see FIG. 4), and is an internal phase angle in the synchronous generator to be simulated.
  • the inverter input power Pin is Pin1
  • the DC voltage Vdc is Vdc1
  • the machine input set value TM is TM1
  • the internal phase angle ⁇ is ⁇ 1
  • the inverter output power Pout is Pout1.
  • the power converter 102 (see FIG. 4) is in a steady state. That is, the inverter input power Pin and the inverter output power Pout have substantially the same value, and the difference between them is the loss generated in the inverter 3.
  • the inverter input power Pin rises from the power Pin1 to the power Pin2 in a step-like manner.
  • the inverter output power Pout output from the inverter 3 to the power system 8 hardly changes, and almost maintains the previous power Pout1.
  • the smoothing capacitor (not shown) provided in the DC portion 3 a of the inverter 3 is charged by the difference between Pin 2 and Pout 1.
  • the DC voltage Vdc starts to rise.
  • the DC voltage monitoring unit 29 sets the machine input correction value ⁇ TM so as to raise the machine input set value TM. Then, after “t2”, when “Vdc ⁇ Vdc_U” gradually increases, the DC voltage monitoring unit 29 gradually increases the machine input set value TM.
  • the generator model calculation unit 11 simulates the characteristics of the synchronous generator to calculate the internal phase angle ⁇ . Thus, as shown, the internal phase angle ⁇ increases corresponding to the machine input setpoint TM.
  • the output current command value Iac * (see FIG. 4) output from the generator model calculation unit 11 increases after time t2, and the inverter output power Pout also increases from time t2. start.
  • the inverter output power Pout increases, the rise of the DC voltage Vdc starts to be suppressed.
  • the machine input set value TM further increases, the DC voltage Vdc of the inverter 3 starts to decrease.
  • the DC voltage monitoring unit 29 adjusts the machine input set value TM such that the DC voltage Vdc of the inverter 3 approaches the voltage Vdc1.
  • the machine input set value TM is stabilized at the set value TM2.
  • the machine input set value TM is stabilized at TM2, the internal phase angle ⁇ at ⁇ 2, and the inverter output power Pout is stabilized at Pout2.
  • the power conversion apparatus 102 (see FIG. 4) is in the steady state again, and the inverter input power Pin and the inverter output power Pout become substantially equal.
  • FIG. 6 is a diagram showing another example of operation waveforms in the present embodiment.
  • the inverter input power Pin is Pin3
  • the DC voltage Vdc is Vdc1
  • the machine input set value TM is TM3
  • the internal phase angle ⁇ is ⁇ 3
  • the inverter output power Pout is Pout3.
  • the state is a steady state before time t1
  • the inverter input power Pin and the inverter output power Pout are substantially equal, and the difference between them is the loss generated in the inverter 3.
  • the inverter input power Pin is lowered stepwise from the power Pin3 to the power Pin4.
  • the inverter output power Pout output from the inverter 3 to the power system 8 hardly changes, and almost maintains the previous power Pout3.
  • the smoothing capacitor (not shown) provided in the DC portion 3 a of the inverter 3 is discharged by the difference between the power Pout 3 and the power Pin 4.
  • the DC voltage Vdc starts to fall.
  • the DC voltage monitoring unit 29 sets the machine input correction value ⁇ TM so as to lower the machine input set value TM. Then, after time t2, when “Vdc_L ⁇ Vdc” gradually increases, the DC voltage monitoring unit 29 gradually reduces the machine input set value TM.
  • the generator model calculation unit 11 simulates the characteristics of the synchronous generator to calculate the internal phase angle ⁇ . Thus, as shown, the internal phase angle ⁇ decreases correspondingly to the machine input setpoint TM.
  • the output current command value Iac * (see FIG. 4) output from the generator model calculation unit 11 decreases after time t2, and the inverter output power Pout also decreases from time t2. start.
  • the drop of the DC voltage Vdc starts to be suppressed.
  • the machine input set value TM further decreases, the DC voltage Vdc of the inverter 3 starts to rise.
  • the DC voltage monitoring unit 29 adjusts the machine input set value TM such that the DC voltage Vdc of the inverter 3 approaches the voltage Vdc1.
  • the machine input set value TM is stabilized at the set value TM4.
  • the internal phase angle ⁇ is stabilized at ⁇ 4, and the inverter output power Pout is stabilized at Pout4.
  • the power conversion apparatus 102 (see FIG. 4) is in the steady state again, and the inverter input power Pin and the inverter output power Pout become substantially equal.
  • the machine input set value TM is applied as the parameter value, and the parameter value (TM) is set according to the DC voltage (Vdc), as in the first embodiment.
  • the operation of the power conversion device (102) can be stably continued.
  • FIG. 7 is a block diagram of a power conversion device 103 according to a third embodiment of the present invention.
  • symbol may be attached
  • a DC voltage monitoring unit 39 in place of the DC voltage monitoring unit 9, the field voltage correction unit 10, and the generator model computing unit 11 in the first embodiment (see FIG. 1), A generator parameter correction unit 36 and a generator model calculation unit 37 are provided.
  • the generator model calculation unit 37 like the generator model calculation unit 11 (see FIG. 1) in the first embodiment, includes the mechanical angular velocity .omega.M, the field voltage command value Vf, and the interconnection point voltage Vac. And an output current command value Iac * and an electrical output torque TE.
  • the generator model calculation unit 37 is different from the generator model calculation unit 11 of the first embodiment in that the generator parameter setting value Z is received from the generator parameter correction unit 36.
  • the generator parameter setting value Z is, for example, a synchronous reactance of the synchronous generator.
  • the generator parameter setting value Z may be a complex number including the resistance component (real number part) of the armature winding and the synchronous reactance (imaginary number part) of the synchronous generator.
  • the field voltage command value Vf supplied to the generator model calculation unit 37 is a constant in the present embodiment.
  • the generator parameter correction unit 36 outputs a generator parameter setting value Z based on the generator parameter reference value Z0 and the generator parameter correction value ⁇ Z.
  • the generator parameter reference value Z0 is a constant in the present embodiment.
  • the DC voltage monitoring unit 39 monitors the DC voltage Vdc of the inverter 3 and outputs the generator parameter correction value ⁇ Z described above based on the DC voltage Vdc.
  • FIG. 8 is a diagram showing an example of operation waveforms according to this embodiment, and illustrates waveforms of an inverter input power Pin, a DC voltage Vdc, a generator parameter setting value Z, an output current command value Iac *, and an inverter output power Pout. .
  • the inverter input power Pin is Pin1
  • the DC voltage Vdc is voltage Vdc1
  • the generator parameter set value Z is Z1
  • the output current command value Iac * is Iac1
  • the inverter output power Pout is Pout1.
  • the power converter 103 (see FIG. 7) is in the steady state. That is, the inverter input power Pin and the inverter output power Pout have substantially the same value, and the difference between them is the loss generated in the inverter 3.
  • the inverter input power Pin rises from the power Pin1 to the power Pin2 in a step-like manner.
  • the inverter output power Pout output from the inverter 3 to the power system 8 hardly changes, and almost maintains the previous power Pout1.
  • the smoothing capacitor (not shown) provided in the DC portion 3 a of the inverter 3 is charged by the difference between Pin 2 and Pout 1.
  • the DC voltage Vdc starts to rise.
  • the DC voltage monitoring unit 39 sets the generator parameter correction value ⁇ Z so as to reduce the generator parameter setting value Z. Then, after “t2”, when “Vdc ⁇ Vdc_U” gradually increases, the DC voltage monitoring unit 39 gradually decreases the generator parameter setting value Z.
  • the generator impedance of the synchronous generator decreases, the current flowing to the synchronous generator increases, and the output power of the synchronous generator increases.
  • the output current command value Iac * output from the generator model calculation unit 37 increases after time t2, and the inverter output power Pout also starts to increase from time t2.
  • the rise of the DC voltage Vdc starts to be suppressed.
  • the generator parameter setting value Z further decreases, the DC voltage Vdc of the inverter 3 starts to decrease.
  • the DC voltage monitoring unit 39 adjusts the generator parameter setting value Z such that the DC voltage Vdc of the inverter 3 approaches the voltage Vdc1.
  • the generator parameter set value Z is stabilized at Z2.
  • the output current command value Iac * is stabilized at Iac2, and the inverter output power Pout is stabilized at Pout2.
  • the power conversion device 103 (see FIG. 7) is in the steady state again, and the inverter input power Pin and the inverter output power Pout become substantially equal.
  • FIG. 9 is a diagram showing another example of operation waveforms in the present embodiment.
  • the inverter input power Pin is Pin3
  • the DC voltage Vdc is Vdc1
  • the generator parameter setting value Z is Z3
  • the output current command value Iac * is Iac3
  • the inverter output power Pout is Pout3.
  • the state is a steady state before time t1
  • the inverter input power Pin and the inverter output power Pout are substantially equal, and the difference between them is the loss generated in the inverter 3.
  • the inverter input power Pin has dropped from the power Pin3 to the power Pin4 in a step-like manner.
  • the inverter output power Pout output from the inverter 3 to the power system 8 hardly changes, and almost maintains the previous power Pout3.
  • the smoothing capacitor (not shown) provided in the DC portion 3 a of the inverter 3 is discharged by the difference between the power Pout 3 and the power Pin 4.
  • the DC voltage Vdc starts to fall.
  • the DC voltage monitoring unit 39 sets the generator parameter correction value ⁇ Z so as to raise the generator parameter setting value Z.
  • Vdc_L-Vdc gradually increases
  • the DC voltage monitoring unit 39 gradually increases the generator parameter setting value Z.
  • the generator impedance of the synchronous generator increases, the current flowing to the synchronous generator decreases, and the output power of the synchronous generator also decreases.
  • the output current command value Iac * output from the generator model calculation unit 37 decreases after time t2, and the inverter output power Pout also starts to decrease from time t2.
  • the drop of the DC voltage Vdc starts to be suppressed.
  • the generator parameter setting value Z further increases, the DC voltage Vdc of the inverter 3 starts to rise.
  • the DC voltage monitoring unit 39 adjusts the generator parameter setting value Z such that the DC voltage Vdc of the inverter 3 approaches the voltage Vdc1.
  • the generator parameter set value Z is stabilized at Z4.
  • the output current command value Iac * is stabilized at Iac4, and the inverter output power Pout is stabilized at Pout4.
  • the power conversion device 103 (see FIG. 7) is in the steady state again, and the inverter input power Pin and the inverter output power Pout become substantially equal.
  • the generator parameter setting value Z is applied as the parameter value, and the parameter value (Z) is set according to the DC voltage (Vdc), as in the first embodiment.
  • Vdc DC voltage
  • FIG. 10 is a block diagram of a power converter 104 according to a fourth embodiment of the present invention.
  • symbol may be attached
  • a machine input correction unit 25 and a generator parameter correction unit 36 instead of the DC voltage monitoring unit 9 and the generator model calculation unit 11 in the first embodiment (see FIG. 1).
  • a generator model calculation unit 37 and a DC voltage monitoring unit 49 are provided.
  • the DC voltage monitoring unit 49 has a function combining the functions of the DC voltage monitoring units 9, 29, 39 (see FIGS. 1, 4 and 7) of the first to third embodiments. That is, DC voltage monitoring unit 49 monitors DC voltage Vdc of inverter 3, and based on DC voltage Vdc, field voltage correction value ⁇ Vf, machine input correction value ⁇ TM, and generator parameter correction value ⁇ Z are obtained. Output.
  • Field voltage correction unit 10 is the same as that of the first embodiment (see FIG. 1), and based on field voltage reference command value Vf0 and field voltage correction value ⁇ Vf, field voltage command value Vf.
  • Output The machine input correction unit 25 is similar to that of the second embodiment (see FIG. 4), and outputs the machine input set value TM based on the machine input reference set value TM0 and the machine input correction value ⁇ TM.
  • the generator parameter correction unit 36 is the same as that of the third embodiment (see FIG. 7), and based on the generator parameter reference value Z0 and the generator parameter correction value ⁇ Z, the generator parameter setting value Output Z
  • the DC voltage monitoring unit 49 may output all of the field voltage correction value ⁇ Vf, the machine input correction value ⁇ TM, and the generator parameter correction value ⁇ Z, or may output only a part of them.
  • the rotor model calculating unit 12 and the generator model calculating unit 37 execute calculations simulating the synchronous generator virtually, as in the third embodiment (see FIG. 7).
  • the parameter value setting unit (10, 25, 36) generates the field voltage command value (Vf) corresponding to the field voltage of the synchronous generator according to the DC voltage (Vdc). And at least one parameter value among the machine input set value (TM) corresponding to the machine input of the synchronous generator and the generator parameter set value (Z) corresponding to the synchronous reactance of the synchronous generator.
  • the parameter value setting unit (10, 25, 36) increases the field voltage command value (Vf), increases the machine input set value (TM), and
  • the field voltage command value (Vf) decreases and the machine input set value (TM) decreases.
  • the generator parameter setting (Z) increases.
  • the operation of the power conversion device (104) can be stably continued.
  • the degree of freedom in adjusting the DC voltage (Vdc) can be improved.
  • the operation of 104) can be further stabilized.
  • FIG. 11 is a block diagram of a power conversion device 105 according to a fifth embodiment of the present invention.
  • symbol may be attached
  • a rotor model calculator 52 and a generator model calculator 53 in place of the rotor model calculator 12 and the generator model calculator 37 in the fourth embodiment (see FIG. 10). Is provided.
  • the power conversion device 105 of the present embodiment includes a generator operation command input unit 51 and a generator operation state output unit 54.
  • the rotor model computing unit 52 has the same function as the rotor model computing unit 12 of the fourth embodiment, but further has a function of outputting rotor model state data DR representing the state of the rotor model to the outside. ing. Further, although the generator model computing unit 53 has the same function as the generator model computing unit 37 of the fourth embodiment, the generator model status data DE representing the status of the generator model is externally output. It has a function to output.
  • the generator operation state output unit 54 outputs the generator model state data DE and the rotor model state data DR as the generator operation state data DG to a not-shown higher-level device or the like.
  • the generator operation command input unit 51 receives a generator operation command CMD from a host device or the like (not shown).
  • the generator operation command CMD includes at least data specifying the machine input reference set value TM0, the generator parameter reference value Z0, and the field voltage reference command value Vf0.
  • the generator operation command input unit 51 outputs the machine input reference set value TM0, the generator parameter reference value Z0, and the field voltage reference command value Vf0 according to the generator operation command CMD.
  • the machine input reference set value TM0, the generator parameter reference value Z0, and the field voltage reference command value Vf0 can be set by an external device (not shown), so these TM0, Z0 and Vf0 can be used as they are.
  • the mechanical model set value TM, the generator parameter set value Z, and the field voltage command value Vf may be supplied to the generator model calculation unit 53.
  • the control unit (6) instructs the synchronous generator simulation operation unit (52, 53) to execute calculation for simulating the synchronous generator, and the operation state of the synchronous generator.
  • the generator operation command input unit (51) outputs a field voltage reference command value (Vf0) corresponding to the field voltage of the synchronous generator to the synchronous generator simulation calculation unit (52, 53).
  • Vf0 field voltage reference command value
  • the synchronous generator simulation computing unit (52, 53) is a rotor model state data (DR) simulating the motion state of the rotor of the synchronous generator, and a generator model simulating the electrical state of the synchronous generator State data (DE) are supplied to the generator operation state output unit (54).
  • the power converter (105) can be freely controlled and monitored by an external device, and the operation of the power converter (105) can be further stabilized. Furthermore, according to the present embodiment, it is possible to compare the generator simulation performance required for the power conversion device (105) with the actual generator simulation performance of the power conversion device (105). Thereby, it can be correctly evaluated whether the power converter (105) contributes to the stability improvement of the power system.
  • FIG. 12 is a block diagram of a power converter 106 according to a sixth embodiment of the present invention.
  • symbol may be attached
  • the generator model calculation unit 37, and the DC voltage monitoring unit 49 in the fourth embodiment in place of the field voltage correction unit 10, a generator model calculation unit 61 and , And a DC voltage monitoring unit 62.
  • the rotor model calculating unit 12 and the generator model calculating unit 61 in the present embodiment virtually execute calculations simulating a permanent magnet type synchronous generator. Since the permanent magnet type synchronous generator does not include the field circuit, the control unit 6 does not include the field voltage correction unit 10 (see FIG. 10) of the fourth embodiment and the like. Further, although the generator model calculation unit 61 and the DC voltage monitoring unit 62 are configured in the same manner as the generator model calculation unit 37 and the DC voltage monitoring unit 49 (see FIG. 10) of the fourth embodiment, The difference is that signals are not input or output. That is, the DC voltage monitoring unit 62 outputs the machine input correction value ⁇ TM and the generator parameter correction value ⁇ Z based on the interconnection point voltage Vac. Further, the generator model calculation unit 61 outputs the output current command value Iac * and the electrical output torque TE based on the generator parameter setting value Z, the interconnection point voltage Vac, and the mechanical angular velocity ⁇ M. .
  • the synchronous generator simulated by the synchronous generator simulation computing unit (12, 61) is a permanent magnet synchronous generator
  • the parameter value setting unit (25, 36) At least one of the machine input set value (TM) corresponding to the machine input of the synchronous generator and the generator parameter set value (Z) corresponding to the synchronous reactance of the synchronous generator according to the DC voltage (Vdc) Set the value
  • the parameter value setting unit increases one of the increase in the machine input set value (TM) and the decrease in the generator parameter set value (Z). Or both are performed, and when the DC voltage (Vdc) decreases, one or both of the reduction of the machine input set value (TM) and the increase of the generator parameter set value (Z) are performed.
  • the power conversion apparatus is applied as in the case where the field winding synchronous generator is applied (the first to fifth embodiments). The operation of (106) can be stabilized.
  • FIG. 13 is a block diagram of a photovoltaic system according to a seventh embodiment of the present invention.
  • the solar power generation system of the present embodiment includes a DC power supply 71 and a power conversion device 100.
  • the power conversion device 100 any one of the power conversion devices 101 to 106 of the first to sixth embodiments can be applied. Therefore, the power converter 100 includes the inverter 3.
  • the DC power supply 71 includes a solar panel 711 and a chopper circuit 712.
  • the chopper circuit 712 boosts the DC voltage output from the solar panel 711 and supplies the DC voltage to the DC unit 3 a of the inverter 3. According to the present embodiment, even if the output power of the DC power supply 71 is unstable, the operation of the power conversion device 100 can be stably continued.
  • FIG. 14 is a block diagram of a photovoltaic system according to an eighth embodiment of the present invention.
  • the solar power generation system of the present embodiment includes a DC power supply 72 and a power conversion device 100.
  • the DC power supply 71 includes a solar panel 721, and the DC voltage output from the solar panel 721 is supplied to the DC unit 3 a of the inverter 3. According to this embodiment, as in the seventh embodiment, even if the output power of the DC power supply 72 is unstable, the operation of the power conversion apparatus 100 can be stably continued.
  • FIG. 15 is a block diagram of a wind power generation system according to a ninth embodiment of the present invention.
  • the wind power generation system of the present embodiment includes a DC power supply 73 and a power conversion device 100.
  • the DC power supply 73 includes a windmill 731, a generator 732, and a converter 733.
  • the rotation shaft of the wind turbine 731 is coupled to the rotation shaft of the generator 732, and the output terminal of the generator 732 is connected to the AC portion 733 a of the converter 733.
  • the direct current unit 733 b of the converter 733 is connected to the direct current unit 3 a of the inverter 3.
  • the rotating shaft of the generator 732 When the wind turbine 731 rotates, the rotating shaft of the generator 732 is rotationally driven, and the generator 732 outputs AC power.
  • the converter 733 converts AC power output from the generator 732 into DC power and outputs the DC power to the DC unit 3 a of the inverter 3. According to this embodiment, as in the seventh and eighth embodiments, even if the output power of the DC power supply 73 is unstable, the operation of the power conversion apparatus 100 can be stably continued.
  • control unit 6 in each of the above embodiments can be realized by a general computer, so programs etc. according to the block diagrams shown in FIG. 1, FIG. You may distribute it through.
  • FIG. 1 Although the processing shown in FIG. 1, FIG. 4 and the like has been described as software processing using a program in the above embodiment, a part or all of the processing is carried out using ASIC (Application Specific Integrated Circuit; IC for specific application) Or hardware processing using an FPGA (field-programmable gate array) or the like.
  • ASIC Application Specific Integrated Circuit
  • FPGA field-programmable gate array
  • the power conversion devices 101 to 106 according to the first to sixth embodiments can be applied not only to the solar power generation system or the wind power generation system according to the seventh to ninth embodiments, but also to various applications. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

安定して動作できる電力変換装置を実現する。そのために、入力される直流電力を交流電力に変換するインバータ(3)と、インバータ(3)を制御する制御部(6)と、を備え、制御部(6)は、同期発電機を模擬する演算を実行する同期発電機模擬演算部(11,12)と、インバータ(3)に入力される直流電圧(Vdc)を監視する直流電圧監視部(9)と、直流電圧(Vdc)に応じて、同期発電機模擬演算部(11,12)で用いられるパラメータ値(Vf)を設定するパラメータ値設定部(10)と、を電力変換装置(101)に設けた。

Description

電力変換装置およびその制御方法
 本発明は、電力変換装置およびその制御方法に関する。
 近年、電力系統に対して、太陽光発電システムや風力発電システム等の分散型電源の導入が進んでいる。これら分散型電源は電力変換装置を介して電力系統に連系する場合が多い。電力変換装置の例としては、太陽光発電用電力変換装置や、風力発電用電力変換装置等が挙げられる。ここで、太陽光発電用電力変換装置は、太陽光パネルで発電された直流電力を商用周波数の交流電力に変換して電力系統に電力を供給するものである。また、風力発電用電力変換装置は、風力用発電機で発電された交流電力を商用周波数の交流電力に変換して電力系統に電力を供給するものである。
 一方、このような電力変換装置を介して電力系統に連系する分散型電源は、従来から電力系統に連系している同期発電機と異なり、同期化力を備えていない。従って、電力系統内での分散型電源の導入率が上昇すると電力系統全体の同期化力が不足する。同期化力が不足すると、擾乱発生時に同期発電機が脱調あるいは大きく動揺する等、電力系統は不安定な状態になる。その解決策として、同期化力を付与した分散型電源を電力系統に導入することにより、電力系統の安定度を向上させる手法が提案されている。その一例として、下記特許文献1の明細書、段落0026には、「制御部12は、電力変換部3が仮想発電機として動作するよう電力変換部3を制御するように構成されている」と記載されている。
特開2014-168351号公報
 しかし、太陽光や風力のような出力の不安定なエネルギー源に適用する電力変換装置に対して、同期発電機の動特性を模擬した制御を実行すると、電力変換装置の入出力にアンバランスが生じる虞がある。例えば、太陽光発電装置であれば日射量の急変に伴って出力電力が急変し、風力発電装置であれば風速の急変に伴って出力電力が急変し、これらの要因によって電力変換装置への入力電力が変動する。その際、従来の電力変換装置では同期発電機の動特性を単純に模擬しようとするため、電力変換装置の入出力のアンバランスが生じる。このようなアンバランスが発生すると、電力変換装置に入力される直流電圧が変動する。そして、直流電圧の変動範囲が許容範囲を超えると、回路保護のために電力変換装置が停止する。このように、従来の電力変換装置では、安定して動作を継続することが難しくなる場合がある。
 この発明は上述した事情に鑑みてなされたものであり、安定して動作できる電力変換装置およびその制御方法を提供することを目的とする。
 上記課題を解決するため本発明の電力変換装置は、入力される直流電力を交流電力に変換するインバータと、前記インバータを制御する制御部と、を備え、前記制御部は、同期発電機を模擬する演算を実行する同期発電機模擬演算部と、前記インバータに入力される直流電圧を監視する直流電圧監視部と、前記直流電圧に応じて、前記同期発電機模擬演算部で用いられるパラメータ値を設定するパラメータ値設定部と、を有することを特徴とする。
 本発明によれば、電力変換装置を安定して動作させることができる。
本発明の第1実施形態による電力変換装置のブロック図である。 第1実施形態における動作波形例を示す図である。 第1実施形態における他の動作波形例を示す図である。 本発明の第2実施形態による電力変換装置のブロック図である。 第2実施形態における動作波形例を示す図である。 第2実施形態における他の動作波形例を示す図である。 本発明の第3実施形態による電力変換装置のブロック図である。 第3実施形態における動作波形例を示す図である。 第3実施形態における他の動作波形例を示す図である。 本発明の第4実施形態による電力変換装置のブロック図である。 本発明の第5実施形態による電力変換装置のブロック図である。 本発明の第6実施形態による電力変換装置のブロック図である。 本発明の第7実施形態による太陽光発電システムのブロック図である。 本発明の第8実施形態による太陽光発電システムのブロック図である。 本発明の第9実施形態による風力発電システムのブロック図である。
[第1実施形態]
〈第1実施形態の構成〉
 図1は、本発明の第1実施形態による電力変換装置101のブロック図である。
 図1において、電力変換装置101は、電圧検出器2と、インバータ3と、電圧検出器4と、電流検出器5と、制御部6と、を備えている。
 電力変換装置101は、直流電源7と電力系統8との間に接続されている。すなわち、直流電源7はインバータ3の直流部3aに接続され、電力系統8はインバータ3の交流部3bに接続されている。インバータ3は、複数のスイッチング素子や平滑コンデンサ等を備え(図示略)、直流電源7から供給される直流電力をPWM(Pulse Width Modulation)変調することによって、交流電力に変換し、電力系統8に供給する。ここで、直流電源7は、直流電圧を出力する電源であれば、何であってもよい。
 電圧検出器2は、直流電源7の出力側に設けられており、直流電源7の出力電圧を検出し、検出結果を直流電圧Vdcとして出力する。なお、直流電源7の出力電圧はインバータ3に入力される直流電圧と同一であり、直流電圧Vdcは、インバータ3に入力される直流電圧と考えてもよい。電圧検出器4は、インバータ3の交流部3bに設けられており、電力系統8の系統電圧を検出し、検出結果を連系点電圧Vacとして出力する。電流検出器5は、インバータ3が電力系統8に出力する出力電流を検出し、検出結果を連系点電流Iacとして出力する。これら直流電圧Vdc、連系点電圧Vacおよび連系点電流Iacは、制御部6に入力される。制御部6は、入力された電圧検出値や電流検出値に基づいて所定の演算処理を施し、インバータ3を駆動するためのゲートパルス信号GPを出力する。
 制御部6は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、RAM(Random Access Memory)、ROM(Read Only Memory)等、一般的なコンピュータとしてのハードウエアを備えており、ROMには、CPUによって実行される制御プログラム、DSPによって実行されるマイクロプログラムおよび各種データ等が格納されている。図1において、制御部6の内部は、制御プログラムおよびマイクロプログラム等によって実現される機能を、ブロックとして示している。
 すなわち、制御部6は、直流電圧監視部9と、界磁電圧補正部10と、発電機モデル演算部11と、ローターモデル演算部12と、電流制御部13と、PWM制御部14と、を備えている。
 ここで、発電機モデル演算部11およびローターモデル演算部12は、共に同期発電機の動作を模擬するものである。ローターモデル演算部12は、同期発電機のトルクや角速度等の機械的な関係式に基づいた演算を実行し、同期発電機の回転子の運動状態を模擬する。一方、発電機モデル演算部11は、同期発電機の各部における電圧、電流、磁束等の電気的な関係式に基づいた演算を実行し、同期発電機の電気的な状態を模擬する。ローターモデル演算部12は、機械入力設定値TMと、電気的出力トルクTEと、を入力信号とし、機械角速度ωMを出力する。ここで、機械入力設定値TMは、例えば同期発電機を駆動する原動機等の出力トルク等を模擬する値である。
 また、発電機モデル演算部11は、界磁電圧指令値Vfと、連系点電圧Vacと、機械角速度ωMと、を入力信号とし、電気的出力トルクTEと、出力電流指令値Iac*と、を出力する。ここで、出力電流指令値Iac*は、連系点電流Iacに対する指令値である。電流制御部13は、出力電流指令値Iac*と、連系点電流Iacとに基づいて、連系点電流Iacが出力電流指令値Iac*に近づくような電流制御を実行し、出力電圧指令値Vac*を出力する。PWM制御部14は、出力電圧指令値Vac*に基づいて、ゲートパルス信号GPを出力する。上述したように、インバータ3はPWM変調を行うが、ゲートパルス信号GPは、このPWM変調におけるオン/オフタイミングを制御する信号である。
 また、界磁電圧補正部10は、界磁電圧指令値Vfの基準値である界磁電圧基準指令値Vf0と、これに対する修正値である界磁電圧修正値ΔVfと、を入力として、上述した界磁電圧指令値Vfを出力する。例えば、「Vf=Vf0+ΔVf」によってVfを求めるとよい。ここで、界磁電圧基準指令値Vf0は、本実施形態においては定数である。また、直流電圧監視部9はインバータ3の直流電圧Vdcを監視し、直流電圧Vdcに基づいて界磁電圧修正値ΔVfを出力する。なお、その詳細は後述する。
〈第1実施形態の動作波形〉
 図2は、本実施形態における動作波形例を示す図であり、インバータ入力電力Pin、直流電圧Vdc、界磁電圧指令値Vf、内部誘導起電力Eq、およびインバータ出力電力Poutの波形を図示する。ここで、インバータ入力電力Pinは、直流電源7からインバータ3に入力される電力である。また、インバータ出力電力Poutは、インバータ3から電力系統8に出力される電力である。内部誘導起電力Eqは、発電機モデル演算部11(図1参照)内で用いられる値であり、模擬する同期発電機における内部誘導起電力を表す。
 図2の時刻t1以前において、インバータ入力電力PinはPin1、インバータ出力電力PoutはPout1、直流電圧VdcはVdc1、界磁電圧指令値VfはVf1、内部誘導起電力EqはEq1である。時刻t1以前において、電力変換装置101(図1参照)は定常状態になっており、インバータ入力電力Pinとインバータ出力電力Poutとは概ね等しい値になる。すなわち、両者の差分(Pin-Pout)は、インバータ3における損失分になる。
 次に、図2の時刻t1において、インバータ入力電力Pinは、電力Pin1から電力Pin2にステップ状に上昇している。この時刻t1において、インバータ3から電力系統8に出力されるインバータ出力電力Poutは、ほとんど変化せず、従前の電力Pout1をほぼ維持している。すると、Pin2とPout1との差分によって、インバータ3の直流部3aに備えられた平滑用コンデンサ(図示せず)が充電される。これにより、時刻t1以降、直流電圧Vdcは上昇し始める。
 時刻t2において、直流電圧Vdcが所定の閾値Vdc_Uを上回ると、直流電圧監視部9は、界磁電圧指令値Vfを上昇させるように界磁電圧修正値ΔVfを設定する。そして、時刻t2以降、「Vdc-Vdc_U」が徐々に大きくなると、直流電圧監視部9は、界磁電圧指令値Vfを徐々に上昇させてゆく。一般的に、同期発電機の界磁電圧が上昇すると、同期発電機の内部誘導起電力が上昇し、発電機出力が増加する。従って、内部誘導起電力Eqは、界磁電圧指令値Vfに対応して上昇する。
 この同期発電機の動特性を模擬する結果、発電機モデル演算部11の出力する出力電流指令値Iac*(図1参照)は時刻t2以降に増加し、インバータ出力電力Poutも時刻t2から増加し始める。インバータ出力電力Poutが増加してゆくと、直流電圧Vdcの上昇は抑制され始める。そして、界磁電圧指令値Vfがさらに高くなると、インバータ3の直流電圧Vdcは下降し始める。
 その後、直流電圧監視部9は、インバータ3の直流電圧Vdcが所定の電圧Vdc1に近づくように、界磁電圧修正値ΔVfを調整する。これにより、同図の例では、時刻t3において、界磁電圧指令値Vfは電圧Vf2に安定する。また、これに伴って、インバータ入力電力PinはPin2に、直流電圧VdcはVdc1に、界磁電圧指令値VfはVf2に、内部誘導起電力EqはEq2に、インバータ出力電力PoutはPout2に、各々安定する。また、時刻t3以降において、電力変換装置101(図1参照)は再び定常状態になり、インバータ入力電力Pinとインバータ出力電力Poutとは概ね等しくなる。
 図3は、本実施形態における他の動作波形例を示す図である。
 図3の時刻t1以前において、インバータ入力電力PinはPin3、直流電圧VdcはVdc1、界磁電圧指令値VfはVf3、内部誘導起電力EqはEq3、インバータ出力電力PoutはPout3である。本図においても、時刻t1以前は定常状態であり、インバータ入力電力Pinとインバータ出力電力Poutとは概ね等しく、両者の差はインバータ3にて発生する損失分になる。
 次に、図3の時刻t1において、インバータ入力電力Pinは、電力Pin3から電力Pin4にステップ状に下降している。この時刻t1において、インバータ3から電力系統8に出力されるインバータ出力電力Poutは、ほとんど変化せず、従前の電力Pout3をほぼ維持している。すると、電力Pout3と電力Pin4との差分によって、インバータ3の直流部3aに備えられた平滑用コンデンサ(図示せず)が放電される。これにより、時刻t1以降、直流電圧Vdcは下降し始める。
 時刻t2において、直流電圧Vdcが所定の閾値Vdc_Lを下回ると、直流電圧監視部9は、界磁電圧指令値Vfを下降させるように界磁電圧修正値ΔVfを設定する。そして、時刻t2以降、「Vdc_L-Vdc」が徐々に大きくなると、直流電圧監視部9は、界磁電圧指令値Vfを徐々に低下させてゆく。一般的に、同期発電機の界磁電圧が下降すると、同期発電機の内部誘導起電力が減少し、発電機出力も減少する。従って、内部誘導起電力Eqは、界磁電圧指令値Vfに対応して下降する。
 この同期発電機の動特性を模擬する結果、発電機モデル演算部11の出力する出力電流指令値Iac*(図1参照)は時刻t2以降に減少し、インバータ出力電力Poutも時刻t2から減少し始める。インバータ出力電力Poutが減少してゆくと、直流電圧Vdcの下降は抑制され始める。そして、界磁電圧指令値Vfがさらに低くなると、インバータ3の直流電圧Vdcは上昇し始める。
 その後、直流電圧監視部9は、インバータ3の直流電圧Vdcが電圧Vdc1に近づくように、界磁電圧指令値Vfを調整する。これにより、時刻t3において、界磁電圧指令値Vfは電圧Vf4に、内部誘導起電力EqはEq4に、インバータ出力電力PoutはPout4に、それぞれ安定する。そして、時刻t3以降において、インバータ入力電力Pinとインバータ出力電力Poutとは概ね等しくなり、インバータ3の直流電圧Vdcも電圧Vdc1付近に保たれる。
〈第1実施形態の効果〉
 以上のように本実施形態によれば、制御部(6)は、同期発電機を模擬する演算を実行する同期発電機模擬演算部(11,12)と、インバータ(3)に入力される直流電圧(Vdc)を監視する直流電圧監視部(9)と、直流電圧(Vdc)に応じて、同期発電機模擬演算部(11,12)で用いられるパラメータ値(Vf)を設定するパラメータ値設定部(10)と、を有する。
 これにより、直流電源7の出力電力が低下して直流電圧(Vdc)が低下した場合、あるいは直流電源7の出力電力が上昇して直流電圧(Vdc)が上昇した場合においても、パラメータ値設定部(10)が直流電圧(Vdc)に応じてパラメータ値(Vf)を設定するため、電力変換装置(101)の動作を安定して継続することができる。従って、太陽光発電システムや風力発電システムのように、出力の不安定なエネルギー源を直流電源7として適用しやすくなる。
[第2実施形態]
〈第2実施形態の構成〉
 図4は、本発明の第2実施形態による電力変換装置102のブロック図である。なお、以下の説明において、上述した他の実施形態の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 本実施形態においては、第1実施形態(図1参照)における直流電圧監視部9と界磁電圧補正部10とに代えて、機械入力補正部25と直流電圧監視部29とが設けられている。また、発電機モデル演算部11に供給される界磁電圧指令値Vfは、本実施形態においては定数になる。
 一方、本実施形態においては、機械入力補正部25および直流電圧監視部29によって、直流電圧Vdcに応じて機械入力設定値TMを変動させる。すなわち、直流電圧監視部29は、直流電圧Vdcを入力とし、機械入力修正値ΔTMを出力する。機械入力補正部25は、機械入力基準設定値TM0と、機械入力修正値ΔTMと、を入力として、上述した機械入力設定値TMを出力する。例えば、「TM=TM0+ΔTM」によってTMを求めるとよい。ここで、機械入力基準設定値TM0は、本実施形態においては定数である。また、直流電圧監視部29は、インバータ3の直流電圧Vdcを監視し、直流電圧Vdcに基づいて機械入力修正値ΔTMを出力する。また、発電機モデル演算部11およびローターモデル演算部12における演算内容は、第1実施形態のものと同様である。
〈第2実施形態の動作波形〉
 図5は、本実施形態における動作波形例を示す図であり、インバータ入力電力Pin、直流電圧Vdc、機械入力設定値TM、内部位相角θ、およびインバータ出力電力Poutの波形を図示する。なお、内部位相角θとは、発電機モデル演算部11(図4参照)において計算されるパラメータであり、模擬する同期発電機における内部位相角である。
 図5の時刻t1以前において、インバータ入力電力PinはPin1、直流電圧VdcはVdc1、機械入力設定値TMはTM1、内部位相角θはθ1、インバータ出力電力PoutはPout1である。時刻t1以前において、電力変換装置102(図4参照)は定常状態になっている。すなわち、インバータ入力電力Pinとインバータ出力電力Poutとは概ね等しい値になり、両者の差はインバータ3で発生する損失分になる。
 次に、図5の時刻t1において、インバータ入力電力Pinは、電力Pin1から電力Pin2にステップ状に上昇している。この時刻t1において、インバータ3から電力系統8に出力されるインバータ出力電力Poutは、ほとんど変化せず、従前の電力Pout1をほぼ維持している。すると、Pin2とPout1との差分によって、インバータ3の直流部3aに備えられた平滑用コンデンサ(図示せず)が充電される。これにより、時刻t1以降、直流電圧Vdcは上昇し始める。
 時刻t2において、直流電圧Vdcが閾値Vdc_Uを上回ると、直流電圧監視部29は、機械入力設定値TMを上昇させるように機械入力修正値ΔTMを設定する。そして、時刻t2以降、「Vdc-Vdc_U」が徐々に大きくなると、直流電圧監視部29は、機械入力設定値TMを徐々に上昇させてゆく。一般的に、同期発電機の機械入力が上昇すると、同期発電機の機械角速度が高くなることによって同期発電機の内部位相角が大きくなり、発電機出力が増加する。上述したように、本実施形態においては、発電機モデル演算部11にて、同期発電機の特性を模擬して内部位相角θを計算している。従って、図示のように、内部位相角θは、機械入力設定値TMに対応して増加する。
 この同期発電機の動特性を模擬する結果、発電機モデル演算部11の出力する出力電流指令値Iac*(図4参照)は時刻t2以降に増加し、インバータ出力電力Poutも時刻t2から増加し始める。インバータ出力電力Poutが増加してゆくと、直流電圧Vdcの上昇は抑制され始める。そして、機械入力設定値TMがさらに大きくなると、インバータ3の直流電圧Vdcは低下し始める。
 その後、直流電圧監視部29は、インバータ3の直流電圧Vdcが電圧Vdc1に近づくように、機械入力設定値TMを調整する。これにより、時刻t3において、機械入力設定値TMは設定値TM2に安定する。また、これに伴って、機械入力設定値TMはTM2に、内部位相角θはθ2に、インバータ出力電力PoutはPout2に、各々安定する。また、時刻t3以降において、電力変換装置102(図4参照)は再び定常状態になり、インバータ入力電力Pinとインバータ出力電力Poutとは概ね等しくなる。
 図6は、本実施形態における他の動作波形例を示す図である。
 図6の時刻t1以前において、インバータ入力電力PinはPin3、直流電圧VdcはVdc1、機械入力設定値TMはTM3、内部位相角θはθ3、インバータ出力電力PoutはPout3である。本図においても、時刻t1以前は定常状態であり、インバータ入力電力Pinとインバータ出力電力Poutとは概ね等しく、両者の差はインバータ3にて発生する損失分になる。
 次に、図6の時刻t1において、インバータ入力電力Pinは、電力Pin3から電力Pin4にステップ状に下降している。この時刻t1において、インバータ3から電力系統8に出力されるインバータ出力電力Poutは、ほとんど変化せず、従前の電力Pout3をほぼ維持している。すると、電力Pout3と電力Pin4との差分によって、インバータ3の直流部3aに備えられた平滑用コンデンサ(図示せず)が放電される。これにより、時刻t1以降、直流電圧Vdcは下降し始める。
 時刻t2において、直流電圧Vdcが閾値Vdc_Lを下回ると、直流電圧監視部29は、機械入力設定値TMを下降させるように機械入力修正値ΔTMを設定する。そして、時刻t2以降、「Vdc_L-Vdc」が徐々に大きくなると直流電圧監視部29は、機械入力設定値TMを徐々に低下させてゆく。一般的に、同期発電機の機械入力が低下すると、同期発電機の機械角速度が低くなる。すると、同期発電機の内部位相角が小さくなり、発電機出力が減少する。上述したように、本実施形態においては、発電機モデル演算部11にて、同期発電機の特性を模擬して内部位相角θを計算している。従って、図示のように、内部位相角θは、機械入力設定値TMに対応して減少する。
 この同期発電機の動特性を模擬する結果、発電機モデル演算部11の出力する出力電流指令値Iac*(図4参照)は時刻t2以降に減少し、インバータ出力電力Poutも時刻t2から減少し始める。インバータ出力電力Poutが減少してゆくと、直流電圧Vdcの下降は抑制され始める。そして、機械入力設定値TMがさらに小さくなると、インバータ3の直流電圧Vdcは上昇し始める。
 その後、直流電圧監視部29は、インバータ3の直流電圧Vdcが電圧Vdc1に近づくように、機械入力設定値TMを調整する。これにより、時刻t3において、機械入力設定値TMは設定値TM4に安定する。また、これに伴って、内部位相角θはθ4に、インバータ出力電力PoutはPout4に、各々安定する。また、時刻t3以降において、電力変換装置102(図4参照)は再び定常状態になり、インバータ入力電力Pinとインバータ出力電力Poutとは概ね等しくなる。
〈第2実施形態の効果〉
 以上のように、本実施形態によれば、パラメータ値として機械入力設定値TMを適用し、直流電圧(Vdc)に応じてパラメータ値(TM)を設定するため、第1実施形態と同様に、電力変換装置(102)の動作を安定して継続することができるという効果を奏する。
[第3実施形態]
〈第3実施形態の構成〉
 図7は、本発明の第3実施形態による電力変換装置103のブロック図である。なお、以下の説明において、上述した他の実施形態の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 本実施形態においては、第1実施形態(図1参照)における直流電圧監視部9と、界磁電圧補正部10と、発電機モデル演算部11と、に代えて、直流電圧監視部39と、発電機パラメータ補正部36と、発電機モデル演算部37と、が設けられている。
 発電機モデル演算部37は、第1実施形態における発電機モデル演算部11(図1参照)と同様に、機械角速度ωMと、界磁電圧指令値Vfと、連系点電圧Vacと、を他の要素から受信するとともに、出力電流指令値Iac*と、電気的出力トルクTEとを出力する。但し、発電機モデル演算部37は、発電機パラメータ補正部36から発電機パラメータ設定値Zを受信する点で第1実施形態の発電機モデル演算部11とは異なる。
 ここで、発電機パラメータ設定値Zとは、例えば同期発電機の同期リアクタンスである。また、発電機パラメータ設定値Zは、電機子巻線の抵抗成分(実数分)と、同期発電機の同期リアクタンス(虚数分)と、を含む複素数であってもよい。また、発電機モデル演算部37に供給される界磁電圧指令値Vfは、本実施形態においては定数である。
 発電機パラメータ補正部36は、発電機パラメータ基準値Z0と、発電機パラメータ修正値ΔZとに基づいて、発電機パラメータ設定値Zを出力する。例えば、「Z=Z0+ΔZ」によってZを求めるとよい。ここで、発電機パラメータ基準値Z0は、本実施形態においては定数である。直流電圧監視部39は、インバータ3の直流電圧Vdcを監視し、直流電圧Vdcに基づいて、上述した発電機パラメータ修正値ΔZを出力する。
 〈第3実施形態の動作波形〉
 図8は、本実施形態における動作波形例を示す図であり、インバータ入力電力Pin、直流電圧Vdc、発電機パラメータ設定値Z、出力電流指令値Iac*、およびインバータ出力電力Poutの波形を図示する。
 図8の時刻t1以前において、インバータ入力電力PinはPin1、直流電圧Vdcは電圧Vdc1、発電機パラメータ設定値ZはZ1、出力電流指令値Iac*はIac1、インバータ出力電力PoutはPout1である。時刻t1以前において、電力変換装置103(図7参照)は定常状態になっている。すなわち、インバータ入力電力Pinとインバータ出力電力Poutとは概ね等しい値になり、両者の差はインバータ3で発生する損失分になる。
 次に、図8の時刻t1において、インバータ入力電力Pinは、電力Pin1から電力Pin2にステップ状に上昇している。この時刻t1において、インバータ3から電力系統8に出力されるインバータ出力電力Poutは、ほとんど変化せず、従前の電力Pout1をほぼ維持している。すると、Pin2とPout1との差分によって、インバータ3の直流部3aに備えられた平滑用コンデンサ(図示せず)が充電される。これにより、時刻t1以降、直流電圧Vdcは上昇し始める。
 時刻t2において、直流電圧Vdcが閾値Vdc_Uを上回ると、直流電圧監視部39は、発電機パラメータ設定値Zを小さくするように、発電機パラメータ修正値ΔZを設定する。そして、時刻t2以降、「Vdc-Vdc_U」が徐々に大きくなると、直流電圧監視部39は、発電機パラメータ設定値Zを徐々に減少させてゆく。一般的に、同期発電機の発電機インピーダンスが小さくなると、同期発電機に流れる電流が大きくなり、同期発電機の出力電力が大きくなる。
 この同期発電機の動特性を模擬する結果、発電機モデル演算部37の出力する出力電流指令値Iac*は時刻t2以降に増加し、インバータ出力電力Poutも時刻t2から増加し始める。インバータ出力電力Poutが増加してゆくと、直流電圧Vdcの上昇は抑制され始める。そして、発電機パラメータ設定値Zがさらに小さくなると、インバータ3の直流電圧Vdcは低下し始める。
 その後、直流電圧監視部39は、インバータ3の直流電圧Vdcが電圧Vdc1に近づくように、発電機パラメータ設定値Zを調整する。これにより、時刻t3において、発電機パラメータ設定値ZはZ2に安定する。また、これに伴って、出力電流指令値Iac*はIac2に、インバータ出力電力PoutはPout2に、各々安定する。また、時刻t3以降において、電力変換装置103(図7参照)は再び定常状態になり、インバータ入力電力Pinとインバータ出力電力Poutとは概ね等しくなる。
 図9は、本実施形態における他の動作波形例を示す図である。
 図9の時刻t1以前において、インバータ入力電力PinはPin3、直流電圧VdcはVdc1、発電機パラメータ設定値ZはZ3、出力電流指令値Iac*はIac3、インバータ出力電力PoutはPout3である。本図においても、時刻t1以前は定常状態であり、インバータ入力電力Pinとインバータ出力電力Poutとは概ね等しく、両者の差はインバータ3にて発生する損失分になる。
 次に、図9の時刻t1において、インバータ入力電力Pinは、電力Pin3から電力Pin4にステップ状に下降している。この時刻t1において、インバータ3から電力系統8に出力されるインバータ出力電力Poutは、ほとんど変化せず、従前の電力Pout3をほぼ維持している。すると、電力Pout3と電力Pin4との差分によって、インバータ3の直流部3aに備えられた平滑用コンデンサ(図示せず)が放電される。これにより、時刻t1以降、直流電圧Vdcは下降し始める。
 時刻t2において、直流電圧Vdcが閾値Vdc_Lを下回ると、直流電圧監視部39は、発電機パラメータ設定値Zを上昇させるように発電機パラメータ修正値ΔZを設定する。そして、時刻t2以降、「Vdc_L-Vdc」が徐々に大きくなると直流電圧監視部39は、発電機パラメータ設定値Zを徐々に増加させてゆく。一般的に、同期発電機の発電機インピーダンスが大きくなると、同期発電機に流れる電流が小さくなり、同期発電機の出力電力も小さくなる。
 この同期発電機の動特性を模擬する結果、発電機モデル演算部37の出力する出力電流指令値Iac*は時刻t2以降に減少し、インバータ出力電力Poutも時刻t2から減少し始める。インバータ出力電力Poutが減少してゆくと、直流電圧Vdcの低下は抑制され始める。そして、発電機パラメータ設定値Zがさらに大きくなると、インバータ3の直流電圧Vdcは上昇し始める。
 その後、直流電圧監視部39は、インバータ3の直流電圧Vdcが電圧Vdc1に近づくように、発電機パラメータ設定値Zを調整する。これにより、時刻t3において、発電機パラメータ設定値ZはZ4に安定する。また、これに伴って、出力電流指令値Iac*はIac4に、インバータ出力電力PoutはPout4に、各々安定する。また、時刻t3以降において、電力変換装置103(図7参照)は再び定常状態になり、インバータ入力電力Pinとインバータ出力電力Poutとは概ね等しくなる。
〈第3実施形態の効果〉
 以上のように、本実施形態によれば、パラメータ値として発電機パラメータ設定値Zを適用し、直流電圧(Vdc)に応じてパラメータ値(Z)を設定するため、第1実施形態と同様に、電力変換装置(103)の動作を安定して継続することができるという効果を奏する。
[第4実施形態]
〈第4実施形態の構成〉
 図10は、本発明の第4実施形態による電力変換装置104のブロック図である。なお、以下の説明において、上述した他の実施形態の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 本実施形態においては、第1実施形態(図1参照)における直流電圧監視部9と、発電機モデル演算部11と、に代えて、機械入力補正部25と、発電機パラメータ補正部36と、発電機モデル演算部37と、直流電圧監視部49と、が設けられている。
 直流電圧監視部49は、第1~第3実施形態の直流電圧監視部9,29,39(図1、図4、図7参照)の機能を合わせた機能を有している。すなわち、直流電圧監視部49は、インバータ3の直流電圧Vdcを監視し、直流電圧Vdcに基づいて、界磁電圧修正値ΔVfと、機械入力修正値ΔTMと、発電機パラメータ修正値ΔZと、を出力する。
 界磁電圧補正部10は、第1実施形態(図1参照)のものと同様であり、界磁電圧基準指令値Vf0と、界磁電圧修正値ΔVfとに基づいて、界磁電圧指令値Vfを出力する。また、機械入力補正部25は、第2実施形態(図4参照)のものと同様であり、機械入力基準設定値TM0と、機械入力修正値ΔTMとに基づいて、機械入力設定値TMを出力する。また、発電機パラメータ補正部36は、第3実施形態(図7参照)のものと同様であり、発電機パラメータ基準値Z0と、発電機パラメータ修正値ΔZとに基づいて、発電機パラメータ設定値Zを出力する。
 但し、直流電圧監視部49は、界磁電圧修正値ΔVf、機械入力修正値ΔTMおよび発電機パラメータ修正値ΔZの全てを出力してもよく、これらのうち一部のみを出力してもよい。ローターモデル演算部12および発電機モデル演算部37は、第3実施形態(図7参照)のものと同様に、仮想的に同期発電機を模擬した演算を実行する。
〈第4実施形態の効果〉
 以上のように本実施形態によれば、パラメータ値設定部(10,25,36)は、直流電圧(Vdc)に応じて、同期発電機の界磁電圧に対応する界磁電圧指令値(Vf)、同期発電機の機械入力に対応する機械入力設定値(TM)、および同期発電機の同期リアクタンスに対応する発電機パラメータ設定値(Z)のうち少なくとも一のパラメータ値を設定する。
 より具体的には、パラメータ値設定部(10,25,36)は、直流電圧(Vdc)が増加すると、界磁電圧指令値(Vf)の増加、機械入力設定値(TM)の増加、および発電機パラメータ設定値(Z)の減少のうち一部または全部を実行し、直流電圧(Vdc)が減少すると、界磁電圧指令値(Vf)の減少、機械入力設定値(TM)の減少、および発電機パラメータ設定値(Z)の増加のうち一部または全部を実行する。
 これにより、第1~第3実施形態と同様に、電力変換装置(104)の動作を安定して継続することができるという効果を奏する。
 また、パラメータ値(Vf,TM,Z)のうち複数のパラメータ値を直流電圧(Vdc)に応じて設定すると、直流電圧(Vdc)の調整の自由度を向上させることができ、電力変換装置(104)の動作を一層安定させることができる。
[第5実施形態]
 図11は、本発明の第5実施形態による電力変換装置105のブロック図である。なお、以下の説明において、上述した他の実施形態の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 本実施形態においては、第4実施形態(図10参照)におけるローターモデル演算部12と、発電機モデル演算部37と、に代えて、ローターモデル演算部52と、発電機モデル演算部53と、が設けられている。さらに、本実施形態の電力変換装置105は、発電機運転指令入力部51と、発電機運転状態出力部54と、を備えている。
 ローターモデル演算部52は、第4実施形態のローターモデル演算部12と同様の機能を有しているが、さらに、ローターモデルの状態を表すローターモデル状態データDRを外部に出力する機能を有している。また、発電機モデル演算部53は、第4実施形態の発電機モデル演算部37と同様の機能を有しているが、さらに、発電機モデルの状態を表す発電機モデル状態データDEを外部に出力する機能を有している。
 そして、発電機運転状態出力部54は、発電機モデル状態データDEと、ローターモデル状態データDRとを発電機運転状態データDGとして、図示せぬ上位装置等に出力する。また、発電機運転指令入力部51は、図示せぬ上位装置等から、発電機運転指令CMDを受信する。この発電機運転指令CMDには、少なくとも、機械入力基準設定値TM0、発電機パラメータ基準値Z0、および界磁電圧基準指令値Vf0を特定するデータが含まれている。
 発電機運転指令入力部51は、発電機運転指令CMDに応じて、機械入力基準設定値TM0、発電機パラメータ基準値Z0、および界磁電圧基準指令値Vf0を出力する。なお、本実施形態においては、図示せぬ外部機器によって、機械入力基準設定値TM0、発電機パラメータ基準値Z0、および界磁電圧基準指令値Vf0を設定できるため、これらTM0、Z0およびVf0をそのまま機械入力設定値TM、発電機パラメータ設定値Z、および界磁電圧指令値Vfとして、発電機モデル演算部53に供給してもよい。
〈第5実施形態の効果〉
 以上のように、本実施形態によれば、制御部(6)は、同期発電機を模擬する演算を実行する同期発電機模擬演算部(52,53)と、同期発電機の運転状態を指令する発電機運転指令(CMD)を、外部から受信する発電機運転指令入力部(51)と、同期発電機の運転状態を外部に対して送信する発電機運転状態出力部(54)と、を有する。
 より具体的には、発電機運転指令入力部(51)は、同期発電機模擬演算部(52,53)に対して、同期発電機の界磁電圧に対応する界磁電圧基準指令値(Vf0)、同期発電機の機械入力に対応する機械入力基準設定値(TM0)、および同期発電機の同期リアクタンスに対応する発電機パラメータ基準値(Z0)のうち少なくとも一のパラメータ値を入力するものであり、同期発電機模擬演算部(52,53)は、同期発電機の回転子の運動状態を模擬したローターモデル状態データ(DR)と、同期発電機の電気的な状態を模擬した発電機モデル状態データ(DE)と、を発電機運転状態出力部(54)に対して供給するものである。
 これにより、外部機器によって、電力変換装置(105)を自由に制御し、監視できるようになり、電力変換装置(105)の動作を一層安定させることができる。さらに、本実施形態によれば、電力変換装置(105)に対して要求する発電機模擬性能と、電力変換装置(105)の実際の発電機模擬性能とを比較することができる。これにより、電力変換装置(105)が電力系統の安定度向上に寄与しているか否かを正確に評価することができる。
[第6実施形態]
 図12は、本発明の第6実施形態による電力変換装置106のブロック図である。なお、以下の説明において、上述した他の実施形態の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 本実施形態においては、第4実施形態(図10参照)における界磁電圧補正部10と、発電機モデル演算部37と、直流電圧監視部49と、に代えて、発電機モデル演算部61と、直流電圧監視部62と、が設けられている。
 本実施形態におけるローターモデル演算部12および発電機モデル演算部61は、仮想的に永久磁石式同期発電機を模擬した演算を実行する。永久磁石式同期発電機は、界磁回路を備えていないため、制御部6は第4実施形態等の界磁電圧補正部10(図10参照)を備えていない。また、発電機モデル演算部61および直流電圧監視部62は、第4実施形態の発電機モデル演算部37および直流電圧監視部49(図10参照)と同様に構成されているが、界磁に関する信号は入出力しない点が異なる。すなわち、直流電圧監視部62は、連系点電圧Vacに基づいて機械入力修正値ΔTMと発電機パラメータ修正値ΔZとを出力する。また、発電機モデル演算部61は、発電機パラメータ設定値Zと、連系点電圧Vacと、機械角速度ωMとに基づいて、出力電流指令値Iac*と、電気的出力トルクTEとを出力する。
〈第6実施形態の効果〉
 以上のように、本実施形態によれば、同期発電機模擬演算部(12,61)が模擬する同期発電機は永久磁石式同期発電機であり、パラメータ値設定部(25,36)は、直流電圧(Vdc)に応じて、同期発電機の機械入力に対応する機械入力設定値(TM)、および同期発電機の同期リアクタンスに対応する発電機パラメータ設定値(Z)のうち少なくとも一方のパラメータ値を設定する。
 より具体的には、パラメータ値設定部(25,36)は、直流電圧(Vdc)が増加すると、機械入力設定値(TM)の増加、および発電機パラメータ設定値(Z)の減少のうち一方または双方を実行し、直流電圧(Vdc)が減少すると、機械入力設定値(TM)の減少、および発電機パラメータ設定値(Z)の増加のうち一方または双方を実行する。
 これにより、模擬する同期発電機として永久磁石式同期発電機を適用した場合においても、界磁巻線式同期発電機を適用した場合(第1~第5実施形態)と同様に、電力変換装置(106)の動作を安定させることができる。
[第7実施形態]
 図13は、本発明の第7実施形態による太陽光発電システムのブロック図である。なお、以下の説明において、上述した他の実施形態の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 本実施形態の太陽光発電システムは、直流電源71と、電力変換装置100と、を備えている。電力変換装置100としては、第1~第6実施形態の電力変換装置101~106のうち、何れか任意のものを適用できる。従って、電力変換装置100は、インバータ3を備えている。
 直流電源71は、太陽光パネル711と、チョッパ回路712と、を備えている。チョッパ回路712は、太陽光パネル711から出力された直流電圧を昇圧し、インバータ3の直流部3aに供給する。
 本実施形態によれば、直流電源71の出力電力が不安定であっても、電力変換装置100の動作を安定して継続することができる。
[第8実施形態]
 図14は、本発明の第8実施形態による太陽光発電システムのブロック図である。なお、以下の説明において、上述した他の実施形態の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 本実施形態の太陽光発電システムは、直流電源72と、電力変換装置100と、を備えている。直流電源71は、太陽光パネル721を備えており、太陽光パネル721が出力する直流電圧は、インバータ3の直流部3aに供給される。
 本実施形態によれば、第7実施形態と同様に、直流電源72の出力電力が不安定であっても、電力変換装置100の動作を安定して継続することができる。
[第9実施形態]
 図15は、本発明の第9実施形態による風力発電システムのブロック図である。なお、以下の説明において、上述した他の実施形態の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 本実施形態の風力発電システムは、直流電源73と、電力変換装置100と、を備えている。直流電源73は、風車731と、発電機732と、コンバータ733と、を備えている。風車731の回転軸は、発電機732の回転軸に結合され、発電機732の出力端子は、コンバータ733の交流部733aに接続されている。また、コンバータ733の直流部733bは、インバータ3の直流部3aに接続されている。
 風車731が回転すると、発電機732の回転軸が回転駆動され、発電機732は交流電力を出力する。コンバータ733は、発電機732の出力する交流電力を直流電力に変換して、インバータ3の直流部3aに出力する。
 本実施形態によれば、第7および第8実施形態と同様に、直流電源73の出力電力が不安定であっても、電力変換装置100の動作を安定して継続することができる。
[変形例]
 本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について削除し、もしくは他の構成の追加・置換をすることが可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
(1)上記各実施形態における制御部6のハードウエアは一般的なコンピュータによって実現できるため、図1、図4等に示したブロック図に係るプログラム等を記憶媒体に格納し、または伝送路を介して頒布してもよい。
(2)図1、図4等に示した処理は、上記実施形態ではプログラムを用いたソフトウエア的な処理として説明したが、その一部または全部をASIC(Application Specific Integrated Circuit;特定用途向けIC)、あるいはFPGA(field-programmable gate array)等を用いたハードウエア的な処理に置き換えてもよい。
(3)また、第1~第6実施形態による電力変換装置101~106は、第7~第9実施形態による太陽光発電システムまたは風力発電システムのみならず、種々の用途に適用することができる。
2 電圧検出器
3 インバータ
4 電圧検出器
5 電流検出器
6 制御部
7 直流電源
8 電力系統
9,29,39,49,62 直流電圧監視部
10 界磁電圧補正部(パラメータ値設定部)
11,37,53,61 発電機モデル演算部(同期発電機模擬演算部)
12,52 ローターモデル演算部(同期発電機模擬演算部)
25 機械入力補正部(パラメータ値設定部)
36 発電機パラメータ補正部(パラメータ値設定部)
51 発電機運転指令入力部
54 発電機運転状態出力部
101~106 電力変換装置
TM 機械入力設定値
Vf 界磁電圧指令値
CMD 発電機運転指令
TM0 機械入力基準設定値
Vf0 界磁電圧基準指令値
Z 発電機パラメータ設定値
Z0 発電機パラメータ基準値
Pout インバータ出力電力(出力電力)
DE 発電機モデル状態データ
DR ローターモデル状態データ
Vdc 直流電圧

Claims (14)

  1.  入力される直流電力を交流電力に変換するインバータと、
     前記インバータを制御する制御部と、
     を備え、前記制御部は、
     同期発電機を模擬する演算を実行する同期発電機模擬演算部と、
     前記インバータに入力される直流電圧を監視する直流電圧監視部と、
     前記直流電圧に応じて、前記同期発電機模擬演算部で用いられるパラメータ値を設定するパラメータ値設定部と、
     を有することを特徴とする電力変換装置。
  2.  前記パラメータ値設定部は、前記直流電圧に応じて、前記同期発電機の界磁電圧に対応する界磁電圧指令値、前記同期発電機の機械入力に対応する機械入力設定値、および前記同期発電機の同期リアクタンスに対応する発電機パラメータ設定値のうち少なくとも一のパラメータ値を設定する
     ことを特徴とする請求項1に記載の電力変換装置。
  3.  前記パラメータ値設定部は、
     前記直流電圧が増加すると、前記界磁電圧指令値の増加、前記機械入力設定値の増加、および前記発電機パラメータ設定値の減少のうち一部または全部を実行し、
     前記直流電圧が減少すると、前記界磁電圧指令値の減少、前記機械入力設定値の減少、および前記発電機パラメータ設定値の増加のうち一部または全部を実行する。
     ことを特徴とする請求項2に記載の電力変換装置。
  4.  前記同期発電機模擬演算部が模擬する前記同期発電機は永久磁石式同期発電機であり、
     前記パラメータ値設定部は、前記直流電圧に応じて、前記同期発電機の機械入力に対応する機械入力設定値、および前記同期発電機の同期リアクタンスに対応する発電機パラメータ設定値のうち少なくとも一方のパラメータ値を設定する
     ことを特徴とする請求項1に記載の電力変換装置。
  5.  前記パラメータ値設定部は、
     前記直流電圧が増加すると、前記機械入力設定値の増加、および前記発電機パラメータ設定値の減少のうち一方または双方を実行し、
     前記直流電圧が減少すると、前記機械入力設定値の減少、および前記発電機パラメータ設定値の増加のうち一方または双方を実行する
     ことを特徴とする請求項4に記載の電力変換装置。
  6.  入力される直流電力を交流電力に変換するインバータと、
     前記インバータを制御する制御部と、
     を備え、前記制御部は、
     同期発電機を模擬する演算を実行する同期発電機模擬演算部と、
     前記同期発電機の運転状態を指令する発電機運転指令を、外部から受信する発電機運転指令入力部と、
     前記同期発電機の運転状態を外部に対して送信する発電機運転状態出力部と、
     を有することを特徴とする電力変換装置。
  7.  前記発電機運転指令入力部は、前記同期発電機模擬演算部に対して、前記同期発電機の界磁電圧に対応する界磁電圧基準指令値、前記同期発電機の機械入力に対応する機械入力基準設定値、および前記同期発電機の同期リアクタンスに対応する発電機パラメータ基準値のうち少なくとも一のパラメータ値を入力するものであり、
     前記同期発電機模擬演算部は、前記同期発電機の回転子の運動状態を模擬したローターモデル状態データと、前記同期発電機の電気的な状態を模擬した発電機モデル状態データと、を前記発電機運転状態出力部に対して供給するものである
     ことを特徴とする請求項6に記載の電力変換装置。
  8.  入力される直流電力を交流電力に変換するインバータと、
     前記インバータを制御する制御部と、
     を備え、前記制御部は、
     同期発電機を模擬する演算を実行する同期発電機模擬演算部と、
     前記インバータに入力される直流電圧を監視する直流電圧監視部と、
     を備え、前記直流電圧監視部は、前記直流電圧の変動に対応して前記同期発電機模擬演算部に供給するパラメータ値を制御することにより、前記直流電圧が上昇する場合は前記インバータからの出力電力を増加させ、前記直流電圧が下降する場合は前記インバータからの出力電力を減少させる
     ことを特徴とする電力変換装置。
  9.  入力される直流電力を交流電力に変換するインバータと、
     前記インバータを制御する制御部と、
     を有する電力変換装置にて実行される制御方法であって、前記制御部が、
     同期発電機を模擬する演算を実行する同期発電機模擬演算過程と、
     前記インバータに入力される直流電圧を監視する直流電圧監視過程と、
     前記直流電圧に応じて、前記同期発電機模擬演算過程で用いられるパラメータ値を設定するパラメータ値設定過程と、
     を実行することを特徴とする電力変換装置の制御方法。
  10.  前記パラメータ値設定過程は、前記直流電圧に応じて、前記同期発電機の界磁電圧に対応する界磁電圧指令値、前記同期発電機の機械入力に対応する機械入力設定値、および前記同期発電機の同期リアクタンスに対応する発電機パラメータ設定値のうち少なくとも一のパラメータ値を設定する過程である
     ことを特徴とする請求項9に記載の電力変換装置の制御方法。
  11.  前記パラメータ値設定過程は、
     前記直流電圧が増加すると、前記界磁電圧指令値の増加、前記機械入力設定値の増加、および前記発電機パラメータ設定値の減少のうち何れかを実行し、
     前記直流電圧が減少すると、前記界磁電圧指令値の減少、前記機械入力設定値の減少、および前記発電機パラメータ設定値の増加のうち何れかを実行する過程である
     ことを特徴とする請求項10に記載の電力変換装置の制御方法。
  12.  前記同期発電機模擬演算過程で模擬する前記同期発電機は永久磁石式同期発電機であり、
     前記パラメータ値設定過程は、前記直流電圧に応じて、前記同期発電機の機械入力に対応する機械入力設定値、および前記同期発電機の同期リアクタンスに対応する発電機パラメータ設定値のうち少なくとも一方のパラメータ値を設定する過程である
     ことを特徴とする請求項9に記載の電力変換装置の制御方法。
  13.  前記パラメータ値設定過程は、
     前記直流電圧が増加すると、前記機械入力設定値の増加、および前記発電機パラメータ設定値の減少のうち何れかを実行し、
     前記直流電圧が減少すると、前記機械入力設定値の減少、および前記発電機パラメータ設定値の増加のうち何れかを実行する過程である
     ことを特徴とする請求項12に記載の電力変換装置の制御方法。
  14.  入力される直流電力を交流電力に変換するインバータと、
     前記インバータを制御する制御部と、
     を有する電力変換装置にて実行される制御方法であって、前記制御部が、
     同期発電機を模擬する演算を実行する同期発電機模擬演算過程と、
     前記インバータに入力される直流電圧を監視する直流電圧監視過程と、
     を実行し、
     前記直流電圧監視過程は、前記直流電圧の変動に対応して前記同期発電機模擬演算過程に用いられるパラメータ値を制御することにより、前記直流電圧が上昇する場合は前記インバータからの出力電力を増加させ、前記直流電圧が下降する場合は前記インバータからの出力電力を減少させる過程である
     ことを特徴とする電力変換装置の制御方法。
PCT/JP2017/040705 2017-11-13 2017-11-13 電力変換装置およびその制御方法 WO2019092877A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/040705 WO2019092877A1 (ja) 2017-11-13 2017-11-13 電力変換装置およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/040705 WO2019092877A1 (ja) 2017-11-13 2017-11-13 電力変換装置およびその制御方法

Publications (1)

Publication Number Publication Date
WO2019092877A1 true WO2019092877A1 (ja) 2019-05-16

Family

ID=66438807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040705 WO2019092877A1 (ja) 2017-11-13 2017-11-13 電力変換装置およびその制御方法

Country Status (1)

Country Link
WO (1) WO2019092877A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029373A1 (ja) * 2019-08-09 2021-02-18 三菱重工エンジン&ターボチャージャ株式会社 指令生成装置および指令生成方法
JP7023430B1 (ja) * 2021-06-24 2022-02-21 三菱電機株式会社 電力変換装置
JP7051033B1 (ja) * 2021-10-07 2022-04-08 三菱電機株式会社 電力変換装置及び制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225599A (ja) * 2008-03-18 2009-10-01 Kawasaki Heavy Ind Ltd 電力変換装置
JP2013162623A (ja) * 2012-02-03 2013-08-19 Toshiba Corp 給電システム
WO2015075923A1 (ja) * 2013-11-20 2015-05-28 川崎重工業株式会社 電力変換装置
JP2016220406A (ja) * 2015-05-20 2016-12-22 富士電機株式会社 シミュレーション装置及びシミュレーションシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225599A (ja) * 2008-03-18 2009-10-01 Kawasaki Heavy Ind Ltd 電力変換装置
JP2013162623A (ja) * 2012-02-03 2013-08-19 Toshiba Corp 給電システム
EP2822163A1 (en) * 2012-02-03 2015-01-07 Kabushiki Kaisha Toshiba Power supply system
WO2015075923A1 (ja) * 2013-11-20 2015-05-28 川崎重工業株式会社 電力変換装置
JP2016220406A (ja) * 2015-05-20 2016-12-22 富士電機株式会社 シミュレーション装置及びシミュレーションシステム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029373A1 (ja) * 2019-08-09 2021-02-18 三菱重工エンジン&ターボチャージャ株式会社 指令生成装置および指令生成方法
CN114128075A (zh) * 2019-08-09 2022-03-01 三菱重工发动机和增压器株式会社 指令生成装置及指令生成方法
JP7324653B2 (ja) 2019-08-09 2023-08-10 三菱重工エンジン&ターボチャージャ株式会社 指令生成装置および指令生成方法
CN114128075B (zh) * 2019-08-09 2024-03-22 三菱重工发动机和增压器株式会社 指令生成装置及指令生成方法
JP7023430B1 (ja) * 2021-06-24 2022-02-21 三菱電機株式会社 電力変換装置
WO2022269857A1 (ja) * 2021-06-24 2022-12-29 三菱電機株式会社 電力変換装置
JP7051033B1 (ja) * 2021-10-07 2022-04-08 三菱電機株式会社 電力変換装置及び制御装置
WO2023058196A1 (ja) * 2021-10-07 2023-04-13 三菱電機株式会社 電力変換装置及び制御装置

Similar Documents

Publication Publication Date Title
US11239779B2 (en) Method and control system for controlling a power converter
CN101970865B (zh) 风力发电装置及其控制方法
US8890454B2 (en) Phase locked loop based torsional mode damping system and method
WO2019187411A1 (ja) 分散電源の制御装置
CN102629766B (zh) 缓和公共耦合点处的三相电流的电气不平衡的系统和方法
Zhu et al. Virtual inertia control of DFIG-based wind turbines for dynamic grid frequency support
WO2019092877A1 (ja) 電力変換装置およびその制御方法
EP2672624A1 (en) Current controller and generator system
CN111656639A (zh) 电力变换装置
CN102904517B (zh) 励磁同步发电机最大功率追踪控制方法
CN102820843B (zh) 基于平均功率反馈的变频器并联控制方法
JP5636412B2 (ja) 風力発電システム及びその励磁同期発電機の制御方法
CN105591584B (zh) 一种空调风机控制方法及装置
CN102355175B (zh) 一种感应电机刹车控制方法
CN112821391A (zh) 一种并网变换器的短路电流提供方法及系统
EP2434138B1 (en) Power control methods
CN103762618B (zh) 一种具有致稳能力的发电系统及控制方法
CN103138664A (zh) 永磁电机启动方法、装置及系统
KR20130094691A (ko) 센서리스 비틀림 모드 댐핑 시스템 및 방법
CN112737421A (zh) 一种用于控制电动机减速的方法及系统
Hussain et al. Design and development of real-time small-scale wind turbine simulator
CN113131522A (zh) 双馈风力发电机的虚拟惯量控制及稳定性分析方法
CN109980701B (zh) 微电网虚拟同步发电机控制方法
CN109193810B (zh) 同步逆变器控制方法、装置及系统
CN110429650A (zh) 一种电网不对称故障下dfig变换器正、负序电流控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP