WO2019088288A1 - 脆性材料微粒子、脆性材料膜の製造方法および複合構造物 - Google Patents

脆性材料微粒子、脆性材料膜の製造方法および複合構造物 Download PDF

Info

Publication number
WO2019088288A1
WO2019088288A1 PCT/JP2018/041027 JP2018041027W WO2019088288A1 WO 2019088288 A1 WO2019088288 A1 WO 2019088288A1 JP 2018041027 W JP2018041027 W JP 2018041027W WO 2019088288 A1 WO2019088288 A1 WO 2019088288A1
Authority
WO
WIPO (PCT)
Prior art keywords
brittle material
material film
fine particles
film
substrate
Prior art date
Application number
PCT/JP2018/041027
Other languages
English (en)
French (fr)
Inventor
憲幸 仲沢
明渡 純
浩章 野田
Original Assignee
日本ペイントホールディングス株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイントホールディングス株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 日本ペイントホールディングス株式会社
Publication of WO2019088288A1 publication Critical patent/WO2019088288A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the present invention relates to brittle material fine particles, a method of producing a brittle material film, and a composite structure.
  • an aerosol gas deposition method (hereinafter sometimes referred to as an AD method) is known as a method for forming a brittle material structure on a substrate surface by causing a brittle material to collide with the substrate (for example, Patent Document 1) reference).
  • the AD method is considered to be more difficult to form a brittle material structure on the surface of a resin substrate than metal substrates and glass substrates (see, for example, Patent Document 2).
  • a brittle material structure on the surface of a resin substrate, for example, in Patent Document 2, an underlayer made of a hard material in which a part thereof bites on the surface of the resin substrate is formed, and A brittle material structure characterized in that a brittle material structure which is crystalline and substantially free of crystalline orientation and in which a grain boundary layer consisting of a glass layer is not substantially present is formed at the interface between the crystals. It proposes a composite structure.
  • Patent Document 2 it is necessary to form a specific underlayer while heating the resin substrate to a softened state on the surface of the resin substrate, and when not forming the underlayer, the structure of aluminum oxide Has a thickness of 9 .mu.m and can not be thickened.
  • brittle materials capable of forming a brittle material film having a film thickness of 10 ⁇ m or more on a resin substrate, such as lithium manganate (LMO) and lead zirconate titanate (PZT), are known, but such brittleness
  • LMO lithium manganate
  • PZT lead zirconate titanate
  • the brittle material film (brittle material structure) formed from the material is colored opaque and not transparent.
  • a brittle material fine particle which can form a transparent, thick thick, brittle material film even on a resin base even without an underlayer.
  • Another object of the present invention is to provide a method of producing a brittle material film using the above-mentioned brittle material fine particles.
  • Another object of the present invention is to provide a composite structure having a brittle material film according to the above method of producing a brittle material film.
  • the brittle material fine particle according to the present invention is A brittle material fine particle for forming a brittle material film on a substrate by an aerosol deposition method (AD method), which is a compound of a boron atom, a metal atom and an oxygen atom, and a mixture of aluminum oxide and boron oxide
  • AD method aerosol deposition method
  • the metal atom is at least one selected from the group consisting of Zn, Mg and Al.
  • the compound is at least one selected from the group consisting of zinc borate, magnesium borate and aluminum borate.
  • a method of producing a brittle material film according to the present invention includes the steps of applying the above-mentioned brittle material fine particles on a substrate by an aerosol deposition method (AD method) to form a brittle material film. It is a manufacturing method. According to the method for producing a brittle material film according to the present invention, even if there is no underlayer, it is possible to form a transparent, thick, brittle material film on the resin substrate.
  • AD method aerosol deposition method
  • the composite structure according to the present invention is a composite structure having a brittle material film according to the method for producing a brittle material film on a substrate. According to the composite structure of the present invention, it is possible to have a brittle material film which is transparent and has a thick film thickness without a base layer on a resin base material.
  • a brittle material fine particle which can form a transparent, thick thick, brittle material film even on a resin base even without an underlayer. Further, according to the present invention, it is possible to provide a method for producing a brittle material film using the above-mentioned brittle material fine particles. Further, according to the present invention, it is possible to provide a composite structure having a brittle material film according to the method for producing a brittle material film.
  • “compound” means, unless otherwise stated, a substance containing a solid solution and mixed crystals in addition to a pure substance consisting of atoms of two or more elements. Therefore, the “compound” in the present invention does not include a mere mixture that is not a solid solution or mixed crystal.
  • the term "solid solution” means that two or more substances present as independent elements or compounds are in a solid state and mutually dissolved.
  • mixed crystals means crystals formed by mixing two or more substances having different crystal components and having a crystal structure.
  • a method of producing a brittle material film according to the present invention includes the step of applying the brittle material fine particles according to the present invention on a substrate by an aerosol deposition method (AD method) to form a brittle material film. It is a manufacturing method of a material film.
  • AD method aerosol deposition method
  • the brittle material fine particles used in the method for producing a brittle material film according to the present invention the brittle material film to be formed, the AD method, and the substrate will be described by way of example.
  • the brittle material fine particle according to the present invention is A brittle material fine particle for forming a brittle material film on a substrate by an aerosol deposition method (AD method), which is a compound of a boron atom, a metal atom and an oxygen atom, and a mixture of aluminum oxide and boron oxide
  • AD method aerosol deposition method
  • the brittle material fine particle of the present invention the brittle material having a thick and transparent film thickness even on the resin base without a base layer at relatively low temperature (for example, 10 to 40 ° C., the same applies hereinafter) A film can be formed.
  • relatively low temperature for example, 10 to 40 ° C., the same applies hereinafter
  • the brittle material fine particles according to the present invention capable of forming such a brittle material film, the presence or absence of the underlayer, the type of the substrate, the transparency of the brittle material film, and Regardless of the thickness of the brittle material film, the brittle material film can be formed.
  • the brittle material film can be formed with or without the underlayer, and even on the resin substrate, it is on the substrate other than the resin substrate. Even a brittle material film can be formed, regardless of whether it is transparent, opaque, colorless or colored, a brittle material film can be formed, and the film thickness is thick or thin and brittle. A material film can be formed.
  • the brittle material fine particles according to the present invention form a transparent, thick, brittle material film on a resin substrate even without an underlayer.
  • the reason for this is that brittle material fine particles collide on the substrate by the AD method, and the brittle material fine particles are shattered and deposited to form a brittle material film, the shattered brittle material fine particles are plastically deformed It is presumed that the voids between the finely divided brittle material fine particles, which are crushed by the energy of the AD method, disappear.
  • the brittle material fine particle according to the present invention comprises at least one selected from the group consisting of a compound of a boron atom (B), a metal atom (M) and an oxygen atom (O), and a mixture of aluminum oxide and boron oxide. Including.
  • the brittle material fine particles may be used singly or in combination of two or more.
  • sodium (Na), magnesium (Mg), aluminum (Al), potassium (K) Calcium (Ca
  • the metal atom is at least one selected from the group consisting of Zn, Mg and Al. Thereby, the transparency of the brittle material film is more excellent.
  • the compound of the boron atom (B), the metal atom (M) and the oxygen atom (O) contained in the brittle material fine particles may be a compound composed of at least these atoms, and consists of only these three types of atoms It may be a compound, or a compound consisting of only four types of atoms including a hydrogen atom (H) in addition to these three types of atoms.
  • the compound is a compound of a boron atom, a metal atom, an oxygen atom and a hydrogen atom.
  • the compound of the boron atom, the metal atom and the oxygen atom contained in the brittle material fine particles may be an anhydride or a hydrate.
  • the compound is a hydrate.
  • the compound is rational formula 2ZnO-3B 2 O 3 -3.5H 2 O, 4ZnO-B 2 O 3 -H 2 O, 2ZnO-2B 2 O 3 It is one or more selected from the group consisting of -3H 2 O, 2ZnO-3B 2 O 3 and 2Zn (BO 2 ) 2 -3H 2 O.
  • the compound is one or more selected from the group consisting of zinc borate, magnesium borate and aluminum borate.
  • the brittle material particle according to the present invention is a compound of a boron atom, a metal atom and an oxygen atom (ie, the brittle material particle does not contain a mixture of aluminum oxide and boron oxide).
  • a commercial item may be used as a compound of a boron atom, a metal atom, and an oxygen atom which the brittle material fine particle according to the present invention contains.
  • a zinc borate of the empirical formula 2ZnO-3B 2 O 3 -3.5H 2 O FireBrake ZB of US Borax Corporation and the like can be mentioned.
  • the zinc borate of the empirical formula 4ZnO-B 2 O 3 -H 2 O FireBrake 415 of US Borax Corporation and the like can be mentioned.
  • Zinc borate 223B from Zibo Wuwei Industrial Co., Ltd. may be mentioned.
  • the mixture of aluminum oxide and boron oxide contained in the fine particles of brittle material may be a mixture of at least aluminum oxide and boron oxide, or may be a mixture consisting only of aluminum oxide and boron oxide, in addition to aluminum oxide and boron oxide It may be a mixture containing one or more selected from the group consisting of aluminum hydroxide and boric acid.
  • Examples of the mixture of aluminum oxide and boron oxide which the brittle material fine particles contain include a mixture of aluminum oxide and boron oxide, a mixture of aluminum oxide, aluminum hydroxide and boron oxide, aluminum oxide, boron oxide and boric acid And mixtures of aluminum oxide, aluminum hydroxide, boron oxide and boric acid, and the like.
  • a commercial item may be used as a mixture of aluminum oxide and boron oxide which the brittle material fine particle concerning the present invention contains.
  • aluminum oxide aluminum hydroxide, boron oxide and boric acid
  • aluminum borate Al 2 O 3 -Al (OH) 3 -B 2 O 3 -B (trade name of Terada Yakusen Industry Co., Ltd.) is used. OH) 3 ) and the like.
  • the brittle material fine particles according to the present invention are not glass (fine particles of only glass). This is because the desired effect can not be obtained even if only the glass is micronized to form a brittle material film by the AD method.
  • the brittle material fine particle according to the present invention is a compound of the boron atom, the metal atom and the oxygen atom, and a mixture of aluminum oxide and boron oxide, as long as it does not deviate from the spirit of the present invention.
  • compound in a general meaning other than “compound”, and the same shall apply hereinafter.
  • Other compounds for example, boron oxide (B 2 O 3), aluminum oxide (Al 2 O 3), and glass.
  • the brittle material fine particles according to the present invention include other compounds in addition to the compound of boron atom, metal atom and oxygen atom, and the mixture of aluminum oxide and boron oxide
  • the boron atom and metal in the brittle material fine particle The content ratio of one or more selected from the group consisting of a compound of an atom and an oxygen atom, and a mixture of aluminum oxide and boron oxide is, for example, 20 to 99.9 mass based on the total mass of the brittle material fine particles %, Or 50 to 99.9% by mass.
  • the transparency of the brittle material film is preferably improved.
  • the shape, particle size, particle size distribution and the like of the brittle material fine particle according to the present invention may be appropriately adjusted, and is not particularly limited.
  • the shape is preferably non-spherical.
  • D50 on a number basis is preferably 0.1 to 10 ⁇ m, and more preferably 0.7 to 3 ⁇ m.
  • the brittle material fine particles according to the present invention are harder than the resin base, if a brittle material film having a sufficient film thickness using the brittle material fine particles is formed on the surface of the resin base, the resin base is excellent in scratch resistance And gas barrier properties can be imparted.
  • the brittle material film is a film formed using the brittle material fine particles.
  • the brittle material film may be transparent or opaque, may have a thin film thickness, or may have a large film thickness.
  • the brittle material film formed using the brittle material fine particles according to the present invention can be a transparent material film having a large thickness and a brittle material film.
  • the transparency of the brittle material film is measured by polishing the surface of the brittle material film formed on the substrate with a 3 ⁇ m diamond compound to remove surface scattered light, and then using a haze meter manufactured by Nippon Denshoku Kogyo Co., Ltd. Do this using the name NDH2000.
  • the measurement method is in accordance with JIS K 7136, and the percentage (%) of transmitted light deviated by 0.044 rad (2.5 °) or more from the incident light by forward scattering is taken as the haze value.
  • the film thickness of the brittle material film is 10 ⁇ m or more
  • the film thickness is 10 ⁇ m from the haze value of the film thickness 10 ⁇ m or less of the same sample and the haze value of the film thickness 10 ⁇ m or more in order to exclude the influence of the film thickness.
  • the corresponding haze value is calculated.
  • a brittle material film can be formed regardless of whether it is transparent or opaque. Therefore, the transparency of the brittle material film according to the present invention is not particularly limited, and, for example, the haze value of the brittle material film may be 1 to 60. In the case of a transparent brittle material film, the haze value is preferably small. In one embodiment of the transparent brittle material film, the haze value of the brittle material film is 15 or less, 5 or less, 3 or less or 1 or less.
  • the object forming the brittle material film is likely to be damaged, such as the painted surface of a vehicle such as a car, a plastic window, a display, etc.
  • the object can be suitably used because it can impart excellent scratch resistance to the object and secure the appearance and visibility.
  • a method of adding a brittle material having a different refractive index or a method of adding a color pigment may be mentioned.
  • the film thickness of the brittle material film may be appropriately adjusted, and is not particularly limited. As described above, it may be thick or thin.
  • the film thickness of the brittle material film is, for example, 1 to 30 ⁇ m.
  • the film thickness of the brittle material film is preferably 5 to 30 ⁇ m and 10 to 30 ⁇ m from the viewpoint of imparting excellent scratch resistance and gas barrier properties to the resin base material. Is more preferred.
  • the AD method used when forming a conventionally known brittle material film for example, ejects conventional brittle material fine particles from the injection port of the apparatus together with a carrier gas as described in Patent Document 2
  • the surface of the substrate is coated with the particles of the brittle material by collision with the surface of the substrate, or a base layer made of the particles of the brittle material is formed on the surface of the substrate.
  • the AD method carried out using the brittle material fine particles according to the present invention in the method of producing a brittle material film according to the present invention is also the same principle as the AD method used when forming a conventional brittle material film.
  • the temperature at the time of applying the brittle material fine particles on the substrate by the AD method may be appropriately selected according to the type of the resin substrate.
  • the temperature is, for example, 0 to 100 ° C., and preferably 10 to 40 ° C.
  • the temperature is, for example, 0 to 200 ° C., and preferably 10 to 100 ° C.
  • membrane by AD method is not specifically limited, It can select from well-known base materials.
  • a base material a resin base material, a glass base material, a metal base material etc. are mentioned, for example.
  • a well-known resin base material can be used as a resin base material.
  • the resin base include polycarbonate (PC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), polypropylene, acrylic resin, polystyrene, polyimide, epoxy resin and the like.
  • these resin base materials may contain additives such as coloring materials such as pigments and dyes, and functional inorganic substances.
  • the resin base includes a base having a resin coating (coating or coating) on the surface of a glass base, a metal base, or any other base than the resin base described later. It is because such a resin film is comprised from resin similarly to a resin base material.
  • a well-known glass base material can be used as a glass base material.
  • the glass substrate include float glass, tempered glass, heat resistant glass, fire prevention glass, design glass, colored glass, laminated glass, antique glass, retro glass, ground glass, double glass, glass fiber and the like.
  • a well-known metal base can be used as a metal base.
  • a metal base material iron, stainless steel (alloy steel), aluminum, copper etc. are mentioned, for example.
  • the substrate is one selected from the group consisting of a resin substrate, a glass substrate and a metal substrate. In another embodiment, the substrate is two or more composite substrates selected from the group consisting of a resin substrate, a glass substrate and a metal substrate.
  • Objects include, for example, displays of electronic devices such as home appliances; vehicles such as cars, trains, buses, taxis (windows and painted car bodies); ships; aircraft such as airplanes and helicopters (windows and painted bodies) ; Vending machines; Road signs; Signals; Street lamps; LED billboards, liquid crystal displays, electric light bulbs, etc .; Glasses, telescopes, cameras, video cameras (these housings and displays); Mirrors; Clothing; Footwear such as shoes; Rain implements such as umbrellas; packaging materials etc.
  • the brittle material fine particles may be applied onto the substrate by the AD method to optionally include other steps in addition to the step of forming the brittle material film.
  • Other steps include, for example, a step of pretreating the substrate, a step of forming an underlayer on the substrate, and a step of post-treating the formed brittle material film.
  • the composite structure according to the present invention is a composite structure having a brittle material film according to the method for producing a brittle material film on a substrate.
  • the composite structure includes, for example, one having a brittle material film on the above-described object.
  • Resin base material polycarbonate, described as PC in Table 1
  • PC trade name polycarbonate resin base material of Japan Test Panel Co., Ltd.
  • PET polyethylene terephthalate, described as PET in Table 1
  • Resin base material glass coated with acrylic resin paint
  • Glass base material trade name glass metal base material of Nippon Test Panel Co., Ltd .
  • SPCC steel sheet Nippon Test Panel Co., Ltd.
  • the details of the film forming conditions by the AD method are as follows. Gas: dry air gas amount: 5 L / min Temperature: room temperature (about 25 ° C) Deposition chamber pressure: 180 Pa Substrate conveyance speed: 30 mm / sec. Number of times of film formation (number of scans): 6 to 24 times (adjusted so that the film thickness is 10 ⁇ m)
  • the materials shown in Table 1 were ball-milled for 10 minutes to obtain brittle material fine particles or comparative fine particles having a particle diameter of 0.1 to 10 ⁇ m.
  • Example 1 (Examples 1 to 8 and Comparative Examples 1 to 3)
  • the brittle material fine particles were applied onto the base material by the AD method without forming the underlayer, to form a brittle material film.
  • membrane were evaluated as follows. The results are shown in Table 1 together.
  • ⁇ Transparency of brittle material film The measurement of the transparency of the brittle material film was performed by the method described above. Transparency was evaluated based on the following criteria. About Example 8 formed into a film on the base material which does not transmit light, the transparency is visually compared with other Examples and Comparative Examples for which the transparency has been evaluated, and corresponds to any of ⁇ , ⁇ , ⁇ It was evaluated. ⁇ represents that the transparency is the best. : Haze value 15 or less, or equivalent to haze value 15 or less ⁇ : Greater than haze value 15 to 60 or less, or visually greater than haze value 15 to 60 or less equivalent ⁇ : Haze value greater than 60, or visually haze Equal to greater than 60
  • a brittle material film having a thickness of 10 ⁇ m or more and being transparent is formed by the AD method on the resin base, the metal base and the glass base even without the underlayer. I was able to.
  • Comparative Example 1 using zinc oxide fine particles it was not possible to form a thick brittle material film having a thickness of 10 ⁇ m or more.
  • Comparative Example 2 in which the boron oxide fine particles were used it was not possible to form a transparent brittle material film.
  • Comparative Example 3 using a mixture of zinc oxide microparticles and boron oxide microparticles the transparency of the brittle material film was insufficient.
  • a brittle material fine particle which can form a transparent, thick thick, brittle material film even on a resin base even without an underlayer. Further, according to the present invention, it is possible to provide a method for producing a brittle material film using the above-mentioned brittle material fine particles. Further, according to the present invention, it is possible to provide a composite structure having a brittle material film according to the manufacturing method.

Abstract

下地層がなくとも、樹脂基材上にも、透明で膜厚の厚い、脆性材料膜を形成可能な脆性材料微粒子を提供すること。当該脆性材料微粒子を用いた脆性材料膜の製造方法を提供すること。当該製造方法による脆性材料膜を有する複合構造物を提供すること。 基材上にエアロゾルデポジション法(AD法)により脆性材料膜を形成するための脆性材料微粒子であって、ホウ素原子と金属原子と酸素原子との化合物、および酸化アルミニウムと酸化ホウ素との混合物からなる群より選択される1種以上を含む、脆性材料微粒子(ただし、ガラスを除く。)。当該脆性材料微粒子を、AD法により、基材上に適用して、脆性材料膜を形成する工程を含む、脆性材料膜の製造方法。基材上に、当該脆性材料膜の製造方法による脆性材料膜を有する、複合構造物。

Description

脆性材料微粒子、脆性材料膜の製造方法および複合構造物
 本発明は、脆性材料微粒子、脆性材料膜の製造方法および複合構造物に関する。
 従来、脆性材料を基材に衝突させ基材表面に脆性材料構造物を形成する方法として、エアロゾルガスデポジッション法(以下、AD法ということがある)が知られている(例えば、特許文献1参照)。AD法は、金属基材やガラス基材に比べて樹脂基材の表面へ脆性材料構造物を形成することが難しいとされている(例えば、特許文献2参照)。
国際公開第01/27348号 特開2003-034003号公報
 樹脂基材の表面へ脆性材料構造物を形成するために、例えば、特許文献2では、樹脂基材表面にその一部が食い込む硬質材料からなる下地層が形成され、この下地層の上に多結晶で且つ実質的に結晶配向性がなく更に結晶同士の界面にガラス層からなる粒界層が実質的に存在しない脆性材料構造物が形成されていることを特徴とする樹脂と脆性材料との複合構造物を提案している。
 しかし、特許文献2の複合構造物では、樹脂基材表面に樹脂基材を加熱して軟化状態にしながら特定の下地層を形成する必要があり、下地層を形成しない場合、酸化アルミニウムの構造物の膜厚が9μmであり、厚くすることができないという問題がある。
 また、マンガン酸リチウム(LMO)やチタン酸ジルコン酸鉛(PZT)など、樹脂基材上に、膜厚10μm以上の脆性材料膜を形成可能な脆性材料が知られているが、このような脆性材料から形成される脆性材料膜(脆性材料構造物)は、有色不透明であり、透明ではない。
 このように、下地層を設けずに、樹脂基材上に、膜厚の厚い(例えば10μm以上)、透明な脆性材料膜を形成可能な脆性材料はこれまでなかった。
 そこで、本発明は、下地層がなくとも、樹脂基材上にも、透明で膜厚の厚い、脆性材料膜を形成可能な脆性材料微粒子を提供することを目的とする。
 本発明の別の目的は、上記脆性材料微粒子を用いた脆性材料膜の製造方法を提供することである。
 本発明の別の目的は、上記脆性材料膜の製造方法による脆性材料膜を有する複合構造物を提供することである。
 本発明に係る脆性材料微粒子は、
 基材上にエアロゾルデポジション法(AD法)により脆性材料膜を形成するための脆性材料微粒子であって、ホウ素原子と金属原子と酸素原子との化合物、および酸化アルミニウムと酸化ホウ素との混合物からなる群より選択される1種以上を含む、脆性材料微粒子(ただし、ガラスを除く。)である。本発明に係る脆性材料微粒子によれば、下地層がなくとも、樹脂基材上にも、透明で膜厚の厚い、脆性材料膜を形成することができる。
 本発明に係る脆性材料微粒子の一実施形態では、前記金属原子が、Zn、MgおよびAlからなる群より選択される1種以上である。
 本発明に係る脆性材料微粒子の一実施形態では、前記化合物が、ホウ酸亜鉛、ホウ酸マグネシウムおよびホウ酸アルミニウムからなる群より選択される1種以上である。
 本発明に係る脆性材料膜の製造方法は、上記脆性材料微粒子を、エアロゾルデポジション法(AD法)により、基材上に適用して、脆性材料膜を形成する工程を含む、脆性材料膜の製造方法である。本発明に係る脆性材料膜の製造方法によれば、下地層がなくとも、樹脂基材上にも、透明で膜厚の厚い、脆性材料膜を形成することができる。
 本発明に係る複合構造物は、基材上に、上記脆性材料膜の製造方法による脆性材料膜を有する、複合構造物である。本発明に係る複合構造物によれば、樹脂基材上に、下地層がなく、透明で膜厚の厚い、脆性材料膜を有することもできる。
 本発明によれば、下地層がなくとも、樹脂基材上にも、透明で膜厚の厚い、脆性材料膜を形成可能な脆性材料微粒子を提供することができる。また、本発明によれば、上記脆性材料微粒子を用いた脆性材料膜の製造方法を提供することができる。また、本発明によれば、上記脆性材料膜の製造方法による脆性材料膜を有する複合構造物を提供することができる。
 以下、本発明の実施形態について説明する。これらの記載は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。
 本発明において、「化合物」とは、別段の記載のない限り、2種以上の元素の原子からなる純物質に加えて、固溶体および混晶を含む物質を意味する。そのため、本発明における「化合物」には、固溶体または混晶ではない単なる混合物は含まれない。本発明において、「固溶体」とは、独立した元素または化合物として存在する2種以上の物質が固体で互いに溶けた状態のものを意味する。本発明において、「混晶」とは、化学成分が異なり、結晶構造を有する2種以上の物質が互いに混合して形成された結晶を意味する。
 本発明において、2以上の実施形態を任意に組み合わせることができる。
 (脆性材料膜の製造方法)
 本発明に係る脆性材料膜の製造方法は、本発明に係る脆性材料微粒子を、エアロゾルデポジション法(AD法)により、基材上に適用して、脆性材料膜を形成する工程を含む、脆性材料膜の製造方法である。
 以下、本発明に係る脆性材料膜の製造方法で用いる脆性材料微粒子、形成される脆性材料膜、AD法および基材について例示説明する。
 (脆性材料微粒子)
 本発明に係る脆性材料微粒子は、
 基材上にエアロゾルデポジション法(AD法)により脆性材料膜を形成するための脆性材料微粒子であって、ホウ素原子と金属原子と酸素原子との化合物、および酸化アルミニウムと酸化ホウ素との混合物からなる群より選択される1種以上を含む、脆性材料微粒子(ただし、ガラスを除く。)である。
 本発明に係る脆性材料微粒子によれば、比較的低温(例えば、10~40℃、以下同じ)下で、下地層がなくとも、樹脂基材上にも、透明で膜厚の厚い、脆性材料膜を形成することができる。また、従来、比較的低温下で、下地層がなしに、樹脂基材上に、透明で膜厚の厚い、脆性材料膜を形成することはできなかった。そのため、このような脆性材料膜を形成可能な本発明に係る脆性材料微粒子によれば、比較的低温下であっても、下地層の有無、基材の種類、脆性材料膜の透明性、および脆性材料膜の厚みに関わらず、脆性材料膜を形成することができる。すなわち、本発明に係る脆性材料微粒子によれば、下地層があってもなくても脆性材料膜を形成することができ、樹脂基材上であっても樹脂基材以外の基材上であっても脆性材料膜を形成することができ、透明であるか、不透明であるか、無色か有色かにかかわらず、脆性材料膜を形成することができ、膜厚が厚くても薄くても脆性材料膜を形成することができる。
 理論に拘束されることを望むものではないが、本発明に係る脆性材料微粒子が、下地層がなくとも、樹脂基材上にも、透明で膜厚の厚い、脆性材料膜を形成することができる理由は、AD法によって脆性材料微粒子が基材上に衝突して、脆性材料微粒子が粉々になり、堆積して脆性材料膜を形成する際に、粉々になった脆性材料微粒子が塑性変形してAD法によるエネルギーによって潰れて、粉々になった脆性材料微粒子間の空隙が無くなるためと推測される。脆性材料膜を構成する脆性材料微粒子間に空隙があると、その空隙中の空気と、脆性材料微粒子との屈折率差によって、光散乱が生じて、脆性材料膜は不透明になると推測されるためである。
 本発明に係る脆性材料微粒子は、ホウ素原子(B)と金属原子(M)と酸素原子(O)との化合物、および酸化アルミニウムと酸化ホウ素との混合物からなる群より選択される1種以上を含む。脆性材料微粒子は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ホウ素原子(B)と金属原子(M)と酸素原子(O)との化合物における金属原子(M)としては、例えば、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、カリウム(K)、カルシウム(Ca)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ルビジウム(Rb)、ストロンチウム(Sr)、ジルコニウム(Zr)、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、白金(Pt)、金(Au)、鉛(Pb)などが挙げられる。
 本発明に係る脆性材料微粒子の一実施形態では、前記金属原子が、Zn、MgおよびAlからなる群より選択される1種以上である。これにより、脆性材料膜の透明性がより優れる。
 脆性材料微粒子が含む、ホウ素原子(B)と金属原子(M)と酸素原子(O)との化合物は、少なくともこれらの原子から構成される化合物であればよく、これら3種類の原子のみからなる化合物でもよいし、これら3種類の原子に加えて、水素原子(H)を含む4種類の原子のみからなる化合物でもよい。
 本発明に係る脆性材料微粒子の一実施形態では、前記化合物が、ホウ素原子と金属原子と酸素原子と水素原子との化合物である。
 本発明に係る脆性材料微粒子の一実施形態では、前記化合物におけるホウ素原子(B)と金属原子(M)と酸素原子(O)と水素原子(H)の比率(mol%)は、
B=10~50mol%、
M=5~30mol%、
O=30~70mol%、
H=0~40mol%である。
 また、脆性材料微粒子が含む、ホウ素原子と金属原子と酸素原子との化合物は、無水物でもよいし、水和物でもよい。
 本発明に係る脆性材料微粒子の一実施形態では、前記化合物が、水和物である。
 本発明に係る脆性材料微粒子の一実施形態では、前記化合物が、示性式 2ZnO-3B-3.5HO、4ZnO-B-HO、2ZnO-2B-3HO、2ZnO-3Bおよび2Zn(BO-3HOからなる群より選択される1種以上である。
 本発明に係る脆性材料微粒子の別の実施形態では、前記化合物が、ホウ酸亜鉛、ホウ酸マグネシウムおよびホウ酸アルミニウムからなる群より選択される1種以上である。
 脆性材料微粒子が含む、ホウ素原子と金属原子と酸素原子との化合物、および酸化アルミニウムと酸化ホウ素との混合物のうち、当該化合物は、当該混合物よりも脆性材料膜の透明性が高いため好ましい。一実施形態では、本発明に係る脆性材料微粒子は、ホウ素原子と金属原子と酸素原子との化合物である(すなわち、脆性材料微粒子が酸化アルミニウムと酸化ホウ素との混合物を含まない)。
 本発明に係る脆性材料微粒子が含む、ホウ素原子と金属原子と酸素原子との化合物としては、市販品を用いてもよい。例えば、示性式 2ZnO-3B-3.5HOのホウ酸亜鉛としては、US Borax社のFireBrakeZBなどが挙げられる。例えば、示性式 4ZnO-B-HOのホウ酸亜鉛としては、US Borax社のFireBrake415などが挙げられる。例えば、示性式 2ZnO-2B-3HOのホウ酸亜鉛としては、Zibo WuweiIndustrial社のZinc borate 223Bなどが挙げられる。例えば、示性式 2ZnO-3Bのホウ酸亜鉛としては、US Borax社のFireBrake500などが挙げられる。例えば、示性式2MgO-3B-xHOのホウ酸マグネシウムとしては、富田製薬社ホウ酸マグネシウムなどが挙げられる。
 脆性材料微粒子が含む、酸化アルミニウムと酸化ホウ素との混合物は、少なくとも酸化アルミニウムと酸化ホウ素を含む混合物であればよく、酸化アルミニウムと酸化ホウ素のみからなる混合物でもよいし、酸化アルミニウムと酸化ホウ素に加えて、水酸化アルミニウムおよびホウ酸からなる群より選択される1種以上を含む混合物でもよい。
 脆性材料微粒子が含む、酸化アルミニウムと酸化ホウ素との混合物としては、例えば、酸化アルミニウムと酸化ホウ素との混合物、酸化アルミニウムと水酸化アルミニウムと酸化ホウ素との混合物、酸化アルミニウムと酸化ホウ素とホウ酸との混合物、酸化アルミニウムと水酸化アルミニウムと酸化ホウ素とホウ酸との混合物などが挙げられる。
 本発明に係る脆性材料微粒子が含む、酸化アルミニウムと酸化ホウ素との混合物としては、市販品を用いてもよい。例えば、酸化アルミニウムと水酸化アルミニウムと酸化ホウ素とホウ酸との混合物としては、寺田薬泉工業社の商品名ホウ酸アルミニウム(Al-Al(OH)-B-B(OH))などが挙げられる。
 本発明に係る脆性材料微粒子は、ガラス(ガラスのみの微粒子)ではない。ガラスのみを微粒子化してAD法により脆性材料膜を形成しても所望の効果が得られないためである。
 本発明に係る脆性材料微粒子は、ホウ素原子と金属原子と酸素原子との化合物、および酸化アルミニウムと酸化ホウ素との混合物に加えて、本発明の趣旨を逸脱しない範囲で、その他の化合物(本発明の「化合物」ではない一般的な意味の「化合物」である。以下同じ。)を含んでいてもよい。その他の化合物としては、例えば、酸化ホウ素(B)、酸化アルミニウム(Al)、ガラスなどが挙げられる。
 本発明に係る脆性材料微粒子が、ホウ素原子と金属原子と酸素原子との化合物、および酸化アルミニウムと酸化ホウ素との混合物に加えて、その他の化合物を含む場合、脆性材料微粒子における、ホウ素原子と金属原子と酸素原子との化合物、および酸化アルミニウムと酸化ホウ素との混合物からなる群より選択される1種以上の含有割合は、例えば、脆性材料微粒子の総質量に対して、20~99.9質量%、または50~99.9質量%である。ホウ素原子と金属原子と酸素原子との化合物、および酸化アルミニウムと酸化ホウ素との混合物の含有割合が高いと脆性材料膜の透明性が向上し好ましい。
 本発明に係る脆性材料微粒子の、形状、粒径、粒度分布などは、適宜調節すればよく、特に限定されない。例えば、形状としては非球形であることが好ましい。粒度分布としては、個数基準のD50が0.1~10μmであることが好ましく、0.7~3μmであることがより好ましい。
 本発明に係る脆性材料微粒子は、樹脂基材よりも硬いため、樹脂基材の表面に脆性材料微粒子を用いた十分な膜厚の脆性材料膜を形成すれば、樹脂基材に優れた耐傷つき性とガスバリア性を付与することができる。
 <脆性材料膜>
 脆性材料膜は、上記脆性材料微粒子を用いて形成された膜である。
 脆性材料膜は、透明でもよいし、不透明でもよいし、膜厚が薄くてもよいし、膜厚が厚くてもよい。本発明に係る脆性材料微粒子を用いて形成された脆性材料膜は、透明で膜厚が厚い脆性材料膜とすることが可能である。
 脆性材料膜の透明性の測定は、基材上に形成された脆性材料膜の表面を3μmのダイヤモンドコンパウンドで研磨して、表面散乱光を除去した後、日本電色工業社製のヘイズメーター 商品名NDH2000を用いて行う。測定方法はJIS K 7136に準拠し、前方散乱によって、入射光から0.044rad(2.5°)以上逸れた透過光の割合(百分率)をヘイズ値とする。脆性材料膜の膜厚が10μm以上の場合、膜厚の影響を排除するため、同一サンプルの膜厚10μm以下の箇所のヘイズ値と膜厚10μm以上の箇所のヘイズ値とから、膜厚10μmに相当するヘイズ値を算出する。
 上述したように本発明に係る脆性材料微粒子によれば、透明であるか、不透明であるかにかかわらず、脆性材料膜を形成することができる。そのため、本発明に係る脆性材料膜の透明性は、特に限定されず、例えば、脆性材料膜のヘイズ値は1~60であってもよい。透明な脆性材料膜の場合、ヘイズ値は小さいことが好ましい。透明な脆性材料膜の一実施形態では、脆性材料膜のヘイズ値は、15以下、5以下、3以下または1以下である。
 脆性材料膜が、透明であると、脆性材料膜を形成する対象物が、自動車などの車両の塗装面、プラスチック窓、ディスプレイなど、表面が傷つきやすく、かつ、傷によって美観や視認性などが損なわれる対象物である場合に、当該対象物に、優れた耐傷つき性を付与し、美観や視認性を確保することができることから好適に利用可能である。
 脆性材料膜を不透明にするあるいは着色する場合、例えば、屈折率の異なる脆性材料を添加する方法や着色顔料を添加する方法が挙げられる。
 脆性材料膜の膜厚は、適宜調節すればよく、特に限定されず、上述したように、厚くてもよいし、薄くてもよい。脆性材料膜の膜厚は、例えば、1~30μmである。基材が樹脂基材である場合、脆性材料膜の膜厚は、樹脂基材に優れた耐傷つき性とガスバリア性を付与する観点から、5~30μmであることが好ましく、10~30μmであることがより好ましい。
 <AD法>
 AD法について、従来公知の脆性材料膜を形成する際に用いられるAD法は、例えば、特許文献2に記載のように、従来の脆性材料微粒子を、キャリアガスと共に装置の噴射口から噴出させ、基材表面に衝突させて、基材表面を脆性材料微粒子でコーティングする、または基材表面に脆性材料微粒子からなる下地層を形成する技術である。一方、本発明に係る脆性材料膜の製造方法における本発明に係る脆性材料微粒子を用いて行うAD法も、従来の脆性材料膜を形成する際に用いられるAD法と原理は同じであり、脆性材料微粒子を、キャリアガスと共に装置の噴射口から噴出させ、基材表面に衝突させて、基材表面を脆性材料微粒子でコーティングする方法である。したがって、従来のAD法の装置および条件を使用することができる。従来のAD法の参考として、特許文献2の他、例えば、特開2003-073855号公報、特開2006-130703号公報、特開2012-243629号公報、国際公開第2012/160979号などが挙げられる。
 脆性材料微粒子を、AD法により基材上に適用する際の温度は、樹脂基材の種類に応じて適宜選択すればよい。基材として樹脂基材を用いる場合、当該温度としては、例えば、0~100℃であり、10~40℃が好ましい。基材として樹脂基材以外の、金属基材またはガラス基材などの基材を用いる場合は、当該温度としては、例えば、0~200℃であり、10~100℃が好ましい。
 <基材>
 AD法により脆性材料膜を形成する対象物である基材は、特に限定されず、公知の基材から選択することができる。基材としては、例えば、樹脂基材、ガラス基材、金属基材などが挙げられる。
 樹脂基材としては、公知の樹脂基材を用いることができる。樹脂基材としては、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、アクリロニトリル・ブタジエン・スチレン(ABS)、ポリプロピレン、アクリル樹脂、ポリスチレン、ポリイミド、エポキシ樹脂などが挙げられる。また、これらの樹脂基材は、顔料、染料などの色材、機能性無機物などの添加剤を含むものであってもよい。
 また、樹脂基材は、後述するガラス基材、金属基材、その他、樹脂基材以外の基材の表面に、樹脂被膜(塗膜やコーティング)を有する基材を含む。このような樹脂被膜が樹脂基材と同様に樹脂から構成されるためである。
 ガラス基材としては、公知のガラス基材を用いることができる。ガラス基材としては、例えば、フロートガラス、強化ガラス、耐熱ガラス、防火ガラス、デザインガラス、色ガラス、合わせガラス、アンティークガラス、レトロガラス、すりガラス、複層ガラス、ガラス繊維などが挙げられる。
 金属基材としては、公知の金属基材を用いることができる。金属基材としては、例えば、鉄、ステンレス鋼(合金鋼)、アルミニウム、銅などが挙げられる。
 一実施形態では、基材は、樹脂基材、ガラス基材および金属基材からなる群より選択される1種である。別の実施形態では、基材は、樹脂基材、ガラス基材および金属基材からなる群より選択される2種以上の複合基材である。
 AD法により脆性材料膜を形成する対象物(被コーティング物)としては、特に限定されず、適宜選択することができる。対象物としては、例えば、家電などの電子機器のディスプレイ;自動車、電車、バス、タクシーなどの車両(窓および塗装された車体);船;飛行機、ヘリコプターなどの航空機(窓および塗装された本体);自動販売機;道路標識;信号;街灯;LED方式、液晶方式、電球方式などの電光掲示板;メガネ、望遠鏡、カメラ、ビデオカメラ(これらの筺体およびディスプレイ);鏡;衣類;靴などの履物;傘などの雨具;包装材などが挙げられる。
 本発明に係る脆性材料膜の製造方法では、脆性材料微粒子を、AD法により、基材上に適用して、脆性材料膜を形成する工程に加えて、任意にその他の工程を含んでいてもよい。その他の工程としては、例えば、基材を前処理する工程、基材に下地層を形成する工程、形成した脆性材料膜を後処理する工程などが挙げられる。
 (複合構造物)
 本発明に係る複合構造物は、基材上に、上記脆性材料膜の製造方法による脆性材料膜を有する、複合構造物である。複合構造物は、例えば、上述した対象物上に脆性材料膜を有するものなどが挙げられる。
 以下、実施例を挙げて本発明をさらに詳しく説明するが、これらの実施例は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。
 実施例で用いた材料の詳細は以下のとおりである。
ホウ素原子と亜鉛(Zn)原子と酸素原子と水素原子との化合物(ホウ酸亜鉛の水和物)、示性式 2ZnO-3B-3.5HO、表1中、ホウ酸亜鉛と表記:US Borax社の商品名FireBrakeZB
ホウ素原子とマグネシウム(Mg)原子と酸素原子と水素原子との化合物、示性式 2MgO-3B-xHO、表1中、ホウ酸マグネシウムと表記:富田製薬社の商品名ホウ酸マグネシウム
酸化アルミニウムと水酸化アルミニウムと酸化ホウ素とホウ酸との混合物:寺田薬泉工業社の商品名ホウ酸アルミニウム(示性式Al-Al(OH)-B-B(OH)
ホウ酸亜鉛と酸化ホウ素との混合物:ホウ酸亜鉛(US Borax社の商品名FireBrakeZB)と酸化ホウ素(US Borax社の商品名Boric Oxide)との混合物(ホウ酸亜鉛:酸化ホウ素(重量比)=7:3)
酸化ホウ素(B):US Borax社の商品名Boric Oxide
酸化亜鉛(ZnO):和光純薬社製試薬
酸化亜鉛と酸化ホウ素の混合物:酸化亜鉛(和光純薬社製試薬)と酸化ホウ素(US Borax社の商品名Boric Oxide)との混合物(酸化亜鉛:酸化ホウ素(モル比)=2:3)
 実施例で用いた基材の詳細は以下のとおりである。
樹脂基材(ポリカーボネート、表1中、PCと表記):日本テストパネル社の商品名ポリカーボネート
樹脂基材(ポリエチレンテレフタレート、表1中、PETと表記):日本テストパネル社の商品名PET
樹脂基材(アクリル樹脂塗料を塗装したガラス):ガラス板に樹脂塗料を膜厚35μmで塗装したもの
ガラス基材:日本テストパネル社の商品名ガラス
金属基材:SPCC鋼鈑、日本テストパネル社の商品名 SPCC
 AD法による成膜条件の詳細は以下のとおりである。
ガス:乾燥エアー
ガス量:5L/分
温度:室温(約25℃)
成膜室圧力:180Pa
基材搬送速度:30mm/sec.
成膜回数(スキャン回数):6~24回(膜厚が10μmになるように調整)
 表1に示す材料をそれぞれ、ボールミル処理を10分することによって、粒径0.1~10μmの脆性材料微粒子または比較微粒子を得た。
 (実施例1~8および比較例1~3)
 表1に示す脆性材料微粒子または比較微粒子と基材を用いて、下地層を形成せずに、脆性材料微粒子をAD法により基材上に適用して、脆性材料膜を形成した。各脆性材料膜について、以下のように、10μm成膜性および脆性材料膜の透明性を評価した。その結果を表1に合わせて示す。
 <10μm成膜性>
 膜厚10μm以上の脆性材料膜を形成することができた場合を○、できなかった場合を×とした。
 <脆性材料膜の透明性>
 脆性材料膜の透明性の測定は、上述した方法により行った。以下の基準で透明性を評価した。光を透過しない基材に成膜した実施例8については、透明性を評価済みの他の実施例および比較例と目視にて透明性を比較して、◎、○、×のいずれに相当するかを評価した。◎が最も透明性に優れることを表す。
◎:ヘイズ値15以下、または目視でヘイズ値15以下と同等
○:ヘイズ値15より大きく60以下、または目視でヘイズ値15より大きく60以下と同等
×:ヘイズ値60より大、または目視でヘイズ値60より大と同等
Figure JPOXMLDOC01-appb-T000001
*1:比較例1~3の微粒子は比較微粒子である。
 表1に示すように、実施例では、AD法により、下地層がなくとも、樹脂基材、金属基材およびガラス基材上に、透明で10μm以上の膜厚の厚い脆性材料膜を形成することができた。しかし、酸化亜鉛微粒子を用いた比較例1では、10μm以上の膜厚の厚い脆性材料膜を形成することができなかった。また、酸化ホウ素微粒子を用いた比較例2では、透明な脆性材料膜を形成することができなかった。また、酸化亜鉛微粒子と酸化ホウ素微粒子の混合物を用いた比較例3では、脆性材料膜の透明性が不足していた。
 本発明によれば、下地層がなくとも、樹脂基材上にも、透明で膜厚の厚い、脆性材料膜を形成可能な脆性材料微粒子を提供することができる。また、本発明によれば、上記脆性材料微粒子を用いた脆性材料膜の製造方法を提供することができる。また、本発明によれば、当該製造方法による脆性材料膜を有する複合構造物を提供することができる。

Claims (5)

  1.  基材上にエアロゾルデポジション法(AD法)により脆性材料膜を形成するための脆性材料微粒子であって、ホウ素原子と金属原子と酸素原子との化合物、および酸化アルミニウムと酸化ホウ素との混合物からなる群より選択される1種以上を含む、脆性材料微粒子(ただし、ガラスを除く。)。
  2.  前記金属原子が、Zn、MgおよびAlからなる群より選択される1種以上である、請求項1に記載の脆性材料微粒子。
  3.  前記化合物が、ホウ酸亜鉛、ホウ酸マグネシウムおよびホウ酸アルミニウムからなる群より選択される1種以上である、請求項1または2に記載の脆性材料微粒子。
  4.  請求項1~3のいずれか一項に記載の脆性材料微粒子を、エアロゾルデポジション法(AD法)により、基材上に適用して、脆性材料膜を形成する工程を含む、脆性材料膜の製造方法。
  5.  基材上に、請求項4に記載の脆性材料膜の製造方法による脆性材料膜を有する、複合構造物。
PCT/JP2018/041027 2017-11-06 2018-11-05 脆性材料微粒子、脆性材料膜の製造方法および複合構造物 WO2019088288A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017214178A JP2021059744A (ja) 2017-11-06 2017-11-06 脆性材料微粒子、脆性材料膜の製造方法および複合構造物
JP2017-214178 2017-11-06

Publications (1)

Publication Number Publication Date
WO2019088288A1 true WO2019088288A1 (ja) 2019-05-09

Family

ID=66332563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041027 WO2019088288A1 (ja) 2017-11-06 2018-11-05 脆性材料微粒子、脆性材料膜の製造方法および複合構造物

Country Status (2)

Country Link
JP (1) JP2021059744A (ja)
WO (1) WO2019088288A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137988A (ja) * 1986-11-29 1988-06-09 Mizusawa Ind Chem Ltd 難燃剤組成物及びその製法
JPH044254A (ja) * 1990-04-20 1992-01-08 Marubishi Yuka Kogyo Kk ポリカーボネート樹脂用難燃剤
JP2004353049A (ja) * 2003-05-30 2004-12-16 Am Technology:Kk 易加工性複合材料
JP2015002306A (ja) * 2013-06-18 2015-01-05 富士電機株式会社 絶縁基板およびその製造方法
JP2016213106A (ja) * 2015-05-12 2016-12-15 セイコーエプソン株式会社 電極複合体の製造方法、電極複合体およびリチウム電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137988A (ja) * 1986-11-29 1988-06-09 Mizusawa Ind Chem Ltd 難燃剤組成物及びその製法
JPH044254A (ja) * 1990-04-20 1992-01-08 Marubishi Yuka Kogyo Kk ポリカーボネート樹脂用難燃剤
JP2004353049A (ja) * 2003-05-30 2004-12-16 Am Technology:Kk 易加工性複合材料
JP2015002306A (ja) * 2013-06-18 2015-01-05 富士電機株式会社 絶縁基板およびその製造方法
JP2016213106A (ja) * 2015-05-12 2016-12-15 セイコーエプソン株式会社 電極複合体の製造方法、電極複合体およびリチウム電池の製造方法

Also Published As

Publication number Publication date
JP2021059744A (ja) 2021-04-15

Similar Documents

Publication Publication Date Title
JP5942466B2 (ja) 複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物およびそれを用いた熱線遮蔽成形体並びに熱線遮蔽積層体
AU2017232748B2 (en) Near-infrared shielding material fine particle dispersion body, near-infrared shielding body and near-infrared shielding laminated structure, and method for producing the same
CN106574990B (zh) 透光性结构体、其制造方法及物品
AU2017232747B2 (en) Near-infrared shielding material fine particles and method for producing the same, and near-infrared shielding material fine particle dispersion liquid
JP4103293B2 (ja) ルチル型二酸化チタンの製造方法
WO2011027827A1 (ja) 基材の表面に低反射膜を有する物品
JP4893539B2 (ja) アンチグレア層を有する物品およびその製造方法
EP3250532B1 (en) Grain boundary healing glasses and their use in transparent enamels, transparent colored enamels and opaque enamels
WO2014010684A1 (ja) 熱線遮蔽分散体の製造方法および熱線遮蔽分散体並びに熱線遮蔽体
JP5599639B2 (ja) 転写用フィルム、合わせガラス及びその製造方法
WO2015125929A1 (ja) 防眩膜付き物品、その製造方法および画像表示装置
JP4540979B2 (ja) ハードコート膜付基材および該ハードコート膜形成用塗布液
JP2012256041A (ja) 熱線遮蔽材、貼合せ構造体及び合わせガラス
JP5423636B2 (ja) 複合タングステン酸化物微粒子分散ポリカーボネート樹脂マスターバッチの製造方法、当該マスターバッチの製造方法により得られた複合タングステン酸化物微粒子分散ポリカーボネート樹脂マスターバッチ、および、当該マスターバッチを用いて得られた成形体並びに積層体
WO2019088288A1 (ja) 脆性材料微粒子、脆性材料膜の製造方法および複合構造物
KR101460241B1 (ko) 광반사 현상이 개선된 차량용 윈도우 필름
JP4979876B2 (ja) ハードコート膜付基材
EP3406579A1 (en) Transparent substrate with non-transparent film
CN116332516A (zh) 类磨砂微晶玻璃及其制备方法、玻璃制品
JP6227850B1 (ja) 電磁波透過特性を有する光揮性顔料とこの顔料を含む組成物及び塗装体
EP3284729A1 (en) Glass-coated light-accumulating material and method for producing glass-coated light-accumulating material
JP7219445B2 (ja) 脆性材料組成物、複合構造物および脆性材料膜
JP2014031471A (ja) 蓄光ビーズ及び蓄光ビーズの製造方法
JP5309006B2 (ja) 積層体およびその製造方法
WO2023243646A1 (ja) センサーカバー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP