JP7324653B2 - 指令生成装置および指令生成方法 - Google Patents

指令生成装置および指令生成方法 Download PDF

Info

Publication number
JP7324653B2
JP7324653B2 JP2019148070A JP2019148070A JP7324653B2 JP 7324653 B2 JP7324653 B2 JP 7324653B2 JP 2019148070 A JP2019148070 A JP 2019148070A JP 2019148070 A JP2019148070 A JP 2019148070A JP 7324653 B2 JP7324653 B2 JP 7324653B2
Authority
JP
Japan
Prior art keywords
power
virtual
command
generator
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019148070A
Other languages
English (en)
Other versions
JP2021029087A (ja
Inventor
治 中北
政之 田中
真人 三橋
富士雄 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Original Assignee
Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=74569358&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7324653(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Heavy Industries Engine and Turbocharger Ltd filed Critical Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Priority to JP2019148070A priority Critical patent/JP7324653B2/ja
Priority to CN202080049875.4A priority patent/CN114128075B/zh
Priority to US17/625,261 priority patent/US20220255320A1/en
Priority to PCT/JP2020/030419 priority patent/WO2021029373A1/ja
Priority to EP20853183.0A priority patent/EP3982504A4/en
Publication of JP2021029087A publication Critical patent/JP2021029087A/ja
Application granted granted Critical
Publication of JP7324653B2 publication Critical patent/JP7324653B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1885Arrangements for adjusting, eliminating or compensating reactive power in networks using rotating means, e.g. synchronous generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2639Energy management, use maximum of cheap power, keep peak load low
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Description

本開示は、直流電源装置の電力変換装置の制御指令を生成する指令生成装置および指令生成方法に関する。
特許文献1には、インバータに、同期発電機のガバナおよびAVR(Automatic Voltage Regulator)の機能を持たせることで、系統の安定化を図る技術が開示されている。特許文献1に記載の技術によれば、母線を無限大母線と仮定して制御ロジックをモデル化する。無限大母線とは、母線に接続されている負荷のにおいて大きな負荷変動が生じても周波数および電圧の変動が生じない理想的な電源をいう。
特許第6084863号公報
ところで、自立運転により電力を供給するいわゆるマイクログリッドシステム、またはオフグリッドシステムでは、母線に接続されている負荷の変動により母線の電力が変動しやすい。そのため、特許文献1に記載の技術では、母線の電力需給の変動により、電力変換装置を安定的に制御することができない可能性がある。また、母線の電力需給の関係を安定化させるためには、電力変換装置による母線への電力供給だけでなく、母線からの電力消費についても適切に制御する必要がある。
本開示の目的は、母線に接続された電力変換装置を安定的に制御することができる指令生成装置および指令生成方法を提供することにある。
第1の態様によれば、指令生成装置は、直流電源装置が出力する直流電力を交流電力に変換して母線に供給するとともに、母線の交流電力を直流電力に変換して直流電源装置に供給する電力変換装置の制御指令を生成する指令生成装置であって、仮想発電機の駆動を模擬し、前記仮想発電機の回転数を算出するロータモデルに基づいて、前記仮想発電機の実効電圧値および位相を算出する仮想発電算出部と、前記電力変換装置と前記母線との接続点における電圧および位相を算出する母線算出部と、前記仮想発電機の位相と前記接続点の位相との相差角を算出する相差角算出部と、前記仮想発電機の実効電圧値、前記接続点における電圧、および前記相差角に基づいて、前記電力変換装置の有効電力の目標値を決定する目標電力決定部と、決定した前記有効電力の目標値に基づいて、前記電力変換装置の制御指令を生成する指令生成部と、を備える。
第2の態様によれば、指令生成方法は、直流電源装置が出力する直流電力を交流電力に変換して母線に供給するとともに、母線の交流電力を直流電力に変換して直流電源装置に供給する電力変換装置の制御指令を生成する指令生成方法であって、仮想発電機の駆動を模擬し、前記仮想発電機の回転数を算出するロータモデルに基づいて、前記仮想発電機の実効電圧値および位相を算出するステップと、前記電力変換装置と前記母線との接続点における電圧および位相を計測するステップと、前記仮想発電機の位相と前記接続点の位相との相差角を算出するステップと、前記仮想発電機の実効電圧値、前記接続点における電圧、および前記相差角に基づいて、前記電力変換装置の有効電力の目標値を決定するステップと、決定した前記有効電力の目標値に基づいて、前記電力変換装置の制御指令を生成するステップと、を備える。
上記態様のうち少なくとも1つの態様によれば、母線に接続された電力変換装置を安定的に制御することができる。
第1の実施形態に係る電力供給システムの構成を示す概略ブロック図である。 第1の実施形態に係る指令生成装置の構成を示す概略ブロック図である。 第1の実施形態に係るガバナモデルの例を示すブロック線図である。 第1の実施形態に係るロータモデルの例を示すブロック線図である。 第2の実施形態に係る指令生成装置の構成を示す概略ブロック図である。 第3の実施形態に係る指令生成装置の構成を示す概略ブロック図である。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
〈第1の実施形態〉
図1は、第1の実施形態に係る電力供給システムの構成を示す概略ブロック図である。
《電力供給システムの構成》
第1の実施形態に係る電力供給システム1は、エンジン発電機10、太陽光発電機20、蓄電装置30、指令生成装置33、および電力制御装置40を備える。電力供給システム1は、自立運転により負荷Lに電力を供給する。すなわち、電力供給システム1は、いわゆるマイクログリッドシステム、またはオフグリッドシステムである。エンジン発電機10、太陽光発電機20および蓄電装置30は、母線に接続され、母線を介して負荷Lに電力を供給する。
エンジン発電機10は、エンジン11、発電機12、ガバナ13、AVR14(Automatic Voltage Regulator:自動電圧調整器)を備える。エンジン発電機10は、エンジン11の回転によって発電機12を駆動することで、交流電力を発生させる交流発電機である。
ガバナ13は、Hz-kWドループ特性によりエンジン11の回転数を制御する。エンジン発電機10のガバナ特性は、例えば、定格出力および定格周波数に係るプロットと、ゼロ出力および定格出力から負荷遮断したときに無負荷状態で整定する整定周波数に係るプロットとを結ぶ一次関数の傾きによって表される。すなわち、Hz-kWドループ特性は、周波数が増加するほど出力が減少する特性である。なお、他の実施形態においては、ガバナ特性がPID(Proportional Integral Differential)制御によって実現されてもよい。AVR14は、V-kbarドループ特性により発電機12の界磁巻線に供給する電流を制御することで、発電機12の端子電圧を調整する。V-kbarドループ特性は、電圧が増加するほど無効電力が減少する特性である。なお、他の実施形態においては、エンジン発電機10に代えて他の交流発電機を用いてもよい。
太陽光発電機20は、太陽電池21と、インバータ22とを備える。太陽電池21は、太陽光を直流電力に変換する直流電源装置である。インバータ22は、太陽電池21が生成する直流電力を交流電力に変換する。なお、インバータ22と太陽電池21とは必ずしも一対一に設けられなくてよい。例えば、1つのインバータ22に複数の太陽電池21が接続されてもよい。なお、他の実施形態においては、太陽光発電機20に代えて、例えば、風力発電機などの他の再生可能エネルギー発電機を用いてもよい。
蓄電装置30は、二次電池31と、電力変換装置32を備える。電力変換装置32の制御指令は、有効電力の目標値、無効電力の目標値を含む。電力変換装置32は、指令生成装置33からの指令に基づいて、二次電池31が出力する直流電力を、母線の電圧周波数に同期した交流電力に変換して母線に供給する。電力変換装置32は、PLL制御により、出力電力を母線の電圧周波数に同期させる。また電力変換装置32は、電力制御装置40からの指令に基づいて指令生成装置33が生成した制御指令に基づいて、母線に流れる交流電力の一部を直流電力に変換して二次電池31を充電する。二次電池31としては、例えばリチウムイオン二次電池を用いることができる。電力変換装置32は、P-Q制御に係る制御指令によって動作する汎用の電流制御型インバータである。なお、他の実施形態に係る電力変換装置32は、皮相電力の目標値と力率角度の目標値と電圧周波数の目標値とに係る制御指令によって動作するものであってもよい。
なお、電力変換装置32と二次電池31とは必ずしも一対一に設けられなくてよい。例えば、1つの電力変換装置32に複数の二次電池31が接続されてもよい。
指令生成装置33は、電力制御装置40からの指令に基づいて蓄電装置30の電力変換装置32を制御するための制御指令を生成し、蓄電装置30に出力する。指令生成装置33は、蓄電装置30と別個に設けられた装置である。
電力制御装置40は、母線の電力値を監視し、エンジン発電機10および蓄電装置30に充放電指令を出力する。例えば、電力制御装置40は、昼間など、太陽光発電機20による発電電力が所定の閾値以上である場合に、エンジン発電機10に発電電力を低下させ、または停止させる電力指令を出力。また電力制御装置40は、夜間や悪天候時など、太陽光発電機20による発電電力が所定の閾値未満となる場合に、エンジン発電機10に発電電力を増加させる電力指令を出力する。
また例えば、電力制御装置40は、太陽光発電機20による発電電力の変動に基づいて、当該変動を平滑化するための充放電指令を蓄電装置30に出力する。また、電力制御装置40は、母線の電力値と負荷Lによる需要電力値とを比較し、電力差に基づいて充放電指令を蓄電装置30に出力する。
《指令生成装置の構成》
図2は、第1の実施形態に係る指令生成装置の構成を示す概略ブロック図である。
第1の実施形態に係る指令生成装置33は、電圧計331、コンピュータ332を備える。電圧計331は、電力変換装置32と母線の接続点の電圧を計測する。コンピュータ332は、電圧計331の計測値に基づいて制御指令を生成する。
コンピュータ332は、指令受付部3321、計測値取得部3322、モデル記憶部3323、駆動トルク算出部3324、仮想発電算出部3325、母線算出部3326、相差角算出部3327、目標電力決定部3328、指令生成部3329を備える。
指令受付部3321は、電力制御装置40から充放電指令を受け付ける。充放電指令は、有効電力の指令値および無効電力の指令を含む。
計測値取得部3322は、電圧計331の計測値を取得する。すなわち計測値取得部3322は、接続点における瞬時電圧値を取得する。
モデル記憶部3323は、仮想発電機の挙動を模擬する数理モデルを記憶する。具体的には、モデル記憶部3323は、仮想発電機のガバナの挙動を模擬するガバナモデルM1、仮想発電機のロータの挙動を模擬するロータモデルM2を記憶する。ガバナモデルM1は、仮想発電機のロータの角速度、および角速度指令値が入力されることで、仮想発電機の駆動トルク値を出力する。ロータモデルM2は、仮想発電機の電気トルク値および駆動トルク値が入力されることで、仮想発電機のロータの角速度および位相角を出力する。各数理モデルの詳細については後述する。
駆動トルク算出部3324は、目標電力決定部3328が決定した有効電力の目標値、ならびに前回の制御において仮想発電算出部3325が算出した仮想発電機のロータの角速度を、ガバナモデルM1に入力することで、仮想発電機の駆動トルク値を算出する。
仮想発電算出部3325は、駆動トルク算出部3324が算出した駆動トルク値をロータモデルM2に入力することで、仮想発電機のロータの角速度および位相角を算出する。また仮想発電算出部3325は、ロータの位相と計測値取得部3322が取得した電圧計331の計測値に基づいて、仮想発電機の実効電圧値を算出する。例えば、計測値取得部3322は、母線の瞬時電圧値について、PLL(Phase Lock Loop)回路によってロータの周波数でのサンプリングを行い、サンプリングされたデータを周波数変換することで、ロータの周波数成分の実効電圧値を算出する。
母線算出部3326は、計測値取得部3322が取得した電圧計331の計測値に基づいて、接続点における実効電圧値および位相を算出する。例えば、母線算出部3326は、母線の瞬時電圧値についてPLL回路によって接続点における基本波周波数に同期したサンプリングを行い、サンプリングされたデータを周波数変換することで、基本波成分の実効電圧値を算出する。また、例えば、母線算出部3326は、基本波周波数に同期したサンプリングに基づいて接続点の位相を算出する。
相差角算出部3327は、母線算出部3326が算出した母線の位相と仮想発電算出部3325が算出した仮想発電機のロータの位相との差である相差角を算出する。
目標電力決定部3328は、仮想発電算出部3325が算出した仮想発電機の実効電圧値と、母線算出部3326が算出した母線の実効電圧値と、相差角算出部3327が算出した相差角とに基づいて、有効電力の目標値を決定する。具体的には、目標電力決定部3328は、以下の式(1)に基づいて有効電力の目標値を決定する。
vsg=Vgrid×Vvsg÷X×sinΔθ ・・・(1)
ただし、Pvsgは、有効電力の目標値を示す。Vgridは、母線の実効電圧値を示す。Vvsgは、仮想発電機の実効電圧値を示す。Xは、仮想発電機と母線との間の直列リアクタンスを示す。Xの値としては、例えば仮想発電機のリアクタンスとして設定された値の2倍の値を用いることができる。なお、直列リアクタンスXは、少なくとも仮想発電機のリアクタンスより大きい値である。Δθは、母線と仮想発電機の相差角を示す。
なお、式(1)は、母線に対して直列リアクタンスXおよび仮想発電機が直列に接続された等価回路をベースとしたものである。なお、他の実施形態においては、目標電力決定部3328は、母線と仮想発電機とが接続される二端子対回路のYパラメータを解くことで有効電力の目標値を決定してもよい。なお、式(1)は、二端子対回路の等価回路であるπ型回路のアドミタンスを0としたものと等価である。
指令生成部3329は、目標電力決定部3328が決定した有効電力の目標値と、指令受付部が電力制御装置40から受付けた充放電指令に基づいて、電力変換装置32の制御指令を生成する。指令生成部3329は、生成した制御指令を電力変換装置32に出力する。
《数理モデルの構成》
図3は、第1の実施形態に係るガバナモデルの例を示すブロック線図である。
ガバナモデルM1は、有効電力の計測値P、有効電力指令値P、仮想発電機のロータの角速度ω、および角速度の目標値ωが入力されることで、仮想発電機の駆動トルク値Tを出力する。具体的には、ガバナモデルM1は、加え合わせ点M21、M22、M23、PブロックM24、PIブロックM25、一次遅れブロックM26を備える。加え合わせ点M21は、有効電力の計測値Pと有効電力指令値Pとの差を得る。PブロックM24は、加え合わせ点M21の出力に、比例ゲインKB1によるP制御を行う。比例ゲインKB1は、仮想発電機のHz-kWドループゲインに相当する。加え合わせ点M22は、仮想発電機のロータの角速度ωと角速度の目標値ωの差を得る。加え合わせ点M23は、加え合わせ点M22の出力とPブロックM24の出力との和を得る。PIブロックM25は、加え合わせ点M23の出力に比例ゲインKB2および積分ゲインKB3によるPI制御を行う。一次遅れブロックM26は、PIブロックM25の出力に、時定数KB4に係る一次遅れ制御を行い、駆動トルク値Tを得る。
図4は、第1の実施形態に係るロータモデルの例を示すブロック線図である。
ロータモデルM2は、仮想発電機の負荷トルク値Tおよび駆動トルク値Tが入力されることで、仮想発電機のロータの角速度ωおよび位相角θを出力する。具体的には、ロータモデルM2は、加え合わせ点M31、一次遅れブロックM32、IブロックM33を備える。加え合わせ点M31は、仮想発電機の負荷トルクTおよび駆動トルクTの差を得る。一次遅れブロックM32は、加え合わせ点M31の出力に、一次遅れゲイン1/Dおよび時定数M/Dに係る一次遅れ応答計算を行い、ロータの角速度ωを得る。IブロックM33は、ロータの角速度ωを積分し、比例ゲインωBASEを乗算することで、仮想発電機のロータの位相θを得る。比例ゲインωBASEは、母線の基準周波数である。
《動作》
上記の構成により、コンピュータ332は、ガバナモデルM1、およびロータモデルM2に基づいて、有効電力指令値および角速度指令値から、仮想発電機の位相および角速度を求める。また、コンピュータ332は、電圧計331の計測値から、母線の実効電圧値および位相、ならびに仮想発電機の実効電圧値を求める。コンピュータ332は、仮想発電機の位相と母線の位相の差である相差角をを求める。コンピュータ332は、母線の実効電圧値、仮想発電機の実効電圧値、および相差角に基づいて有効電力の目標値を決定し、これに基づいて電力変換装置32の制御指令を生成する。電力変換装置32は、指令生成装置33が生成する制御指令に従って動作することで、仮想発電機に相当する特性が実現される。
《作用・効果》
第1の実施形態に係る指令生成装置33は、接続点における瞬時電圧値の計測値から母線の実効電圧値および位相を求め、仮想発電機の実効電圧値、接続点における電圧、および相差角に基づいて、電力変換装置32の有効電力の目標値を決定する。これにより、指令生成装置33は、母線の周波数および電圧の変動に応じて電力変換装置32を制御することで、電力変換装置32の安定的な制御を実現することができる。
〈第2の実施形態〉
第1の実施形態に係る指令生成装置33によれば、仮想発電機の周波数と母線周波数とを同期させることができる。仮想発電機の周波数と母線周波数とが同期すると、同期時点における相差角を保ったまま電力変換装置32の制御がなされる。すなわち相差角がオフセットされた状態となる。他方、相差角が0に近いほど同期安定度が高く、相差角の絶対値がπ(180度)に近いほど同期安定度が低くなる。特に、系を安定して運用するためには、相差角の絶対値をπ/2(90度)以内とすることが好ましい。そのため、第2の実施形態に係る指令生成装置33は、相差角を0に近づけつつ、仮想発電機の周波数と母線周波数とを同期させる。
図5は、第2の実施形態に係る指令生成装置の構成を示す概略ブロック図である。
第2の実施形態に係る指令生成装置は、第1の実施形態の構成に加え、さらに相差角低減部3330を備える。
相差角低減部3330は、相差角算出部3327が算出した相差角を入力とするPI制御により、相差角を打ち消す補正回転数を算出し、指令受付部3321が受け付けた角速度指令値に補正回転数を加算することで、角速度指令値を補正する。駆動トルク算出部3324は、補正された角速度指令値に基づいて駆動トルクを算出する。
《作用・効果》
第2の実施形態に係る指令生成装置33は、相差角が0に近づくように回転数の目標値を補正し、ロータモデルM2と補正された回転数の目標値とに基づいて、仮想発電機の実効電圧値および位相を算出する。これにより、指令生成装置33は、相差角を0に近づけつつ、仮想発電機の周波数と母線周波数とを同期させることができる。したがって、指令生成装置33は、母線周波数の瞬時変化によって、相差角の絶対値がπ/2を超えて不安定な状態になる可能性を低減することができる。
〈第3の実施形態〉
上述の通り、系を安定して運用するためには、相差角の絶対値をπ/2以内とすることが好ましい。そこで、第3の実施形態に係る指令生成装置33は、相差角が常に安定領域に留まるように電力変換装置32を制御する。
図6は、第3の実施形態に係る指令生成装置の構成を示す概略ブロック図である。
第3の実施形態に係る指令生成装置は、第2の実施形態の構成に加え、さらにリミッタ3301を備える。リミッタ3301は、相差角算出部3327によって算出された相差角を-π/2から+π/2の範囲の値に制限する。目標電力決定部3328は、リミッタ3301によって制限された相差角に基づいて、電力変換装置32の有効電力の目標値を決定する。これにより、指令生成装置33は、相差角を常に安定領域に留めることができる。
以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。すなわち、他の実施形態においては、上述の処理の順序が適宜変更されてもよい。また、一部の処理が並列に実行されてもよい。
上述した実施形態に係る指令生成装置33は、単独のコンピュータによって構成されるものであってもよいし、指令生成装置33の構成を複数のコンピュータに分けて配置し、複数のコンピュータが互いに協働することで指令生成装置33として機能するものであってもよい。
上述した実施形態に係る指令生成装置33の目標電力決定部3328は、仮想発電機の実効電圧値、接続点における電圧、および相差角に基づいて有効電力の目標値を決定する。他方、他の実施形態においては、有効電力の目標値に加え、さらに無効電力の目標値を決定してもよい。無効電力の目標値Qvsgは、例えば以下の式(2)によって求めることができる。
vsg=Vvsg(Vvsg-Vgrid×cosΔθ)÷X ・・・(2)
〈コンピュータ構成〉
図7は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
コンピュータ332は、プロセッサ91、メインメモリ92、ストレージ93、インタフェース94を備える。
上述の指令生成装置33は、コンピュータ332に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ93に記憶されている。プロセッサ91は、プログラムをストレージ93から読み出してメインメモリ92に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ91は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ92に確保する。プロセッサ91の例としては、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、マイクロプロセッサなどが挙げられる。
プログラムは、コンピュータ332に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージに既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータ332は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ91によって実現される機能の一部または全部が当該集積回路によって実現されてよい。このような集積回路も、プロセッサの一例に含まれる。
ストレージ93の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ93は、コンピュータ332のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ332に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ332に配信される場合、配信を受けたコンピュータ332が当該プログラムをメインメモリ92に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ93は、一時的でない有形の記憶媒体である。
また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能をストレージ93に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
〈付記〉
各実施形態に記載の指令生成装置および指令生成方法は、例えば以下のように把握され得る。
(1)第1の態様によれば、指令生成装置33は、直流電源装置31が出力する直流電力を交流電力に変換して母線に供給するとともに、母線の交流電力を直流電力に変換して直流電源装置に供給する電力変換装置32の制御指令を生成する指令生成装置33であって、仮想発電機の駆動を模擬し、前記仮想発電機の回転数を算出するロータモデルM2に基づいて、前記仮想発電機の実効電圧値および位相を算出する仮想発電算出部3325と、前記電力変換装置32と前記母線との接続点における電圧および位相を算出する母線算出部3326と、前記仮想発電機の位相と前記接続点の位相との相差角を算出する相差角算出部3327と、前記仮想発電機の実効電圧値、前記接続点における電圧、および前記相差角に基づいて、前記電力変換装置の有効電力の目標値を決定する目標電力決定部3328と、決定した前記有効電力の目標値に基づいて、前記電力変換装置32の制御指令を生成する指令生成部3329と、を備える。
これにより、指令生成装置33は、母線の周波数および電圧の変動に応じて電力変換装置32を制御することで、電力変換装置32の安定的な制御を実現することができる。
(2)第2の態様によれば、第1の態様に係る指令生成装置33において、前記目標電力決定部3328は、前記仮想発電機の実効電圧値と前記接続点における電圧と前記相差角の正弦の積を、前記仮想発電機のリアクタンスより大きい所定の直列リアクタンスで除算することで、前記電力変換装置32の有効電力の目標値を決定するものであってよい。
(3)第3の態様によれば、第1または第2の態様に係る指令生成装置33が、仮想発電機の角速度指令値を受け付ける指令受付部3321と、前記相差角がゼロに近づくように前記角速度指令値を補正する相差角低減部3330と、を備え、前記仮想発電算出部3325は、前記ロータモデルM2と補正された前記角速度指令値とに基づいて、前記仮想発電機の実効電圧値および位相を算出するものであってよい。
これにより、指令生成装置33は、相差角をゼロに近づけつつ、仮想発電機の周波数と母線周波数とを同期させることができる。
(4)第4の態様によれば、第1から第3の何れかの態様に係る指令生成装置33が、算出された前記相差角を-π/2から+π/2の範囲の値に制限するリミッタ3301を備え、前記目標電力決定部3328は、制限された前記相差角に基づいて、前記電力変換装置32の有効電力の目標値を決定するものであってよい。
これにより、指令生成装置33は、相差角を常に安定領域に留めることができる。
(5)第5の態様によれば、第1から第4の何れかの態様に係る指令生成装置において、目標電力決定部3328は、前記仮想発電機の実効電圧値、前記接続点における電圧、および前記相差角に基づいて、前記電力変換装置32の無効電力の目標値をさらに決定するものであってよい。
これにより、指令生成装置33は、電力変換装置32に相差角に応じた無効電力を供給することができ、系の電圧安定性を高めることができる。
(6)第6の態様によれば、指令生成方法は、直流電源装置が出力する直流電力を交流電力に変換して母線に供給するとともに、母線の交流電力を直流電力に変換して直流電源装置に供給する電力変換装置の制御指令を生成する指令生成方法であって、仮想発電機の駆動を模擬し、前記仮想発電機の回転数を算出するロータモデルに基づいて、前記仮想発電機の実効電圧値および位相を算出するステップと、前記電力変換装置と前記母線との接続点における電圧および位相を計測するステップと、前記仮想発電機の位相と前記接続点の位相との相差角を算出するステップと、前記仮想発電機の実効電圧値、前記接続点における電圧、および前記相差角に基づいて、前記電力変換装置の有効電力の目標値を決定するステップと、決定した前記有効電力の目標値に基づいて、前記電力変換装置の制御指令を生成するステップと、を備える。
これにより、母線の周波数および電圧の変動に応じて電力変換装置32を制御することで、電力変換装置32の安定的な制御を実現することができる。
1 電力供給システム
10 エンジン発電機
11 エンジン
12 発電機
13 ガバナ
14 AVR
20 太陽光発電機
21 太陽電池
22 インバータ
30 蓄電装置
31 二次電池
32 電力変換装置
33 指令生成装置
40 電力制御装置
331 電圧計
332 コンピュータ
3321 指令受付部
3322 計測値取得部
3323 モデル記憶部
3324 駆動トルク算出部
3325 仮想発電算出部
3326 母線算出部
3327 相差角算出部
3328 目標電力決定部
3329 指令生成部
3330 相差角低減部
3301 リミッタ

Claims (6)

  1. 直流電源装置が出力する直流電力を交流電力に変換して母線に供給するとともに、母線の交流電力を直流電力に変換して直流電源装置に供給する電力変換装置の制御指令を生成する指令生成装置であって、
    仮想発電機の駆動を模擬し、前記仮想発電機の回転数を算出するロータモデルに基づいて、前記仮想発電機の実効電圧値および位相を算出する仮想発電算出部と、
    前記電力変換装置と前記母線との接続点における電圧および位相を算出する母線算出部と、
    前記仮想発電機の位相と前記接続点の位相との相差角を算出する相差角算出部と、
    前記仮想発電機の実効電圧値、前記接続点における電圧、および前記相差角に基づいて、前記電力変換装置の有効電力の目標値を決定する目標電力決定部と、
    決定した前記有効電力の目標値に基づいて、前記電力変換装置の制御指令を生成する指令生成部と、
    を備える指令生成装置。
  2. 前記目標電力決定部は、前記仮想発電機の実効電圧値と前記接続点における電圧と前記相差角の正弦の積を、前記仮想発電機のリアクタンスより大きい所定の直列リアクタンスで除算することで、前記電力変換装置の有効電力の目標値を決定する
    請求項1に記載の指令生成装置。
  3. 仮想発電機の角速度指令値を受け付ける指令受付部と、
    前記相差角がゼロに近づくように前記角速度指令値を補正する相差角低減部と、
    を備え、
    前記仮想発電算出部は、前記ロータモデルと補正された前記角速度指令値とに基づいて、前記仮想発電機の実効電圧値および位相を算出する
    請求項1または請求項2に記載の指令生成装置。
  4. 算出された前記相差角を-π/2から+π/2の範囲の値に制限するリミッタを備え、
    前記目標電力決定部は、制限された前記相差角に基づいて、前記電力変換装置の有効電力の目標値を決定する
    請求項1から請求項3の何れか1項に記載の指令生成装置。
  5. 前記目標電力決定部は、前記仮想発電機の実効電圧値、前記接続点における電圧、および前記相差角に基づいて、前記電力変換装置の無効電力の目標値をさらに決定する
    請求項1から請求項4の何れか1項に記載の指令生成装置。
  6. 直流電源装置が出力する直流電力を交流電力に変換して母線に供給するとともに、母線の交流電力を直流電力に変換して直流電源装置に供給する電力変換装置の制御指令を生成する指令生成方法であって、
    仮想発電機の駆動を模擬し、前記仮想発電機の回転数を算出するロータモデルに基づいて、前記仮想発電機の実効電圧値および位相を算出するステップと、
    前記電力変換装置と前記母線との接続点における電圧および位相を計測するステップと、
    前記仮想発電機の位相と前記接続点の位相との相差角を算出するステップと、
    前記仮想発電機の実効電圧値、前記接続点における電圧、および前記相差角に基づいて、前記電力変換装置の有効電力の目標値を決定するステップと、
    決定した前記有効電力の目標値に基づいて、前記電力変換装置の制御指令を生成するステップと、
    を備える指令生成方法。
JP2019148070A 2019-08-09 2019-08-09 指令生成装置および指令生成方法 Active JP7324653B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019148070A JP7324653B2 (ja) 2019-08-09 2019-08-09 指令生成装置および指令生成方法
CN202080049875.4A CN114128075B (zh) 2019-08-09 2020-08-07 指令生成装置及指令生成方法
US17/625,261 US20220255320A1 (en) 2019-08-09 2020-08-07 Command generation device and command generation method
PCT/JP2020/030419 WO2021029373A1 (ja) 2019-08-09 2020-08-07 指令生成装置および指令生成方法
EP20853183.0A EP3982504A4 (en) 2019-08-09 2020-08-07 DEVICE AND METHOD FOR INSTRUCTION GENERATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019148070A JP7324653B2 (ja) 2019-08-09 2019-08-09 指令生成装置および指令生成方法

Publications (2)

Publication Number Publication Date
JP2021029087A JP2021029087A (ja) 2021-02-25
JP7324653B2 true JP7324653B2 (ja) 2023-08-10

Family

ID=74569358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019148070A Active JP7324653B2 (ja) 2019-08-09 2019-08-09 指令生成装置および指令生成方法

Country Status (5)

Country Link
US (1) US20220255320A1 (ja)
EP (1) EP3982504A4 (ja)
JP (1) JP7324653B2 (ja)
CN (1) CN114128075B (ja)
WO (1) WO2021029373A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022269858A1 (ja) * 2021-06-24 2022-12-29 三菱電機株式会社 電力変換装置
JP2024046024A (ja) * 2022-09-22 2024-04-03 三菱重工エンジン&ターボチャージャ株式会社 制御システム、複合発電システム及び制御方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225599A (ja) 2008-03-18 2009-10-01 Kawasaki Heavy Ind Ltd 電力変換装置
JP2013162623A (ja) 2012-02-03 2013-08-19 Toshiba Corp 給電システム
JP2014128178A (ja) 2012-12-27 2014-07-07 Kawasaki Heavy Ind Ltd 電力変換制御装置
WO2015075923A1 (ja) 2013-11-20 2015-05-28 川崎重工業株式会社 電力変換装置
JP2016220396A (ja) 2015-05-20 2016-12-22 パナソニックIpマネジメント株式会社 分散電源システム、および、分散電源システムの制御方法
JP2019003454A (ja) 2017-06-16 2019-01-10 東京電力ホールディングス株式会社 交直変換器制御装置
WO2019092877A1 (ja) 2017-11-13 2019-05-16 株式会社日立製作所 電力変換装置およびその制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2940826B1 (en) * 2012-12-27 2018-01-31 Kawasaki Jukogyo Kabushiki Kaisha Combined power generation system having power converting device
JP6084863B2 (ja) * 2013-02-28 2017-02-22 川崎重工業株式会社 系統連系する電力変換装置
CN105743130B (zh) * 2016-03-22 2018-03-02 西安交通大学 提高虚拟同步发电机无功功率动态响应性能的方法
JP6809753B2 (ja) * 2016-12-28 2021-01-06 川崎重工業株式会社 複合発電システム
CN107069828B (zh) * 2017-04-10 2019-12-10 华北电力大学 基于相差实时调整的虚拟同步发电机自同步控制方法
JP6971170B2 (ja) 2018-02-26 2021-11-24 鹿島建設株式会社 地下構造物の構築方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225599A (ja) 2008-03-18 2009-10-01 Kawasaki Heavy Ind Ltd 電力変換装置
JP2013162623A (ja) 2012-02-03 2013-08-19 Toshiba Corp 給電システム
JP2014128178A (ja) 2012-12-27 2014-07-07 Kawasaki Heavy Ind Ltd 電力変換制御装置
WO2015075923A1 (ja) 2013-11-20 2015-05-28 川崎重工業株式会社 電力変換装置
JP2016220396A (ja) 2015-05-20 2016-12-22 パナソニックIpマネジメント株式会社 分散電源システム、および、分散電源システムの制御方法
JP2019003454A (ja) 2017-06-16 2019-01-10 東京電力ホールディングス株式会社 交直変換器制御装置
WO2019092877A1 (ja) 2017-11-13 2019-05-16 株式会社日立製作所 電力変換装置およびその制御方法

Also Published As

Publication number Publication date
CN114128075B (zh) 2024-03-22
CN114128075A (zh) 2022-03-01
EP3982504A1 (en) 2022-04-13
WO2021029373A1 (ja) 2021-02-18
EP3982504A4 (en) 2022-11-30
US20220255320A1 (en) 2022-08-11
JP2021029087A (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
US9450513B2 (en) Control circuit and control method for inverter circuit, and control circuit and control method for power conversion circuit
US11190016B2 (en) Method and apparatus for increased energy harvest in a microgrid
JP2011114899A (ja) 負荷周波数制御方法及び負荷周波数制御装置
CN108306337A (zh) 一种基于下垂系数自适应调节的虚拟同步发电机控制方法
JP7324653B2 (ja) 指令生成装置および指令生成方法
US10599175B1 (en) Time synchronized frequency and voltage regulation of electric power balancing areas
JP5830484B2 (ja) 無効電力比率制御器、無効電力比率制御方法、およびこれを用いた発電システム
Chishti et al. Grid integration of renewable energy generating system using nonlinear harmonic observer under nonideal distribution system
JP7112973B2 (ja) 指令生成装置および指令生成方法
Yoo et al. Converter control of PMSG wind turbine system for inertia-free stand-alone microgrid
EP4033652A1 (en) Command generation device and command generation method in multiple power generation power supply system
JP7292042B2 (ja) 自立運転における複合発電電源システム
WO2024062754A1 (ja) 制御システム、複合発電システム及び制御方法
JP6189188B2 (ja) インバータ回路を制御する制御回路、当該制御回路を備えたインバータ装置、当該インバータ装置を備えた電力システム、および、制御方法
Elsied et al. Analysis, modeling, and control of an AC microgrid system based on green energy
Roga et al. Energy Converters for Wind Turbines: Implementation of Control Methods
JP6196525B2 (ja) インバータ回路を制御する制御回路、当該制御回路を備えたインバータ装置、当該インバータ装置を備えた電力システム、および、制御方法
WO2023145069A1 (ja) 分散電源制御システム
Zhang et al. A novel adaptive inertia control of virtual synchronous generator for enhancing the response performance of wind-solar-storage combined power generation system
Haines et al. The Impact of Co-Located Clusters of Inverter-Based Resources on a Performance-Based Regulation Market Metric
Shorstkin et al. Frequency and voltage stabilization of induction generator based on STATCOM
Chen et al. A Centralized Wind Farm Equivalent Method Based on PSO Under Multi-Operation Mode
CN116865292A (zh) 一种光伏电站自备用可调的虚拟同步控制调频方法和系统

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20220616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230731

R150 Certificate of patent or registration of utility model

Ref document number: 7324653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150