WO2019087562A1 - 圧力リング、内燃機関、圧力リング用線材および圧力リング用線材の製造方法 - Google Patents
圧力リング、内燃機関、圧力リング用線材および圧力リング用線材の製造方法 Download PDFInfo
- Publication number
- WO2019087562A1 WO2019087562A1 PCT/JP2018/032707 JP2018032707W WO2019087562A1 WO 2019087562 A1 WO2019087562 A1 WO 2019087562A1 JP 2018032707 W JP2018032707 W JP 2018032707W WO 2019087562 A1 WO2019087562 A1 WO 2019087562A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure ring
- aluminum alloy
- internal combustion
- combustion engine
- vickers hardness
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J9/00—Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
- F16J9/26—Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/40—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
Definitions
- the present invention relates to a pressure ring, an internal combustion engine, a wire for pressure ring, and a method of manufacturing a wire for pressure ring.
- Patent Document 1 proposes using a sliding part having excellent wear resistance as an oil ring.
- This sliding part is, by mass%, C: 0.7 to 1.6%, Si: 0.5 to 3.0%, Mn: 0.1 to 3.0%, P: 0.05% or less , S: 0.01 to 0.12%, Ni: 0.3 to 1.5%, Cr: 7.0 to 13.0%, one or two of Mo and W: (Mo + 1/2 W 0.5 to 1.7%, V: 0 to 0.70%, Cu: 0.1 to 1.0%, Al: 0.10 to 0.70%, Nb: 0 to 0 It has a component composition of 30%, balance Fe and impurities, and its hardness is at least 52 HRC and less than 58 HRC (in Vickers hardness (HV 0.1) conversion, at least 545 and less than 655).
- the self-lubricating property is achieved by co-adding S and Cu which are not positively added in most steel materials in order to inhibit the hot workability of steel materials. Is effectively exhibited, and the wear resistance is improved. Further, by setting the hardness to not less than 52 HRC and less than 58 HRC, it is possible to avoid high-strength fatigue while preventing the inhibition of the self-lubrication characteristics.
- the present invention has been made in view of the above circumstances, and can be used in an internal combustion engine provided with at least an aluminum alloy cylinder block and an aluminum alloy piston, and also has excellent productivity. It is an object of the present invention to provide an internal combustion engine, a pressure ring wire used for manufacturing the pressure ring, and a method of manufacturing the same.
- the pressure ring of the present invention is used in an internal combustion engine provided with at least an aluminum alloy cylinder block and an aluminum alloy piston, and is provided with a ring-shaped pressure ring main body having a joint, and is a base material constituting the pressure ring main body.
- the composition has a composition consisting of ⁇ 0.15%, balance Fe and impurities, and the base material has a Vickers hardness H1av (HV0.1) of 435 to 510, and the pressure ring main body Wherein the nitride layer on the surface of one side surface and the other side direction is formed.
- One embodiment of the pressure ring of the present invention is a carbide particle having a Vickers hardness HNav (HV0.1) of the nitrided layer of 900 or more and a maximum length of 3 ⁇ m or more present in the cross section of the pressure ring main body.
- the number of particles is preferably 577 particles / mm 2 or more.
- Another embodiment of the pressure ring of the present invention preferably has a particle number of 1058 particles / mm 2 or more.
- Another embodiment of the pressure ring of the present invention preferably has a particle number of 1538 particles / mm 2 or more.
- the internal combustion engine of the present invention comprises an aluminum alloy cylinder block, an aluminum alloy piston disposed in a cylinder bore of the aluminum alloy cylinder block, and an outer peripheral surface of the aluminum alloy piston along the circumferential direction of the aluminum alloy piston.
- a pressure ring of the present invention disposed in an annular groove provided on at least a portion of the inner wall surface on one side of the annular groove and the inner wall surface on the other side with respect to the axial direction of the aluminum alloy piston It is characterized in that an anodized film is formed.
- the wire material for pressure ring of the present invention is, by mass%, C: 0.7% to 1.6%, Si: 0.6% to 1.2%, Mn: 0.3% to 0.7%, P : 0% to 0.04%, S: 0% to 0.09%, Ni: 0.3% to 0.6%, Cr: 7.5% to 9.0%, Mo: 0.7% to 1.0%, V: 0% to 0.5%, W: 0.2% to 0.5%, Cu: 0.2% to 0.6%, Al: 0.1% to 0.5% Nb: 0.05% to 0.15%, balance Fe and impurities, and has a Vickers hardness H 2 av (HV 0.1) of 435 to 510.
- the method for producing a wire for pressure ring according to the present invention is, by mass%, C: 0.7% to 1.6%, Si: 0.6% to 1.2%, Mn: 0.3% to 0.7 %, P: 0% to 0.04%, S: 0% to 0.09%, Ni: 0.3% to 0.6%, Cr: 7.5% to 9.0%, Mo: 0. 7% to 1.0%, V: 0% to 0.5%, W: 0.2% to 0.5%, Cu: 0.2% to 0.6%, Al: 0.1% to 0 .5%, Nb: 0.05% to 0.15%, and a hardening step of hardening a wire having a composition consisting of the balance Fe and impurities at a temperature within the range of 1030 ° C. to 1050 ° C., and the hardening step And tempering the wire having passed through at a temperature within a range of 640.degree. To 690.degree., Thereby producing a pressure ring wire.
- a pressure ring which can be used in an internal combustion engine provided with at least an aluminum alloy cylinder block and an aluminum alloy piston and which is excellent in productivity, an internal combustion engine using the same, and the pressure ring
- the wire for pressure rings used for manufacture and its manufacturing method can be provided.
- FIG. 2A is a view showing an example of the cross-sectional structure of the pressure ring of the present embodiment
- FIG. 2B is a view showing another example of the cross-sectional structure of the pressure ring of the present embodiment
- FIG. 2C is a view showing another example of the cross-sectional structure of the pressure ring of the present embodiment.
- It is a schematic diagram which shows the reciprocation dynamic friction tester used for the abrasion resistance test.
- the pressure ring of the present embodiment is used in an internal combustion engine (hereinafter sometimes referred to as "an internal combustion engine made of an aluminum alloy as a main part") having at least an aluminum alloy cylinder block and an aluminum alloy piston.
- a pressure ring main body having a ring shape.
- the base material which comprises a pressure ring main part is C: 0.7%-1.6%, Si: 0.6%-1.2%, Mn: 0.3%-0 by mass%.
- the balance is composed of Fe and impurities
- the base material has a Vickers hardness H1av (HV0.1) of 435 to 510, and a pressure ring main body A nitrided layer is formed on the surface on one side and the surface on the other side in the axial direction.
- C 0.7% by mass to 1.6% by mass (hereinafter simply referred to as "%")
- % 0.7% by mass to 1.6% by mass
- C is an element that partially dissolves in the matrix and contributes to the improvement of the hardness and fatigue strength, and the other partially forms carbides and contributes to the improvement of the wear resistance.
- the content of C is required to be 0.7% to 1.6%.
- Si 0.6% to 1.2% Si is an element having the effect of enhancing the strength at high temperatures. However, if the content of Si is too large, cold workability and ductility decrease, and hot workability and thermal conductivity are impaired. Therefore, Si needs to be 0.6% to 1.2%.
- Mn 0.3% to 0.7%
- Mn is an element which acts as a deoxidizer at the time of melting of steel. Mn improves hardenability, increases strength, and improves hot workability, but if the content of Mn is too large, the machinability deteriorates. Therefore, the content of Mn needs to be 0.3 to 0.7%.
- P 0% to 0.04%
- the content of P needs to be 0% to 0.04%, and 0% is most preferable, but since P is inevitably contained in the base material in general, the content of P is also usually More than 0% and 0.04% or less.
- S 0% to 0.09% S contributes to the improvement of the self-lubricity and improves the scuff resistance and the machinability, but if the content of S is too large, the corrosion resistance and the workability are reduced. Therefore, the content of S needs to be 0% to 0.09%.
- the content of S may be 0%, or more than 0% and not more than 0.09%.
- Ni is an element that contributes to the maintenance of hardness. However, when the content of Ni is too large, the machinability in the annealed state before quenching and tempering is degraded. Therefore, the content of Ni needs to be 0.3% to 0.6%.
- Cr 7.5% to 9.0% Cr combines with C to form a carbide, and has the effect of increasing the hardness of the nitrided layer formed during the nitriding treatment, and contributes to the improvement of the wear resistance of the nitrided layer. Further, Cr is an element partially dissolving in the matrix to enhance the corrosion resistance and enhancing the hardenability and the temper softening resistance of the matrix. However, when the content of Cr is too large, coarse carbides increase to deteriorate the machinability or to lower the thermal conductivity and to inhibit the scuffing resistance. Therefore, the content of Cr needs to be 7.5% to 9.0%.
- Mo 0.7% to 1.0% Mo contributes to the improvement of the wear resistance as a composite carbide, and forms a solid solution in the matrix to impart toughness and heat resistance to the material. However, if the content of Mo is too large, the thermal conductivity, the machinability, and the toughness decrease. Therefore, the content of Mo needs to be 0.7% to 1.0%.
- V 0% to 0.5% V forms carbides and nitrides during tempering, and these carbides and nitrides suppress the coarsening of crystal grains during quenching, thereby suppressing the reduction in toughness.
- the content of V if the content of V is too large, the thermal conductivity, the machinability, and the toughness decrease. Therefore, the content of V needs to be 0% to 0.5%.
- the content of V may be 0%, or more than 0% and 0.5% or less.
- W 0.2% to 0.5% W contributes to the improvement of the wear resistance as a composite carbide, and forms a solid solution in the matrix to impart toughness and heat resistance to the material.
- the content of W needs to be 0.2% to 0.5%.
- Cu 0.2% to 0.6%
- Cu is an element that contributes to the improvement of the strength, corrosion resistance and self-lubricity of steel.
- the content of Cu is too large, it causes red heat embrittlement and the hot workability deteriorates. Therefore, the content of Cu needs to be 0.2% to 0.6%.
- Al 0.1% to 0.5%
- Al is an element which forms an intermetallic compound with Ni or the like and is precipitation hardened to increase the strength. Further, when it is nitrided, it is an element having the function of forming AlN and significantly hardening the surface. However, when the content of Al is too large, Al is a strong ferritizing element, and thus increases the ferrite in the structure and inhibits the hardness. Therefore, the content of Al needs to be 0.1% to 0.5%.
- Nb 0.05% to 0.15%
- Nb is an element that increases high temperature strength, creep strength, and hardening. However, if the content of Nb is too large, the hardenability and the machinability are reduced. Therefore, the content of Nb is required to be 0.05 to 0.15%.
- the base material having the above composition is an alloy steel having a martensitic composition, and the average linear expansion coefficient in the range of room temperature to 200 ° C. is about 12.7 ⁇ 10 ⁇ 6 / ° C. or so.
- the linear expansion coefficient of an aluminum alloy cylinder block of an internal combustion engine whose main part is made of aluminum alloy is generally about 15 ⁇ 10 ⁇ 6 / ° C. to 21 ⁇ 10 ⁇ 6 / ° C. The difference with the linear expansion coefficient is small. Therefore, even when the aluminum alloy cylinder block becomes high temperature and thermally expanded, the pressure ring can be thermally expanded sufficiently to follow the expansion of the aluminum alloy cylinder block.
- the pressure ring of the present embodiment can reduce the amount of blowby gas from the initial stage of use of the internal combustion engine whose main part is made of aluminum alloy, the main part is extremely compatible with the internal combustion engine made of aluminum alloy.
- the aluminum alloy cylinder block includes a cylinder block entirely made of an aluminum alloy and a cylinder block whose main portion is made of an aluminum alloy.
- a cylinder block whose main part is made of an aluminum alloy a cylinder block manufactured by casting a cast iron cylinder liner with an aluminum alloy can be exemplified.
- the pressure ring of the present embodiment breakage of the wire at the time of coiling can be significantly reduced by setting the Vickers hardness H1av (HV0.1) of the base material to 510 or less. Further, by setting the Vickers hardness H1 av (HV 0.1) of the base material to 435 or more, the pressure obtained after nitriding treatment to form a nitrided layer on the ring-shaped member having a joint obtained after coiling Variations in the dimensions of the ring body can be reduced. For this reason, the pressure ring of the present embodiment has a high yield at the time of manufacture and is excellent in productivity.
- the Vickers hardness H1av (HV0.1) of the base material is preferably 435 to 498, and more preferably 480 to 498. Further, in the specification of the present application, the Vickers hardness H1av (HV0.1) of the base material means an average value obtained by measuring a portion where the nitrided layer is not formed in the pressure ring main body, and This value is substantially the same as the Vickers hardness H2av (HV0.1) of the pressure ring wire used for producing the main body.
- the present inventors focused on the point that the linear expansion coefficient closely related to the composition is close to the linear expansion coefficient of the aluminum alloy cylinder block, and substantially the same as the sliding parts disclosed in Patent Document 1
- the base material with the composition of in view of obtaining wear resistance and high fatigue strength, the hardness of the base material is also 52 HRC or more and less than 58 HRC (in Vickers hardness (HV0.1) conversion, 545 or more than 655) as disclosed in Patent Document 1 Is considered to be more advantageous.
- the outer peripheral surface of the pressure ring is exposed to intense sliding with the inner peripheral surface of the cylinder liner, and one surface in the axial direction of the pressure ring and the other surface (hereinafter referred to as "upper surface", “lower surface”
- the upper and lower inner wall surfaces of the annular groove provided on the outer peripheral surface of the aluminum alloy piston (sometimes referred to as “inside of the annular groove relative to the axial direction of the aluminum alloy piston”) It is exposed to sliding with the wall surface and the other inner wall surface). And, in any of the outer peripheral surface, the upper surface, and the lower surface, the progress of wear needs to be suppressed as much as possible.
- the wear resistance is insufficient in the above-mentioned sliding environment, and therefore the progress of wear over time It can not be suppressed sufficiently.
- the upper and lower surfaces of the pressure ring main body constituting the pressure ring are nitrided It is necessary to form a nitrided layer by treatment and form a nitrided layer by nitriding on the outer peripheral surface of the pressure ring main body or to form a hard film which covers the outer peripheral surface of the pressure ring main body.
- the present inventors have formed nitride layers on the upper and lower surfaces of the pressure ring main body, and then formed the outer peripheral surface of the pressure ring main body.
- the problem is addressed by forming a nitrided layer or coating with a hard film.
- the wear resistance due to the composition and hardness of the non-nitrided base material itself is not important. Therefore, the present inventors mainly reviewed the hardness of the base material itself from the viewpoint of productivity, and set the Vickers hardness H1av (HV0.1) of the base material within the range of 435 to 510.
- the nitrided layers are formed on the upper and lower surfaces of the pressure ring body.
- the pressure ring slides even on the upper and lower inner wall surfaces of the annular groove provided on the outer peripheral surface of the aluminum alloy piston.
- the wear of both the pressure ring and the annular groove can be suppressed over a long period of time. Such an effect is the same as in the case where the annular groove is provided with an anodized film.
- the sealability between the annular groove of the aluminum alloy piston and the pressure ring can be maintained for a long time, so that the amount of blow-by gas increases with time due to the progress of wear. It can be suppressed.
- the Vickers hardness HNav (HV0.1) of the nitrided layer is preferably 900 or more. This makes it possible to more effectively suppress the wear of both the pressure ring and the annular groove. Further, in order to suppress excessive wear of the upper inner wall surface and the lower inner wall surface of the annular groove, it is preferable that the Vickers hardness HNav (HV0.1) of the nitrided layer is 1300 or less.
- the nitrided layer may be formed on the outer peripheral surface of the pressure ring main body as required.
- the number of carbide particles having a maximum length of 3 ⁇ m or more existing in the cross section of the pressure ring main body is 577 / mm 2 or more
- the number is preferably 1058 pieces / mm 2 or more, and more preferably 1538 pieces / mm 2 or more.
- the counterpart material is an aluminum alloy constituting the upper inner wall surface and the lower inner wall surface of the annular groove provided on the outer peripheral surface of the aluminum alloy piston Anodized films formed on the upper inner wall surface and the lower inner wall surface.
- the upper limit of the number of carbide particles having a maximum length of 3 ⁇ m or more is not particularly limited, but if too large, cracks may occur along the carbide and the workability may be reduced. It is preferable that it is 2000 pieces / mm 2 or less. Further, in the pressure ring of the present embodiment, the number of carbide particles having a maximum length of 3 ⁇ m or more can be easily set to 577 particles / mm 2 or more due to the composition of the base material and the like.
- FIG. 1 is an external view of a pressure ring of the present embodiment, and is a view of the pressure ring as viewed from the top or bottom.
- symbol C is a central axis of a pressure ring.
- the pressure ring 10 shown in FIG. 1 has a ring shape having a joint G.
- the description of the hard coating is omitted.
- FIG. 2 is a schematic end view showing an example of the cross-sectional structure of the pressure ring according to the present embodiment, and more specifically, the cross-sectional structure taken along the line A1-A2 in FIG.
- the pressure ring 10 has a ring-shaped pressure ring main body 20 having a gap G, and the outer periphery of the pressure ring main body 20.
- a nitrided layer 40 is formed on the upper surface side portion 24U and the lower surface side portion 24B of the pressure ring main body portion 20.
- the nitride layer 40 may be formed also on the inner peripheral surface side portion 24L of the pressure ring main body 20.
- FIG. 2 (C) it may be formed also on the outer peripheral surface side portion 24R of the pressure ring main body 20.
- the surface 32 of the hard film 30 contacts the inner wall surface of the cylinder as the outer peripheral sliding surface 12 of the pressure ring 10
- the upper surface 26 and the lower surface 28 of the pressure ring main body 20 make contact with the upper inner wall surface and the lower inner wall surface of the annular groove as the upper surface 14 and the lower surface 16 of the pressure ring 10.
- the thickness of the nitrided layer 40 (side nitrided layer) formed on the upper surface side portion 24U and the lower surface side portion 24B of the pressure ring main body portion 20 is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
- the upper limit of the thickness of the side portion nitrided layer is not particularly limited, but is preferably 200 ⁇ m or less in practice.
- the outer peripheral surface side portion 24R of the pressure ring main body portion 20 is nitrided to provide the nitrided layer 40 (the outer peripheral surface portion nitrided layer) also on the outer peripheral surface side portion 24R. Good.
- the thickness of the outer peripheral surface nitrided layer can be the same as the thickness of the side surface nitrided layer.
- the hard film 30 may be omitted.
- any known hard coating can be employed, and examples thereof include DLC coating and CrN-based coating.
- the pressure ring 10 of the present embodiment is used in an internal combustion engine provided with at least an aluminum alloy cylinder block and an aluminum alloy piston disposed in a cylinder bore of the aluminum alloy cylinder block.
- the pressure ring 10 is disposed in an annular groove provided along the circumferential direction of the aluminum alloy piston on the outer peripheral surface of the aluminum alloy piston.
- the upper and lower inner wall surfaces of the annular groove may be made of the same material as the main body portion of the aluminum alloy piston, but at least a part of the upper and lower inner wall surfaces is anodized.
- a film may be formed, and an anodized film may be formed on the entire upper inner wall surface and the lower inner wall surface.
- the pressure ring 10 of the present embodiment implements various processes of coiling and nitriding using a pressure ring wire material having the same composition and Vickers hardness (HV 0.1) as the base material constituting the pressure ring main body portion 20.
- the method for forming the nitrided layer by the nitriding treatment is not particularly limited, but gas nitriding treatment, salt bath nitriding treatment, ion nitriding treatment (plasma nitriding treatment) or the like can be used.
- the gas nitriding process the ring-shaped member obtained by coiling is subjected to a heat treatment in a gas atmosphere containing nitrogen to form a nitrided layer.
- the thickness and surface hardness of the nitride layer can be controlled by appropriately selecting the heating temperature and time, the composition of the atmosphere gas, and the like.
- the nitrogen-containing gas may be, for example, a mixed gas containing NH 3 and N 2.
- the processing temperature can be appropriately selected, for example, in the range of about 500 ° C. to 600 ° C., and the processing time is For example, it can be appropriately selected within the range of about 2 hours to 10 hours.
- the salt bath nitriding treatment for example, the ring-like member obtained by coiling is dipped in a sodium cyanide salt bath to form a nitrided layer.
- a nitrided layer can be formed using glow discharge in vacuum. Furthermore, when the pressure ring 10 has the hard film 30, a step of forming a hard film by PVD (Physical vapor deposition) method or the like is further performed.
- PVD Physical vapor deposition
- the pressure ring wire rod includes a quenching step of quenching the wire rod having the same composition as the base metal constituting the pressure ring main body portion 20 at a temperature within the range of 1030 ° C. to 1050 ° C .; And a tempering step of tempering the passed through wire at a temperature within a range of 640 degrees to 690 degrees.
- the Vickers hardness H2av (HV0.1) of the wire material for pressure ring is adjusted in the range of 435 to 510 by setting the temperature at tempering to be in the range of 640 to 690 degrees. be able to.
- the Vickers hardness H2av (HV0.1) of the pressure ring wire is preferably 435 to 498, and more preferably 480 to 498. Further, the temperature at the time of tempering is preferably 650 ° to 690 °, and more preferably 650 ° to 660 °.
- coiling was performed under the same conditions using the wire materials for pressure ring of each of the examples and the comparative example, to obtain a wire material for pressure ring in a state of being wound in a cylindrical shape.
- a wire material for pressure rings in a state of being wound in a cylindrical shape two kinds of members of an outer diameter of 80.5 mm and members of an outer diameter of 50 mm were produced.
- the pressure ring wire was wound 400 times in the case of an outer diameter of 80.5 mm in principle and 300 times in the case of an outer diameter of 50 mm.
- coiling was stopped before reaching a predetermined number of turns.
- a ring-shaped member having a joint is produced from the pressure-ring wire wound in a cylindrical shape, and the ring-shaped members of any of the examples and the comparative examples are manufactured using the ring-shaped members of the respective examples and the comparative examples.
- the gas nitriding treatment was performed under the same conditions so that the Vickers hardness (HV 0.2) of the surface of the nitride layer is 1000 or more.
- HV 0.2 Vickers hardness
- the Vickers hardness (HV0.1) of the wire for pressure ring is obtained by mirror-polishing the cross section (cross section orthogonal to the longitudinal direction of the wire) of the wire for pressure ring, and then the approximate center of the mirror-polished cross section is It calculated
- the measurement position was changed and measured five places about the wire for pressure rings of each Example and a comparative example. First, measurement was performed five times at each of five measurement points P1 to P5, and a primary average value hn at each measurement point Pn was determined (n is an integer of 1 to 5).
- an average value H2av (secondary average value) was further determined based on the five primary average values h1 to h5. The results are shown in Table 1. For reference, the minimum value H2min and the maximum value H2max among the five primary averages h1 to h5 are also shown in Table 1.
- the cross section (cross section orthogonal to the circumferential direction) of the pressure ring main portion is mirror polished, and then the substantially central portion of the mirror polished cross section
- H1av, maximum value H1max, and minimum value H1min of Vickers hardness (HV0.1) were determined under the same measurement conditions as described above (that is, a portion where the nitrided layer was not formed).
- the average value H1av, the maximum value H1max, and the minimum value H1min of the Vickers hardness (HV0.1) of the base material constituting the pressure ring main body are also the average of the Vickers hardness (HV0.1) of the pressure ring wire It was confirmed that the value was substantially the same as the value H2av, the maximum value H2max, and the minimum value H2min.
- the measurement sample was prepared in the following procedures and measurement was implemented. First, the upper surface 26 of the pressure ring main body of each example and comparative example was polished. Then, using the micro Vickers hardness tester at three positions of 90 degrees, 180 degrees, and 270 degrees, when the position where the gap G is provided with respect to the circumferential direction is 0 degree on the polished upper surface, The test was conducted under the conditions of a test force of 1.961 N and a test force retention time of 15 seconds, and it was confirmed whether the average value of Vickers hardness at three measurement positions was 1000 or more. As a result, it was confirmed that the Vickers hardness (HV 0.2) of the nitrided layer formed in the pressure ring main body was 1000 or more in any of the examples and the comparative examples.
- the evaluation results are shown in Table 1.
- the evaluation criteria for breakage evaluation shown in Table 1 are as follows. A: The number of breakages per 100 coilings (100 turns) is zero and the pitch is uniform. B: The number of breakages per 100 coilings (100 turns) is zero and the pitch is uneven. C: The number of breakages per 100 coilings (100 windings) is one or more.
- the evaluation results are shown in Table 1.
- the evaluation criteria of the dimensional variation shown in Table 1 are as follows.
- Example B1 a ring-shaped member manufactured under the same conditions as Example A4 was prepared. Further, a ring-shaped member (comparative example B1) manufactured by coiling using HPM 31 manufactured by Hitachi Metals as a wire material for pressure ring (ring B) and a ring-shaped member manufactured by coiling using SKD 61 as a wire material for pressure ring (Comparative example B2) was also prepared.
- HPM 31 and SKD 61 both differ in composition of the base material from Example B1, but the Cr content in the base material which greatly affects the formation and hardness of the nitrided layer constitutes the pressure ring of the present embodiment. It is a steel material relatively close to the Cr content in the steel.
- a gas nitriding process was performed on these three ring-shaped members using a mixed gas containing NH 3 and N 2 as an atmosphere gas.
- the treatment temperature 500 to 600 ° C.
- the treatment time 2 hours to 10 hours so that the Vickers hardness HNav (HV0.1) of the nitrided layer formed on any ring-shaped member is substantially the same.
- the conditions for nitriding treatment were appropriately selected.
- a pressure ring sample consisting only of the pressure ring main body was obtained.
- the nitrided layer was formed on the entire surface of the pressure ring sample as in the case illustrated in FIG. 2 (C).
- the Cr content in the base material constituting the pressure ring sample of each example and comparative example and the Vickers hardness HNav (HV0.1) of the nitrided layer are shown in Table 2.
- test force 0.9807 N using a micro Vickers hardness tester, at a position 10 ⁇ m deep from the outermost surface excluding the cut surface (a position within the range where the nitrided layer is formed) It measured on the conditions of the retention time of force 15s. And the average value HNav of the measured value in three cut surfaces was calculated
- the number of carbide particles is measured by polishing the surface of a cross section of the pressure ring sample (cross section orthogonal to the circumferential direction of the pressure ring), etching with a marble reagent, etc. did.
- metal microscopic observation measures arbitrary nine places about the cross section of a pressure ring main-body part, the field size (size of 0.088 mm x 0.066 mm, area: 0. 0 of metal micrograph in each measurement position).
- the number of carbide particles present in the structure photograph magnified 400 times of mm 2 ) was visually counted. At this time, the carbide particles to be counted were only carbide particles having a maximum length of 3 ⁇ m or more.
- the reciprocating dynamic friction tester 100 is configured such that the test piece 102 is applied with a load P by a spring load and pressed against the plate 104, and both slide as the plate 104 reciprocates.
- a pin type test piece made of the same material as that of the pressure ring sample is used as the test piece 102, and a nitrided layer is formed at the tip of the test piece 102.
- the nitrided layer was formed by performing gas nitriding treatment under the same conditions as the pressure ring sample.
- the plate 104 an aluminum alloy plate made of the same material as the upper and lower inner wall surfaces of the annular groove of the aluminum alloy piston was used. An anodized film is formed on the surface of the aluminum alloy plate used as the plate 104.
- the tip of the test piece 102 on which the nitrided layer was formed was brought into contact with the surface of the plate 104 (the surface on which the anodized film was formed), and lubricating oil was supplied using a tubing pump or an air dispenser. .
- the test conditions of the abrasion resistance test are shown below.
- the abrasion resistance test was performed three times for each example and comparative example, and the average value of the wear amount of the test piece 102 and the average value of the wear amount of the plate 104 were determined. The results of the abrasion resistance test are shown in Table 2.
- pressure ring 12 outer peripheral sliding surface 14: upper surface 16: lower surface 20: pressure ring main body 22: outer peripheral surface 24B: lower surface side portion 24L: inner peripheral surface portion 24R: outer peripheral surface side portion 24U: upper surface side portion 26 Upper surface 28 Lower surface 30 Hard coating 32 Surface 40 Nitrided layer 100 Reciprocating friction tester 102 Test specimen 104 Plate
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
Abstract
主要部がアルミニウム合金製の内燃機関に用いることができ、かつ、生産性にも優れること。 主要部がアルミニウム合金製の内燃機関に用いられ、合い口を有するリング状の圧力リング本体部を構成する母材が、質量%で、C:0.7~1.6%、Si:0.6~1.2%、Mn:0.3~0.7%、P:0~0.04%、S:0~0.09%、Ni:0.3~0.6%、Cr:7.5~9.0%、Mo:0.7~1.0%、V:0~0.5%、W:0.2~0.5%、Cu:0.2~0.6%、Al:0.1~0.5%、Nb:0.05~0.15%、残部Fe及び不純物からなる組成を有し、母材のビッカース硬度が435~510であり、圧力リング本体部の上下面に窒化層が形成されている圧力リング、これを用いた内燃機関、これに用いる圧力リング用線材および圧力リング用線材の製造方法。
Description
本発明は、圧力リング、内燃機関、圧力リング用線材および圧力リング用線材の製造方法に関するものである。
近年、燃費向上のために、内燃機関の軽量化を図るべく、アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを少なくとも備えた内燃機関が広く用いられている。
一方、内燃機関に用いられるピストンリングは、シリンダライナを相手材として摺動するため、優れた耐摩耗性が要求される。このニーズに応えるため、たとえば、特許文献1には、耐摩耗性に優れた摺動部品をオイルリングとして利用することが提案されている。この摺動部品は、質量%で、C:0.7~1.6%、Si:0.5~3.0%、Mn:0.1~3.0%、P:0.05%以下、S:0.01~0.12%、Ni:0.3~1.5%、Cr:7.0~13.0%、MoおよびWのうちの1種または2種:(Mo+1/2W)の関係式で0.5~1.7%、V:0~0.70%、Cu:0.1~1.0%、Al:0.10~0.70%、Nb:0~0.30%、残部Feおよび不純物の成分組成を有しており、その硬さは52HRC以上58HRC未満(ビッカース硬度(HV0.1)換算で、545以上655未満)である。
特許文献1に記載の摺動部品では、鉄鋼材料の熱間加工性を阻害するために殆どの鉄鋼材料で積極的に添加されることのないSとCuとを共同添加することで自己潤滑特性が効果的に発揮され、耐摩耗性が向上する。また、硬さを52HRC以上58HRC未満とすることで高い疲労強度を確保しつつ、自己潤滑特性が阻害されるのも回避できる。
一方、線材を用いて合い口を有するリング状の部材に曲げ加工するコイリング等の各種の工程を経て製造される圧力リングは、コイリング時の折損が少ないことや、寸法ばらつきが小さいことも重要である。
本発明は上記事情に鑑みてなされたものであり、アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを少なくとも備えた内燃機関に用いることができ、かつ、生産性にも優れた圧力リング、これを用いた内燃機関、当該圧力リングの製造に用いる圧力リング用線材およびその製造方法を提供することを課題とする。
上記課題は以下の本発明により達成される。すなわち、
本発明の圧力リングは、アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを少なくとも備えた内燃機関に用いられ、合い口を有するリング状の圧力リング本体部を備え、圧力リング本体部を構成する母材が、質量%で、C:0.7%~1.6%、Si:0.6%~1.2%、Mn:0.3%~0.7%、P:0%~0.04%、S:0%~0.09%、Ni:0.3%~0.6%、Cr:7.5%~9.0%、Mo:0.7%~1.0%、V:0%~0.5%、W:0.2%~0.5%、Cu:0.2%~0.6%、Al:0.1%~0.5%、Nb:0.05%~0.15%、残部Feおよび不純物からなる組成を有し、母材のビッカース硬度H1av(HV0.1)が435~510であり、圧力リング本体部の軸方向の一方側の面および他方側の面に窒化層が形成されていることを特徴とする。
本発明の圧力リングは、アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを少なくとも備えた内燃機関に用いられ、合い口を有するリング状の圧力リング本体部を備え、圧力リング本体部を構成する母材が、質量%で、C:0.7%~1.6%、Si:0.6%~1.2%、Mn:0.3%~0.7%、P:0%~0.04%、S:0%~0.09%、Ni:0.3%~0.6%、Cr:7.5%~9.0%、Mo:0.7%~1.0%、V:0%~0.5%、W:0.2%~0.5%、Cu:0.2%~0.6%、Al:0.1%~0.5%、Nb:0.05%~0.15%、残部Feおよび不純物からなる組成を有し、母材のビッカース硬度H1av(HV0.1)が435~510であり、圧力リング本体部の軸方向の一方側の面および他方側の面に窒化層が形成されていることを特徴とする。
本発明の圧力リングの一実施形態は、窒化層のビッカース硬度HNav(HV0.1)が900以上であり、かつ、圧力リング本体部の断面に存在する最大長さが3μm以上である炭化物粒子の粒子数が、577個/mm2以上であることが好ましい。
本発明の圧力リングの他の実施形態は、粒子数が、1058個/mm2以上であることが好ましい。
本発明の圧力リングの他の実施形態は、粒子数が、1538個/mm2以上であることが好ましい。
本発明の内燃機関は、アルミニウム合金製シリンダブロックと、アルミニウム合金製シリンダブロックのシリンダボア内に配置されたアルミニウム合金製ピストンと、アルミニウム合金製ピストンの外周面に、アルミニウム合金製ピストンの周方向に沿って設けられた環状溝に配置された本発明の圧力リングと、を備え、アルミニウム合金製ピストンの軸方向に対して、環状溝の一方側の内壁面および他方側の内壁面の少なくとも一部に陽極酸化被膜が形成されていることを特徴とする。
本発明の圧力リング用線材は、質量%で、C:0.7%~1.6%、Si:0.6%~1.2%、Mn:0.3%~0.7%、P:0%~0.04%、S:0%~0.09%、Ni:0.3%~0.6%、Cr:7.5%~9.0%、Mo:0.7%~1.0%、V:0%~0.5%、W:0.2%~0.5%、Cu:0.2%~0.6%、Al:0.1%~0.5%、Nb:0.05%~0.15%、残部Feおよび不純物からなる組成を有し、ビッカース硬度H2av(HV0.1)が435~510であることを特徴とする。
本発明の圧力リング用線材の製造方法は、質量%で、C:0.7%~1.6%、Si:0.6%~1.2%、Mn:0.3%~0.7%、P:0%~0.04%、S:0%~0.09%、Ni:0.3%~0.6%、Cr:7.5%~9.0%、Mo:0.7%~1.0%、V:0%~0.5%、W:0.2%~0.5%、Cu:0.2%~0.6%、Al:0.1%~0.5%、Nb:0.05%~0.15%、残部Feおよび不純物からなる組成を有する線材を、1030度~1050度の範囲内の温度で焼き入れする焼き入れ工程と、焼き入れ工程を経た線材を640度~690度の範囲内の温度で焼き戻しする焼き戻し工程と、を少なくとも経て、圧力リング用線材を製造することを特徴とする。
本発明によれば、アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを少なくとも備えた内燃機関に用いることができ、かつ、生産性にも優れた圧力リング、これを用いた内燃機関、当該圧力リングの製造に用いる圧力リング用線材およびその製造方法を提供することができる。
本実施形態の圧力リングは、アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを少なくとも備えた内燃機関(以下、「主要部がアルミニウム合金製の内燃機関」と称す場合がある)に用いられ、合い口を有するリング状の圧力リング本体部を備える。そして、圧力リング本体部を構成する母材が、質量%で、C:0.7%~1.6%、Si:0.6%~1.2%、Mn:0.3%~0.7%、P:0%~0.04%、S:0%~0.09%、Ni:0.3%~0.6%、Cr:7.5%~9.0%、Mo:0.7%~1.0%、V:0%~0.5%、W:0.2%~0.5%、Cu:0.2%~0.6%、Al:0.1%~0.5%、Nb:0.05%~0.15%、残部Feおよび不純物からなる組成を有し、母材のビッカース硬度H1av(HV0.1)が435~510であり、圧力リング本体部の軸方向の一方側の面および他方側の面に窒化層が形成されていることを特徴とする。以下に、Feおよび不純物以外の母材を構成する各成分の詳細について説明する。
(1)C:0.7質量%~1.6質量%(以下、単に「%」と記す。)
Cは、一部が基地中に固溶し、硬さや疲労強度の向上に寄与し、他の一部は炭化物を生成して耐摩耗性の向上に寄与する元素である。しかし、Cの含有量が多すぎると冷間加工性が低下する。よって、Cの含有量は0.7%~1.6%であることが必要である。
Cは、一部が基地中に固溶し、硬さや疲労強度の向上に寄与し、他の一部は炭化物を生成して耐摩耗性の向上に寄与する元素である。しかし、Cの含有量が多すぎると冷間加工性が低下する。よって、Cの含有量は0.7%~1.6%であることが必要である。
(2)Si:0.6%~1.2%
Siは、高温時の強度を高める作用を有する元素である。しかし、Siの含有量が多すぎると冷間加工性、靱延性の低下を引き起こし、また、熱間加工性および熱伝導性を損なうこととなる。よって、Siは0.6%~1.2%であることが必要である。
Siは、高温時の強度を高める作用を有する元素である。しかし、Siの含有量が多すぎると冷間加工性、靱延性の低下を引き起こし、また、熱間加工性および熱伝導性を損なうこととなる。よって、Siは0.6%~1.2%であることが必要である。
(3)Mn:0.3%~0.7%
Mnは、鋼の溶解時の脱酸剤として働く元素である。Mnは焼入れ性を高め、強度を増加し、熱間加工性を高めるが、Mnの含有量が多すぎると被削性が劣化する。よって、Mnの含有量は0.3~0.7%であることが必要である。
Mnは、鋼の溶解時の脱酸剤として働く元素である。Mnは焼入れ性を高め、強度を増加し、熱間加工性を高めるが、Mnの含有量が多すぎると被削性が劣化する。よって、Mnの含有量は0.3~0.7%であることが必要である。
(4)P:0%~0.04%
Pは、靱性を阻害する元素である。Pの含有量は0%~0.04%であることが必要であり、0%が最も好ましいが、通常、Pは母材中に不可避的に含有されるため、Pの含有量も通常は0%を超え0.04%以下である。
Pは、靱性を阻害する元素である。Pの含有量は0%~0.04%であることが必要であり、0%が最も好ましいが、通常、Pは母材中に不可避的に含有されるため、Pの含有量も通常は0%を超え0.04%以下である。
(5)S:0%~0.09%
Sは自己潤滑性の向上に寄与し、耐スカッフ性、切削性を向上させるが、Sの含有量が多すぎると耐食性および加工性を低下させる。よって、Sの含有量は、0%~0.09%であることが必要である。なお、Sの含有量は0%でもよく、あるいは、0%を超え0.09%以下でもよい。
Sは自己潤滑性の向上に寄与し、耐スカッフ性、切削性を向上させるが、Sの含有量が多すぎると耐食性および加工性を低下させる。よって、Sの含有量は、0%~0.09%であることが必要である。なお、Sの含有量は0%でもよく、あるいは、0%を超え0.09%以下でもよい。
(6)Ni:0.3%~0.6%
Niは、硬さの維持に寄与する元素である。しかし、Niの含有量が多すぎると、焼入れおよび焼戻し前の焼鈍状態における被削性が劣化する。よって、Niの含有量は0.3%~0.6%であることが必要である。
Niは、硬さの維持に寄与する元素である。しかし、Niの含有量が多すぎると、焼入れおよび焼戻し前の焼鈍状態における被削性が劣化する。よって、Niの含有量は0.3%~0.6%であることが必要である。
(7)Cr:7.5%~9.0%
Crは、Cと結合して炭化物を形成するとともに、窒化処理時に形成される窒化層の硬さを増す効果を有し、窒化層の耐摩耗性向上に寄与する。また、Crは、その一部は基地に固溶し、耐食性を高め、基地の焼入れ性、焼戻し軟化抵抗を高める元素である。しかし、Crの含有量が多すぎると粗大な炭化物が増加し被削性が劣化したり、熱伝導率低下、耐スカッフィング性を阻害する。よって、Crの含有量は7.5%~9.0%であることが必要である。
Crは、Cと結合して炭化物を形成するとともに、窒化処理時に形成される窒化層の硬さを増す効果を有し、窒化層の耐摩耗性向上に寄与する。また、Crは、その一部は基地に固溶し、耐食性を高め、基地の焼入れ性、焼戻し軟化抵抗を高める元素である。しかし、Crの含有量が多すぎると粗大な炭化物が増加し被削性が劣化したり、熱伝導率低下、耐スカッフィング性を阻害する。よって、Crの含有量は7.5%~9.0%であることが必要である。
(8)Mo:0.7%~1.0%
Moは、複合炭化物として耐摩耗性の向上に寄与するとともに、基地中に固溶して材料の強靭化、耐熱性を付与する。しかし、Moの含有量が多すぎると熱伝導性、被削性、靱性が低下する。よって、Moの含有量は0.7%~1.0%であることが必要である。
Moは、複合炭化物として耐摩耗性の向上に寄与するとともに、基地中に固溶して材料の強靭化、耐熱性を付与する。しかし、Moの含有量が多すぎると熱伝導性、被削性、靱性が低下する。よって、Moの含有量は0.7%~1.0%であることが必要である。
(9)V:0%~0.5%
Vは、焼戻し時に炭化物、窒化物を形成し、焼入れ時にこれらの炭化物、窒化物が結晶粒の粗大化を抑制し、靱性の低下を抑制する。しかし、Vの含有量が多すぎると熱伝導性、被削性、靱性が低下する。よって、Vの含有量は、0%~0.5%であることが必要である。なお、Vの含有量は0%でもよく、あるいは、0%を超え0.5%以下でもよい。
Vは、焼戻し時に炭化物、窒化物を形成し、焼入れ時にこれらの炭化物、窒化物が結晶粒の粗大化を抑制し、靱性の低下を抑制する。しかし、Vの含有量が多すぎると熱伝導性、被削性、靱性が低下する。よって、Vの含有量は、0%~0.5%であることが必要である。なお、Vの含有量は0%でもよく、あるいは、0%を超え0.5%以下でもよい。
(10)W:0.2%~0.5%
Wは、複合炭化物として耐摩耗性の向上に寄与するとともに、基地中に固溶して材料の強靭化、耐熱性を付与する。しかし、Wの含有量が多すぎると被削性、靱性が低下し、コストも高くなる。よって、Wの含有量は0.2%~0.5%であることが必要である。
Wは、複合炭化物として耐摩耗性の向上に寄与するとともに、基地中に固溶して材料の強靭化、耐熱性を付与する。しかし、Wの含有量が多すぎると被削性、靱性が低下し、コストも高くなる。よって、Wの含有量は0.2%~0.5%であることが必要である。
(11)Cu:0.2%~0.6%
Cuは、鋼の強度、耐蝕性、自己潤滑性の向上に寄与する元素である。しかし、Cuの含有量が多すぎると赤熱脆化を招き、熱間加工性が劣化する。よって、Cuの含有量は0.2%~0.6%であることが必要である。
Cuは、鋼の強度、耐蝕性、自己潤滑性の向上に寄与する元素である。しかし、Cuの含有量が多すぎると赤熱脆化を招き、熱間加工性が劣化する。よって、Cuの含有量は0.2%~0.6%であることが必要である。
(12)Al:0.1%~0.5%
AlはNi等と金属間化合物を形成し、析出硬化して強度を増す元素である。また窒化するとAlNを形成し、表面を著しく硬化する作用を有する元素である。しかし、Alの含有量が多すぎると、Alは強力なフェライト化元素であるため、組織中のフェライトを増加させ硬さを阻害する。よって、Alの含有量は0.1%~0.5%であることが必要である。
AlはNi等と金属間化合物を形成し、析出硬化して強度を増す元素である。また窒化するとAlNを形成し、表面を著しく硬化する作用を有する元素である。しかし、Alの含有量が多すぎると、Alは強力なフェライト化元素であるため、組織中のフェライトを増加させ硬さを阻害する。よって、Alの含有量は0.1%~0.5%であることが必要である。
(13)Nb:0.05%~0.15%
Nbは、高温強さ、クリープ強さ、硬化を増す元素である。しかし、Nbの含有量が多すぎると焼入れ性、被削性を低下させる。よって、Nbの含有量は0.05~0.15%であることが必要である。
Nbは、高温強さ、クリープ強さ、硬化を増す元素である。しかし、Nbの含有量が多すぎると焼入れ性、被削性を低下させる。よって、Nbの含有量は0.05~0.15%であることが必要である。
上記組成からなる母材は、マルテンサイト組成の合金鋼であり、室温~200℃の範囲内における平均線膨張係数が12.7×10-6/℃前後程度である。一方、主要部がアルミニウム合金製の内燃機関のアルミニウム合金製シリンダブロックの線膨張係数は、一般的に15×10-6/℃~21×10-6/℃程度であり、上記母材の平均線膨張係数との差は小さい。それゆえ、アルミニウム合金製シリンダブロックが高温となり、熱膨張した場合でも、圧力リングは、アルミニウム合金製シリンダブロックの膨張に十分に追従して熱膨張できる。この場合、圧力リングの合い口すき間の増大が抑制されることとなり、その結果、燃焼室内のガスが圧力リングの合い口すき間を経由して外部に漏れるブローバイガスの発生量が抑制され、さらには、ブローバイガス量の増大に起因する内燃機関の出力低下および燃費悪化も抑制できる。
すなわち、本実施形態の圧力リングは、主要部がアルミニウム合金製の内燃機関の使用初期の段階からブローバイガス量を小さくできるため、主要部がアルミニウム合金製の内燃機関と極めて相性が良い。
なお、本願明細書において、アルミニウム合金製シリンダブロックは、全体がアルミニウム合金からなるシリンダブロック、および、主要部がアルミニウム合金からなるシリンダブロックを含む。ここで、主要部がアルミニウム合金からなるシリンダブロックとしては、鋳鉄製のシリンダライナをアルミニウム合金で鋳ぐるむことにより製造されたシリンダブロックが例示できる。
また、本実施形態の圧力リングでは、母材のビッカース硬度H1av(HV0.1)を510以下とすることにより、コイリング時の線材の折損を大幅に低減できる。また、母材のビッカース硬度H1av(HV0.1)を435以上とすることにより、コイリング後に得られた合い口を有するリング状部材に対して、窒化層を形成すべく窒化処理した後に得られる圧力リング本体部の寸法ばらつきを小さくできる。このため、本実施形態の圧力リングは、製造時の歩留まりが高く、生産性に優れる。なお、母材のビッカース硬度H1av(HV0.1)は435~498が好ましく、480~498がより好ましい。また、本願明細書において、母材のビッカース硬度H1av(HV0.1)とは、圧力リング本体部のうち窒化層が形成されていない部分を測定して得られた平均値を意味し、圧力リング本体部の作製に用いた圧力リング用線材のビッカース硬度H2av(HV0.1)と実質同一の値である。
なお、本発明者らは、組成と密接不可分の関係にある線膨張係数がアルミニウム合金製シリンダブロックの線膨張係数に近い点に着目して、特許文献1に開示された摺動部品と略同一の組成を持つ母材を選択した。また、耐摩耗性や高い疲労強度が得られる観点では、母材の硬さも特許文献1に開示されているように52HRC以上58HRC未満(ビッカース硬度(HV0.1)換算で、545以上655未満)であることがより有利であると考えられる。
一方、圧力リングの外周面は、シリンダライナの内周面との激しい摺動に曝され、圧力リングの軸方向の一方側の面および他方側の面(以下、各々、「上面」、「下面」と称す場合がある)は、アルミニウム合金製ピストンの外周面に設けられた環状溝の上側内壁面および下側内壁面(アルミニウム合金製ピストンの軸方向に対して、環状溝の一方側の内壁面および他方側の内壁面)との摺動に曝される。そして、外周面、上面および下面のいずれにおいても、摩耗の進行は極力抑制される必要がある。しかし、仮に52HRC以上58HRC未満の硬さを有する母材自体で外周面、上面および下面を構成しても、上述した摺動環境下では耐摩耗性が不足するため、経時的な摩耗の進行を十分に抑制できない。したがって、母材そのものの耐摩耗性に依らずに上述した摺動環境にも耐え得る優れた耐摩耗性を確保するためには、圧力リングを構成する圧力リング本体部の上面および下面には窒化処理により窒化層を形成し、圧力リング本体部の外周面には窒化処理により窒化層を形成するか、あるいは、圧力リング本体部の外周面を被覆する硬質被膜を形成する必要がある。
したがって、本発明者らは上述した事情を踏まえて、圧力リングに要求される耐摩耗性については、圧力リング本体部の上面および下面に窒化層を形成した上で、圧力リング本体部の外周面には、窒化層を形成するか、あるいは、硬質被膜で被覆することにより対応することとした。この場合、窒化処理されていない母材自体の組成および硬さに起因する耐摩耗性は重要ではなくなる。このため、本発明者らは主に生産性の観点で母材自体の硬度を見直し、母材のビッカース硬度H1av(HV0.1)を435~510の範囲内に設定した。
本実施形態の圧力リングでは、窒化層が、圧力リング本体部の上面および下面に形成されている。圧力リング本体部の上面および下面に窒化層を形成することで、アルミニウム合金製ピストンの外周面に設けられた環状溝の上側内壁面および下側内壁面と、圧力リングとが摺動しても、長期に渡って、圧力リングと環状溝との双方の摩耗を抑制できる。このような効果は、環状溝に陽極酸化被膜が設けられている場合も同様である。このため、本実施形態の圧力リングでは、アルミニウム合金製ピストンの環状溝と、圧力リングとの間のシール性を長期に渡って維持できるため、摩耗の進行による経時的なブローバイガス量の増大を抑制できる。
また、窒化層のビッカース硬度HNav(HV0.1)は900以上であることが好ましい。これにより、より効果的に圧力リングと環状溝との双方の摩耗を抑制できる。また、環状溝の上側内壁面および下側内壁面の過度の摩耗を抑制するために、窒化層のビッカース硬度HNav(HV0.1)は1300以下であることが好ましい。
なお、炭素鋼に含まれる各種の元素のうち、窒化層の硬度の向上には、Al、Cr、Mo、Ti、V、Mn、Siが窒化層の硬度の向上に寄与することが知られているが、本実施形態の圧力リングでは、これら元素のうち特にCr(7.5%~9.0%)が多量に含まれると共に、Alも0.1%~0.5%含まれている。このため、窒化層のビッカース硬度HNav(HV0.1)を容易に900以上とすることができる。なお、窒化層は、必要に応じて圧力リング本体部の外周面に形成されていてもよい。
また、窒化層のビッカース硬度HNav(HV0.1)は900以上である場合において、圧力リング本体部の断面に存在する最大長さが3μm以上である炭化物粒子の数が577個/mm2以上であることが好ましく、1058個/mm2以上であることがより好ましく、1538個/mm2以上であることがさらに好ましい。炭化物粒子の数を577個/mm2以上とすることにより圧力リング本体部に形成された窒化層表面において、当該表面における摩耗を改善するのみならず、窒化層表面と接触摺動する相手材の摩耗も低減することが容易になる。ここで、窒化層表面が圧力リングの上面および下面である場合、相手材は、アルミニウム合金製ピストンの外周面に設けられた環状溝の上側内壁面および下側内壁面を構成するアルミニウム合金、あるいは、上側内壁面および下側内壁面に形成された陽極酸化被膜である。
なお、最大長さが3μm以上である炭化物粒子の数の上限は特に限定されないが、多すぎる場合は、炭化物に沿ったクラックの発生や、加工性の低下を招く場合もあるため、実用上は2000個/mm2以下であることが好ましい。また、本実施形態の圧力リングでは、母材の組成等に起因して、最大長さが3μm以上である炭化物粒子の数を577個/mm2以上とすることが容易である。
次に本実施形態の圧力リングの形状・断面構造等について、より詳細に説明する。図1は、本実施形態の圧力リングの外観図であり、圧力リングを上面または下面から見た図である。なお、図1中、符号Cは圧力リングの中心軸である。図1に示す圧力リング10は合い口Gを有するリング状を成している。なお、図1中、硬質被膜については記載を省略してある。また、図2は、本実施形態の圧力リングの断面構造の一例を示す模式端面図であり、具体的には、図1中の符号A1-A2間の断面構造について示した図である。
図2(A)、図2(B)および図2(C)に示すように、圧力リング10は、合い口Gを有するリング状の圧力リング本体部20と、この圧力リング本体部20の外周面22を被覆する硬質被膜30とを有し、圧力リング本体部20の上面側部分24Uおよび下面側部分24Bには、窒化層40が形成されている。なお、この窒化層40は、図2(A)、図2(B)および図2(C)に示すように、圧力リング本体部20の内周面側部分24Lにも形成されていてもよく、図2(C)に示すように、圧力リング本体部20の外周面側部分24Rにも形成されていてもよい。図1および図2に示す圧力リング10をアルミニウム合金製ピストンの環状溝に装着して使用した場合、硬質被膜30の表面32が、圧力リング10の外周摺動面12として、シリンダ内壁面と接触し、圧力リング本体部20の上面26および下面28が、圧力リング10の上面14および下面16として環状溝の上側内壁面および下側内壁面と接触する。
圧力リング本体部20の上面側部分24Uおよび下面側部分24Bに形成される窒化層40(側面部窒化層)の厚みは、10μm以上であることが好ましく、20μm以上であることがより好ましい。側面部窒化層の厚みの上限は特に限定されないが、実用上200μm以下であることが好ましい。また、図2(C)に例示したように圧力リング本体部20の外周面側部分24Rを窒化処理することによって、外周面側部分24Rにも窒化層40(外周面部窒化層)を設けてもよい。なお、外周面部窒化層の厚みも側面部窒化層の厚みと同様とすることができる。また、外周面部窒化層が設けられる場合は、硬質被膜30を省略してもよい。硬質被膜としては、公知の硬質被膜であればいずれも採用できるが、たとえば、DLC皮膜やCrN系被膜などを挙げることができる。
本実施形態の圧力リング10は、アルミニウム合金製シリンダブロックと、アルミニウム合金製シリンダブロックのシリンダボア内に配置されたアルミニウム合金製ピストンとを少なくとも備えた内燃機関に用いられる。ここで、圧力リング10は、アルミニウム合金製ピストンの外周面に、アルミニウム合金製ピストンの周方向に沿って設けられた環状溝内に配置される。なお、環状溝の上側内壁面および下側内壁面は、アルミニウム合金製ピストンの本体部分と同一の材質で構成されていてもよいが、上側内壁面および下側内壁面の少なくとも一部に陽極酸化被膜が形成されていてもよく、上側内壁面および下側内壁面の全面に陽極酸化被膜が形成されていてもよい。
本実施形態の圧力リング10は、圧力リング本体部20を構成する母材と同一の組成およびビッカース硬度(HV0.1)を有する圧力リング用線材を用いてコイリング、窒化処理の各種工程を実施することで作製することができる。ここで窒化処理による窒化層の形成方法としては特に限定されないが、ガス窒化処理、塩浴窒化処理あるいはイオン窒化処理(プラズマ窒化処理)などが利用できる。ガス窒化処理の場合は、コイリングにより得られたリング状部材に対して、窒素を含むガス雰囲気中にて加熱処理を行うことで窒化層を形成する。窒化層の厚み、表面硬度は、加熱温度・時間、雰囲気ガス組成等を適宜選択することで制御できる。なお、窒素を含むガスとしては、たとえばNH3とN2とを含む混合ガスなどが挙げられ、処理温度としては、たとえば500度~600度程度の範囲内で適宜選択でき、処理時間としては、たとえば2時間~10時間程度の範囲内で適宜選択できる。塩浴窒化処理の場合は、たとえば、シアン化ナトリウムの塩浴中にコイリングにより得られたリング状部材を浸漬処理することで窒化層を形成する。また、イオン窒化処理の場合は、真空中でのグロー放電を利用して窒化層を形成することができる。さらに、圧力リング10が硬質被膜30を有する場合は、PVD(Physical vapor deposition)法などにより硬質被膜を成膜する工程をさらに実施する。
また、圧力リング用線材は、圧力リング本体部20を構成する母材と同一の組成を有する線材を、1030度~1050度の範囲内の温度で焼き入れする焼き入れ工程と、焼き入れ工程を経た線材を640度~690度の範囲内の温度で焼き戻しする焼き戻し工程と、を少なくとも経て作製することができる。このような製造プロセスにおいて、焼き戻し時の温度を640度~690度の範囲内とすることで、圧力リング用線材のビッカース硬度H2av(HV0.1)を、435~510の範囲内に調整することができる。なお、圧力リング用線材のビッカース硬度H2av(HV0.1)は、435~498が好ましく、480~498がより好ましい。また、焼き戻し時の温度は、650度~690度が好ましく、650度~660度がより好ましい。
以下に本発明を実施例により説明するが、本発明は以下の実施例にのみ限定されるものでは無い。
1.折損および寸法バラツキの評価
(1)サンプル作製
質量%で、C:1.1%、Si:0.7%、Mn:0.5%、P:0.02%、S:0.03%、Ni:0.4%、Cr:8.41%、Mo:0.9%、V:0.1%、W:0.3%、Cu:0.4%、Al:0.2%、Nb:0.09%、残部Feおよび不純物からなる組成を有する線材を、1040度±10度の範囲内の温度で焼き入れした。次に、焼き入れ処理した後の線材について630度~700度の範囲内において10度毎に温度を変えて焼き戻し処理することで、実施例A1~A7および比較例A1~A2の圧力リング用線材を得た。各実施例および比較例の圧力リング用線材作成時の焼き戻し温度を表1に示す。
(1)サンプル作製
質量%で、C:1.1%、Si:0.7%、Mn:0.5%、P:0.02%、S:0.03%、Ni:0.4%、Cr:8.41%、Mo:0.9%、V:0.1%、W:0.3%、Cu:0.4%、Al:0.2%、Nb:0.09%、残部Feおよび不純物からなる組成を有する線材を、1040度±10度の範囲内の温度で焼き入れした。次に、焼き入れ処理した後の線材について630度~700度の範囲内において10度毎に温度を変えて焼き戻し処理することで、実施例A1~A7および比較例A1~A2の圧力リング用線材を得た。各実施例および比較例の圧力リング用線材作成時の焼き戻し温度を表1に示す。
次に、各実施例および比較例の圧力リング用線材を用いて同一条件でコイリングを実施することで、筒状に巻回された状態の圧力リング用線材を得た。なお、筒状に巻回された状態の圧力リング用線材としては、外径80.5mmの部材および外径50mmの部材の2種類を作製した。なお、圧力リング用線材の巻回数は、原則として外径80.5mmの場合は400回とし、外径50mmの場合は300回とした。但し、コイリング時の折損の発生頻度が高い場合は、所定の巻回数に達する前にコイリングを中止した。
その後、筒状に巻回された圧力リング用線材から合い口を有するリング状部材を作製し、各実施例および各比較例のリング状部材を用いて、いずれの実施例および比較例のリング状部材においても窒化層表面のビッカース硬度(HV0.2)が1000以上となるように、同一条件でガス窒化処理を行った。これにより圧力リング本体部を得た。なお、窒化層の形成位置は、図2(C)に示した場合と同様である。
(2)圧力リング用線材および窒化層上面のビッカース硬度測定
ビッカース硬度の測定は、JIS Z 2244「ビッカース硬度試験-試験方法」に基づいて測定した。
ビッカース硬度の測定は、JIS Z 2244「ビッカース硬度試験-試験方法」に基づいて測定した。
ここで、圧力リング用線材のビッカース硬度(HV0.1)は、圧力リング用線材の断面(線材の長手方向と直交する断面)を鏡面研磨した後、鏡面研磨された断面の略中央部を、マイクロビッカース硬度計を用いて試験力0.9807N、試験力の保持時間15sの条件にて測定することで求めた。測定に際しては、各実施例および比較例の圧力リング用線材につき、測定位置を変えて5カ所測定した。まず、5カ所の各測定点P1~P5の各々において5回測定を行い、各々の測定点Pnにおける1次平均値hnを求めた(nは1~5の整数である)。続いて、5つの1次平均値h1~h5に基づいてさらに平均値H2av(2次平均値)を求めた。結果を表1に示す。なお、参考までに、5つの1次平均値h1~h5中の最小値H2minおよび最大値H2maxも表1に示した。
なお、窒化層が形成された各実施例および比較例の圧力リング本体部についても圧力リング本体部の断面(周方向と直交する断面)を鏡面研磨した後、鏡面研磨された断面の略中央部(すなわち、窒化層が形成されていない部分)を、上記と同様の測定条件にてビッカース硬度(HV0.1)の平均値H1av、最大値H1max、最小値H1minを求めた。その結果、圧力リング本体部を構成する母材のビッカース硬度(HV0.1)の平均値H1av、最大値H1max、最小値H1minも、各々、圧力リング用線材のビッカース硬度(HV0.1)の平均値H2av、最大値H2max、最小値H2minと実質同一であることが確認された。
また、圧力リング本体部に形成された窒化層のビッカース硬度(HV0.2)については、以下の手順で測定サンプルを準備し、測定を実施した。まず、各実施例および比較例の圧力リング本体部の上面26を研磨した。そして、研磨された上面について、周方向に対して合い口Gが設けられた位置を0度とした場合において、90度、180度および270度の位置の3カ所について、マイクロビッカース硬度計を用いて試験力1.961N、試験力の保持時間15sの条件にて測定し、3箇所の測定位置でのビッカース硬度の平均値が1000以上となっているか否かを確認した。その結果、圧力リング本体部に形成された窒化層のビッカース硬度(HV0.2)は、いずれの実施例および比較例においても1000以上であることが確認された。
(3)コイリング時の折損評価
コイリング時の巻回数(コイリング本数)当たりの折損本数を評価した。なお、折損本数のカウントに際しては、圧力リング1本分の長さ毎に折損が存在するか否かを判定し、圧力リング1本分の長さ範囲内に2箇所以上の折損箇所が存在する場合でも折損数は1つとしてカウントした。また、折損本数が0本の試験例については、筒状に巻回された状態の圧力リング用線材を軸方向の両側に僅かに引き延ばして、圧力リング1本分の長さに相当する各リング部分について、軸方向に隣り合うリング部分同士の間隔が均等(均等ピッチ)であるのか、不均等(不均等ピッチ)であるのかを確認した。評価結果を表1に示す。なお、表1中に示す折損評価の評価基準は以下の通りである。
A:コイリング本数100本(巻回数100回)当たりの折損数が0本であり、かつ、均等ピッチである。
B:コイリング本数100本(巻回数100回)当たりの折損数が0本であり、かつ、不均等ピッチである。
C:コイリング本数100本(巻回数100回)当たりの折損数が1本以上である。
コイリング時の巻回数(コイリング本数)当たりの折損本数を評価した。なお、折損本数のカウントに際しては、圧力リング1本分の長さ毎に折損が存在するか否かを判定し、圧力リング1本分の長さ範囲内に2箇所以上の折損箇所が存在する場合でも折損数は1つとしてカウントした。また、折損本数が0本の試験例については、筒状に巻回された状態の圧力リング用線材を軸方向の両側に僅かに引き延ばして、圧力リング1本分の長さに相当する各リング部分について、軸方向に隣り合うリング部分同士の間隔が均等(均等ピッチ)であるのか、不均等(不均等ピッチ)であるのかを確認した。評価結果を表1に示す。なお、表1中に示す折損評価の評価基準は以下の通りである。
A:コイリング本数100本(巻回数100回)当たりの折損数が0本であり、かつ、均等ピッチである。
B:コイリング本数100本(巻回数100回)当たりの折損数が0本であり、かつ、不均等ピッチである。
C:コイリング本数100本(巻回数100回)当たりの折損数が1本以上である。
(4)窒化処理後の寸法ばらつき評価
外径が80.5mmとなるようにコイリング後に、窒化層40が形成された後の圧力リング本体部について、各実施例および比較例につき、20本の圧力リング本体部の自由合い口すきま変化量を測定し、ばらつきを評価した。なお、比較例A1については、折損が発生しなかった圧力リング本体部を自由合い口すきま変化量の測定に用いた。自由合い口すきま変化量の測定は、圧力リングの自由状態における厚さ寸法a1の中心線上における両合い口端部間の距離mを測定し、各々の圧力リングが許容される自由合い口すきま変化量のばらつきの管理範囲内(0.5mm以下)に収まるか否かを確認して判断した。評価結果を表1に示す。なお、表1中に示す寸法ばらつきの評価基準は以下の通りである。
A:20本の圧力リング本体部の自由合い口すきま変化量のばらつきが、全て管理範囲をさらに半分に狭めた範囲内に収まっている。
B:20本の圧力リング本体部の自由合い口すきま変化量のばらつきが、全て管理範囲内に収まっている。
C:20本の圧力リング本体部のうち、少なくとも1本以上の圧力リング本体部の自由合い口すきま変化量のばらつきが、管理範囲外である。
外径が80.5mmとなるようにコイリング後に、窒化層40が形成された後の圧力リング本体部について、各実施例および比較例につき、20本の圧力リング本体部の自由合い口すきま変化量を測定し、ばらつきを評価した。なお、比較例A1については、折損が発生しなかった圧力リング本体部を自由合い口すきま変化量の測定に用いた。自由合い口すきま変化量の測定は、圧力リングの自由状態における厚さ寸法a1の中心線上における両合い口端部間の距離mを測定し、各々の圧力リングが許容される自由合い口すきま変化量のばらつきの管理範囲内(0.5mm以下)に収まるか否かを確認して判断した。評価結果を表1に示す。なお、表1中に示す寸法ばらつきの評価基準は以下の通りである。
A:20本の圧力リング本体部の自由合い口すきま変化量のばらつきが、全て管理範囲をさらに半分に狭めた範囲内に収まっている。
B:20本の圧力リング本体部の自由合い口すきま変化量のばらつきが、全て管理範囲内に収まっている。
C:20本の圧力リング本体部のうち、少なくとも1本以上の圧力リング本体部の自由合い口すきま変化量のばらつきが、管理範囲外である。
2.摩耗量の評価
(1)サンプル作製
リング状部材として、実施例A4と同一の条件にて作製したリング状部材(実施例B1)を準備した。また、圧力リング用線材として日立金属製のHPM31を用いてコイリングすることで作製したリング状部材(比較例B1)、および、圧力リング用線材としてSKD61を用いてコイリングすることで作製したリング状部材(比較例B2)も準備した。なお、HPM31およびSKD61共に、実施例B1とは母材の組成が異なるが、窒化層の形成および硬度に大きく影響する母材中のCr含有量が、本実施形態の圧力リングを構成する母材中のCr含有量と比較的に近い鋼材である。
(1)サンプル作製
リング状部材として、実施例A4と同一の条件にて作製したリング状部材(実施例B1)を準備した。また、圧力リング用線材として日立金属製のHPM31を用いてコイリングすることで作製したリング状部材(比較例B1)、および、圧力リング用線材としてSKD61を用いてコイリングすることで作製したリング状部材(比較例B2)も準備した。なお、HPM31およびSKD61共に、実施例B1とは母材の組成が異なるが、窒化層の形成および硬度に大きく影響する母材中のCr含有量が、本実施形態の圧力リングを構成する母材中のCr含有量と比較的に近い鋼材である。
続いて、これら3種類のリング状部材に対して、雰囲気ガスとしてNH3とN2とを含む混合ガスを用いてガス窒化処理を実施した。この際、いずれのリング状部材に形成される窒化層のビッカース硬度HNav(HV0.1)も略同一となるように処理温度:500~600℃、処理時間:2時間~10時間の範囲内にて、適宜窒化処理条件を選択した。これにより、圧力リング本体部のみからなる圧力リングサンプルを得た。なお、窒化層は、図2(C)に例示した場合と同様に圧力リングサンプルの表面全面に形成した。各実施例および比較例の圧力リングサンプルを構成する母材中のCr含有量および窒化層のビッカース硬度HNav(HV0.1)を表2に示す。
(2)窒化層断面のビッカース硬度測定
なお、ビッカース硬度の測定は、JIS Z 2244「ビッカース硬度試験-試験方法」に基づいて測定した。ここで、窒化層断面のビッカース硬度(HV0.1)については、以下の手順で測定サンプルを準備し、測定を実施した。まず、周方向に対して合い口Gが設けられた位置を0度とした場合において、90度、180度および270度の位置の3カ所について、圧力リングサンプルを切断し、3カ所の切断面を研磨した。次に、各々の切断面について、切断面を除く最表面から深さ10μmの位置(窒化層が形成されている範囲内の位置)について、マイクロビッカース硬度計を用いて試験力0.9807N、試験力の保持時間15sの条件にて測定した。そして、3カ所の切断面における測定値の平均値HNavを求めた。
なお、ビッカース硬度の測定は、JIS Z 2244「ビッカース硬度試験-試験方法」に基づいて測定した。ここで、窒化層断面のビッカース硬度(HV0.1)については、以下の手順で測定サンプルを準備し、測定を実施した。まず、周方向に対して合い口Gが設けられた位置を0度とした場合において、90度、180度および270度の位置の3カ所について、圧力リングサンプルを切断し、3カ所の切断面を研磨した。次に、各々の切断面について、切断面を除く最表面から深さ10μmの位置(窒化層が形成されている範囲内の位置)について、マイクロビッカース硬度計を用いて試験力0.9807N、試験力の保持時間15sの条件にて測定した。そして、3カ所の切断面における測定値の平均値HNavを求めた。
(3)炭化物粒子数の測定
炭化物粒子数は、圧力リングサンプルの断面(圧力リングの周方向と直交する断面)について表面を研磨、マーブル試薬によるエッチング処理等した後に金属顕微鏡観察を行うことで測定した。ここで、金属顕微鏡観察は、圧力リング本体部の断面について、任意の9カ所を測定し、各々の測定位置における金属顕微鏡写真の視野サイズ(0.088mm×0.066mmのサイズ、面積:0.0058mm2)を400倍に拡大した組織写真内に存在する炭化物粒子の数を目視でカウントした。この際、カウントの対象とした炭化物粒子は、最大長さが3μm以上である炭化物粒子のみとした。そして、9カ所の測定位置の視野サイズ(合計面積:0.052mm2)内に存在する炭化物粒子の総数に基づいて、単位面積当たりの炭化物粒子数(個/mm2)を求めた。結果を表2に示す。
炭化物粒子数は、圧力リングサンプルの断面(圧力リングの周方向と直交する断面)について表面を研磨、マーブル試薬によるエッチング処理等した後に金属顕微鏡観察を行うことで測定した。ここで、金属顕微鏡観察は、圧力リング本体部の断面について、任意の9カ所を測定し、各々の測定位置における金属顕微鏡写真の視野サイズ(0.088mm×0.066mmのサイズ、面積:0.0058mm2)を400倍に拡大した組織写真内に存在する炭化物粒子の数を目視でカウントした。この際、カウントの対象とした炭化物粒子は、最大長さが3μm以上である炭化物粒子のみとした。そして、9カ所の測定位置の視野サイズ(合計面積:0.052mm2)内に存在する炭化物粒子の総数に基づいて、単位面積当たりの炭化物粒子数(個/mm2)を求めた。結果を表2に示す。
(3)耐摩耗性試験
耐摩耗性試験には、図3に示す往復動摩擦試験機100を使用した。この往復動摩擦試験機100は、試験片102を、スプリング荷重により荷重Pを加えてプレート104に押し付け、プレート104が往復動することにより両者が摺動するよう構成されている。
耐摩耗性試験には、図3に示す往復動摩擦試験機100を使用した。この往復動摩擦試験機100は、試験片102を、スプリング荷重により荷重Pを加えてプレート104に押し付け、プレート104が往復動することにより両者が摺動するよう構成されている。
ここで試験片102としては圧力リングサンプルと同材質のピンタイプ試験片を使用し、試験片102の先端部には、窒化層が形成されている。ここで、窒化層は、圧力リングサンプルと同条件でガス窒化処理を行うことで形成した。また、プレート104としてはアルミニウム合金製ピストンの環状溝の上側内壁面および下側内壁面と同材質のアルミニウム合金製プレートを使用した。なお、プレート104として使用したアルミニウム合金製プレートは、その表面に陽極酸化被膜が形成されている。摺動に際しては、試験片102の窒化層が形成された先端部をプレート104の表面(陽極酸化被膜が形成された面)と接触させると共に、チュービングポンプやエアディスペンサーを用いて潤滑油を供給した。耐摩耗性試験の試験条件を以下に示す。
耐摩耗性試験は、各実施例および比較例について3回実施し、試験片102の摩耗量の平均値およびプレート104の摩耗量の平均値を求めた。耐摩耗性試験の結果を表2に示す。
-試験条件-
・荷重P :50N
・プレート104の往復動の平均速度 :300rpm
・プレート104の往復動のストローク:50mm
・試験時間 :120min
・潤滑油 :5w-30エンジンオイル
・潤滑油の滴下量 :1ml/hr
・プレート104の材質 :アルミニウム合金製プレート(AC8A)(表面は陽極酸化被膜が形成されている)
・荷重P :50N
・プレート104の往復動の平均速度 :300rpm
・プレート104の往復動のストローク:50mm
・試験時間 :120min
・潤滑油 :5w-30エンジンオイル
・潤滑油の滴下量 :1ml/hr
・プレート104の材質 :アルミニウム合金製プレート(AC8A)(表面は陽極酸化被膜が形成されている)
10 :圧力リング
12 :外周摺動面
14 :上面
16 :下面
20 :圧力リング本体部
22 :外周面
24B :下面側部分
24L :内周面側部分
24R :外周面側部分
24U :上面側部分
26 :上面
28 :下面
30 :硬質被膜
32 :表面
40 :窒化層
100 :往復動摩擦試験機
102 :試験片
104 :プレート
12 :外周摺動面
14 :上面
16 :下面
20 :圧力リング本体部
22 :外周面
24B :下面側部分
24L :内周面側部分
24R :外周面側部分
24U :上面側部分
26 :上面
28 :下面
30 :硬質被膜
32 :表面
40 :窒化層
100 :往復動摩擦試験機
102 :試験片
104 :プレート
Claims (7)
- アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを少なくとも備えた内燃機関に用いられ、
合い口を有するリング状の圧力リング本体部を備え、
前記圧力リング本体部を構成する母材が、質量%で、C:0.7%~1.6%、Si:0.6%~1.2%、Mn:0.3%~0.7%、P:0%~0.04%、S:0%~0.09%、Ni:0.3%~0.6%、Cr:7.5%~9.0%、Mo:0.7%~1.0%、V:0%~0.5%、W:0.2%~0.5%、Cu:0.2%~0.6%、Al:0.1%~0.5%、Nb:0.05%~0.15%、残部Feおよび不純物からなる組成を有し、
前記母材のビッカース硬度H1av(HV0.1)が435~510であり、
前記圧力リング本体部の軸方向の一方側の面および他方側の面に窒化層が形成されていることを特徴とする圧力リング。 - 前記窒化層のビッカース硬度HNav(HV0.1)が900以上であり、かつ、前記圧力リング本体部の断面に存在する最大長さが3μm以上である炭化物粒子の粒子数が、577個/mm2以上であることを特徴とする請求項1に記載の圧力リング。
- 前記粒子数が、1058個/mm2以上である請求項2に記載の圧力リング。
- 前記粒子数が、1538個/mm2以上である請求項2に記載の圧力リング。
- アルミニウム合金製シリンダブロックと、
前記アルミニウム合金製シリンダブロックのシリンダボア内に配置されたアルミニウム合金製ピストンと、
前記アルミニウム合金製ピストンの外周面に、前記アルミニウム合金製ピストンの周方向に沿って設けられた環状溝に配置された請求項1~4のいずれか1つに記載の圧力リングと、を備え、
前記アルミニウム合金製ピストンの軸方向に対して、前記環状溝の一方側の内壁面および他方側の内壁面の少なくとも一部に陽極酸化被膜が形成されていることを特徴とする内燃機関。 - 質量%で、C:0.7%~1.6%、Si:0.6%~1.2%、Mn:0.3%~0.7%、P:0%~0.04%、S:0%~0.09%、Ni:0.3%~0.6%、Cr:7.5%~9.0%、Mo:0.7%~1.0%、V:0%~0.5%、W:0.2%~0.5%、Cu:0.2%~0.6%、Al:0.1%~0.5%、Nb:0.05%~0.15%、残部Feおよび不純物からなる組成を有し、
ビッカース硬度H2av(HV0.1)が435~510であることを特徴とする圧力リング用線材。 - 質量%で、C:0.7%~1.6%、Si:0.6%~1.2%、Mn:0.3%~0.7%、P:0%~0.04%、S:0%~0.09%、Ni:0.3%~0.6%、Cr:7.5%~9.0%、Mo:0.7%~1.0%、V:0%~0.5%、W:0.2%~0.5%、Cu:0.2%~0.6%、Al:0.1%~0.5%、Nb:0.05%~0.15%、残部Feおよび不純物からなる組成を有する線材を、1030度~1050度の範囲内の温度で焼き入れする焼き入れ工程と、
前記焼き入れ工程を経た前記線材を640度~690度の範囲内の温度で焼き戻しする焼き戻し工程と、
を少なくとも経て、圧力リング用線材を製造することを特徴とする圧力リング用線材の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018546649A JP6472938B1 (ja) | 2017-10-30 | 2018-09-04 | 圧力リング、内燃機関、圧力リング用線材および圧力リング用線材の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017209182 | 2017-10-30 | ||
JP2017-209182 | 2017-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019087562A1 true WO2019087562A1 (ja) | 2019-05-09 |
Family
ID=66331722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/032707 WO2019087562A1 (ja) | 2017-10-30 | 2018-09-04 | 圧力リング、内燃機関、圧力リング用線材および圧力リング用線材の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019087562A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109706381A (zh) * | 2019-03-05 | 2019-05-03 | 河南科技大学 | 一种气缸套用铸铁材料、气缸套及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62136555A (ja) * | 1985-12-10 | 1987-06-19 | Hitachi Metals Ltd | 高疲労強度耐摩耐食部品用鋼線 |
JPH06221436A (ja) * | 1993-01-25 | 1994-08-09 | Riken Corp | 鋳鋼製ピストンリング材 |
WO2004003246A1 (ja) * | 2002-07-01 | 2004-01-08 | Hitachi Metals, Ltd. | 自己潤滑性を有する摺動部品用材料およびピストンリング用線材 |
WO2016152967A1 (ja) * | 2015-03-26 | 2016-09-29 | 日立金属株式会社 | 摺動部品および摺動構造体 |
-
2018
- 2018-09-04 WO PCT/JP2018/032707 patent/WO2019087562A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62136555A (ja) * | 1985-12-10 | 1987-06-19 | Hitachi Metals Ltd | 高疲労強度耐摩耐食部品用鋼線 |
JPH06221436A (ja) * | 1993-01-25 | 1994-08-09 | Riken Corp | 鋳鋼製ピストンリング材 |
WO2004003246A1 (ja) * | 2002-07-01 | 2004-01-08 | Hitachi Metals, Ltd. | 自己潤滑性を有する摺動部品用材料およびピストンリング用線材 |
WO2016152967A1 (ja) * | 2015-03-26 | 2016-09-29 | 日立金属株式会社 | 摺動部品および摺動構造体 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109706381A (zh) * | 2019-03-05 | 2019-05-03 | 河南科技大学 | 一种气缸套用铸铁材料、气缸套及其制备方法 |
CN109706381B (zh) * | 2019-03-05 | 2020-02-14 | 河南科技大学 | 一种气缸套用铸铁材料、气缸套及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0295111B1 (en) | A steel having good wear resistance | |
EP2101090B2 (en) | Piston ring | |
JP5650714B2 (ja) | 窒化可能な鋼製ピストンリングと鋼製シリンダーライナ及びその製造用鋳造方法 | |
US10612432B2 (en) | Tribological system, comprising a valve seat ring and a valve | |
EP3168506A1 (en) | Pressure ring | |
US4985092A (en) | Steel having good wear resistance | |
JPWO2009069762A1 (ja) | ピストンリング用鋼材およびピストンリング | |
JP6424951B2 (ja) | 摺動部品および摺動構造体 | |
JPH11264468A (ja) | ピストンリング及びその組合せ | |
EP2725264B1 (en) | Pressure ring and fabrication method therefor | |
WO2019087562A1 (ja) | 圧力リング、内燃機関、圧力リング用線材および圧力リング用線材の製造方法 | |
JP4757685B2 (ja) | ピストンリング | |
JP6472938B1 (ja) | 圧力リング、内燃機関、圧力リング用線材および圧力リング用線材の製造方法 | |
JP6784869B2 (ja) | ピストンリング | |
JP6454103B2 (ja) | 圧力リング | |
JP5473890B2 (ja) | ピストンリング | |
JPH01119646A (ja) | ピストンリング用鋼 | |
JP2006275253A (ja) | ピストンリング | |
JP7297808B2 (ja) | オイルリング用線 | |
JPH01142057A (ja) | ピストンリング用溶製鋼 | |
JP6587570B2 (ja) | 内燃機関用ピストンリング線材及び内燃機関用ピストンリング | |
JPH10213004A (ja) | シリンダライナ | |
WO2018215269A1 (en) | Coated steel piston ring | |
JP2552509C (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018546649 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18874498 Country of ref document: EP Kind code of ref document: A1 |
|
WA | Withdrawal of international application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18874498 Country of ref document: EP Kind code of ref document: A1 |