JP7112973B2 - 指令生成装置および指令生成方法 - Google Patents

指令生成装置および指令生成方法 Download PDF

Info

Publication number
JP7112973B2
JP7112973B2 JP2019017462A JP2019017462A JP7112973B2 JP 7112973 B2 JP7112973 B2 JP 7112973B2 JP 2019017462 A JP2019017462 A JP 2019017462A JP 2019017462 A JP2019017462 A JP 2019017462A JP 7112973 B2 JP7112973 B2 JP 7112973B2
Authority
JP
Japan
Prior art keywords
power
value
command
virtual generator
active power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019017462A
Other languages
English (en)
Other versions
JP2020127270A (ja
Inventor
和樹 渡辺
真人 三橋
治 中北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Original Assignee
Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Engine and Turbocharger Ltd filed Critical Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Priority to JP2019017462A priority Critical patent/JP7112973B2/ja
Priority to EP19912593.1A priority patent/EP3907874A4/en
Priority to CN201980090779.1A priority patent/CN113366751A/zh
Priority to PCT/JP2019/036021 priority patent/WO2020158037A1/ja
Priority to US17/426,574 priority patent/US11735925B2/en
Publication of JP2020127270A publication Critical patent/JP2020127270A/ja
Application granted granted Critical
Publication of JP7112973B2 publication Critical patent/JP7112973B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

本発明は、直流電源装置のインバータの制御指令を生成する指令生成装置および指令生成方法に関する。
特許文献1には、インバータに、同期発電機のガバナおよびAVR(Automatic Voltage Regulator)の機能を持たせることで、系統の安定化を図る技術が開示されている。
特開2017-208932号公報
特許文献1に記載の技術によれば、インバータは、同期発電機のモデルに基づいて、有効電力、無効電力および電圧周波数を制御する。しかしながら、一般的なインバータはPLL(Phase Lock Loop)回路によって母線の電圧周波数と同期して交流電力を出力するものであるため、電圧周波数を同期発電機のモデルに基づいて制御することができない。
本発明の目的は、直流電源装置が出力する直流電力を母線の周波数に同期させた交流電力に変換するインバータを用いて、負荷変動に対する系統の安定化を図ることができる指令生成装置および指令生成方法を提供することにある。
本発明の第1の態様によれば、指令生成装置は、直流電源装置が出力する直流電力を母線の周波数に同期させた交流電力に変換するインバータの制御指令を生成する指令生成装置であって、仮想発電機の駆動を模擬し、前記仮想発電機の回転数を算出するロータモデルに基づいて、前記仮想発電機の回転数を算出する回転算出部と、算出した前記回転数に基づいて、前記インバータの有効電力の目標値を決定する有効目標電力決定部と、決定した前記有効電力の目標値に基づいて、前記インバータの制御指令を生成する指令生成部と、を備える。
本発明の第2の態様によれば、第1の態様に係る指令生成装置が、前記母線の有効電力に基づいて、前記有効電力対して単調減少する前記仮想発電機の回転数の目標値を決定する回転目標決定部を備え、前記回転算出部は、前記ロータモデルと決定した前記回転数の目標値とに基づいて、前記仮想発電機の回転数を算出するものであってよい。
本発明の第3の態様によれば、第2の態様に係る指令生成装置が、前記ドループ関数が有効電力指令と母線の電圧周波数とを通るように前記ドループ関数の切片を更新する関数更新部を備え、前記回転目標決定部は、前記母線の有効電力と前記仮想発電機の回転数の目標値との関係を規定するドループ関数に基づいて、前記回転数の目標値を決定するものであってよい。
本発明の第4の態様によれば、第1から第3の何れかの態様に係る指令生成装置が、前記母線の有効電圧と有効電力指令の差、前記仮想発電機の回転数の目標値と算出した前記回転数の差、および母線電圧の目標値と計測値の差に基づいて、前記仮想発電機の駆動トルクに係る値を決定するガバナモデルに基づいて、前記仮想発電機の駆動トルクに係る値を算出する駆動トルク算出部を備え、前記回転算出部は、算出した前記駆動トルクに係る値と前記ロータモデルとに基づいて、前記仮想発電機の回転に係る値を算出するものであってよい。
本発明の第5の態様によれば、指令生成方法は、直流電源装置が出力する直流電力を母線の周波数に同期させた交流電力に変換するインバータの制御指令を生成する指令生成方法であって、仮想発電機の駆動を模擬し、前記仮想発電機の回転数を算出するロータモデルに基づいて、前記仮想発電機の回転数を算出するステップと、算出した前記回転数に基づいて、前記インバータの有効電力の目標値を決定するステップと、決定した前記有効電力の目標値に基づいて、前記インバータの制御指令を生成するステップと、を備える。
上記態様のうち少なくとも1つの態様によれば、指令生成装置は、直流電源装置が出力する直流電力を母線の周波数に同期させた交流電力に変換するインバータを用いて、負荷変動に対する系統の安定化を図ることができる。
第1の実施形態に係る電力供給システムの構成を示す概略ブロック図である。 第1の実施形態に係る指令生成装置の構成を示す概略ブロック図である。 第1の実施形態に係るAVRモデルの例を示すブロック線図である。 第1の実施形態に係るガバナモデルの例を示すブロック線図である。 第1の実施形態に係るロータモデルの例を示すブロック線図である。 第2の実施形態に係る指令生成装置の構成を示す概略ブロック図である。 第2の実施形態に係るドループ関数を示す図である。 第2の実施形態に係るドループ関数の更新方法を示す図である。 第3の実施形態に係るガバナモデルの例を示すブロック線図である。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
〈第1の実施形態〉
図1は、第1の実施形態に係る電力供給システムの構成を示す概略ブロック図である。
《電力供給システムの構成》
第1の実施形態に係る電力供給システム1は、エンジン発電機10、太陽光発電機20、蓄電装置30、指令生成装置33、および電力制御装置40を備える。電力供給システム1は、自立運転により負荷Lに電力を供給する。すなわち、電力供給システム1は、いわゆるマイクログリッドシステム、またはオフグリッドシステムである。エンジン発電機10、太陽光発電機20および蓄電装置30は、母線に接続され、母線を介して負荷Lに電力を供給する。
エンジン発電機10は、エンジン11、発電機12、ガバナ13、AVR14(Automatic Voltage Regulator:自動電圧調整器)を備える。エンジン発電機10は、エンジン11の回転によって発電機12を駆動することで、交流電力を発生させる交流発電機である。
ガバナ13は、Hz-kWドループ特性によりエンジン11の回転数を制御する。エンジン発電機10のガバナ特性は、例えば、定格出力および定格周波数に係るプロットと、ゼロ出力および定格出力から負荷遮断したときに無負荷状態で整定する整定周波数に係るプロットとを結ぶ一次関数の傾きによって表される。すなわち、Hz-kWドループ特性は、周波数が増加するほど出力が減少する特性である。なお、他の実施形態においては、ガバナ特性がPID(Proportional Integral Differential)制御によって実現されてもよい。AVR14は、V-kbarドループ特性により発電機12の界磁巻線に供給する電流を制御することで、発電機12の端子電圧を調整する。V-kbarドループ特性は、電圧が増加するほど無効電力が減少する特性である。なお、他の実施形態においては、エンジン発電機10に代えて他の交流発電機を用いてもよい。
太陽光発電機20は、太陽電池21と、インバータ22とを備える。太陽電池21は、太陽光を直流電力に変換する直流電源装置である。インバータ22は、太陽電池21が生成する直流電力を交流電力に変換する。なお、インバータ22と太陽電池21とは必ずしも一対一に設けられなくてよい。例えば、1つのインバータ22に複数の太陽電池21が接続されてもよい。なお、他の実施形態においては、太陽光発電機20に代えて、例えば、風力発電機などの他の再生可能エネルギー発電機を用いてもよい。
蓄電装置30は、二次電池31と、インバータ32を備える。。インバータ32の制御指令は、有効電力の目標値、無効電力の目標値を含む。インバータ32は、指令生成装置33からの指令に基づいて、二次電池31が出力する直流電力を、母線の電圧周波数に同期した交流電力に変換して母線に供給する。インバータ32は、PLL制御により、出力電力を母線の電圧周波数に同期させる。またインバータ32は、電力制御装置40からの指令に基づいて指令生成装置33が生成した制御指令に基づいて、母線に流れる交流電力の一部を直流電力に変換して二次電池31を充電する。二次電池31としては、例えばリチウムイオン二次電池を用いることができる。インバータ32は、P-Q制御に係る制御指令によって動作する汎用の電流制御型インバータである。なお、他の実施形態に係るインバータ32は、皮相電力の目標値と力率角度の目標値と電圧周波数の目標値とに係る制御指令によって動作するものであってもよい。
なお、インバータ32と二次電池31とは必ずしも一対一に設けられなくてよい。例えば、1つのインバータ32に複数の二次電池31が接続されてもよい。
指令生成装置33は、電力制御装置40からの指令に基づいて蓄電装置30のインバータ32を制御するための制御指令を生成し、蓄電装置30に出力する。指令生成装置33は、蓄電装置30と別個に設けられた装置である。
電力制御装置40は、母線の電力値を監視し、エンジン発電機10および蓄電装置30に充放電指令を出力する。例えば、電力制御装置40は、昼間など、太陽光発電機20による発電電力が所定の閾値以上である場合に、エンジン発電機10に発電電力を低下させ、または停止させる電力指令を出力。また電力制御装置40は、夜間や悪天候時など、太陽光発電機20による発電電力が所定の閾値未満となる場合に、エンジン発電機10に発電電力を増加させる電力指令を出力する。
また例えば、電力制御装置40は、太陽光発電機20による発電電力の変動に基づいて、当該変動を平滑化するための充放電指令を蓄電装置30に出力する。また、電力制御装置40は、母線の電力値と負荷Lによる需要電力値とを比較し、電力差に基づいて充放電指令を蓄電装置30に出力する。
《指令生成装置の構成》
図2は、第1の実施形態に係る指令生成装置の構成を示す概略ブロック図である。
第1の実施形態に係る指令生成装置33は、電流計322、電圧計323、コンピュータ324を備える。電流計322は、インバータ32の出力端の電流を計測する。電圧計323は、インバータ32の出力端の電圧を計測する。コンピュータ324は、電流計322および電圧計323の計測値に基づいて制御指令を生成する。
コンピュータ324は、モデル記憶部3241、指令受付部3242、計測値取得部3243、界磁電圧算出部3244、駆動トルク算出部3245、回転算出部3246、目標電力決定部3247、指令生成部3248を備える。
モデル記憶部3241は、仮想発電機の挙動を模擬する数理モデルを記憶する。具体的には、モデル記憶部3241は、仮想発電機のAVRの挙動を模擬するAVRモデルM1、仮想発電機のガバナの挙動を模擬するガバナモデルM2、仮想発電機のロータの挙動を模擬するロータモデルM3を記憶する。AVRモデルM1は、無効電力の計測値、無効電力指令値、実効電圧値、および実効電圧指令値が入力されることで、仮想発電機の界磁電圧および電気トルクを出力する。ガバナモデルM2は、有効電力の計測値、有効電力指令値、仮想発電機のロータの角速度、および角速度指令値が入力されることで、仮想発電機の駆動トルク値を出力する。ロータモデルM3は、仮想発電機の電気トルク値および駆動トルク値が入力されることで、仮想発電機のロータの角速度および位相角を出力する。各数理モデルの詳細については後述する。
指令受付部3242は、電力制御装置40から充放電指令を受け付ける。充放電指令は、有効電力の指令値、無効電力の指令値、実効電圧指令値、および角速度指令値を含む。
計測値取得部3243は、電流計322および電圧計323の計測値を取得する。また計測値取得部3243は、電流計322および電圧計323の計測値と、仮想発電機のロータの位相角とに基づいて、出力端の有効電力に寄与する電圧値および電流値、無効電力に寄与する電圧値および電流値、実効電圧値、有効電力値、ならびに無効電力値を算出する。
界磁電圧算出部3244は、指令受付部3242が受け付けた無効電力指令値および実効電圧指令値、ならびに計測値取得部3243が取得した無効電力値および実効電圧値を、AVRモデルM1に入力することで、仮想発電機の界磁電圧値および電気トルク値を算出する。仮想発電機の界磁電圧値および電気トルク値は、仮想発電機の界磁電圧に係る値の一例である。
駆動トルク算出部3245は、指令受付部3242が受け付けた有効電力指令値および角速度指令値、計測値取得部3243が取得した有効電力の計測値、ならびに前回の制御において回転算出部3246が算出した仮想発電機のロータの角速度を、ガバナモデルM2に入力することで、仮想発電機の駆動トルク値を算出する。駆動トルク値は、仮想発電機の駆動トルクに係る値の一例である。
回転算出部3246は、界磁電圧算出部3244が算出した電気トルク値および駆動トルク算出部3245が算出した駆動トルク値をロータモデルM3に入力することで、仮想発電機のロータの角速度および位相角を算出する。仮想発電機のロータの角速度および位相角は、仮想発電機のロータの回転に係る値の一例である。
目標電力決定部3247は、界磁電圧算出部3244が算出した界磁電圧値と、計測値取得部3243が取得した有効電力に寄与する電圧値および電流値、ならびに無効電力に寄与する電圧値および電流値と、回転算出部3246が算出したロータの位相角とに基づいて、有効電力の目標値および無効電力の目標値を決定する。
指令生成部3248は、目標電力決定部3247が決定した有効電力の目標値、および無効電力の目標値に基づいて、インバータ32の制御指令を生成する。指令生成部3248は、生成した制御指令をインバータ32に出力する。
《数理モデルの構成》
図3は、第1の実施形態に係るAVRモデルの例を示すブロック線図である。
AVRモデルM1は、無効電力の計測値Q、無効電力指令値Q、実効電圧値V、および実効電圧指令値Vが入力されることで、仮想発電機の界磁電圧値Eおよび電気トルク値Tを出力する。具体的には、AVRモデルM1は、加え合わせ点M11、M12、M13、PブロックM14、IブロックM15、PブロックM16を備える。加え合わせ点M11は、無効電力の計測値Qと無効電力指令値Qとの差を得る。PブロックM14は、加え合わせ点M11の出力に、比例ゲインKA1によるP制御を行う。比例ゲインKA1は、仮想発電機のV-kbarドループゲインに相当する。加え合わせ点M12は、実効電圧値Vと実効電圧指令値Vの差を得る。加え合わせ点M13は、加え合わせ点M12の出力とPブロックM14の出力との差を得る。IブロックM15は、加え合わせ点M13の出力に積分ゲインKA2による積分制御を行うことで、界磁電圧値Eを得る。PブロックM16は、界磁電圧値Eに無効電流値Iを乗算し、ロータの角速度ωRで除算することで、仮想発電機の電気トルクTを得る。
図4は、第1の実施形態に係るガバナモデルの例を示すブロック線図である。
ガバナモデルM2は、有効電力の計測値P、有効電力指令値P、仮想発電機のロータの角速度ω、および角速度の目標値ωが入力されることで、仮想発電機の駆動トルク値Tを出力する。具体的には、ガバナモデルM2は、加え合わせ点M21、M22、M23、PブロックM24、PIブロックM25、一次遅れブロックM26を備える。加え合わせ点M21は、有効電力の計測値Pと有効電力指令値Pとの差を得る。PブロックM24は、加え合わせ点M21の出力に、比例ゲインKB1によるP制御を行う。比例ゲインKB1は、仮想発電機のHz-kWドループゲインに相当する。加え合わせ点M22は、仮想発電機のロータの角速度ωと角速度の目標値ωの差を得る。加え合わせ点M23は、加え合わせ点M22の出力とPブロックM24の出力との和を得る。PIブロックM25は、加え合わせ点M23の出力に比例ゲインKB2および積分ゲインKB3によるPI制御を行う。一次遅れブロックM26は、PIブロックM25の出力に、時定数KB4に係る一次遅れ制御を行い、駆動トルク値Tを得る。
図5は、第1の実施形態に係るロータモデルの例を示すブロック線図である。
ロータモデルM3は、仮想発電機の電気トルク値Tおよび駆動トルク値Tが入力されることで、仮想発電機のロータの角速度ωおよび位相角θを出力する。具体的には、ロータモデルM3は、加え合わせ点M31、一次遅れブロックM32、IブロックM33を備える。加え合わせ点M31は、仮想発電機の電気トルクTおよび駆動トルクTの差を得る。一次遅れブロックM32は、加え合わせ点M31の出力に、一次遅れゲイン1/Dおよび時定数M/Dに係る一次遅れ制御を行い、ロータの角速度ωを得る。IブロックM33は、ロータの角速度ωを積分し、比例ゲインωBASEを乗算することで、仮想発電機のロータの位相θを得る。比例ゲインωBASEは、母線の基準周波数である。
《動作》
上記の構成により、コンピュータ324は、AVRモデルM1、ガバナモデルM2、およびロータモデルM3に基づいて、有効電力指令値、無効電力指令値、実効電圧指令値、および角速度指令値、ならびに電流計322および電圧計323の計測値から、仮想発電機の回転角度および角速度、ならびに界磁電圧値を求める。コンピュータ324は、仮想発電機の回転角度および角速度、ならびに界磁電圧値から、有効電力の目標値および無効電力の目標値を決定し、これに基づいてインバータ32の制御指令を生成する。インバータ32は、指令生成装置33が生成する制御指令に従って動作することで、仮想発電機に相当する特性が実現される。
《作用・効果》
第1の実施形態に係る指令生成装置33は、ロータモデルM3に基づいて仮想発電機の回転数を算出し、算出した回転数に基づいて決定したインバータ32の有効電力の目標値を、制御指令としてインバータ32に出力する。ここで、第1の実施形態に係る指令生成装置33は、インバータ32の制御指令において電圧周波数の目標値を指定しない。つまり、インバータ32が出力する交流電力は、母線の電圧周波数に同期したものであり、指令生成装置33は、交流電力の有効電力の大きさを制御する。これにより、第1の実施形態に係る指令生成装置33は、直流電源装置が出力する直流電力を母線の周波数に同期させた交流電力に変換するインバータ32を用いて、負荷変動に対する系統の安定化を図ることができる。
〈第2の実施形態〉
第2の実施形態に係る指令生成装置33は、インバータ32の電圧周波数を制御することなく、負荷Lの変動に伴う母線の電圧周波数の変動を補償する。
図6は、第2の実施形態に係る指令生成装置の構成を示す概略ブロック図である。
第2の実施形態に係る指令生成装置33は、第1の実施形態の構成に加え、さらに回転目標決定部3249および関数更新部3250を備える。またモデル記憶部3241は、ドループ関数Fをさらに記憶する。
図7は、第2の実施形態に係るドループ関数を示す図である。
ドループ関数Fは、仮想発電機のロータの角速度と、母線の有効電力との関係を表す。ドループ関数Fにおいて、有効電力は、仮想発電機のロータの角速度に対して単調減少する。ドループ関数Fの傾きは、ガバナ13のドループ特性と同じ傾きであってよい。
回転目標決定部3249は、モデル記憶部3241が記憶するドループ関数Fに、母線の有効電力の計測値を代入することで、仮想発電機のロータの角速度の目標値を決定する。
関数更新部3250は、指令受付部3242が母線電力の指令値を受け付けた場合、変更前後の有効電力の指令値の差の一時遅れに係る値(ローパスフィルタを通した値)に応じてドループ関数Fの切片を更新する。具体的には、変更後の有効電力の指令値から変更前の有効電力の指令値を減算した値を、現在のドループ関数Fの有効電力軸の切片に加算する。つまり、関数更新部3250は、ドループ関数Fの更新において傾きを変更しない。
《ドループ関数の更新方法》
図8は、第2の実施形態に係るドループ関数の更新方法を示す図である。
ここで、ドループ関数Fの更新方法について例を挙げて説明する。時刻T0において、モデル記憶部3241は、ドループ関数F0を記憶する。ドループ関数F0は、有効電力軸の切片をP0とする関数である。したがって、回転目標決定部3249は、ドループ関数F0に母線の有効電力を代入することでロータの角速度の目標値を決定する。
ここで、時刻T1において、指令受付部3242が電力制御装置40から有効電力の指令値としてP1を受け付けたものとする。このとき、関数更新部3250は、有効電力の指令値の偏差P1-P0の一時遅れによりΔPを算出し、ドループ関数F0の有効電力軸の切片をP1+ΔPに更新することで、ドループ関数F1を得る。関数更新部3250は、ドループ関数F0をドループ関数F1に書き換える。そのため、時刻T1において、回転目標決定部3249は、ドループ関数F1に母線の有効電力を代入することでロータの角速度の目標値を決定する。図8に示す例では、有効電力の指令値が減少したことから、時刻T1において有効電力軸の切片が減少する。これに伴い、回転目標決定部3249は、時刻T0のときと比較して角速度の目標値を微小に小さい値に決定することとなる。つまり、関数更新部3250は、指令値の偏差P1-P0の一時遅れに係る値に基づいてドループ関数の切片を更新することで、角速度の目標値が急激に変化し、ハンチングが生じることを防止することができる。
角速度の目標値が小さくなると、駆動トルク算出部3245が算出する駆動トルクが小さくなり、また回転算出部3246が算出する角速度、即ちロータの位相の増分も小さくなる。これにより、指令生成装置33は、ドループ関数Fの更新によって出力される有効電力を低下させることができる。
そして、時刻T2において、ドループ関数Fにおける有効電力軸の切片の値がP1に至る。つまり、時刻T2において、回転目標決定部3249は、ドループ関数F2に母線の有効電力を代入することでロータの角速度の目標値を決定する。これにより、回転目標決定部3249は、有効電力の指令値の変更後も、ドループ関数に従って角速度の目標値を決定することができる。つまり、第2の実施形態に係る指令生成装置33は、インバータ32の電圧周波数を制御することなく、負荷Lの変動に伴う母線の電圧周波数の変動を補償することができる。
〈第3の実施形態〉
第3の実施形態に係る指令生成装置33は、エンジン発電機10が解列した場合など、母線に交流発電機からの電力供給がなくなった場合にも、母線の電力の安定化を図る。
第3の実施形態に係る指令生成装置33は、第1の実施形態に係る指令生成装置33と同様の構成を有する。他方、第3の実施形態に係るガバナモデルM2は、第1の実施形態に係るガバナモデルと異なる。
図9は、第3の実施形態に係るガバナモデルの例を示すブロック線図である。
第3の実施形態に係るガバナモデルM2は、第1の実施形態に係る構成に加え、さらに加え合わせ点M27およびPブロックM28を備える。加え合わせ点M27は、母線電圧の計測値Vと母線実効電圧指令値Vとの差を得る。なお、他の実施形態においては、加え合わせ点M27に代えて、AVRモデルM1の加え合わせ点M12の出力を得るものであってもよい。PブロックM28は、加え合わせ点M27の出力に、比例ゲインKB5によるP制御を行う。そして、加え合わせ点M23は、加え合わせ点M22の出力と、PブロックM24の出力と、PブロックM28の出力との和を得る。すなわち、第3の実施形態に係るガバナモデルM2によれば、周波数偏差のみならず、電圧の偏差によっても出力する有効電力を変動させることができる。
母線電力が、インバータを介した電源装置のみによって供給される場合、負荷変化時に母線電圧のみが変化し、電圧周波数の変動が生じない。これに対し、第3の実施形態に係る指令生成装置33は、周波数偏差のみならず、電圧の偏差によっても出力する有効電力を変動させる。これにより、第3の実施形態に係る指令生成装置33は、母線電力が、インバータを介した電源装置のみによって供給される場合にも、インバータ32に同期化力を持たせることができる。
〈他の実施形態〉
以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
例えば、上述の実施形態に係るモデルにおけるPID制御ブロックの構成はあくまで一例であり、他の実施形態においては、他のPID制御ブロックに置き換えられてもよい。例えば、他の実施形態において、AVRモデルM1のPブロックM14は、Iブロック、Dブロック、PIブロックなどに置き換えられてもよい。
〈コンピュータ構成〉
図10は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
少なくとも1つの実施形態に係るコンピュータ324は、プロセッサ91、メインメモリ92、ストレージ93、インタフェース94を備える。
上述した各処理部の動作は、プログラムの形式でストレージ93に記憶されている。プロセッサ91は、プログラムをストレージ93から読み出してメインメモリ92に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ91は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ92に確保する。
プログラムは、コンピュータ324に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージ93に既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータ324は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ91によって実現される機能の一部または全部が当該集積回路によって実現されてよい。
ストレージ93の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ93は、コンピュータ324のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ324に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ324に配信される場合、配信を受けたコンピュータ324が当該プログラムをメインメモリ92に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ93は、一時的でない有形の記憶媒体である。
また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能をストレージ93に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
1 電力供給システム
10 エンジン発電機
11 エンジン
12 発電機
13 ガバナ
14 AVR
20 太陽光発電機
21 太陽電池
22 インバータ
30 蓄電装置
31 二次電池
32 インバータ
33 指令生成装置
322 電流計
323 電圧計
324 コンピュータ
3241 モデル記憶部
3242 指令受付部
3243 計測値取得部
3244 界磁電圧算出部
3245 駆動トルク算出部
3246 回転算出部
3247 目標電力決定部
3248 指令生成部
3249 回転目標決定部
3250 関数更新部
40 電力制御装置

Claims (4)

  1. 直流電源装置が出力する直流電力を母線の周波数に同期させた交流電力に変換するインバータの制御指令を生成する指令生成装置であって、
    前記母線の有効電力に基づいて、前記有効電力に対して単調減少する仮想発電機の回転数の目標値を決定する回転目標決定部と、
    前記仮想発電機の駆動を模擬し、前記仮想発電機の回転数を算出するロータモデルと、決定した前記回転数の目標値とに基づいて、前記仮想発電機の回転数を算出する回転算出部と、
    算出した前記回転数に基づいて、前記インバータの有効電力および無効電力の目標値を決定する目標電力決定部と、
    決定した前記有効電力および無効電力の目標値に基づいて、前記インバータの制御指令を生成する指令生成部と、
    を備える指令生成装置。
  2. 有効電力指令が変更されたときに、変更の前後の有効電力指令の差に応じて、前記母線の有効電力と前記仮想発電機の回転数の目標値との関係を規定するドループ関数の切片を更新する関数更新部を備え、
    前記回転目標決定部は、前記ドループ関数に基づいて前記回転数の目標値を決定する
    請求項1に記載の指令生成装置。
  3. 前記母線の有効電圧と有効電力指令の差、前記仮想発電機の回転数の目標値と算出した前記回転数の差、および母線電圧の目標値と計測値の差に基づいて、前記仮想発電機の駆動トルクに係る値を決定するガバナモデルに基づいて、前記仮想発電機の駆動トルクに係る値を算出する駆動トルク算出部を備え、
    前記回転算出部は、算出した前記駆動トルクに係る値と前記ロータモデルとに基づいて、前記仮想発電機の回転に係る値を算出する
    請求項1または請求項2に記載の指令生成装置。
  4. 直流電源装置が出力する直流電力を母線の周波数に同期させた交流電力に変換するインバータの制御指令を生成する指令生成方法であって、
    前記母線の有効電力に基づいて、前記有効電力に対して単調減少する仮想発電機の回転数の目標値を決定するステップと、
    前記仮想発電機の駆動を模擬し、前記仮想発電機の回転数を算出するロータモデルと、決定した前記回転数の目標値とに基づいて、前記仮想発電機の回転数を算出するステップと、
    算出した前記回転数に基づいて、前記インバータの有効電力の目標値を決定するステップと、
    決定した前記有効電力の目標値に基づいて、前記インバータの制御指令を生成するステップと、
    を備える指令生成方法。
JP2019017462A 2019-02-01 2019-02-01 指令生成装置および指令生成方法 Active JP7112973B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019017462A JP7112973B2 (ja) 2019-02-01 2019-02-01 指令生成装置および指令生成方法
EP19912593.1A EP3907874A4 (en) 2019-02-01 2019-09-13 INSTRUCTION GENERATION DEVICE AND INSTRUCTION GENERATION METHOD
CN201980090779.1A CN113366751A (zh) 2019-02-01 2019-09-13 指令生成装置以及指令生成方法
PCT/JP2019/036021 WO2020158037A1 (ja) 2019-02-01 2019-09-13 指令生成装置および指令生成方法
US17/426,574 US11735925B2 (en) 2019-02-01 2019-09-13 Command generation device and command generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019017462A JP7112973B2 (ja) 2019-02-01 2019-02-01 指令生成装置および指令生成方法

Publications (2)

Publication Number Publication Date
JP2020127270A JP2020127270A (ja) 2020-08-20
JP7112973B2 true JP7112973B2 (ja) 2022-08-04

Family

ID=71840533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019017462A Active JP7112973B2 (ja) 2019-02-01 2019-02-01 指令生成装置および指令生成方法

Country Status (5)

Country Link
US (1) US11735925B2 (ja)
EP (1) EP3907874A4 (ja)
JP (1) JP7112973B2 (ja)
CN (1) CN113366751A (ja)
WO (1) WO2020158037A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7194139B2 (ja) * 2020-03-24 2022-12-21 愛知電機株式会社 三相または単相電力変換器の電力制御方法
JP7337311B1 (ja) 2023-03-03 2023-09-01 三菱電機株式会社 電力変換装置、電力変換方法、および電力変換プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168351A (ja) 2013-02-28 2014-09-11 Kawasaki Heavy Ind Ltd 系統連系する電力変換装置
JP2016220396A (ja) 2015-05-20 2016-12-22 パナソニックIpマネジメント株式会社 分散電源システム、および、分散電源システムの制御方法
JP2017127141A (ja) 2016-01-14 2017-07-20 国立大学法人広島大学 擬似同期化力電圧型コンバータおよびそのコントローラ
JP2018107959A (ja) 2016-12-27 2018-07-05 川崎重工業株式会社 電源システム
CN108879726A (zh) 2018-07-13 2018-11-23 湖南大学 应用于直流输电系统的自适应虚拟同步控制系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371603B2 (ja) 2014-06-25 2018-08-08 川崎重工業株式会社 複合発電システム用電力変換装置
US20210175711A1 (en) * 2016-03-24 2021-06-10 Panasonic Intellectual Property Management Co., Ltd. Power supply system and control method
JP6700102B2 (ja) 2016-05-18 2020-05-27 川重テクノロジー株式会社 電力変換装置
JP6985045B2 (ja) 2017-07-12 2021-12-22 株式会社ニューギン 遊技機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168351A (ja) 2013-02-28 2014-09-11 Kawasaki Heavy Ind Ltd 系統連系する電力変換装置
JP2016220396A (ja) 2015-05-20 2016-12-22 パナソニックIpマネジメント株式会社 分散電源システム、および、分散電源システムの制御方法
JP2017127141A (ja) 2016-01-14 2017-07-20 国立大学法人広島大学 擬似同期化力電圧型コンバータおよびそのコントローラ
JP2018107959A (ja) 2016-12-27 2018-07-05 川崎重工業株式会社 電源システム
CN108879726A (zh) 2018-07-13 2018-11-23 湖南大学 应用于直流输电系统的自适应虚拟同步控制系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAN YINGJIE ET AL,Enhanced Frequency Regulation Using Multilevel Energy Storage in Remote Area Power Supply Systems,IEEE TRANSACTIONS ON POWER SYSTEMS,米国,IEEE,2019年01月01日,VOL.34,NO.1,PAGE 163-170

Also Published As

Publication number Publication date
US20220102980A1 (en) 2022-03-31
EP3907874A1 (en) 2021-11-10
WO2020158037A1 (ja) 2020-08-06
EP3907874A4 (en) 2022-03-02
CN113366751A (zh) 2021-09-07
JP2020127270A (ja) 2020-08-20
US11735925B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
US9450513B2 (en) Control circuit and control method for inverter circuit, and control circuit and control method for power conversion circuit
CN109818368B (zh) 控制微电网的方法
CN107769265B (zh) 一种电压型逆变器的控制方法和系统
JP7112973B2 (ja) 指令生成装置および指令生成方法
CN116667389B (zh) 一种新型电力系统惯量提升的风储联合预测校正控制方法
CN114128075B (zh) 指令生成装置及指令生成方法
JP2010071159A (ja) 風車と蓄電池による風力発電電力平滑化装置
JP7351620B2 (ja) 複数発電電源システムにおける指令生成装置および指令生成方法
KR20210011727A (ko) 에너지 저장장치의 관성제어를 위한 장치 및 방법
Lyu et al. Unified grid-forming control of pmsg wind turbines for fast frequency response and MPPT
CN116632866B (zh) 一种液流超容锂电池混合储能自适应惯量vsg控制方法
JP7292042B2 (ja) 自立運転における複合発電電源システム
CN111049180A (zh) 一种基于混合储能的孤岛微电网电压频率控制方法和系统
WO2024062754A1 (ja) 制御システム、複合発電システム及び制御方法
JP7337311B1 (ja) 電力変換装置、電力変換方法、および電力変換プログラム
CN110661281A (zh) 一种光储一体虚拟同步发电机协调控制方法及系统
CN117498427A (zh) 一种基于哈密顿无源模型的风力发电机系统功率波动平滑方法
Roga et al. Energy Converters for Wind Turbines: Implementation of Control Methods
Mhlongo et al. An Overview of Frequency and Power Changes Quantifition in a Microgrid; Multiply Distribution Generators
CN117254525A (zh) 一种基于构网型非同步机电源的孤岛电网黑启动方法
CN115954898A (zh) 基于孤岛状态下vsg的二次调频方法
CN116865292A (zh) 一种光伏电站自备用可调的虚拟同步控制调频方法和系统
CN115986844A (zh) 一种抽水蓄能机组控制方法及系统

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R150 Certificate of patent or registration of utility model

Ref document number: 7112973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150