WO2019082863A1 - 管制方法、管制装置及び管制プログラム - Google Patents

管制方法、管制装置及び管制プログラム

Info

Publication number
WO2019082863A1
WO2019082863A1 PCT/JP2018/039256 JP2018039256W WO2019082863A1 WO 2019082863 A1 WO2019082863 A1 WO 2019082863A1 JP 2018039256 W JP2018039256 W JP 2018039256W WO 2019082863 A1 WO2019082863 A1 WO 2019082863A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual
virtual flow
movement
flow area
vehicle
Prior art date
Application number
PCT/JP2018/039256
Other languages
English (en)
French (fr)
Inventor
敦 阿部
尚良 佐藤
明夫 作宮
宏之 宮浦
啓 菅原
龍治 大谷
宏和 古井
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2019082863A1 publication Critical patent/WO2019082863A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • G08G3/02Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems

Definitions

  • the present invention relates to a control method, a control device and a control program.
  • Patent Document 1 As an example of a technique for automatically controlling the movement of a moving object, in Patent Document 1, the road is divided into a plurality of areas, and the vehicle is determined by determining whether or not to allow entry of the vehicle to each area. A traffic system that controls the movement of the vehicle has been proposed.
  • the traffic system includes a vehicle control device mounted on a vehicle, a server that determines a movement schedule of the vehicle, and an area communication device disposed in each area.
  • the vehicle control device receives the designation of the departure time, the departure place, and the destination, and transmits an application for movement to the server.
  • the server determines a movement schedule to the destination for the vehicle that has received the application, and transmits the determined movement schedule to the vehicle control device.
  • the vehicle control device automatically controls the movement of the vehicle based on the received movement schedule.
  • each area communication device installed in each area determines whether or not the vehicle is permitted to enter the area.
  • the vehicle control device inquires each area communication device whether or not to enter each area, and moves the vehicle so as to enter each area when the entry to each area is permitted. Thereby, the said traffic system can control movement of each vehicle so that it may not collide with other vehicles.
  • the movement rules set in the aisles such as roads are various. For example, different speed limits are defined for expressways and general roads. In addition, in general roads, there are cases where different speed limits are defined depending on the section. In the above traffic system, it is difficult to control the movement of a plurality of moving bodies on an actual road, since the various movement rules set in this way are not considered at all.
  • the server that determines the migration schedule to execute, for example, the following processing (a) to (c).
  • (c) each movement according to the specified rule Determine the contents of movement control of the body
  • the present invention in one aspect, is made in view of such circumstances, and an object thereof is to reduce the calculation cost for controlling a plurality of moving bodies moving in a passage where various movement rules can be set. It is to provide the technology for.
  • the present invention adopts the following configuration in order to solve the problems described above.
  • the one or more servers transmit the movement instruction to the plurality of mobile bodies configured to be autonomously movable, respectively, thereby the plurality of movements
  • a control method for controlling movement of a body wherein a control device of each moving body transmits a start position and a destination of movement to the one or more servers, and movement of the moving body.
  • the aisle network constituted by the provided aisle is divided into a plurality of virtual flow areas, and in each of the plurality of virtual flow areas, a movement rule applied to the movement of the aisle included in each is set.
  • the one or more virtual fluid areas to be used for the movement from the start position to the destination from the plurality of virtual fluid areas are paired with the respective mobile objects.
  • an aisle network constituted by aisles provided for movement of each mobile object is divided into a plurality of virtual flow areas, and one or more servers are connected from the start position of the movement to the destination
  • one or more virtual flow areas to be used for the purpose and at least an entry time to the virtual flow area to be at least initially entered are determined.
  • the one or more servers transmit the determination contents to each mobile unit, thereby instructing each mobile unit to move based on the respective determination contents.
  • Each moving body moves from the start position to the destination according to the received instruction.
  • the movement of each mobile object is controlled (controlled).
  • a single movement rule is set for the passage included in each virtual flow area.
  • the movement rules are applied to each moving body moving in the passage in each virtual flow area.
  • the movement rules may define the movement speed when moving in the passage and / or the minimum distance to other moving bodies. Therefore, when a plurality of mobile units move in the same virtual flow area, the same movement rule is applied to the respective mobile units, and the respective mobile units move in an orderly manner in accordance with the same movement rule. Thereby, in each virtual flow area, each mobile can move without collision.
  • one or more servers execute the process of selecting a virtual flow area to be used for movement of each mobile object. It is possible to specify the range to which the movement rule of. That is, in the control method, the calculation process for determining the movement schedule from the start position of each moving object to the destination by an amount that can omit the process of individually specifying the range to which the movement rule of the object is applied. Can be simplified.
  • control method different movement rules are set for each virtual flow area, and even if the movement rules applied in the aisle network are diversified, the calculation process for controlling movement of each moving body is complicated. Can be suppressed. Therefore, it is possible to reduce the calculation cost for controlling a plurality of moving bodies moving in the aisle where various movement rules can be set.
  • the “mobile” is not particularly limited as long as it is configured to be autonomously movable.
  • a vehicle configured to be able to operate automatically, a ship configured to be able to automatically navigate, a drone And a flight vehicle including a flightable car.
  • the “passageway” may not be particularly limited as long as it defines an area to be used for movement of each mobile body, and may be set on land, the air, sea, or the like.
  • the passage may be a road, a route or the like.
  • the “passageway” may be a small moving space such as a road shoulder, a bus entrance road, or a taxi landing path.
  • “Aisle network” is used to refer to such an entire passage.
  • the “passage net” may be replaced with a word corresponding to the type when the entire path of a specific type is indicated.
  • the “aisle network” may be referred to as a “road network”.
  • the "virtual flow area” is set to divide the aisle network, that is, to include a part of the entire aisle that constitutes the aisle network.
  • each virtual flow area is set so as to include an aisle of a size that allows a plurality of moving objects to move at the same time.
  • a single movement rule is set means that a common (identical) movement rule is applied to a plurality of moving objects moving in the same virtual flow area at the same time.
  • a move rule is set. As long as a common movement rule is applied to a plurality of mobile units moving in the same virtual flow area, the movement rules set for each virtual flow area may be changed periodically or irregularly.
  • a plurality of virtual blocks flowing from the start to the end according to the set movement rule while being arranged from the start to the end It may be set.
  • the one or more servers may allocate at least one virtual block from the plurality of virtual blocks set in each of the one or more virtual flow areas of the target to the respective mobile units Then, the entry time to enter each of the one or more virtual flow areas of the target may be determined. Then, the one or more servers notify the control device of the virtual block allocated in each of the one or more virtual flow areas of the target, thereby the one or more virtual flow areas of the target and the entry The time may be sent to the controller.
  • each virtual block is set to flow while being arranged from the start to the end of each virtual flow area. Therefore, by following the flow of each virtual block, each mobile can complete the movement within each virtual flow area without inhibiting the movement of other mobiles. That is, by adopting a simple process of allocating each moving body to each virtual block, it is possible to appropriately set the movement schedule while simplifying the calculation process for determining the movement schedule of each moving body. It will be. Therefore, according to the configuration, it is possible to properly control a plurality of moving bodies, and to further reduce the calculation cost for controlling a plurality of moving bodies moving in a passage where various movement rules can be set. it can.
  • the “virtual block” is a virtual block set to flow in the passage in each virtual flow area.
  • the plurality of virtual flow areas may include a first virtual flow area and a second virtual flow area adjacent to each other. Further, the end of the first virtual flow area may be connected to the beginning of the second virtual flow area, and each virtual block of the first virtual flow area is the end of the corresponding virtual block. There is a correspondence relationship with the virtual block of the second virtual flow area that flows from the start end at the timing when the time of Then, the one or more servers are virtual of the first virtual flow area corresponding to each other with respect to the moving object moving in the path of the first virtual flow area and the second virtual flow area. A block and a virtual block of the second virtual flow area may be allocated. According to the configuration, by assigning each moving body to a virtual block having a correspondence relationship between adjacent virtual flow areas, control is realized such that each moving body smoothly moves between the adjacent virtual flow areas. can do.
  • the movement rule may define at least a movement speed.
  • the plurality of virtual flow areas may further include a third virtual flow area adjacent to the second virtual flow area.
  • the end of the second virtual flow area may be connected to the beginning of the third virtual flow area.
  • Each of the virtual blocks of the second virtual flow area may have a correspondence with a virtual block of the third virtual flow area that flows from the start end when the respective virtual blocks reach the end .
  • the moving speed set in the first virtual flow area may be different from the moving speed set in the third virtual flow area, and the moving speed set in the second virtual flow area May be set to be between the moving speed set in the first virtual flow area and the moving speed set in the third virtual flow area.
  • the one or more servers correspond to the mobile objects moving in the path of the first virtual flow area, the second virtual flow area, and the third virtual flow area.
  • a virtual block of one virtual flow area, a virtual block of the second virtual flow area, and a virtual block of the third virtual flow area may be allocated. According to the configuration, it is possible to realize control such that each moving body changes the moving speed stepwise.
  • the plurality of virtual flow areas may include a plurality of the first virtual flow areas, and each virtual block of the first virtual flow area and the second virtual flow area
  • the correspondence between the flow area and the virtual blocks is such that the virtual blocks of the first virtual flow area are associated with the virtual blocks of the second virtual flow area at a predetermined ratio. It may be set. According to the said structure, control which each mobile body does not collide in the junction point of a path
  • different movement rules may be set in at least one of the plurality of virtual flow areas adjacent to the virtual flow area. According to the said structure, after diversifying the movement rule applied within a passage network, the calculation cost concerning control of each moving body can be reduced.
  • the timing at which each virtual block of each first virtual flow area reaches the end is that each virtual block of another first virtual flow area reaches the end It may be set to be different from the timing. According to the said structure, the control which can move smoothly can be implement
  • the passage network may be divided into a plurality of passage sections, and each of the passage sections may include one or more virtual flow areas.
  • the plurality of servers may be assigned to any of the plurality of passage sections, and determination of one or more virtual flow areas of the target and the entry time for each moving body in each of the passage sections May be performed by the server assigned to each passage section.
  • Each of the passage sections may be set according to the type of the passage. For example, each passage section can be set to include one or more virtual flow areas having the same movement rule.
  • different servers can be assigned to each passage section to which the relatively same movement rule can be applied, so that the processing load on each server can be reduced.
  • a type of passage for example, when the passage is a road, a general road, an expressway, a main road, etc. can be mentioned.
  • the passage may be a road
  • the moving body may be an automobile configured to be capable of autonomous driving. According to the configuration, it is possible to provide a method of controlling the passage of a vehicle configured to be capable of autonomous driving.
  • an information processing apparatus that implements each of the above configurations may be used, or a program may be used.
  • a machine-readable storage medium is a medium which stores information such as a program by electrical, magnetic, optical, mechanical or chemical action.
  • the control device transmits information on movement to a plurality of mobile bodies configured to be autonomously movable, thereby controlling information on the movement of the plurality of mobile bodies.
  • It is a processing apparatus, It is a receiving part which receives the application of the movement from the control apparatus of each said mobile, Comprising: The receiving part which receives the information which shows the start position of a movement and the destination, The movement of each said mobile
  • the aisle network configured by the aisles provided for the purpose is divided into a plurality of virtual flow areas, and in each of the plurality of virtual flow areas, a movement rule applied to the movement of the aisle included in each is Among the plurality of virtual flow areas, one or more virtual flow areas to be used for movement from the start position to the destination are determined for each of the mobile bodies, and versus A schedule determination unit that determines, for each of the mobile units, an entry time into at least the first target of the virtual flow area among the one or more virtual flow areas, and one or more virtual targets of the determined target By transmitting the
  • control program transmits the movement instruction to the plurality of mobile bodies configured to be autonomously movable, thereby causing the plurality of mobile bodies to move.
  • An aisle network constituted by aisles provided for movement of each movable body is divided into a plurality of virtual flow areas, and in each of the plurality of virtual flow areas, the movement of the aisle included in each of the plurality of virtual flow areas is performed.
  • a movement rule to be applied is set, and one or more objects to be used for movement from the start position to the destination from the plurality of virtual flow areas Determining the virtual flow area of each of the mobile units, and the entry time to the virtual flow area of the target to be entered first of at least the first of the one or more virtual flow areas of the target.
  • the path of the one or more virtual flow areas of the object by transmitting the determined one or more virtual flow areas of the object and the determined time of arrival to the control device of the respective mobile units. Entering based on the entry time, and instructing each moving body to move the path according to the movement rule set in each of the one or more virtual flow areas of the target It is a program.
  • FIG. 1A schematically illustrates an example of a scene to which the present invention is applied.
  • FIG. 1B schematically illustrates an example of a detailed application scene of the control method according to the embodiment.
  • FIG. 2 schematically illustrates an example of the hardware configuration of the control server according to the embodiment.
  • FIG. 3 schematically illustrates an example of the hardware configuration of the in-vehicle apparatus according to the embodiment.
  • FIG. 4 schematically illustrates an example of the software configuration of the control server according to the embodiment.
  • FIG. 5 schematically illustrates an example of the area setting information according to the embodiment.
  • FIG. 6 schematically illustrates an example of flow schedule information according to the embodiment.
  • FIG. 7 schematically illustrates an example of allocation information according to the embodiment.
  • FIG. 1A schematically illustrates an example of a scene to which the present invention is applied.
  • FIG. 1B schematically illustrates an example of a detailed application scene of the control method according to the embodiment.
  • FIG. 2 schematically illustrates an example of the hardware configuration of the
  • FIG. 8 schematically illustrates an example of the software configuration of the in-vehicle apparatus according to the embodiment.
  • FIG. 9 illustrates an example of the processing procedure of the control method according to the embodiment.
  • FIG. 10A schematically illustrates one scene of the process of moving adjacent virtual flow areas.
  • FIG. 10B schematically illustrates one scene of the process of moving adjacent virtual flow areas.
  • FIG. 10C schematically illustrates one scene of the process of moving adjacent virtual flow areas.
  • FIG. 10D schematically illustrates an example of flow schedule information set for each of the adjacent virtual flow areas.
  • FIG. 11A schematically illustrates one scene of a process of controlling the speed of the vehicle to change stepwise.
  • FIG. 11B schematically illustrates one scene of a process of controlling the speed of the vehicle to change stepwise.
  • FIG. 11A schematically illustrates one scene of a process of controlling the speed of the vehicle to change stepwise.
  • FIG. 11C schematically illustrates one scene of a process of controlling the speed of the vehicle to be changed stepwise.
  • FIG. 11D schematically illustrates one scene of the process of controlling the speed of the vehicle to change stepwise.
  • FIG. 11E schematically illustrates an example of flow schedule information set in each virtual flow area.
  • FIG. 12A schematically illustrates one scene of a process of controlling the movement of each vehicle at the junction of roads.
  • FIG. 12B schematically illustrates one scene of the process of controlling the movement of each vehicle at the junction of roads.
  • FIG. 12C schematically illustrates one scene of the process of controlling the movement of each vehicle at the junction of roads.
  • FIG. 12D schematically illustrates an example of flow schedule information set in each virtual flow area.
  • FIG. 13 schematically illustrates an example of a control device of a mobile unit according to a modification.
  • FIG. 14 schematically illustrates an example of control server distribution.
  • the present embodiment an embodiment according to one aspect of the present invention (hereinafter, also referred to as “the present embodiment”) will be described based on the drawings.
  • the embodiment described below is merely an illustration of the present invention in all respects. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention. That is, in the implementation of the present invention, a specific configuration according to the embodiment may be appropriately adopted.
  • the present embodiment an example in which the present invention is applied to control the movement (traveling) of an automobile configured to be capable of autonomous driving is shown as the present embodiment.
  • the application target of the present invention may not be limited to the scene of controlling the movement of the vehicle configured to be capable of autonomous driving, and may be appropriately selected according to the embodiment.
  • the present invention may be applied to an automatically navigable ship, an automatically flightable aircraft and the like.
  • data appearing in the present embodiment is described in natural language, more specifically, it is specified by a pseudo language, a command, a parameter, a machine language or the like that can be recognized by a computer.
  • FIG. 1A schematically illustrates an example of a scene to which the control method according to the present embodiment is applied.
  • FIG. 1B schematically illustrates an example of a detailed application scene of the control method according to the present embodiment.
  • the control server 1 controls the movement of the plurality of vehicles 2 by transmitting a movement instruction to the plurality of vehicles 2.
  • the control server 1 is an example of the “one or more servers” and the “control device” in the present invention.
  • each vehicle 2 is an automobile configured to be capable of autonomous driving, and is an example of the "mobile" of the present invention.
  • the road 3 provided for movement of each vehicle 2 is extended in various directions, and comprises the road network 300 by branching or joining.
  • the road network 300 is divided into a plurality of virtual flow areas 30, and in each of the plurality of virtual flow areas 30, movement of roads (hereinafter also referred to as "in-area roads") 32 included in each of the plurality of virtual flow areas 30 is performed. There is a single move rule applied.
  • the road 3 (and the road 32 in the area) is an example of the “passage” in the present invention
  • the road network 300 is an example of the “passage network” in the present invention.
  • the “road network 300” refers to the entire road 3 extending in various directions.
  • Each virtual flow area 30 is set so as to include a part of the entire road 3 constituting the road network 300.
  • the road 3 has an area in which a plurality of vehicles 2 performing movement can simultaneously exist. 32) to be included.
  • “a single movement rule is set” means that each virtual flow is applied such that a common (identical) movement rule is applied to a plurality of vehicles 2 moving in the same virtual flow area 30 at the same time.
  • the movement rule of the area 30 is set. As long as a common movement rule is applied to a plurality of vehicles 2 moving in the same virtual flow area 30, the movement rules set in each virtual flow area 30 may be changed periodically or irregularly.
  • the in-vehicle device 20 of each vehicle 2 transmits the start position and the destination of the movement to the control server 1.
  • the in-vehicle device 20 is an example of the “control device” in the present invention.
  • the control server 1 selects one or more virtual flow areas 30 to be used for movement from the start position to the destination from among the plurality of virtual flow areas 30 for each vehicle 2 Decide against.
  • the control server 1 determines, for each vehicle 2, the entry time to the virtual flow area 30 that is the target to enter at least the first of the one or more virtual flow areas 30 to be used for movement.
  • control server 1 transmits the determined one or more virtual flow areas 30 of the target and the entry time to the in-vehicle device 20 of each vehicle 2. Thereby, the control server 1 enters the road 32 of the target one or more virtual flow areas 30 based on the entry time, and the road 32 according to the movement rule set for each of the target one or more virtual flow areas 30. Command each vehicle 2 to move.
  • each virtual flow area 30 from the start end 301 to the end end 302 according to the set movement rule while being arranged from the start end 301 to the end end 302 A plurality of flowing virtual blocks 31 are set.
  • the start end 301 is a place where each vehicle 2 enters each virtual flow area 30, and the end 302 is a place where each vehicle 2 leaves each virtual flow area 30.
  • the end 302 of each virtual flow area 30 is connected to the beginning 301 of any other virtual flow area 30.
  • the virtual block 31 is a virtual block set to flow on the road 32 in each virtual flow area 30 as an index for instructing the movement of each vehicle 2.
  • the size of one virtual block 31 is set according to one vehicle 2.
  • five virtual blocks 31 exist simultaneously in one virtual flow area 30 in FIG. 1B, the number of virtual blocks that can exist simultaneously in one virtual flow area 30 is not limited to five. It may be set appropriately according to the embodiment.
  • Each virtual block 31 is set to flow according to the movement rule set in each virtual flow area 30 while maintaining the arrangement with the other virtual blocks 31. Therefore, the time to depart the start end 301 of each virtual block 31 and the time to reach the end 302 are determined in advance based on the movement rules set in each virtual flow area 30.
  • control server 1 allocates at least one virtual block 31 among the plurality of virtual blocks 31 set in each of the one or a plurality of virtual flow areas 30 to be used for movement to each vehicle 2.
  • the control server 1 determines an entry time at which each vehicle 2 is to enter each of the one or more virtual flow areas 30 to be used for movement.
  • the control server 1 notifies the on-vehicle device 20 of each vehicle 2 of the virtual blocks 31 allocated in each of the target one or more virtual flow areas 30, thereby the target one or more virtual flow areas 30 and entry
  • the time is transmitted to the on-vehicle device 20 of each vehicle 2.
  • the control server 1 enters the road 32 of the target one or more virtual flow areas 30 based on the entry time, and the road 32 according to the movement rule set for each of the target one or more virtual flow areas 30.
  • the vehicle 2 moves from the start position to the destination according to the flow of the virtual block 31 allocated in each of the target one or more virtual flow areas 30 according to the received instruction.
  • one or more virtual flow areas 30 are set in the route from the start position to the destination, and allocation of the virtual block 31 to each vehicle 2 is performed in each of the one or more virtual flow areas 30. ing. Therefore, each vehicle 2 may move from the start position to the destination by following the flow of the allocated virtual block 31 of the vehicle in each of the one or more virtual flow areas 30 to be used for movement. it can.
  • the road network 300 configured by the roads 3 is divided into a plurality of virtual flow areas 30.
  • the control server 1 enters, for each vehicle 2, one or more virtual flow areas 30 to be used from the start position of movement to the destination, and entry time to at least the virtual flow area 30 to be initially entered. Decide. Thereby, the control server 1 determines, for each vehicle 2, a schedule of movement from the start position to the destination.
  • a movement rule is set for the in-area road 32.
  • This movement rule is applied to each vehicle 2 moving on the in-area road 32 of each virtual flow area 30.
  • the movement rules determine how each vehicle 2 moves on the in-area road 32 of each virtual flow area 30. Therefore, in each virtual flow area 30, each vehicle 2 moves (travels) the in-area road 32 according to a certain discipline by applying the same movement rule. Therefore, in each virtual flow area 30, each vehicle 2 can move without collision.
  • the control server 1 executes a process of determining (selecting) the virtual flow area 30 to be used for the movement of each vehicle 2. Only by doing, it is possible to specify the range to which the target movement rule is applied. That is, in the control method, it is possible to omit the process of individually specifying the range to which the movement rule of the object is applied, etc., thereby determining the schedule of movement from the movement start position of each vehicle 2 to the destination. Can simplify the process of calculation.
  • the movement rule of each virtual flow area 30 can be appropriately set according to the embodiment, and the virtual flow area 30 adjacent to at least one of the plurality of virtual flow areas 30 set in the road network 300 can be set appropriately.
  • Different movement rules can be set.
  • the movement rules may specify, for example, at least one of the movement speed (traveling speed) when moving the intra-area road 32 and the minimum distance (minimum inter-vehicle distance) between other vehicles.
  • the movement of each vehicle 2 is represented by the flow of each virtual block 31. Therefore, the movement rule according to the present embodiment indirectly defines the movement method of each vehicle 2 in each virtual flow area 30 by defining the flow method of each virtual block 31 in each virtual flow area 30.
  • FIG. 2 schematically illustrates an example of the hardware configuration of the control server 1 according to the present embodiment.
  • the control server 1 is a computer to which the control unit 11, the storage unit 12, the communication interface 13, the input device 14, the output device 15, and the drive 16 are electrically connected.
  • the communication interface is described as “communication I / F”.
  • the control unit 11 includes a hardware processor such as a central processing unit (CPU), a random access memory (RAM), and a read only memory (ROM), and is configured to execute various information processing based on programs and data. Ru.
  • the storage unit 12 is an example of a “memory”, and is configured of, for example, a hard disk drive, a solid state drive, or the like. In the present embodiment, the storage unit 12 stores a control program 121, map information 122, area setting information 123, flow schedule information 124, allocation information 125, and the like.
  • the control program 121 is a program including an instruction to cause the control server 1 to execute information processing (FIG. 9) for controlling the movement of each vehicle 2 described later.
  • the map information 122, the area setting information 123, the flow schedule information 124, and the allocation information 125 are used for information processing for controlling the movement of each vehicle 2. Details will be described later.
  • the communication interface 13 is, for example, a wired LAN (Local Area Network) module, a wireless LAN module, or the like, and is an interface for performing wired or wireless communication via a network.
  • the control server 1 performs data communication with the on-vehicle devices 20 of the respective vehicles 2 via the communication interface 13.
  • the input device 14 is, for example, a device for performing input such as a mouse and a keyboard.
  • the output device 15 is, for example, a device for outputting a display, a speaker or the like. An operator can operate the control server 1 through the input device 14 and the output device 15.
  • the drive 16 is, for example, a CD drive, a DVD drive, or the like, and is a drive device for reading a program stored in the storage medium 91.
  • the type of drive 16 may be appropriately selected according to the type of storage medium 91.
  • At least one of the control program 121, the map information 122, the area setting information 123, the flow schedule information 124, and the allocation information 125 may be stored in the storage medium 91.
  • the storage medium 91 stores information such as a program by an electric, magnetic, optical, mechanical or chemical action so that information such as a computer or other device or program recorded on a machine can be read.
  • the control server 1 may obtain at least one of the control program 121, the map information 122, the area setting information 123, the flow schedule information 124, and the allocation information 125 from the storage medium 91.
  • a disc-type storage medium such as a CD or a DVD is illustrated.
  • the type of storage medium 91 is not limited to the disc type, and may be other than the disc type.
  • a storage medium other than the disk type for example, a semiconductor memory such as a flash memory can be mentioned.
  • control unit 11 may include a plurality of hardware processors.
  • the hardware processor may be configured by a microprocessor, a field-programmable gate array (FPGA), or the like.
  • FPGA field-programmable gate array
  • FIG. 1A and 1B in order to control movement of each vehicle 2, multiple control server 1 may be used.
  • the hardware configuration of each control server 1 may not be identical.
  • the control server 1 may be a general-purpose server device, a general-purpose PC (Personal Computer), or the like, in addition to an information processing device designed specifically for the service to be provided.
  • FIG. 3 schematically illustrates an example of the hardware configuration of the in-vehicle apparatus 20 according to the present embodiment.
  • a control unit 21, a storage unit 22, a communication interface 23, a GPS (Global Positioning System) signal receiving circuit 24, and a touch panel display 25 are electrically connected.
  • the communication interface is described as "communication I / F”.
  • control unit 21 includes a hardware processor such as a CPU, a RAM, and a ROM, and is configured to execute various information processing based on programs and data.
  • the control unit 21 may be configured by, for example, an ECU (Electronic Control Unit).
  • the storage unit 22 includes, for example, a RAM, a ROM, and the like, and stores a control program 221, map information 222, area setting information 223, and flow schedule information 224.
  • the control program 221 is a program including an instruction to cause the on-vehicle apparatus 20 to execute information processing (FIG. 9) for controlling the automatic driving of the vehicle 2 in accordance with an instruction of the control server 1 described later.
  • the map information 222, the area setting information 223, and the flow schedule information 224 are the same as the map information 122, the area setting information 123, and the flow schedule information 124. Details will be described later.
  • the on-vehicle apparatus 20 may acquire at least one of the map information 222, the area setting information 223, and the flow schedule information 224 via a network, a storage medium, and the like.
  • the in-vehicle device 20 may acquire the area setting information 123 and the flow schedule information 124 stored in the storage unit 12 as the area setting information 223 and the flow schedule information 224 from the control server 1 via the network.
  • the communication interface 23 like the communication interface 13, is an interface for performing communication via a network.
  • a wireless LAN module is used for the communication interface 23.
  • the in-vehicle device 20 performs data communication with the control server 1 via the communication interface 23.
  • the GPS signal receiving circuit 24 is configured to receive a GPS signal and measure the position of the vehicle 2 (hereinafter also referred to as “own vehicle position”) based on the received GPS signal.
  • the GPS signal reception circuit 24 outputs information indicating the measured vehicle position to the control unit 21.
  • the information which shows the own vehicle position measured based on the GPS signal is also called “GPS information.”
  • the touch panel display 25 is appropriately configured to be able to display and input information.
  • the touch panel display 25 includes, for example, a liquid crystal panel such as a liquid crystal display, a backlight for illuminating the liquid crystal panel from the back, and a touch panel for detecting a pressed position on the liquid crystal panel.
  • the type of the touch panel is not particularly limited, and, for example, a resistive film method, an electrostatic capacitance method, or the like may be employed.
  • the touch panel display 25 is used to display and input information for a user who has got on the vehicle 2.
  • the control unit 21 may include a plurality of hardware processors.
  • the hardware processor may be configured by a microprocessor, an FPGA or the like.
  • the storage unit 22 may be configured by a RAM and a ROM included in the control unit 21.
  • the storage unit 22 may be configured by an auxiliary storage device such as a hard disk drive or a solid state drive.
  • the on-vehicle device 20 may include other types of display devices and input devices in place of or in addition to the touch panel display 25.
  • a portable terminal such as a smartphone or a general-purpose computer such as a tablet PC may be used as the in-vehicle device 20 in addition to an information processing device designed specifically for a service.
  • FIG. 4 schematically illustrates an example of the software configuration of the control server 1 according to the present embodiment.
  • the control unit 11 of the control server 1 develops the control program 121 stored in the storage unit 12 in the RAM. Then, the control unit 11 causes the CPU to interpret the control program 121 expanded in the RAM, and executes information processing based on the interpretation while controlling each component.
  • the control server 1 according to the present embodiment is configured as a computer including a reception unit 111, a schedule determination unit 112, and a movement instruction unit 113 as software modules.
  • the receiving unit 111 receives an application for movement of each vehicle 2 from the in-vehicle device 20, and receives information indicating the movement start position and the destination.
  • the schedule determination unit 112 determines, for each vehicle 2, one or more virtual flow areas 30 to be used for movement from the start position to the destination among the plurality of virtual flow areas 30. In addition, the schedule determination unit 112 determines, for each vehicle 2, the entry time to the virtual flow area 30 that is the target to enter at least the first of the one or more virtual flow areas 30 to be used for movement.
  • the movement instruction unit 113 transmits the determined one or more virtual flow areas 30 of the target and the entry time to the in-vehicle device 20 of each vehicle 2. Thereby, the movement instruction unit 113 enters the road 32 of the target one or more virtual flow areas 30 based on the entry time, and the road according to the movement rule set for each of the target one or more virtual flow areas 30 Instruct each vehicle 2 to move 32.
  • the map information 122 indicates information on the road network 300
  • the area setting information 123 indicates information on setting of each virtual flow area 30. Therefore, the schedule determination unit 112 uses the map information 122 and the area setting information 123 to determine one or more virtual flow areas 30 to be used for movement from the start position to the destination.
  • a plurality of virtual blocks 31 are set in each virtual flow area 30, and the setting of the flow of each virtual block 31 is held as the flow schedule information 124. . Therefore, the schedule determination unit 112 makes use of the flow schedule information 124 and at least one of a plurality of virtual blocks 31 set in each of the one or more virtual flow areas 30 to be used for movement. 31 is assigned to each vehicle 2. Then, the result of the assignment is stored in the storage unit 12 as assignment information 125. Each piece of information will be described below.
  • the map information 122 indicates each position of the road 3 in the road network 300.
  • the format of the map information 122 may not be particularly limited.
  • information such as a known road map may be used.
  • the control server 1 grasps each position of the road 3 in the road network 300 based on the map information 122.
  • the area setting information 123 is information indicating the setting of each virtual flow area 30. As shown in FIG. 5, in the present embodiment, the area setting information 123 includes information such as an area ID, position information, a movement rule, and a block ID.
  • the area ID is an identifier for identifying each virtual flow area 30.
  • the position information indicates the position of each virtual flow area 30 on the map (road network 300) indicated by the map information 122.
  • the position information may include information indicating the positions of the start end 301 and the end end 302.
  • the movement rule is applied to move each vehicle 2 on the road 32 in each virtual flow area 30 as described above. For example, the movement speed (traveling speed) when moving the in-area road 32 , The distance between other vehicles (minimum inter-vehicle distance), etc.
  • the minimum inter-vehicle distance is defined, for example, by the distance between adjacent virtual blocks 31.
  • the block ID is an identifier for identifying each virtual block 31 set in each virtual flow area 30.
  • the control server 1 grasps the attribute of each virtual flow area 30 based on the area setting information 123.
  • the flow schedule information 124 indicates a schedule in which each virtual block 31 in each virtual flow area 30 flows in the virtual flow area 30 from the start end 301 to the end 302. As shown in FIG. 6, in the present embodiment, new virtual blocks 31 sequentially occur from the start end 301, and the virtual blocks 31 arriving at the end 302 disappear in the flow of each virtual block 31 in the virtual flow area 30. Expressed as a thing.
  • four virtual blocks 31 can exist in the virtual flow area 30.
  • positions L1 to L4 are set in order from the start end 301.
  • the virtual block (BA4) generated from the start end 301 exists at the position L1 closest to the start end 301, and the virtual block (BA3) generated at a time before the generation time of the virtual block (BA4) It exists in position L2 by the side of termination 302 rather than.
  • a virtual block (BA2) generated at a time before the generation time of the virtual block (BA3) exists at a position L3 closer to the end 302 than the position L2, and the most of the four virtual blocks 31
  • a virtual block (BA1) generated at an early time is present at a position L4 closest to the end 302.
  • Each of the virtual blocks (BA1) to (BA4) flows according to the movement rule set in the virtual flow area 30, while maintaining the arranged state. Therefore, a new virtual block (BA5) is generated from the start end 301 and arrives at the end 302 at time T1 at time T2 when the time taken to flow for one virtual block based on the movement rule has elapsed from time T1.
  • the virtual block (BA1) has disappeared.
  • the virtual block (BA2) existing at a position L3 one before the end 302 at time T1 exists at a position L4 and arrives at the end 302.
  • the virtual block (BA3) that was present at the position L2 at time T1 is present at a position L3 on the end 302 side by one virtual block rather than the position L2.
  • the flow schedule information 124 may be appropriately configured to express such generation, flow, and annihilation of each virtual block 31.
  • the flow schedule information 124 according to the present embodiment generates, flows, and disappears each virtual block 31 as described above according to a graph indicating the relationship between the position of each virtual block 31 and time. Express The inclination of this graph indicates the flow speed of each virtual block 31, that is, the moving speed (traveling speed) when each virtual block 31 is assigned to each vehicle 2.
  • the graph of FIG. 6 shows a state in which virtual blocks (BA6) to (BA3) are arranged in order from the start end 301 at time T3 when the time taken to flow for one virtual block has elapsed from time T2. That is, at time T3, a new virtual block (BA6) is generated from the start end 301, and the virtual block (BA2) arriving at the end 302 at time T2 disappears. Similarly, in the graph of FIG. 6, at time T4 when the time taken to flow for one virtual block has elapsed from time T3, there is a state where virtual blocks (BA7) to (BA4) are arranged in order from the start end 301 side. Indicated. The control server 1 grasps the position in the virtual flow area 30 at each time of each virtual block 31 based on such flow schedule information 124.
  • the method of expressing the flow of each virtual block 31 is not limited to such an example, as long as the position in the virtual flow area 30 at each time of each virtual block 31 can be grasped. It may be set appropriately according to the form.
  • the flow of each virtual block 31 may be expressed as the virtual block 31 arriving at the end 302 restarts from the beginning 301. That is, each virtual block 31 may be set to circulate in the virtual flow area 30.
  • the allocation information 125 indicates the result of allocating each virtual block 31 of each virtual flow area 30 to each vehicle 2.
  • the allocation information 125 is used to manage the allocation of the vehicles 2 to each virtual block 31 so that the plurality of vehicles 2 are not allocated to the same virtual block 31.
  • the assignment information 125 according to the present embodiment is expressed by data in a table format, and includes fields for holding a vehicle ID, an area ID, a block ID and the like.
  • the vehicle ID is an identifier for identifying each vehicle 2.
  • the vehicle ID is uniquely assigned to each vehicle 2.
  • the vehicle ID of the target vehicle 2 to which the virtual block 31 is assigned is stored in the vehicle ID field of each record.
  • the area ID of the virtual flow area 30 including the allocated virtual block 31 and the block ID of the allocated virtual block 31 are stored.
  • the first record of the allocation information 125 illustrated in FIG. 7 is the virtual block 31 of the block ID “BA3” of the virtual flow area 30 of the area ID “A01” with respect to the vehicle 2 of the vehicle ID “C0001”. Indicates that it has been assigned.
  • the second record indicates that the virtual block 31 of the block ID "BA4" of the virtual flow area 30 of the area ID "A01” is allocated to the vehicle 2 of the vehicle ID "C0002".
  • the data format of the allocation information 125 may not be limited to the above-described table format, and may be appropriately determined according to the embodiment. Also, the values stored in the respective records in FIG. 7 are described for the sake of convenience for describing the present embodiment, and the present invention is not limited to such an example. The values stored in each record may be specified as appropriate according to the embodiment.
  • FIG. 8 schematically illustrates an example of the software configuration of the on-vehicle apparatus 20 according to the present embodiment.
  • the control unit 21 of the in-vehicle apparatus 20 deploys the control program 221 stored in the storage unit 22 in the RAM. Then, the control unit 21 causes the CPU to interpret the control program 221 expanded in the RAM, and executes information processing based on the interpretation while controlling each component.
  • the on-vehicle apparatus 20 is configured as a computer including a movement application unit 211, an instruction reception unit 212, and an automatic driving control unit 213 as software modules.
  • the movement application unit 211 applies for movement to the control server 1 by transmitting the start position and the destination of the movement to the control server 1.
  • the control server 1 that has received the application sends one or more virtual flow areas 30 to be used for moving from the start position to the destination, and at least the virtual flow area 30 to be initially moved.
  • An entry time is determined for each vehicle 2, and an instruction for movement based on the determined content is transmitted to each vehicle 2.
  • the instruction receiving unit 212 receives an instruction of the movement of the control server 1.
  • the automatic driving control unit 213 controls the movement (traveling) of the vehicle 2 in accordance with the content of the movement instruction from the control server 1.
  • each software module of the control server 1 and the on-vehicle device 20 is realized by a general-purpose CPU.
  • some or all of the above software modules may be realized by one or more dedicated processors.
  • the software configuration of each of the control server 1 and the in-vehicle device 20 omission, replacement, and addition of a software module may be appropriately performed according to the embodiment.
  • FIG. 9 shows an example of the processing procedure of the control server 1 and the on-vehicle device 20.
  • the processing procedure for controlling the movement of each vehicle 2 described below is an example of the “control method” in the present invention.
  • the processing procedure described below is merely an example, and each processing may be changed as much as possible.
  • steps may be omitted, replaced, or added as appropriate, according to the embodiment.
  • Step S101 First, in step S101, the control unit 21 of the in-vehicle apparatus 20 functions as the movement application unit 211, and receives an input of a destination. For example, the user operates the touch panel display 25 to input a desired destination. Thereby, the control unit 21 acquires information indicating the destination of the movement (hereinafter, also simply described as “destination information”).
  • control unit 21 acquires information indicating the start position of movement (hereinafter, also simply described as “start position information”) together with the destination information.
  • start position information information indicating the position of the vehicle output from the GPS signal reception circuit 24 at the time of receiving an input of a destination.
  • the method of acquiring the start position information may not be limited to such an example.
  • the control unit 21 may acquire start position information in the same manner as the destination information, that is, by receiving an input via the touch panel display 25.
  • control unit 21 may inquire the user via the touch panel display 25 whether to immediately start moving. Then, when it is selected not to start moving immediately, the control unit 21 may receive an input of a time at which it is desired to start moving (hereinafter also referred to as “start specified time”). For example, as in the case of the destination information, the control unit 21 receives information from the user via the touch panel display 25 to indicate information indicating the specified start time of movement (hereinafter, also simply described as “specified time information”). It can be acquired.
  • start specified time a time at which it is desired to start moving
  • Step S102 the control unit 21 functions as the movement application unit 211 and transmits the start position information and the destination information to the control server 1 via the network, thereby applying the movement application to the control server 1 concerned.
  • a network used for data communication may be appropriately selected from, for example, the Internet, a wireless communication network, a mobile communication network, a telephone network, a dedicated network, and the like.
  • the control part 21 when designation
  • Step S103 The control unit 11 of the control server 1 functions as the reception unit 111, and stands by until an application for movement in step S102 is received from the on-board device 20 of each vehicle 2. Then, in step S103, the control unit 11 receives the movement start position information and the destination information from the in-vehicle device 20 as the reception process of the application for the movement. In addition, when the start designated time of movement is designated, the control unit 11 receives the designated time information together with the movement start position information and the destination information in the present step S103.
  • Step S104 In the next step S104, the control unit 11 functions as the schedule determination unit 112, and starts the vehicle 2 that has received the application for movement from among the plurality of virtual flow areas 30 set in the road network 300. One or more virtual flow areas 30 to be used for movement from the position to the destination are determined.
  • a method of determining one or more virtual flow areas 30 to be used for movement from the start position to the destination may be appropriately set according to the embodiment.
  • the control unit 11 specifies the start position and the destination of the movement of the vehicle 2 that has received the application for movement, with reference to the start position information and the destination information acquired in step S103.
  • the control unit 11 refers to the map information 122 to specify a route (road 3) from the start position to the destination.
  • the control unit 11 may specify a route from the start position to the destination so as to minimize the required time.
  • the control unit 11 refers to the area setting information 123 to specify the virtual flow area 30 included in the route from the start position to the destination.
  • the control unit 11 determines one or more virtual flow areas 30 to be used for movement from the start position to the destination.
  • Step S105 In the next step S105, the control unit 11 functions as the schedule determination unit 112, and at least one of the one or more virtual flow areas 30 of the target determined in step S104 for the vehicle 2 for which the application for movement has been received. The entry time to the virtual flow area 30 to be entered first is determined.
  • movement rules are set in each virtual flow area 30. More specifically, in each virtual flow area 30, a plurality of virtual blocks 31 for allocation to each vehicle 2 are set, and according to the schedule indicated by the flow schedule information 124, each virtual block 31 corresponds to each virtual flow It flows in the area 30 from the start end 301 to the end end 302. Then, each vehicle 2 is instructed to move in accordance with the flow of the allocated virtual block 31.
  • each vehicle 2 that has entered the virtual flow area 30 once travels the intra-area road 32 according to the set movement rule. Therefore, when passing through a plurality of virtual flow areas 30 for movement from the start position to the destination, if the entry time to the virtual flow area 30 to be entered first is determined, each virtual to be entered second or later The entry time into the flow area 30 can be specified based on the movement rule of the virtual flow area 30 entering before entering each virtual flow area 30. Therefore, the control unit 11 transmits to the virtual flow area 30 of the target to which at least the first of the one or a plurality of virtual flow areas 30 of the target determined in step S104 is applied to the vehicle 2 that has received the application for movement. The entry time may be determined.
  • step S105 even if the control unit 11 determines only the entry time to the virtual flow area 30, which is the target to enter first among the one or more virtual flow areas 30 of the target determined in step S104. Good. Moreover, the control part 11 may determine the approach time to each of the 1 or several virtual flow area 30 of the object determined by step S104. Furthermore, the control unit 11 enters each of several target virtual flow areas 30 including the target virtual flow area 30 to be entered first of the target one or more virtual flow areas 30 determined in step S104. The time may be determined.
  • the entry time to the virtual flow area 30 to be entered first is appropriately determined based on the time to start the movement, the start position of the move, and the position of the virtual flow area 30 to be entered first.
  • the time to start moving may be the start specified time indicated by the specified time information or any movable time after the specified start time.
  • the time to start moving is the time when the application for movement is accepted (current time Or any time that can start moving after the current time.
  • each virtual block 31 described above is set in each virtual flow area 30. Therefore, the control unit 11 sets a plurality of virtual blocks 31 set based on the time to start the movement, the start position of the movement, and the position of each of the one or more virtual flow areas 30 to be used for the movement. From among the above, a virtual block 31 which can be moved without contradiction from the start position to the destination is allocated.
  • control unit 11 For example, based on the time to start movement and the start position of movement, the control unit 11 arrives at the start end 301 of the virtual flow area 30 to be entered first (hereinafter also referred to as “start end arrival time”) May be identified. And control part 11 may be virtual block 31 which occurs from starting end 301 after specified starting end arrival time, and may allocate virtual block 31 which is not allocated to other vehicles 2 to object vehicles 2. The control unit 11 can determine whether the target virtual block 31 is assigned to another vehicle 2 by referring to the assignment information 125.
  • allocation of the virtual block 31 in the virtual flow area 30 targeted for the second entry enters before the virtual flow area 30 for that target It may be performed based on the allocation of the virtual block 31 in the virtual flow area 30 to be processed, that is, the virtual flow area 30 to be initially entered.
  • the control unit 11 refers to the flow schedule information 124 and specifies the time when the virtual block 31 allocated to the target vehicle 2 in the virtual flow area 30 to be entered first reaches the terminal end 302 It is also good.
  • the control unit 11 is a virtual block 31 generated from the start end 301 of the virtual flow area 30 to be entered second after the time to reach the end 302 of the virtual flow area 30 to be entered first.
  • the virtual block 31 not assigned to the other vehicle 2 may be assigned to the target vehicle 2.
  • the allocation of the virtual block 31 in the virtual flow area 30 to be entered after the third one can be similarly performed. That is, when the control unit 11 performs allocation of the virtual block 31 in the virtual flow area 30 to be input to the N-th (N is an integer of 2 or more), the control unit 11 refers to the flow schedule information 124 (N-1).
  • the virtual block 31 assigned to the target vehicle 2 in the virtual flow area 30 to be entered first may specify the time when the terminal end 302 is reached. Then, after the time of reaching the end 302 of the (N ⁇ 1) th target virtual flow area 30 to be entered, the control unit 11 generates a virtual generated from the start end 301 of the Nth target virtual flow area 30. It is a block 31 and virtual blocks 31 not allocated to other vehicles may be allocated to the target vehicle 2.
  • control unit 11 can move the target vehicle 2 so as to be able to move from the start position to the destination without contradiction in each of the one or more virtual flow areas 30 to be used for movement from the start position to the destination.
  • Virtual blocks 31 can be assigned to The allocation of the virtual blocks 31 determines the entry time to enter each of the one or more virtual flow areas 30 to be used for movement.
  • the control unit 11 stores the assignment result of the virtual block 31 in the storage unit 12 as assignment information 125. A specific example of the allocation method of the virtual block 31 will be described later.
  • Step S106 In the next step S106, the control unit 11 functions as the movement instruction unit 113, and transmits, to the on-vehicle apparatus 20, the one or more virtual flow areas 30 of the target determined in steps S104 and S105 and the entry time.
  • the control unit 11 transmits one or a plurality of virtual flow areas 30 of the target to be used for movement from the start position to the destination and the entry time to the on-vehicle apparatus 20.
  • the on-vehicle device 20 is notified of the virtual blocks 31 allocated in each of the virtual flow areas 30 of Thereby, the control unit 11 enters the road 32 of the target one or more virtual flow areas 30 based on the entry time, and the road 32 according to the movement rule set for each of the target one or more virtual flow areas 30. Command the target vehicle 2 to move.
  • Step S107 After executing the process of step S102, the control unit 21 of the in-vehicle apparatus 20 of each vehicle 2 functions as the instruction receiving unit 212, and stands by until the content of the movement instruction is received from the control server 1. Then, in step S107, the control unit 21 controls the server server 1 to display information indicating one or more virtual flow areas 30 to be used for moving from the start position to the destination and the entry time as the process of receiving the instruction content. Receive from In the present embodiment, the control unit 21 determines one or more virtual flow areas 30 of the target as information indicating one or more virtual flow areas 30 to be used for movement from the start position to the destination and the entry time. Information indicating the virtual block 31 allocated in each is received from the control server 1.
  • control unit 21 functions as an automatic driving control unit 213, and controls the movement of the vehicle 2 from the start position to the destination in accordance with the instruction content from the control server 1.
  • the control unit 21 indicates the virtual block 31 allocated in each of one or more virtual flow areas 30 to be used for movement from the start position to the destination as the instruction content from the control server 1 Information is received from the control server 1. Therefore, the control unit 21 refers to the map information 222, the area setting information 223, and the flow schedule information 224, and controls the movement from the start position to the destination according to the flow of the virtual block 31 to which the vehicle is allocated.
  • the virtual block 31 is allocated to the vehicle 2 in each target virtual flow area 30 set as the route from the start position to the destination. Therefore, the vehicle 2 can move from the start position to the destination by following the flow of the allocated virtual block 31 of the own vehicle in each target virtual flow area 30.
  • the movement of each vehicle 2 is controlled by the control server 1.
  • the timing for acquiring the map information 222, the area setting information 223, and the flow schedule information 224 used in the present step 108 may be appropriately selected according to the embodiment.
  • the on-vehicle apparatus 20 may use map information 222, area setting information 223 including information indicating movement rules set in each virtual flow area 30, and flow schedule information 224 may use the control server 1, another information processing apparatus, or It may be acquired in advance from an external storage device such as NAS (Network Attached Storage).
  • NAS Network Attached Storage
  • the in-vehicle device 20 transmits area setting information 223 and flow schedule information 224 covering the range used for movement from the control server 1 You may get it.
  • each of the area setting information 223 and the flow schedule information 224 may be a part of each of the area setting information 123 and the flow schedule information 124 held by the control server 1.
  • the on-vehicle apparatus 20 may transmit information indicating the vehicle position to the control server 1.
  • the control server 1 determines whether each vehicle 2 is actually moving according to the flow of the virtual block 31 allocated to each vehicle 2 based on the information of the own vehicle position received from each vehicle 2 You may manage.
  • FIGS. 10A to 10D show allocation of virtual blocks (31B, 31C) in two adjacent virtual flow areas (30B, 30C) and a process of moving a vehicle 2B to which each virtual block (31B, 31C) is allocated.
  • FIG. 10D schematically illustrates flow schedule information (124B, 124C) indicating a flow schedule of each virtual block (31B, 31C) set in each virtual flow area (30B, 30C).
  • the flow schedule information 124B indicates the flow schedule of each virtual block 31B set in the virtual flow area 30B
  • the flow schedule information 124C indicates the flow schedule of each virtual block 31C set in the virtual flow area 30C.
  • the code of the vehicle is described as “2B”, but this vehicle 2B is a vehicle 2 moving in two adjacent virtual flow areas (30B, 30C). It is only showing.
  • Two virtual flow areas (30B, 30C) adjacent to each other are included in the plurality of virtual flow areas 30 set in the road network 300, and the end of the virtual flow area 30B is connected to the beginning of the virtual flow area 30C. ing.
  • the virtual flow area 30B is an example of the "first virtual flow area” in the present invention
  • the virtual flow area 30C is an example of the "second virtual flow area” in the present invention.
  • the virtual block 31B is generated from the beginning and flows to the end in the order of (BB1), (BB2), (BB3), (BB4), and (BB5). Do. Further, in the virtual flow area 30B, three virtual blocks 31B can exist simultaneously. On the other hand, in the virtual flow area 30C, the virtual block 31C is generated from the beginning in the order of (BC1), (BC2), (BC3) and (BC4) and flows toward the end. In the virtual flow area 30C, two virtual blocks 31C can exist simultaneously. In each figure, LB1 to LB3 indicate the positions of the three virtual blocks 31B in the virtual flow area 30B, and LC1 to LC2 indicate the positions of the two virtual blocks 31C in the virtual flow area 30C. It shows.
  • each virtual block 31B of the virtual flow area 30B has a correspondence with the virtual block 31C of the virtual flow area 30C which flows from the beginning at the timing when each virtual block 31B reaches the end.
  • the virtual block BB1 has a correspondence with the virtual block BC3
  • the virtual block BB2 has a correspondence with the virtual block BC4.
  • step S105 the control unit 11 of the control server 1 sets each virtual vehicle 2 on the road (32B, 32C) on two adjacent virtual flow areas (30B, 30C).
  • the virtual blocks (31B, 31C) in the flow areas (30B, 30C) that correspond to each other are assigned.
  • the control unit 11 is a virtual block (virtual block (BB1)) having a correspondence with the virtual block (BB1) in the virtual flow area 30C with respect to the vehicle 2B to which the virtual block (BB1) is allocated in the virtual flow area 30B.
  • Assign BC3) Assign BC3.
  • the hatching in FIG. 10D indicates virtual blocks (31B, 31C) of block IDs (BB1, BC3) allocated to the vehicle 2B.
  • step S108 the control unit 21 of the on-vehicle apparatus 20 may not provide a waiting time at all or almost between the virtual flow area 30B and the virtual flow area 30C when controlling the movement of the vehicle 2B. . Therefore, the vehicle 2B can smoothly cross from the virtual flow area 30B to the virtual flow area 30C. Therefore, according to the said allocation, control which the vehicle 2B moves smoothly between the adjacent virtual flowing areas (30B, 30C) is realizable.
  • FIGS. 11A to 11E show allocation of virtual blocks (31D, 31E, 31F) in three virtual flow areas (30D, 30E, 30F) and vehicles 2D to which each virtual block (31D, 31E, 31F) is allocated.
  • 1 schematically illustrates one scene of the process of moving.
  • FIG. 11E schematically illustrates flow schedule information (124D, 124E, 124F) indicating a flow schedule of virtual blocks (31D, 31E, 31F) set in each virtual flow area (30D, 30E, 30F) .
  • the flow schedule information 124D indicates the flow schedule of each virtual block 31D set in the virtual flow area 30D
  • the flow schedule information 124E indicates the flow schedule of each virtual block 31E set in the virtual flow area 30E
  • the flow schedule information 124F indicates a flow schedule of each virtual block 31F set in the virtual flow area 30F.
  • the code of the vehicle is described as “2D”, but this vehicle 2D is a vehicle 2 moving in three virtual flow areas (30D, 30E, 30F). It is only showing.
  • Three virtual flow areas (30D, 30E, 30F) are included in the plurality of virtual flow areas 30 set in the road network 300, and are arranged in order.
  • the virtual flow area 30D and the virtual flow area 30E are adjacent to each other, and the virtual flow area 30E and the virtual flow area 30F are adjacent to each other.
  • the end of the virtual flow area 30D is connected to the beginning of the virtual flow area 30E, and the end of the virtual flow area 30E is connected to the start of the virtual flow area 30F.
  • the virtual flow area 30D corresponds to the "first virtual flow area" of the present invention
  • the virtual flow area 30E corresponds to the "second virtual flow area” of the present invention
  • the virtual flow area 30F is the present invention Corresponds to the “third virtual flow area” of
  • the virtual block 31D is the beginning in the order of (BD1), (BD2), (BD3), (BD4), (BD5), (BD6), (BD7) Emanates from and flows towards the end.
  • two virtual blocks 31D can exist simultaneously.
  • virtual block 31E is generated from the start end in the order of (BE1), (BE2), (BE3), (BE4), (BE5), (BE6), (BE7), and the end is generated Flow towards the In the virtual flow area 30E, two virtual blocks 31E can exist simultaneously.
  • the virtual block 31F is generated from the beginning in the order of (BF1), (BF2), (BF3), (BF4), (BF5), (BF6), (BF7), Flow towards the In the virtual flow area 30F, two virtual blocks 31F can exist simultaneously.
  • LD1 to LD2 indicate the positions of two virtual blocks 31D in the virtual flow area 30D
  • LE1 to LE2 indicate the positions of two virtual blocks 31E in the virtual flow area 30E
  • LF1 to LF2 respectively indicate the positions of two virtual blocks 31F in the virtual flow area 30F.
  • Each virtual block 31D of the virtual flow area 30D has a correspondence with the virtual block 31E of the virtual flow area 30E which flows from the beginning at the timing when each virtual block 31D reaches the end.
  • each virtual block 31E of the virtual flow area 30E has a correspondence with the virtual block 31F of the virtual flow area 30F which flows from the beginning at the timing when each virtual block 31E reaches the end.
  • virtual blocks BD1 to BD5 have correspondences with virtual blocks BE3 to BE7 respectively
  • virtual blocks BE1 to BE5 have correspondences respectively with virtual blocks BE3 to BE7 respectively. doing.
  • At least the movement speed is defined as the movement rule applied to the roads (32D, 32E, 32F) in each virtual flow area (30D, 30E, 30F).
  • the moving speed set in the first virtual flow area 30D is set to be different from the moving speed set in the third virtual flow area 30F.
  • the movement speed set in the second virtual flow area 30E is between the movement speed set in the first virtual flow area 30D and the movement speed set in the third virtual flow area 30F. Set to be.
  • step S105 the control unit 11 of the control server 1 sets each virtual flow with respect to the vehicle 2D moving on the roads (32D, 32E, 32F) of the three virtual flow areas (30D, 30E, 30F).
  • Virtual blocks (31D, 31E, 31F) having a corresponding relationship with the areas (30D, 30E, 30F) are allocated.
  • control unit 11 sets the virtual block (BD1) in the first virtual flow area 30D, the virtual block (BE3) in the second virtual flow area 30E, and the third block for the vehicle 2D.
  • the virtual block (BF5) in the virtual flow area 30F of is allocated.
  • the hatching in FIG. 11E indicates virtual blocks (31D, 31E, 31F) of block IDs (BD1, BE3, BF5) allocated to the vehicle 2D.
  • step S108 the control unit 21 of the on-vehicle apparatus 20 changes the moving speed in stages while moving on the roads (32D, 32E, 32F) of the three virtual flow areas (30D, 30E, 30F) Control the movement of the vehicle 2D.
  • the moving speed set in the first virtual flow area 30D is 40 km / h
  • the moving speed set in the second virtual flow area 30E is 50 km / h
  • the third virtual flow area 30F It is assumed that the moving speed set to is 60 km / h.
  • the moving speed of the vehicle 2D is controlled so as to gradually accelerate from 40 km / h to 60 km / h while the vehicle 2D moves through the three virtual flow areas (30D, 30E, 30F). The same is true for deceleration.
  • the second example it is possible to realize control for smoothly and stepwise changing the speed of the vehicle 2D.
  • rapid acceleration and deceleration can be prevented, and the inertial force acting in the vehicle can be reduced, so that the burden of movement on the occupant in the vehicle 2D can be suppressed.
  • the size of each virtual block 31 may be appropriately set according to the embodiment.
  • the size (length in the traveling direction) of each virtual block (31D, 31E, 31F) is increased according to the size of the velocity.
  • the size of the virtual block 31E is larger than the size of the virtual block 31D
  • the size of the virtual block 31F is larger than the size of the virtual block 31E.
  • the size of each virtual block 31 may be determined, for example, according to the size of the moving speed to be set.
  • FIGS. 12A to 12D are assigned virtual blocks (31G, 31H, 31I) and virtual blocks (31G, 31I) (31H, 31I) in three virtual flow areas (30G, 30H, 30I) respectively.
  • FIG. 12D schematically illustrates flow schedule information (124G, 124H, 124I) indicating a flow schedule of virtual blocks (31G, 31H, 31I) set in each virtual flow area (30G, 30H, 30I) .
  • the flow schedule information 124G indicates the flow schedule of each virtual block 31G set in the virtual flow area 30G
  • the flow schedule information 124H indicates the flow schedule of each virtual block 31H set in the virtual flow area 30H
  • the flow schedule information 124I indicates a flow schedule of each virtual block 31I set in the virtual flow area 30I. 12A to 12C, for convenience of explanation, the reference numerals of the vehicles are indicated as “2G” and “2H", but each vehicle (2G, 2H) is a road (32G, 32I) including a junction. 32H, 32I) are only shown.
  • Each virtual flow area (30G, 30H, 30I) is included in the plurality of virtual flow areas 30 set in the road network 300.
  • Two virtual flow areas (30G, 30H) are set to include each road (32G, 32H) before the merging point, and the remaining virtual flow area 30I is set to include the road 32I after the merging point Ru.
  • Each virtual flow area (30G, 30H) before the merging point is adjacent to the virtual flow area 30I after the merging point, and the end of each virtual flow area (30G, 30H) is connected to the beginning of the virtual flow area 30I doing.
  • the two virtual flow areas (30G, 30H) before the merging point respectively correspond to the "first virtual flow area” of the present invention
  • the virtual flow area 30I after the merging point is the “second virtual flow area” of the present invention. It corresponds to "flow area”.
  • a virtual block 31G is generated from the beginning and flows toward the end in the order of (BG1), (BG2), (BG3).
  • two virtual blocks 31G can exist simultaneously.
  • the virtual block 31H is generated from the start end and flows toward the end in the order of (BH1), (BH2), and (BH3).
  • two virtual blocks 31H can exist simultaneously.
  • the virtual block 31I is from the start in the order of (BI1), (BI2), (BI3), (BI4), (BI5), (BI6), (BI7), (BI8) It occurs and flows towards the end.
  • LG1 to LG2 indicate the positions of two virtual blocks 31G in the virtual flow area 30G
  • LH1 to LH2 indicate the positions of two virtual blocks 31H in the virtual flow area 30H
  • LI1 to LI4 respectively indicate the positions of two virtual blocks 31I in the virtual flow area 30I.
  • Each virtual block (31G, 31H) of each virtual flow area (30G, 30H) in front of the merging point is a virtual flow area after the merging point flowing from the beginning at the timing when each virtual block (31G, 31H) reaches the end
  • each virtual block 31I of 30I There is a correspondence with each virtual block 31I of 30I.
  • the correspondence between each virtual block (31G, 31H) of each virtual flow area (30G, 30H) and each virtual block 31I of the virtual flow area 30I corresponds to each virtual block of each virtual flow area (30G, 30H) (31G, 31H) is set to be associated with each virtual block 31I of the virtual flow area 30I at a predetermined ratio.
  • each virtual block (31G, 31H) of each virtual flow area (30G, 30H) is alternately associated with each virtual block 31I of the virtual flow area 30I at a ratio of 1: 1. ing.
  • the timing when each virtual block 31G of the virtual flow area 30G reaches the end is set to be different from the timing when each virtual block 31H of the virtual flow area 30H reaches the end There is. Specifically, the end of each virtual block (31G, 31H) is generated so that each virtual block 31I of the virtual flow area 30I is generated from the beginning at the timing when each virtual block (31G, 31H) reaches each end The timing to reach is shifted.
  • the virtual blocks (BG1, BG2) of the virtual flow area 30G respectively correspond to the virtual blocks (BI5, BI7) of the virtual flow area 30I
  • the virtual flow area 30H is virtual
  • the blocks (BH1 and BH2) respectively correspond to the virtual blocks (BI6 and BI8) of the virtual flow area 30I.
  • step S105 the control unit 11 of the control server 1 sets the virtual flow areas (30G, 30I) of the vehicle 2G entering the virtual flow area 30I through one virtual flow area 30G. Allocate virtual blocks (31G, 31I) having a corresponding relationship. Similarly, with respect to the vehicle 2H entering the virtual flow area 30I through the other virtual flow area 30H, the control unit 11 is a virtual block (31H, 31I) having a corresponding relationship with each virtual flow area (30H, 30I) Assign
  • the control unit 11 allocates the virtual block (BG1) in the virtual flow area 30G before the junction and the virtual block (BI5) in the virtual flow area 30I after the junction to the vehicle 2G. There is. On the other hand, the control unit 11 allocates, to the vehicle 2H, a virtual block (BH1) in the virtual flow area 30H before the junction and a virtual block (BI6) in the virtual flow area 30I after the junction.
  • the hatching tool in FIG. 12D shows virtual blocks (31G, 31I) (31H, 31I) of block IDs (BG1, BI5) (BH1, BI6) assigned to the respective vehicles (2G, 2H).
  • step S108 the control unit 21 of the in-vehicle device 20 of each vehicle (2G, 2H) can control the movement of each vehicle (2G, 2H) so as not to collide with each other at the junction. Also, by shifting the timing to reach the end of each virtual block (31G, 31H), the transition from each virtual block (31G, 31H) to the virtual block 31I can be smoothly performed. . Therefore, according to the said method, the control which can move smoothly can be implement
  • the number of first virtual flow areas is two because there are two roads before the merging point.
  • the control method of the above-mentioned confluence point may not be limited to such an example. There may be three or more roads before the merging point, and accordingly, three or more first virtual flow areas may be set.
  • the ratio of associating each virtual block of each first virtual flow area with each virtual block of the second virtual flow area is 1: 1.
  • the ratio may not be limited to 1: 1, and may be appropriately set according to the embodiment.
  • the timing when each virtual block of each first virtual flow area reaches the end is set to be different from the timing when each virtual block of the other first virtual flow area reaches the end ing.
  • the setting of the timing at which each virtual block of each first virtual flow area reaches the end may not be limited to such an example, and may be appropriately determined according to the embodiment.
  • the road network 300 configured by the roads 3 is divided into a plurality of virtual flow areas 30. Therefore, the control server 1 enters each vehicle 2 into one or more virtual flow areas 30 to be used from the movement start position to the destination, and at least the first by the processes of steps S104 and S105. The entry time to the virtual flow area 30 of the target is determined. Thereby, the control server 1 determines, for each vehicle 2, a schedule of movement from the start position to the destination.
  • each vehicle 2 moves (travels) the intra-area road 32 according to a certain discipline by applying the same movement rule. Therefore, in each virtual flow area 30, each vehicle 2 can move without collision.
  • the control server 1 determines (selects) the virtual flow area 30 to be used for the movement of each vehicle 2 in step S104.
  • the range to which the movement rule of object is applied can be specified only by performing the process to be performed. That is, in the control method, it is possible to omit the process of individually specifying the range to which the movement rule of the object is applied, etc., thereby determining the schedule of movement from the movement start position of each vehicle 2 to the destination. Can simplify the process of calculation.
  • each virtual flow area 30 a plurality of virtual blocks 31 flowing in a state of being arranged from the start end 301 to the end 302 are set.
  • the control server 1 assigns each virtual block 31 of each virtual flow area 30 to each vehicle 2 in the above-mentioned step S105, and determines the movement schedule of each vehicle 2 concerned.
  • the movement of each vehicle 2 can be controlled as if it were carried by the belt conveyor.
  • the vehicle 2 is an example of the "moving body" of this invention.
  • the road 3 (and the in-area road 32) is an example of the “passage” in the present invention.
  • the road 3 (and the in-area road 32) is an example of a passage provided on land.
  • the road network 300 is an example of the "passage network” of the present invention.
  • the moving body, the passage, and the passage network may not be limited to such an example, and can be appropriately selected according to the embodiment.
  • the mobile body is not particularly limited as long as it is configured to be autonomously movable, and, in addition to the above-described vehicle 2 (automobile) configured to be capable of autonomous driving, for example, a ship capable of automatically navigating, a drone And a flight vehicle including a flightable car.
  • the passage may not be particularly limited as long as it defines an area to be used for movement of each mobile body, and may be set on the air, sea, etc. besides land.
  • the passage may include, in addition to the above-mentioned road 3 (and the in-area road 32), a passage such as a passage defined for operating the airspace, a passage defined for sailing the sea or a river, etc. .
  • the passage network may be called a passage network or the like in addition to the road network 300 described above.
  • the passage may be a small travel space, such as a road shoulder, a bus entrance road, a taxi landing path or the like.
  • the vehicle 2 is configured to be capable of automatic driving, and the control unit 21 of the vehicle 2 controls the movement of the vehicle 2 in step S108.
  • autonomously movable mobile bodies include ships capable of self-navigation, aircrafts, and the like.
  • the autonomously movable mobile object may include a mobile object such as a vehicle, a ship, or an aircraft, which is moved by manual driving.
  • the control unit of the mobile body outputs the instruction content from the control server 1 to the driver. May be configured.
  • an output device such as a speaker or a display may be used to output the instruction content.
  • the vehicle-mounted apparatus 20 was illustrated as an example of the "control apparatus" of this invention.
  • the control device of the mobile unit may not be limited to such an example, and may be appropriately selected according to the embodiment.
  • the controller of the mobile may include a transmitter configured to transmit the start position and the destination of the movement to the server, and a controller that controls the movement of the mobile.
  • the transmitter and the controller may be located at the same place or at different places.
  • FIG. 13 schematically illustrates an application scene of the control device according to the present modification.
  • the control device includes a transmission device 201 and a controller 202.
  • the controller 202 is disposed in each vehicle 2 in the same manner as the on-vehicle device 20.
  • the transmission device 201 is held by a user present at a position separated from each vehicle 2.
  • the arrangement of the transmission device 201 may not be limited to such an example, and a user who gets in each vehicle 2 may hold the transmission device 201.
  • the transmission device 201 may be a computer to which a control unit including a CPU and the like, a storage unit, a communication interface, an input device, and an output device are electrically connected.
  • the transmission device 201 may be a portable terminal such as a smartphone, or a general-purpose computer such as a tablet PC.
  • the controller 202 may also have the same hardware configuration as the on-vehicle device 20.
  • the transmission device 201 includes the movement application unit 211 as a software module by executing a program, and performs the processes of steps S101 and S102.
  • the controller 202 includes the instruction receiving unit 212 and the automatic driving control unit 213 as software modules by executing a program, and performs the processes of steps S107 and S108.
  • the number of control servers 1 may be more than one.
  • the above-mentioned passage network (road network 300) may be divided into a plurality of passage sections. Each passage section may be set to include one or more virtual flow areas (virtual flow area 30).
  • FIG. 14 schematically illustrates an example of distribution of two control servers 1 according to the present modification.
  • the road network is divided into two road sections (40, 41).
  • Each road section (40, 41) is an example of the passage section.
  • Each road section (40, 41) is set to include one or more virtual flow areas 30.
  • the two control servers 1 are assigned to one of the two road sections (40, 41). And a series of processing of the above-mentioned steps S103 to S106 for each vehicle 2 in each road section (40, 41) is performed by the control server 1 assigned to each road section (40, 41).
  • Each road section (40, 41) may be set according to the type of road 3.
  • Examples of the type of the road 3 include general roads, expressways, and main roads.
  • the first road segment 40 may be set to include a freeway
  • the second road segment 40 may be set to include a general road.
  • each control server 1 can be divided for every road section (40, 41). Also, for example, by setting each road section (40, 41) so as to include one or more virtual flow areas 30 having the same movement rule, a road section in which the relatively same movement rule can be applied ( Different control servers 1 can be assigned to each of 40 and 41). Therefore, according to this modification, the processing load of each control server 1 can be reduced.
  • the number of road sections set in the road network may not be limited to two, and may be three or more.
  • the number of control servers 1 may not be limited to two, and may be three or more.
  • the number of control servers 1 allocated to each road section may not be limited to one, and two or more It may be
  • the road sections adjacent to each other may not necessarily have different road types.
  • a plurality of road sections may be set for a long distance expressway in which a certain movement rule is set.
  • a road section can be set for each manager, and different management servers can be allocated to each road section.
  • the movement rules set for each virtual flow area 30 may be determined appropriately according to the embodiment. In two adjacent virtual flow areas 30, a common movement rule may be set, or different movement rules may be set.
  • a plurality of virtual blocks 31 are set in each virtual flow area 30.
  • the setting of each virtual block 31 may be omitted.
  • the control unit 21 of the in-vehicle apparatus 20 controls the movement of the in-area roads 32 in accordance with the movement rules set in the virtual flow areas 30.
  • each virtual flow area 30 may be appropriately determined according to the embodiment. For example, on a road including a plurality of lanes, different virtual flow areas 30 may be set according to the lanes.
  • adjacent virtual flow areas 30 may be physically separated.
  • constraints on movement between adjacent virtual flow areas 30 may be imposed.
  • the virtual flow area 30 may be set on the road to each of two ports, and a condition (for example, transportation time) for transporting the vehicle 2 by a ship between the two ports may be set as a constraint condition.
  • the control server 1 can grasp the time taken for the movement between the adjacent virtual flow areas 30, even in the case where such a range is included in the route from the movement start position to the destination
  • the movement schedule of each vehicle 2 can be determined by the steps S104 and S105.
  • the control server 1 holds the map information 122, the area setting information 123, the flow schedule information 124, and the allocation information 125.
  • the in-vehicle device 20 holds the map information 222, the area setting information 223, and the flow schedule information 224.
  • the information held by control server 1 and in-vehicle device 20 may not be limited to such an example, and may be determined appropriately according to the embodiment.
  • the map information (122, 222) and the area setting information (123, 223) may be represented by one piece of information.
  • the flow schedule information (124, 224) and the allocation information 125 may be omitted.
  • Control server 11: control unit, 12: storage unit, 13: communication interface, 14: input device, 15: output device, 16: drive, 111 ... reception unit, 112 ... schedule determination unit, 113 ... movement instruction unit, 121 ... control program, 122 ... map information, 123 ... area setting information, 124 ... flow schedule information, 125 ... allocation information, 2 Vehicle, 20 vehicle-mounted device 21: control unit, 22: storage unit, 23: communication interface, 24 GPS signal reception circuit 25 touch panel display 211 ... movement application unit, 212 ... instruction receiving unit, 213: Automatic operation control unit, 221 ... control program, 222 ... map information, 223 ... area setting information, 224 ... flow schedule information, 3 ... road, 300 ... road network, 30 ... virtual flow area, 31 ... virtual block, 32 ... (within area) road, 40 ⁇ 41 ... road section

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

本発明の一側面に係る管制方法では、通路により構成された通路網が複数の仮想流動エリアに分割されており、各仮想流動エリアでは、それぞれに含まれる通路の移動に対して適用される移動規則が設定されている。1又は複数のサーバは、移動に利用する対象の1又は複数の仮想流動エリア、及び少なくとも最初に進入する対象の仮想流動エリアへの進入時刻を各移動体に対して決定し、決定内容に基づく移動を各移動体に指示する。各移動体は、受け取った指示に従って、開始位置から目的地までの移動を行う。

Description

管制方法、管制装置及び管制プログラム
 本発明は、管制方法、管制装置及び管制プログラムに関する。
 近年、自動車の運転支援を行う技術の開発が活発に行われており、特に、運転操作を自動的に行うための自動運転の技術開発が活発に行われている。これに応じて、自動車等の自律的に移動可能に構成された移動体の移動を自動制御(管制)する技術の開発も活発になってきている。
 移動体の移動を自動制御する技術の一例として、特許文献1では、道路を複数の領域に分割して、各領域に対して車両の進入を許可するか否かを決定することで、当該車両の移動を制御する交通システムが提案されている。
 具体的には、当該交通システムは、車両に搭載される車両制御装置、車両の移動スケジュールを決定するサーバ、及び各領域に配置される領域通信機を備えている。車両制御装置は、出発時刻、出発地、及び目的地の指定を受け付けて、移動の申請をサーバに送信する。サーバは、当該申請を受け付けた車両に対して、目的地までの移動スケジュールを決定し、決定した移動スケジュールを車両制御装置に送信する。車両制御装置は、受信した移動スケジュールに基づいて車両の移動を自動制御する。
 そして、車両の移動が自動制御される間、各領域に設置された各領域通信機は、当該各領域に車両の進入を許可するか否かを判断する。車両制御装置は、各領域に対する進入の可否を各領域通信機に問い合わせ、各領域への進入の許可された場合に各領域に進入するように車両を移動させる。これにより、当該交通システムは、他の車両に衝突しないように各車両の移動を制御することができる。
特開2017-027175号公報
 道路等の通路に設定される移動規則は多様である。例えば、高速道路と一般道路とで異なる速度制限が規定されている。また、一般道路内でも、区間に応じて異なる速度制限が規定されるケースがある。上記交通システムでは、このように設定される多様な移動規則については何ら考慮されていないため、実際の道路上において、複数の移動体の移動を管制するのは困難である。
 そこで、一般的な情報処理によりこれに対応するため、移動スケジュールを決定するサーバに、例えば、次の(a)~(c)の処理を実行させることが考えられる。
(a)各移動体の移動経路を決定する
(b)決定した移動経路に基づいて、適用対象の移動規則及びその移動規則の適用される区間を特定する
(c)特定した規則に従って、各移動体の移動制御の内容を決定する
 しかしながら、この方法では、各移動体が衝突しないように全体の調和を図るために、対象の移動規則及びその移動規則の適用される区間を特定する処理、及び特定した移動規則を適用しながら、必要であれば適用する移動規則を調整して、各移動体に対して設定する移動スケジュールを整合させる処理を行うことになる。これらの処理を実行する分だけ、各移動体の移動を管制するための(特に、各移動体の移動スケジュールを決定するための)計算処理が複雑化してしまう。そのため、移動制御の対象とする通路を拡げるに応じて、当該計算処理のための負荷が劇的に増大してしまうという問題点がある。なお、この問題点は、従来の自動車等の陸上を移動する移動体の他、空中、海上等の陸上以外の通路を移動する、飛行可能な自動車、ドローン、船舶等の移動体にも当てはまる。
 本発明は、一側面では、このような実情を鑑みてなされたものであり、その目的は、多様な移動規則が設定され得る通路を移動する複数の移動体の管制にかかる計算コストを低減するための技術を提供することである。
 本発明は、上述した課題を解決するために、以下の構成を採用する。
 すなわち、本発明の一側面に係る管制方法は、1又は複数のサーバが、それぞれ自律的に移動可能に構成された複数の移動体に対して移動の指示を送信することで、当該複数の移動体の移動を管制する管制方法であって、前記各移動体の制御装置が、移動の開始位置及び目的地を前記1又は複数のサーバに送信するステップと、前記各移動体の移動のために設けられた通路により構成された通路網は、複数の仮想流動エリアに分割されており、当該複数の仮想流動エリアそれぞれでは、それぞれに含まれる通路の移動に対して適用される移動規則が設定されており、前記1又は複数のサーバが、前記複数の仮想流動エリアの中から、前記開始位置から前記目的地までの移動に利用する対象の1又は複数の仮想流動エリアを前記各移動体に対して決定するステップと、前記1又は複数のサーバが、前記対象の1又は複数の仮想流動エリアのうちの少なくとも最初に進入する対象の仮想流動エリアへの進入時刻を前記各移動体に対して決定するステップと、前記1又は複数のサーバが、決定した前記対象の1又は複数の仮想流動エリア及び進入時刻を前記各移動体の前記制御装置に送信することで、前記対象の1又は複数の仮想流動エリアの通路に前記進入時刻に基づいて進入し、前記対象の1又は複数の仮想流動エリアそれぞれに設定された前記移動規則に従って当該通路を移動するように前記各移動体に指示するステップと、を備える。
 当該管制方法では、各移動体の移動のために設けられた通路により構成された通路網は複数の仮想流動エリアに分割されており、1又は複数のサーバは、移動の開始位置から目的地までに利用する対象の1又は複数の仮想流動エリア、及び少なくとも最初に進入する対象の仮想流動エリアへの進入時刻を各移動体に対して決定する。そして、1又は複数のサーバは、当該決定内容を各移動体に送信することで、当該各決定内容に基づく移動を各移動体に指示する。各移動体は、受け取った指示に従って、開始位置から目的地までの移動を行う。このようにして、当該管制方法では、各移動体の移動が制御(管制)される。
 このとき、各仮想流動エリアでは、当該各仮想流動エリアに含まれる通路に対して単一の移動規則が設定される。移動規則は、各仮想流動エリア内の通路を各移動体が移動するのに適用されるものである。例えば、移動規則は、当該通路を移動する際の移動速度、及び他の移動体との間の最小距離の少なくともいずれかを規定してもよい。したがって、複数の移動体が同一の仮想流動エリアを移動する際には、当該各移動体には同一の移動規則が適用され、当該各移動体は、同一の移動規則に従って整然と移動を行う。これにより、各仮想流動エリアでは、各移動体は、衝突することなく移動することができる。
 更に、当該管制方法では、各仮想流動エリアに移動規則が設定されているため、1又は複数のサーバは、各移動体の移動に利用する対象の仮想流動エリアを選択する処理の実行により、対象の移動規則が適用される範囲を特定することができる。つまり、当該管制方法では、対象の移動規則が適用される範囲を個別に特定する処理等を省略可能な分だけ、各移動体の開始位置から目的地までの移動スケジュールを決定するための計算処理を簡略化することができる。
 したがって、当該管制方法によれば、各仮想流動エリアに異なる移動規則が設定され、通路網内で適用される移動規則が多様化しても、各移動体の移動を管制するための計算処理が複雑化してしまうのを抑制することができる。そのため、多様な移動規則が設定され得る通路を移動する複数の移動体の管制にかかる計算コストを低減することができる。
 なお、「移動体」は、自律的に移動可能に構成されていれば特に限定されなくてもよく、例えば、自動運転可能に構成された自動車、自動的に航行可能に構成された船舶、ドローン及び飛行可能な自動車を含む飛行体等であってもよい。また、「通路」は、各移動体の移動に利用するための領域を規定可能であれば特に限定されなくてもよく、陸上、空中、海上等に設定されてよい。例えば、通路は、道路、航路等であってよい。また、「通路」は、路肩、バスの引き込み道路、タクシーの乗り場通路等、少しの移動空間であってもよい。「通路網」は、このような通路全体を指すのに用いられる。なお、「通路網」は、特定の種類の通路全体を示す場合に、当該種類に応じた言葉に置き換えられてもよい。例えば、通路として道路が用いられる場合、「通路網」は、「道路網」と称されてよい。更に、「仮想流動エリア」は、通路網を分割する、すなわち、通路網を構成する通路全体の一部を含むように設定される。好ましくは、各仮想流動エリアは、それぞれ移動を行う複数の移動体が同時に存在可能な広さの通路を含むように設定される。また、「単一の移動規則が設定される」とは、同一時刻に同一の仮想流動エリアを移動する複数の移動体に共通(同一)の移動規則が適用されるように各仮想流動エリアの移動規則が設定されていることである。同一の仮想流動エリアを移動する複数の移動体に共通の移動規則が適用される限り、各仮想流動エリアに設定される移動規則は、定期又は不定期に変更されてもよい。
 上記一側面に係る管制方法において、前記複数の仮想流動エリアそれぞれには、始端から終端にかけて配列された状態のまま、設定された前記移動規則に従って当該始端から当該終端に流動する複数の仮想ブロックが設定されていてもよい。これに対応して、前記1又は複数のサーバは、前記対象の1又は複数の仮想流動エリアそれぞれに設定された複数の仮想ブロックの中から少なくともいずれかの仮想ブロックを前記各移動体に割り当てることで、前記対象の1又は複数の仮想流動エリアそれぞれに進入する前記進入時刻を決定してもよい。そして、前記1又は複数のサーバは、前記対象の1又は複数の仮想流動エリアそれぞれで割り当てた前記仮想ブロックを前記制御装置に通知することで、前記対象の1又は複数の仮想流動エリア及び前記進入時刻を前記制御装置に送信してもよい。
 当該構成では、各仮想ブロックは、各仮想流動エリアの始端から終端にかけて配列された状態のまま流動するように設定される。そのため、各移動体は、各仮想ブロックの流動に従うことで、他の移動体の移動を阻害することなく、各仮想流動エリア内の移動を完遂することができる。つまり、各仮想ブロックに各移動体を割り当てるという簡単な処理を採用することにより、各移動体の移動スケジュールを決定するための計算処理を簡略化しつつ、当該移動スケジュールを適切に設定することができようになる。したがって、当該構成によれば、複数の移動体を適切に管制することができ、かつ多様な移動規則が設定され得る通路を移動する複数の移動体の管制にかかる計算コストを更に低減することができる。なお、「仮想ブロック」は、各仮想流動エリア内の通路を流動するように設定される仮想的なブロックである。
 上記一側面に係る管制方法において、複数の仮想流動エリアは、互いに隣接する第1の仮想流動エリア及び第2の仮想流動エリアを含んでもよい。また、前記第1の仮想流動エリアの終端は、前記第2の仮想流動エリアの始端に接続してもよく、前記第1の仮想流動エリアの前記各仮想ブロックは、当該各仮想ブロックが前記終端に到達するタイミングで前記始端から流動する前記第2の仮想流動エリアの仮想ブロックと対応関係を有していてもよい。そして、前記1又は複数のサーバは、前記第1の仮想流動エリア及び前記第2の仮想流動エリアの通路を移動する移動体に対して、互いに対応関係のある前記第1の仮想流動エリアの仮想ブロック及び前記第2の仮想流動エリアの仮想ブロックを割り当ててもよい。当該構成によれば、隣接する仮想流動エリア間で対応関係のある仮想ブロックに各移動体に割り当てることで、当該隣接する仮想流動エリア間を当該各移動体がスムーズに移動するような管制を実現することができる。
 上記一側面に係る管制方法において、前記移動規則は、少なくとも移動速度を規定してもよい。前記複数の仮想流動エリアは、前記第2の仮想流動エリアに隣接する第3の仮想流動エリアを更に含んでもよい。前記第2の仮想流動エリアの終端は、前記第3の仮想流動エリアの始端に接続してもよい。前記第2の仮想流動エリアの前記各仮想ブロックは、当該各仮想ブロックが前記終端に到達するタイミングで前記始端から流動する前記第3の仮想流動エリアの仮想ブロックと対応関係を有してもよい。前記第1の仮想流動エリアに設定された移動速度は、前記第3の仮想流動エリアに設定された移動速度とは相違していてもよく、前記第2の仮想流動エリアに設定された移動速度は、前記第1の仮想流動エリアに設定された移動速度と前記第3の仮想流動エリアに設定された移動速度との間であるように設定されてもよい。そして、前記1又は複数のサーバは、前記第1の仮想流動エリア、前記第2の仮想流動エリア及び前記第3の仮想流動エリアの通路を移動する移動体に対して、対応関係のある前記第1の仮想流動エリアの仮想ブロック、前記第2の仮想流動エリアの仮想ブロック、及び前記第3の仮想流動エリアの仮想ブロックを割り当ててもよい。当該構成によれば、各移動体が移動速度を段階的に変化させるような管制を実現することができる。
 上記一側面に係る管制方法において、前記複数の仮想流動エリアは、複数の前記第1の仮想流動エリアを含んでよく、前記各第1の仮想流動エリアの前記各仮想ブロックと前記第2の仮想流動エリアの前記各仮想ブロックとの前記対応関係は、前記各第1の仮想流動エリアの前記各仮想ブロックが前記第2の仮想流動エリアの前記各仮想ブロックに所定の比率で対応付けられるように設定されてよい。当該構成によれば、通路の合流地点で各移動体が衝突しないような管制を実現することができる。
 上記一側面に係る管制方法において、前記複数の仮想流動エリアのうち少なくともいずれかの隣接する仮想流動エリアには異なる移動規則が設定されてよい。当該構成によれば、通路網内で適用される移動規則を多様化した上で、各移動体の管制にかかる計算コストを低減することができる。
 上記一側面に係る管制方法において、前記各第1の仮想流動エリアの前記各仮想ブロックが前記終端に到達するタイミングは、他の第1の仮想流動エリアの前記各仮想ブロックが前記終端に到達するタイミングと異なるように設定されてよい。当該構成によれば、通路の合流地点で各移動体が停止することなくスムーズに移動可能な管制を実現することができる。
 上記一側面に係る管制方法において、前記通路網は、複数の通路区間に分割されていてもよく、前記各通路区間は、1又は複数の前記仮想流動エリアを含んでもよい。そして、複数の前記サーバは、前記複数の通路区間のいずれかに割り当てられてもよく、前記各通路区間における、前記各移動体に対する前記対象の1又は複数の仮想流動エリア及び前記進入時刻の決定は、前記各通路区間に割り当てられた前記サーバによって行われてもよい。前記各通路区間は、前記通路の種別に応じて設定されてもよい。例えば、各通路区間は、同一の移動規則を有する1又は複数の仮想流動エリアを含むように設定することができる。これにより、比較的に同一の移動規則が適用され得る通路区間毎に異なるサーバを割り当てることができるため、各サーバの処理負荷を低減することができる。なお、通路の種別として、例えば、通路が道路である場合、一般道路、高速道路、幹線道路等を挙げることができる。
 上記一側面に係る管制方法において、前記通路は、道路であってよく、前記移動体は、自動運転可能に構成された自動車であってよい。当該構成によれば、自動運転可能に構成された自動車の通行を管制する方法を提供することができる。
 なお、上記各側面に係る管制方法の別の形態として、以上の各構成を実現する情報処理装置であってもよいし、プログラムであってもよいし、このようなプログラムを記録したコンピュータその他装置、機械等が読み取り可能な記憶媒体であってもよい。ここで、コンピュータ等が読み取り可能な記録媒体とは、プログラム等の情報を、電気的、磁気的、光学的、機械的、又は化学的作用によって蓄積する媒体である。
 例えば、本発明の一側面に係る管制装置は、それぞれ自律的に移動可能に構成された複数の移動体に対して移動の指示を送信することで、当該複数の移動体の移動を管制する情報処理装置であって、前記各移動体の制御装置からの移動の申請を受け付ける受付部であって、移動の開始位置及び目的地を示す情報を受信する受付部と、前記各移動体の移動のために設けられた通路により構成された通路網は、複数の仮想流動エリアに分割されており、当該複数の仮想流動エリアそれぞれでは、それぞれに含まれる通路の移動に対して適用される移動規則が設定されており、前記複数の仮想流動エリアの中から、前記開始位置から前記目的地までの移動に利用する対象の1又は複数の仮想流動エリアを前記各移動体に対して決定し、かつ前記対象の1又は複数の仮想流動エリアのうちの少なくとも最初に進入する対象の仮想流動エリアへの進入時刻を前記各移動体に対して決定するスケジュール決定部と、決定した前記対象の1又は複数の仮想流動エリア及び進入時刻を前記各移動体の前記制御装置に送信することで、前記対象の1又は複数の仮想流動エリアの通路に前記進入時刻に基づいて進入し、前記対象の1又は複数の仮想流動エリアそれぞれに設定された前記移動規則に従って当該通路を移動するように前記各移動体に指示する移動指示部と、を備える情報処理装置である。
 また、例えば、本発明の一側面に係る管制プログラムは、それぞれ自律的に移動可能に構成された複数の移動体に対して移動の指示を送信させることで、当該複数の移動体の移動をコンピュータに管制させるためのプログラムであって、前記コンピュータに、前記各移動体の制御装置からの移動の申請を受け付けるステップであって、移動の開始位置及び目的地を示す情報を受信するステップと、前記各移動体の移動のために設けられた通路により構成された通路網は、複数の仮想流動エリアに分割されており、当該複数の仮想流動エリアそれぞれでは、それぞれに含まれる通路の移動に対して適用される移動規則が設定されており、前記複数の仮想流動エリアの中から、前記開始位置から前記目的地までの移動に利用する対象の1又は複数の仮想流動エリアを前記各移動体に対して決定するステップと、前記対象の1又は複数の仮想流動エリアのうちの少なくとも最初に進入する対象の仮想流動エリアへの進入時刻を前記各移動体に対して決定するステップと、決定した前記対象の1又は複数の仮想流動エリア及び進入時刻を前記各移動体の前記制御装置に送信することで、前記対象の1又は複数の仮想流動エリアの通路に前記進入時刻に基づいて進入し、前記対象の1又は複数の仮想流動エリアそれぞれに設定された前記移動規則に従って当該通路を移動するように前記各移動体に指示するステップと、を実行させるためのプログラムである。
 本発明によれば、多様な移動規則が設定され得る通路を移動する複数の移動体の管制にかかる計算コストを低減することができる。
図1Aは、本発明が適用される場面の一例を模式的に例示する。 図1Bは、実施の形態に係る管制方法の詳細な適用場面の一例を模式的に例示する。 図2は、実施の形態に係る管制サーバのハードウェア構成の一例を模式的に例示する。 図3は、実施の形態に係る車載装置のハードウェア構成の一例を模式的に例示する。 図4は、実施の形態に係る管制サーバのソフトウェア構成の一例を模式的に例示する。 図5は、実施の形態に係るエリア設定情報の一例を模式的に例示する。 図6は、実施の形態に係るフロースケジュール情報の一例を模式的に例示する。 図7は、実施の形態に係る割当情報の一例を模式的に例示する。 図8は、実施の形態に係る車載装置のソフトウェア構成の一例を模式的に例示する。 図9は、実施の形態に係る管制方法の処理手順の一例を例示する。 図10Aは、隣接する仮想流動エリアを移動する過程の一場面を模式的に例示する。 図10Bは、隣接する仮想流動エリアを移動する過程の一場面を模式的に例示する。 図10Cは、隣接する仮想流動エリアを移動する過程の一場面を模式的に例示する。 図10Dは、隣接する仮想流動エリアそれぞれに設定されたフロースケジュール情報の一例を模式的に例示する。 図11Aは、車両の速度を段階的に変化させるように制御する過程の一場面を模式的に例示する。 図11Bは、車両の速度を段階的に変化させるように制御する過程の一場面を模式的に例示する。 図11Cは、車両の速度を段階的に変化させるように制御する過程の一場面を模式的に例示する。 図11Dは、車両の速度を段階的に変化させるように制御する過程の一場面を模式的に例示する。 図11Eは、各仮想流動エリアに設定されたフロースケジュール情報の一例を模式的に例示する。 図12Aは、道路の合流地点において各車両の移動を制御する過程の一場面を模式的に例示する。 図12Bは、道路の合流地点において各車両の移動を制御する過程の一場面を模式的に例示する。 図12Cは、道路の合流地点において各車両の移動を制御する過程の一場面を模式的に例示する。 図12Dは、各仮想流動エリアに設定されたフロースケジュール情報の一例を模式的に例示する。 図13は、変形例に係る移動体の制御装置の一例を模式的に例示する。 図14は、管制サーバの分配の一例を模式的に例示する。
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。ただし、以下で説明する本実施形態は、あらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。つまり、本発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。例えば、以下では、本実施形態として、自動運転可能に構成された自動車の移動(走行)を管制するのに本発明を適用した例を示す。しかしながら、本発明の適用対象は、自動運転可能に構成された自動車の移動を管制する場面に限られなくてもよく、実施の形態に応じて適宜選択されてよい。例えば、本発明は、自動で航行可能な船舶、自動で飛行可能な飛行体等に適用されてもよい。なお、本実施形態において登場するデータを自然言語により説明しているが、より具体的には、コンピュータが認識可能な疑似言語、コマンド、パラメータ、マシン語等で指定される。
 §1 適用例
 まず、図1A及び図1Bを用いて、本発明が適用される場面の一例について説明する。図1Aは、本実施形態に係る管制方法を適用する場面の一例を模式的に例示する。図1Bは、本実施形態に係る管制方法の詳細な適用場面の一例を模式的に例示する。
 図1Aに示されるとおり、本実施形態に係る管制方法では、管制サーバ1が、複数の車両2に対して移動の指示を送信することで、当該複数の車両2の移動を管制する。この管制サーバ1は、本発明の「1又は複数のサーバ」及び「管制装置」の一例である。また、各車両2は、自動運転可能に構成された自動車であり、本発明の「移動体」の一例である。
 具体的に、各車両2の移動のために設けられた道路3は、様々な方向に延びて、分岐したり、合流したりすることで、道路網300を構成している。この道路網300は、複数の仮想流動エリア30に分割されており、複数の仮想流動エリア30それぞれでは、それぞれに含まれる道路(以下、「エリア内道路」とも記載する)32の移動に対して適用される単一の移動規則が設定されている。
 なお、道路3(及び、エリア内道路32)は、本発明の「通路」の一例であり、道路網300は、本発明の「通路網」の一例である。「道路網300」は、様々な方向に延びる道路3全体を指している。また、各仮想流動エリア30は、道路網300を構成する道路3全体の一部を含むように設定され、好ましくは、それぞれ移動を行う複数の車両2が同時に存在可能な広さの道路3(32)を含むように設定される。更に、「単一の移動規則が設定されている」とは、同一時刻に同一の仮想流動エリア30を移動する複数の車両2に共通(同一)の移動規則が適用されるように各仮想流動エリア30の移動規則が設定されていることである。同一の仮想流動エリア30を移動する複数の車両2に共通の移動規則が適用される限り、各仮想流動エリア30に設定される移動規則は、定期又は不定期に変更されてもよい。
 そこで、各車両2の車載装置20は、移動の開始位置及び目的地を管制サーバ1に送信する。車載装置20は、本発明の「制御装置」の一例である。車載装置20から各情報を受信と、管制サーバ1は、複数の仮想流動エリア30の中から、開始位置から目的地までの移動に利用する対象の1又は複数の仮想流動エリア30を各車両2に対して決定する。また、管制サーバ1は、移動に利用する対象の1又は複数の仮想流動エリア30のうちの少なくとも最初に進入する対象の仮想流動エリア30への進入時刻を各車両2に対して決定する。
 そして、管制サーバ1は、決定した対象の1又は複数の仮想流動エリア30及び進入時刻を各車両2の車載装置20に送信する。これにより、管制サーバ1は、対象の1又は複数の仮想流動エリア30の道路32に進入時刻に基づいて進入し、対象の1又は複数の仮想流動エリア30それぞれに設定された移動規則に従って道路32を移動するように各車両2に指示する。
 更に詳細には、図1Bに示されるとおり、本実施形態に係る各仮想流動エリア30には、始端301から終端302にかけて配列された状態のまま、設定された移動規則に従って始端301から終端302に流動する複数の仮想ブロック31が設定されている。始端301は、各仮想流動エリア30に各車両2が進入する場所であり、終端302は、各仮想流動エリア30から各車両2が退出する場所である。基本的には、各仮想流動エリア30の終端302は、いずれかの他の仮想流動エリア30の始端301に接続している。
 仮想ブロック31は、各車両2の移動を指示する指標として、各仮想流動エリア30内の道路32を流動するように設定される仮想的なブロックである。本実施形態では、1つの仮想ブロック31の大きさは、1つの車両2に応じて設定される。なお、図1Bでは、1つの仮想流動エリア30に5つの仮想ブロック31が同時に存在しているが、1つの仮想流動エリア30に同時に存在可能な仮想ブロックの数は、5つに限定されなくてもよく、実施の形態に応じて適宜設定されてよい。
 各仮想ブロック31は、他の仮想ブロック31との配列状態を維持したまま、各仮想流動エリア30に設定された移動規則に従って流動するように設定される。そのため、各仮想ブロック31の始端301を出発する時刻及び終端302に到達する時刻は、各仮想流動エリア30に設定された移動規則に基づいて予め決定される。
 そこで、管制サーバ1は、移動に利用する対象の1又は複数の仮想流動エリア30それぞれに設定された複数の仮想ブロック31の中から少なくともいずれかの仮想ブロック31を各車両2に割り当てる。これにより、管制サーバ1は、移動に利用する対象の1又は複数の仮想流動エリア30それぞれに各車両2を進入させる進入時刻を決定する。
 そして、管制サーバ1は、対象の1又は複数の仮想流動エリア30それぞれで割り当てた仮想ブロック31を各車両2の車載装置20に通知することで、対象の1又は複数の仮想流動エリア30及び進入時刻を各車両2の車載装置20に送信する。これによって、管制サーバ1は、対象の1又は複数の仮想流動エリア30の道路32に進入時刻に基づいて進入し、対象の1又は複数の仮想流動エリア30それぞれに設定された移動規則に従って道路32を移動するように各車両2に指示する。車両2は、受け取った指示に従い、対象の1又は複数の仮想流動エリア30それぞれで割り当てられた仮想ブロック31の流動に合わせて、開始位置から目的地までの移動を行う。
 本実施形態では、開始位置から目的地までの経路に1又は複数の仮想流動エリア30が設定されており、1又は複数の仮想流動エリア30それぞれで各車両2に対する仮想ブロック31の割り当てが行われている。そのため、各車両2は、移動に利用する対象の1又は複数の仮想流動エリア30それぞれにおいて自車の割り当てられた仮想ブロック31の流動に従うことにより、開始位置から目的地までの移動を行うことができる。
 以上のとおり、本実施形態に係る管制方法では、道路3により構成された道路網300は、複数の仮想流動エリア30に分割されている。管制サーバ1は、各車両2に対して、移動の開始位置から目的地までに利用する対象の1又は複数の仮想流動エリア30、及び少なくとも最初に進入する対象の仮想流動エリア30への進入時刻を決定する。これにより、管制サーバ1は、開始位置から目的地までの移動のスケジュールを各車両2に対して決定する。
 ここで、各仮想流動エリア30では、エリア内道路32に対して移動規則が設定されている。この移動規則は、各仮想流動エリア30のエリア内道路32を各車両2が移動するのに適用されるものである。換言すると、移動規則は、各仮想流動エリア30のエリア内道路32を各車両2が移動する仕方を定める。よって、各仮想流動エリア30では、各車両2は、同一の移動規則が適用されることで、一定の規律に従って、エリア内道路32を移動(走行)する。そのため、各仮想流動エリア30では、各車両2は、衝突することなく移動することができる。
 更に、当該管制方法では、各仮想流動エリア30に移動規則が設定されているため、管制サーバ1は、各車両2の移動に利用する対象の仮想流動エリア30を決定(選択)する処理を実行するだけで、対象の移動規則が適用される範囲を特定することができる。つまり、当該管制方法では、対象の移動規則が適用される範囲を個別に特定する処理等を省略可能であり、これによって、各車両2の移動の開始位置から目的地までの移動のスケジュールを決定するための計算処理を簡略化することができる。
 したがって、当該管制方法によれば、各仮想流動エリア30に異なる移動規則が設定され、道路網300内で適用される移動規則が多様化しても、各車両2の移動を管制するための計算処理が複雑化してしまうのを抑制することができる。そのため、多様な移動規則が設定され得る道路3を移動する複数の車両2の管制にかかる計算コストを低減することができる。
 なお、各仮想流動エリア30の移動規則は、実施の形態に応じて適宜設定可能であり、道路網300に設定された複数の仮想流動エリア30のうち少なくともいずれかの隣接する仮想流動エリア30に異なる移動規則を設定することができる。また、移動規則は、例えば、エリア内道路32を移動する際の移動速度(走行速度)、及び他の車両との間の最小距離(最小の車間距離)の少なくともいずれかを規定してもよい。ここで、本実施形態では、各車両2の移動は、各仮想ブロック31の流動によって表現される。そのため、本実施形態に係る移動規則は、各仮想流動エリア30における各仮想ブロック31の流動の仕方を定めることで、各仮想流動エリア30における各車両2の移動の仕方を間接的に規定する。
 §2 構成例
 [ハードウェア構成]
 <管制サーバ>
 次に、図2を用いて、本実施形態に係る管制サーバ1のハードウェア構成の一例について説明する。図2は、本実施形態に係る管制サーバ1のハードウェア構成の一例を模式的に例示する。
 図2に示されるとおり、本実施形態に係る管制サーバ1は、制御部11、記憶部12、通信インタフェース13、入力装置14、出力装置15、及びドライブ16が電気的に接続されたコンピュータである。なお、図2では、通信インタフェースを「通信I/F」と記載している。
 制御部11は、ハードウェアプロセッサであるCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、プログラム及びデータに基づいて各種情報処理を実行するように構成される。記憶部12は、「メモリ」の一例であり、例えば、ハードディスクドライブ、ソリッドステートドライブ等で構成される。本実施形態では、記憶部12には、管制プログラム121、地図情報122、エリア設定情報123、フロースケジュール情報124、割当情報125等が記憶される。
 管制プログラム121は、後述する各車両2の移動を管制するための情報処理(図9)を管制サーバ1に実行させる命令を含むプログラムである。地図情報122、エリア設定情報123、フロースケジュール情報124、及び割当情報125は、この各車両2の移動を管制するための情報処理に利用される。詳細は後述する。
 通信インタフェース13は、例えば、有線LAN(Local Area Network)モジュール、無線LANモジュール等であり、ネットワークを介した有線又は無線通信を行うためのインタフェースである。管制サーバ1は、この通信インタフェース13を介して、各車両2の車載装置20とデータ通信を行う。
 入力装置14は、例えば、マウス、キーボード等の入力を行うための装置である。また、出力装置15は、例えば、ディスプレイ、スピーカ等の出力を行うための装置である。オペレータは、入力装置14及び出力装置15を介して、管制サーバ1を操作することができる。
 ドライブ16は、例えば、CDドライブ、DVDドライブ等であり、記憶媒体91に記憶されたプログラムを読み込むためのドライブ装置である。ドライブ16の種類は、記憶媒体91の種類に応じて適宜選択されてよい。上記管制プログラム121、地図情報122、エリア設定情報123、フロースケジュール情報124、及び割当情報125のうちの少なくともいずれかは、この記憶媒体91に記憶されていてもよい。
 記憶媒体91は、コンピュータその他装置、機械等が記録されたプログラム等の情報を読み取り可能なように、当該プログラム等の情報を、電気的、磁気的、光学的、機械的又は化学的作用によって蓄積する媒体である。管制サーバ1は、この記憶媒体91から、上記管制プログラム121、地図情報122、エリア設定情報123、フロースケジュール情報124、及び割当情報125のうちの少なくともいずれかを取得してもよい。
 ここで、図2では、記憶媒体91の一例として、CD、DVD等のディスク型の記憶媒体を例示している。しかしながら、記憶媒体91の種類は、ディスク型に限定される訳ではなく、ディスク型以外であってもよい。ディスク型以外の記憶媒体として、例えば、フラッシュメモリ等の半導体メモリを挙げることができる。
 なお、管制サーバ1の具体的なハードウェア構成に関して、実施形態に応じて、適宜、構成要素の省略、置換及び追加が可能である。例えば、制御部11は、複数のハードウェアプロセッサを含んでもよい。ハードウェアプロセッサは、マイクロプロセッサ、FPGA(field-programmable gate array)等で構成されてよい。また、図1A及び図1Bでは1台の管制サーバ1が描かれているが、各車両2の移動を管制するために、複数台の管制サーバ1が用いられてもよい。複数台の管制サーバ1を用いる場合、各管制サーバ1のハードウェア構成は一致していなくてもよい。また、管制サーバ1は、提供されるサービス専用に設計された情報処理装置の他、汎用のサーバ装置、汎用のPC(Personal Computer)等であってもよい。
 <車載装置>
 次に、図3を用いて、本実施形態に係る車載装置20のハードウェア構成の一例について説明する。図3は、本実施形態に係る車載装置20のハードウェア構成の一例を模式的に例示する。
 図3に示されるとおり、本実施形態に係る車載装置20は、制御部21、記憶部22、通信インタフェース23、GPS(Global Positioning System)信号受信回路24、及びタッチパネルディスプレイ25が電気的に接続されたコンピュータである。なお、図3では、図2と同様に、通信インタフェースを「通信I/F」と記載している。
 制御部21は、上記制御部11と同様に、ハードウェアプロセッサであるCPU、RAM、ROM等を含み、プログラム及びデータに基づいて各種情報処理を実行するように構成される。制御部21は、例えば、ECU(Electronic Control Unit)により構成されてもよい。記憶部22は、例えば、RAM、ROM等で構成され、制御プログラム221、地図情報222、エリア設定情報223、及びフロースケジュール情報224を記憶する。
 制御プログラム221は、後述する管制サーバ1の指示に応じて車両2の自動運転を制御するための情報処理(図9)を車載装置20に実行させる命令を含むプログラムである。地図情報222、エリア設定情報223、及びフロースケジュール情報224は、上記地図情報122、エリア設定情報123、及びフロースケジュール情報124と同様である。詳細は後述する。
 なお、車載装置20は、ネットワーク、記憶媒体等を介して、地図情報222、エリア設定情報223、及びフロースケジュール情報224の少なくともいずれかを取得してもよい。また、車載装置20は、ネットワークを介して管制サーバ1から、記憶部12に格納されたエリア設定情報123及びフロースケジュール情報124をエリア設定情報223及びフロースケジュール情報224として取得してもよい。
 通信インタフェース23は、上記通信インタフェース13と同様に、ネットワークを介した通信を行うためのインタフェースである。通信インタフェース23には、例えば、無線LANモジュールが用いられる。車載装置20は、当該通信インタフェース23を介して、管制サーバ1とデータ通信を行う。
 GPS信号受信回路24は、GPS信号を受信し、受信したGPS信号に基づいて車両2の位置(以下、「自車位置」とも記載する)を測定するように構成される。GPS信号受信回路24は、測定した自車位置を示す情報を制御部21に出力する。なお、以下では、GPS信号に基づいて測定された自車位置を示す情報を「GPS情報」とも称する。
 タッチパネルディスプレイ25は、情報の表示及び入力を行うことができるように適宜構成される。タッチパネルディスプレイ25は、例えば、液晶ディスプレイ等の液晶パネル、液晶パネルを背面から照明するバックライト、及び液晶パネル上の押下された位置を検出するためのタッチパネルにより構成される。タッチパネルの種類は、特に限定されなくてもよく、例えば、抵抗膜方式、静電容量方式等が採用されてよい。タッチパネルディスプレイ25は、車両2に乗車したユーザに対する情報の表示及び入力に利用される。
 なお、車載装置20の具体的なハードウェア構成に関して、実施形態に応じて、適宜、構成要素の省略、置換及び追加が可能である。例えば、制御部21は、複数のハードウェアプロセッサを含んでもよい。ハードウェアプロセッサは、マイクロプロセッサ、FPGA等で構成されてよい。記憶部22は、制御部21に含まれるRAM及びROMにより構成されてもよい。記憶部22は、ハードディスクドライブ、ソリッドステートドライブ等の補助記憶装置で構成されてもよい。車載装置20は、タッチパネルディスプレイ25に代えて又は加えて、他の形式の表示装置及び入力装置を備えてもよい。また、車載装置20には、サービス専用に設計された情報処理装置の他、スマートフォン等の携帯端末、タブレットPC等の汎用のコンピュータが用いられてもよい。
 [ソフトウェア構成]
 <管制サーバ>
 次に、図4を用いて、本実施形態に係る管制サーバ1のソフトウェア構成の一例を説明する。図4は、本実施形態に係る管制サーバ1のソフトウェア構成の一例を模式的に例示する。
 管制サーバ1の制御部11は、記憶部12に記憶された管制プログラム121をRAMに展開する。そして、制御部11は、RAMに展開された管制プログラム121をCPUにより解釈し、各構成要素を制御しながら、当該解釈に基づいた情報処理を実行する。これにより、図4に示されるとおり、本実施形態に係る管制サーバ1は、ソフトウェアモジュールとして、受付部111、スケジュール決定部112、及び移動指示部113を備えるコンピュータとして構成される。
 受付部111は、各車両2の車載装置20からの移動の申請を受け付けて、移動の開始位置及び目的地を示す情報を受信する。スケジュール決定部112は、複数の仮想流動エリア30の中から、開始位置から目的地までの移動に利用する対象の1又は複数の仮想流動エリア30を各車両2に対して決定する。また、スケジュール決定部112は、移動に利用する対象の1又は複数の仮想流動エリア30のうちの少なくとも最初に進入する対象の仮想流動エリア30への進入時刻を各車両2に対して決定する。
 そして、移動指示部113は、決定した対象の1又は複数の仮想流動エリア30及び進入時刻を各車両2の車載装置20に送信する。これにより、移動指示部113は、対象の1又は複数の仮想流動エリア30の道路32に進入時刻に基づいて進入し、対象の1又は複数の仮想流動エリア30それぞれに設定された移動規則に従って道路32を移動するように各車両2に対して指示する。
 本実施形態では、地図情報122が道路網300に関する情報を示し、エリア設定情報123が、各仮想流動エリア30の設定に関する情報を示す。そのため、スケジュール決定部112は、地図情報122及びエリア設定情報123を利用して、開始位置から目的地までの移動に利用する対象の1又は複数の仮想流動エリア30を決定する。
 また、本実施形態では、上記のとおり、各仮想流動エリア30には、複数の仮想ブロック31が設定されており、この各仮想ブロック31の流動の設定は、フロースケジュール情報124として保持されている。そのため、スケジュール決定部112は、フロースケジュール情報124を利用して、移動に利用する対象の1又は複数の仮想流動エリア30それぞれに設定された複数の仮想ブロック31の中から少なくともいずれかの仮想ブロック31を各車両2に割り当てる。そして、この割り当てた結果は、割当情報125として記憶部12に記憶される。以下、各情報について説明する。
 (地図情報)
 まず、地図情報122について説明する。地図情報122は、道路網300内の道路3の各位置を示すものである。地図情報122の形式は、特に限定されなくてもよい。地図情報122には、例えば、公知の道路地図等の情報が用いられてよい。管制サーバ1は、地図情報122に基づいて、道路網300内の道路3の各位置を把握する。
 (エリア設定情報)
 次に、図5を用いて、エリア設定情報123について説明する。エリア設定情報123は、各仮想流動エリア30の設定を示す情報である。図5に示すとおり、本実施形態では、エリア設定情報123は、エリアID、位置情報、移動規則、ブロックID等の情報を含む。
 エリアIDは、各仮想流動エリア30を識別するための識別子である。位置情報は、地図情報122の示す地図(道路網300)上における各仮想流動エリア30の位置を示す。位置情報は、始端301及び終端302の位置を示す情報を含むことができる。移動規則は、上記のとおり、各仮想流動エリア30内の道路32を各車両2が移動するのに適用されるものであり、例えば、エリア内道路32を移動する際の移動速度(走行速度)、他の車両との間の距離(最小の車間距離)等を規定する。最小の車間距離は、例えば、隣接する仮想ブロック31同士の距離で規定される。ブロックIDは、各仮想流動エリア30内に設定される各仮想ブロック31を識別するための識別子である。管制サーバ1は、エリア設定情報123に基づいて、各仮想流動エリア30の属性を把握する。
 (フロースケジュール情報)
 次に、図6を用いて、フロースケジュール情報124について説明する。フロースケジュール情報124は、各仮想流動エリア30内の各仮想ブロック31が仮想流動エリア30内を始端301から終端302まで流動するスケジュールを示すものである。図6に示されるとおり、本実施形態では、仮想流動エリア30内における各仮想ブロック31の流動は、始端301から新たな仮想ブロック31が順次発生し、終端302に到着した仮想ブロック31は消滅するものとして表現される。
 具体例として、図6では、仮想流動エリア30内には、4つの仮想ブロック31が存在可能になっている。説明の便宜のため、仮想流動エリア30内には、始端301から順に位置L1~L4が設定されている。時刻T1では、始端301から発生した仮想ブロック(BA4)が始端301に最も近い位置L1に存在し、仮想ブロック(BA4)の発生時刻より手前の時刻で発生した仮想ブロック(BA3)が、位置L1よりも終端302側の位置L2に存在している。また、仮想ブロック(BA3)の発生時刻よりも手前の時刻で発生した仮想ブロック(BA2)が、位置L2よりも終端302側の位置L3に存在しており、4つの仮想ブロック31の中で最も早い時刻に発生した仮想ブロック(BA1)が、最も終端302に近い位置L4に存在している。
 各仮想ブロック(BA1)~(BA4)は、配列された状態を維持したまま、仮想流動エリア30に設定された移動規則に従って流動する。そのため、移動規則に基づいて仮想ブロック1個分の流動にかかる時間が時刻T1から経過した時刻T2では、始端301から新たな仮想ブロック(BA5)が発生し、時刻T1で終端302に到着していた仮想ブロック(BA1)は消滅している。この時刻T2では、時刻T1で終端302の1つ手前の位置L3に存在していた仮想ブロック(BA2)が、位置L4に存在し、終端302に到着している。また、時刻T1で位置L2に存在していた仮想ブロック(BA3)は、位置L2よりも仮想ブロック1つ分終端302側の位置L3に存在している。
 フロースケジュール情報124は、このような各仮想ブロック31の発生、流動、及び消滅を表現するように適宜構成されてよい。図6に示されるように、本実施形態に係るフロースケジュール情報124は、各仮想ブロック31の位置と時刻との関係を示すグラフにより、上記のような各仮想ブロック31の発生、流動、及び消滅を表現する。なお、このグラフの傾きは、各仮想ブロック31の流動速度、すなわち、各仮想ブロック31を各車両2に割り当てた時の移動速度(走行速度)を示している。
 図6のグラフでは、仮想ブロック1個分の流動にかかる時間が時刻T2から経過した時刻T3では、始端301側から順に、仮想ブロック(BA6)~(BA3)が並んでいる状態が示される。すなわち、時刻T3では、新たな仮想ブロック(BA6)が始端301から発生しており、時刻T2で終端302に到着していた仮想ブロック(BA2)が消滅している。同様に、図6のグラフでは、仮想ブロック1個分の流動にかかる時間が時刻T3から経過した時刻T4では、始端301側から順に、仮想ブロック(BA7)~(BA4)が並んでいる状態が示される。管制サーバ1は、このようなフロースケジュール情報124に基づいて、各仮想ブロック31の各時刻における仮想流動エリア30内の位置を把握する。
 なお、各仮想ブロック31の流動を表現する方法は、各仮想ブロック31の各時刻における仮想流動エリア30内の位置を把握可能であれば、このような例に限定されなくてもよく、実施の形態に応じて適宜設定されてよい。例えば、各仮想ブロック31の流動は、終端302に到着した仮想ブロック31が始端301から再出発するものとして表現されてもよい。すなわち、各仮想ブロック31は、仮想流動エリア30内を循環するように設定されてよい。
 (割当情報)
 次に、図7を用いて、割当情報125について説明する。割当情報125は、各仮想流動エリア30の各仮想ブロック31を各車両2に割り当てた結果を示すものである。本実施形態では、割当情報125は、同一の仮想ブロック31に対して複数の車両2が割り当てられないように、各仮想ブロック31に対する車両2の割り当てを管理するために利用される。図7に示されるとおり、本実施形態に係る割当情報125は、テーブル形式のデータで表現されており、車両ID、エリアID、ブロックID等を保持するためのフィールドを含んでいる。
 車両IDは、各車両2を識別するための識別子である。車両IDは、各車両2に一意に割り当てられている。各レコードの車両IDフィールドには、仮想ブロック31の割り当てを行った対象の車両2の車両IDが格納される。また、エリアIDフィールド及びブロックIDフィールドそれぞれには、割り当てた仮想ブロック31を含む仮想流動エリア30のエリアID及び割り当てた仮想ブロック31のブロックIDが格納される。
 例えば、図7に例示する割当情報125の一つ目のレコードは、車両ID「C0001」の車両2に対して、エリアID「A01」の仮想流動エリア30のブロックID「BA3」の仮想ブロック31を割り当てたことを示す。また、二つ目のレコードは、車両ID「C0002」の車両2に対して、エリアID「A01」の仮想流動エリア30のブロックID「BA4」の仮想ブロック31を割り当てたことを示す。
 なお、割当情報125のデータ形式は、上記のようなテーブル形式に限定されなくてもよく、実施の形態に応じて適宜決定されてよい。また、図7の各レコードに格納された値は、本実施形態を説明するために便宜上記載したものであり、このような例に限定される訳ではない。各レコードに格納される値は、実施の形態に応じて適宜指定されてよい。
 <車載装置>
 次に、図8を用いて、本実施形態に係る車載装置20のソフトウェア構成の一例を説明する。図8は、本実施形態に係る車載装置20のソフトウェア構成の一例を模式的に例示する。
 車載装置20の制御部21は、記憶部22に記憶された制御プログラム221をRAMに展開する。そして、制御部21は、RAMに展開された制御プログラム221をCPUにより解釈し、各構成要素を制御しながら、当該解釈に基づいた情報処理を実行する。これにより、図8に示されるとおり、本実施形態に係る車載装置20は、ソフトウェアモジュールとして、移動申請部211、指示受取部212、及び自動運転制御部213を備えるコンピュータとして構成される。
 移動申請部211は、移動の開始位置及び目的地を管制サーバ1に送信することで、当該管制サーバ1に移動の申請を行う。上記のとおり、当該申請を受け付けた管制サーバ1は、開始位置から目的地までの移動に利用する対象の1又は複数の仮想流動エリア30、及び少なくとも最初に進入する対象の仮想流動エリア30への進入時刻を各車両2に対して決定し、決定した内容に基づく移動の指示を各車両2に送信する。指示受取部212は、管制サーバ1の当該移動の指示を受信する。そして、自動運転制御部213は、管制サーバ1からの移動の指示内容に従って、車両2の移動(走行)を制御する。
 <その他>
 管制サーバ1及び車載装置20の各ソフトウェアモジュールに関しては後述する動作例で詳細に説明する。なお、本実施形態では、管制サーバ1及び車載装置20の各ソフトウェアモジュールがいずれも汎用のCPUによって実現される例について説明している。しかしながら、以上のソフトウェアモジュールの一部又は全部が、1又は複数の専用のプロセッサにより実現されてもよい。また、管制サーバ1及び車載装置20それぞれのソフトウェア構成に関して、実施形態に応じて、適宜、ソフトウェアモジュールの省略、置換及び追加が行われてもよい。
 §3 動作例
 次に、図9を用いて、管制サーバ1及び車載装置20の動作例を説明する。図9は、管制サーバ1及び車載装置20の処理手順の一例を示す。以下で説明する各車両2の移動を管制するための処理手順は、本発明の「管制方法」の一例である。ただし、以下で説明する処理手順は一例に過ぎず、各処理は可能な限り変更されてよい。また、以下で説明する処理手順について、実施の形態に応じて、適宜、ステップの省略、置換、及び追加が可能である。
 (ステップS101)
 まず、ステップS101では、車載装置20の制御部21は、移動申請部211として機能し、目的地の入力を受け付ける。例えば、ユーザは、タッチパネルディスプレイ25を操作して、所望の目的地を入力する。これにより、制御部21は、移動の目的地を示す情報(以下、単に「目的地情報」とも記載する)を取得する。
 また、制御部21は、目的地情報と共に、移動の開始位置を示す情報(以下、単に「開始位置情報」とも記載する)を取得する。例えば、制御部21は、目的地の入力を受け付ける時点においてGPS信号受信回路24から出力される自車位置を示す情報を開始位置情報として取得してもよい。ただし、開始位置情報を取得する方法は、このような例に限定されなくてもよい。例えば、制御部21は、目的地情報と同様の方法で、すなわち、タッチパネルディスプレイ25を介した入力を受け付けることで、開始位置情報を取得してもよい。
 更に、制御部21は、タッチパネルディスプレイ25を介して、即時に移動を開始するか否かをユーザに問い合わせてもよい。そして、即時に移動を開始しないことが選択された場合には、制御部21は、移動の開始を所望する時刻(以下、「開始指定時刻」とも称する)の入力を受け付けてもよい。例えば、制御部21は、目的地情報と同様に、タッチパネルディスプレイ25を介したユーザの入力を受け付けることで、移動の開始指定時刻を示す情報(以下、単に「指定時刻情報」とも記載する)を取得することができる。
 (ステップS102)
 次のステップS102では、制御部21は、移動申請部211として機能し、ネットワークを介して、開始位置情報及び目的地情報を管制サーバ1に送信することで、当該管制サーバ1に移動の申請を行う。このとき、データ通信に利用するネットワークは、例えば、インターネット、無線通信網、移動通信網、電話網、専用網等から適宜選択されてよい。なお、ステップS101において、開始位置情報及び目的地情報と共に指定時刻情報を取得している場合、当該移動の申請の際に、制御部21は、当該指定時刻情報も管制サーバ1に送信する。
 (ステップS103)
 管制サーバ1の制御部11は、受付部111として機能し、各車両2の車載装置20からステップS102による移動の申請を受け付けるまで待機する。そして、ステップS103では、制御部11は、当該移動の申請の受付処理として、車載装置20からの移動の開始位置情報及び目的地情報を受信する。なお、移動の開始指定時刻が指定されている場合には、制御部11は、本ステップS103において、移動の開始位置情報及び目的地情報と共に指定時刻情報も受信する。
 (ステップS104)
 次のステップS104では、制御部11は、スケジュール決定部112として機能し、移動の申請を受け付けた車両2に対して、道路網300に設定されている複数の仮想流動エリア30の中から、開始位置から目的地までの移動に利用する対象の1又は複数の仮想流動エリア30を決定する。
 開始位置から目的地までの移動に利用する対象の1又は複数の仮想流動エリア30を決定する方法は、実施の形態に応じて適宜設定されてよい。例えば、制御部11は、ステップS103で取得した開始位置情報及び目的地情報を参照して、移動の申請を受け付けた車両2の移動の開始位置及び目的地を特定する。次に、制御部11は、地図情報122を参照して、開始位置から目的地までの経路(道路3)を特定する。例えば、制御部11は、所要時間が最短となるように、開始位置から目的地までの経路を特定してよい。そして、制御部11は、エリア設定情報123を参照して、開始位置から目的地までの経路に含まれる仮想流動エリア30を特定する。これにより、制御部11は、開始位置から目的地までの移動に利用する対象の1又は複数の仮想流動エリア30を決定する。
 (ステップS105)
 次のステップS105では、制御部11は、スケジュール決定部112として機能し、移動の申請を受け付けた車両2に対して、ステップS104で決定した対象の1又は複数の仮想流動エリア30のうちの少なくとも最初に進入する対象の仮想流動エリア30への進入時刻を決定する。
 本実施形態では、各仮想流動エリア30には、移動規則が設定されている。より詳細には、各仮想流動エリア30には、それぞれ各車両2に割り当てるための複数の仮想ブロック31が設定されており、フロースケジュール情報124の示すスケジュールに従って、各仮想ブロック31は、各仮想流動エリア30内を始端301から終端302にかけて流動している。そして、各車両2は、割り当てられた仮想ブロック31の流動に合わせて移動するように指示される。
 つまり、仮想流動エリア30内に一度進入した各車両2は、設定された移動規則に従ってエリア内道路32を移動する。そのため、開始位置から目的地までの移動に複数の仮想流動エリア30を通過する場合、最初に進入する対象の仮想流動エリア30への進入時刻を決定すると、2番目以降に進入する対象の各仮想流動エリア30への進入時刻は、当該各仮想流動エリア30に進入する前に進入する仮想流動エリア30の移動規則に基づいて特定可能になる。よって、制御部11は、移動の申請を受け付けた車両2に対して、ステップS104で決定した対象の1又は複数の仮想流動エリア30のうちの少なくとも最初に進入する対象の仮想流動エリア30への進入時刻を決定すればよい。
 そこで、本ステップS105では、制御部11は、ステップS104で決定した対象の1又は複数の仮想流動エリア30のうちの最初に進入する対象の仮想流動エリア30への進入時刻のみを決定してもよい。また、制御部11は、ステップS104で決定した対象の1又は複数の仮想流動エリア30それぞれへの進入時刻を決定してもよい。更に、制御部11は、ステップS104で決定した対象の1又は複数の仮想流動エリア30のうちの最初に進入する対象の仮想流動エリア30を含むいくつかの対象の仮想流動エリア30それぞれへの進入時刻を決定してもよい。
 また、少なくとも最初に進入する対象の仮想流動エリア30への進入時刻は、移動を開始する時刻、移動の開始位置、及び当該最初に進入する対象の仮想流動エリア30の位置に基づいて適宜決定されてよい。ステップS103において指定時刻情報を取得している場合、移動を開始する時刻は、当該指定時刻情報により示される開始指定時刻又は当該開始指定時刻以降の移動可能な任意の時刻であってよい。また、ステップS103において指定時刻情報を取得しておらず、ステップS101でユーザにより即時に移動することが指定された場合には、移動を開始する時刻は、移動の申請を受け付けた時刻(現在時刻)又は当該現在時刻以降の移動開始可能な任意の時刻であってよい。
 本実施形態では、各仮想流動エリア30には、上記の各仮想ブロック31が設定されている。そこで、制御部11は、移動を開始する時刻、移動の開始位置、及び移動に利用する対象の1又は複数の仮想流動エリア30それぞれの位置に基づいて、それぞれに設定された複数の仮想ブロック31の中から、開始位置から目的地まで矛盾なく移動可能な仮想ブロック31を割り当てる。
 例えば、制御部11は、移動を開始する時刻及び移動の開始位置に基づいて、最初に進入する対象の仮想流動エリア30の始端301に到着する時刻(以下、「始端到着時刻」とも記載する)を特定してもよい。そして、制御部11は、特定した始端到着時刻以降に始端301から発生する仮想ブロック31であって、他の車両2に割り当てられていない仮想ブロック31を対象の車両2に割り当ててもよい。なお、制御部11は、割当情報125を参照することで、対象の仮想ブロック31が他の車両2に割り当てられているか否かを判定することができる。
 開始位置から目的地までの移動に複数の仮想流動エリア30を通過する場合、2番目に進入する対象の仮想流動エリア30における仮想ブロック31の割り当ては、その対象の仮想流動エリア30の手前に進入する対象の仮想流動エリア30、すなわち、最初に進入する対象の仮想流動エリア30における仮想ブロック31の割り当てに基づいて行われてよい。具体的には、制御部11は、フロースケジュール情報124を参照し、最初に進入する対象の仮想流動エリア30において対象の車両2に割り当てた仮想ブロック31が終端302に到達する時刻を特定してもよい。そして、制御部11は、最初に進入する対象の仮想流動エリア30の終端302に到達する時刻以降に、2番目に進入する対象の仮想流動エリア30の始端301から発生する仮想ブロック31であって、他の車両2に割り当てられていない仮想ブロック31を対象の車両2に割り当ててもよい。
 3番目以降に進入する対象の仮想流動エリア30における仮想ブロック31の割り当ても同様に行うことができる。すなわち、制御部11は、N番目(Nは2以上の整数)に進入する対象の仮想流動エリア30における仮想ブロック31の割り当てを行う場合に、フロースケジュール情報124を参照して、(N-1)番目に進入する対象の仮想流動エリア30において対象の車両2に割り当てた仮想ブロック31が終端302に到達する時刻を特定してもよい。そして、制御部11は、(N-1)番目に進入する対象の仮想流動エリア30の終端302に到達する時刻以降に、N番目に進入する対象の仮想流動エリア30の始端301から発生する仮想ブロック31であって、他の車両に割り当てられていない仮想ブロック31を対象の車両2に割り当ててもよい。
 これにより、制御部11は、開始位置から目的地までの移動に利用する対象の1又は複数の仮想流動エリア30それぞれにおいて、開始位置から目的地まで矛盾なく移動可能なように、対象の車両2に仮想ブロック31を割り当てることができる。この仮想ブロック31の割り当てによって、移動に利用する対象の1又は複数の仮想流動エリア30それぞれに進入する進入時刻は決定される。制御部11は、仮想ブロック31の割り当て結果を割当情報125として記憶部12に保存する。なお、仮想ブロック31の割り当て方法の具体例は後述する。
 (ステップS106)
 次のステップS106では、制御部11は、移動指示部113として機能し、ステップS104及びS105で決定した対象の1又は複数の仮想流動エリア30及び進入時刻を車載装置20に送信する。
 本実施形態では、制御部11は、開始位置から目的地までの移動に利用する対象の1又は複数の仮想流動エリア30及び進入時刻を車載装置20に送信する処理として、当該対象の1又は複数の仮想流動エリア30それぞれにおいて割り当てた仮想ブロック31を車載装置20に通知する。これにより、制御部11は、対象の1又は複数の仮想流動エリア30の道路32に進入時刻に基づいて進入し、対象の1又は複数の仮想流動エリア30それぞれに設定された移動規則に従って道路32を移動するように対象の車両2に指示する。
 (ステップS107)
 各車両2の車載装置20の制御部21は、上記ステップS102の処理を実行した後、指示受取部212として機能し、管制サーバ1から移動の指示内容を受け取るまで待機する。そして、ステップS107では、制御部21は、当該指示内容の受取処理として、開始位置から目的地までの移動に利用する対象の1又は複数の仮想流動エリア30及び進入時刻を示す情報を管制サーバ1から受信する。本実施形態では、制御部21は、開始位置から目的地までの移動に利用する対象の1又は複数の仮想流動エリア30及び進入時刻を示す情報として、当該対象の1又は複数の仮想流動エリア30それぞれにおいて割り当てられた仮想ブロック31を示す情報を管制サーバ1から受信する。
 (ステップS108)
 次のステップS108では、制御部21は、自動運転制御部213として機能し、管制サーバ1からの指示内容に従って、開始位置から目的地までの車両2の移動を制御する。
 本実施形態では、制御部21は、管制サーバ1からの指示内容として、開始位置から目的地までの移動に利用する対象の1又は複数の仮想流動エリア30それぞれにおいて割り当てられた仮想ブロック31を示す情報を管制サーバ1から受信する。そこで、制御部21は、地図情報222、エリア設定情報223及びフロースケジュール情報224を参照し、自車の割り当てられた仮想ブロック31の流動に従って、開始位置から目的地までの移動を制御する。上記のとおり、本実施形態では、開始位置から目的地までの経路に設定された対象の各仮想流動エリア30において、仮想ブロック31が車両2に割り当てられている。そのため、車両2は、対象の各仮想流動エリア30において自車の割り当てられた仮想ブロック31の流動に従うことで、開始位置から目的地まで移動することができる。このようにして、本実施形態に係る管制方法では、各車両2の移動が、管制サーバ1により管制される。
 なお、本ステップ108で利用される地図情報222、エリア設定情報223、及びフロースケジュール情報224を取得するタイミングは、実施の形態に応じて適宜選択されてよい。例えば、車載装置20は、地図情報222、各仮想流動エリア30に設定された移動規則を示す情報を含むエリア設定情報223、及びフロースケジュール情報224は、管制サーバ1、他の情報処理装置、又はNAS(Network Attached Storage)等の外部記憶装置から予め取得してもよい。
 また、車載装置20は、上記ステップS106及びS107により、管制サーバ1から移動の指示を受信する際に、移動に利用する範囲を対象とするエリア設定情報223及びフロースケジュール情報224を管制サーバ1から取得してもよい。この場合、エリア設定情報223及びフロースケジュール情報224それぞれは、管制サーバ1の保持するエリア設定情報123及びフロースケジュール情報124それぞれの一部であってもよい。 
 また、本ステップS108により、各車両2が、開始位置から目的地までに移動する間、車載装置20は、自車位置を示す情報を管制サーバ1に送信してもよい。これにより、管制サーバ1は、各車両2から受信した自車位置の情報に基づいて、各車両2に割り当てた仮想ブロック31の流動に合わせて各車両2が実際に移動しているか否かを管理してもよい。
 [具体例]
 次に、仮想流動エリア30の設定及び仮想ブロック31の割り当ての具体例について説明する。以下では、3つの具体例を説明する。ただし、仮想流動エリア30の設定及び仮想ブロック31の割り当ては、各具体例に限定されなくてよく、実施の形態に応じて適宜設定されてよい。
 (1)隣接する2つの仮想流動エリア
 第1に、図10A~図10Dを用いて、隣接する2つの仮想流動エリア30それぞれにおける各車両2に対する仮想ブロック31の割り当ての一例を説明する。図10A~図10Cは、隣接する2つの仮想流動エリア(30B、30C)それぞれにおける仮想ブロック(31B、31C)の割り当て、及び各仮想ブロック(31B、31C)を割り当てられた車両2Bが移動する過程の一場面を模式的に例示する。図10Dは、各仮想流動エリア(30B、30C)に設定された各仮想ブロック(31B、31C)の流動のスケジュールを示すフロースケジュール情報(124B、124C)を模式的に例示する。フロースケジュール情報124Bは、仮想流動エリア30Bに設定された各仮想ブロック31Bの流動のスケジュールを示し、フロースケジュール情報124Cは、仮想流動エリア30Cに設定された各仮想ブロック31Cの流動のスケジュールを示す。なお、図10A~図10Cでは、説明の便宜上、車両の符号を「2B」と表記しているが、この車両2Bは、隣接する2つの仮想流動エリア(30B、30C)を移動する車両2を示しているに過ぎない。
 互いに隣接する2つの仮想流動エリア(30B、30C)は、上記道路網300に設定される複数の仮想流動エリア30に含まれ、仮想流動エリア30Bの終端が、仮想流動エリア30Cの始端に接続している。仮想流動エリア30Bは、本発明の「第1の仮想流動エリア」の一例であり、仮想流動エリア30Cは、本発明の「第2の仮想流動エリア」の一例である。
 各図に示されるとおり、仮想流動エリア30Bでは、(BB1)、(BB2)、(BB3)、(BB4)、(BB5)の順で、仮想ブロック31Bが始端から発生し、終端に向けて流動する。また、当該仮想流動エリア30Bでは、3つの仮想ブロック31Bが同時に存在可能になっている。一方、仮想流動エリア30Cでは、(BC1)、(BC2)、(BC3)、(BC4)の順で、仮想ブロック31Cが始端から発生し、終端に向けて流動する。当該仮想流動エリア30Cでは、2つの仮想ブロック31Cが同時に存在可能になっている。なお、各図において、LB1~LB3はそれぞれ、仮想流動エリア30B内における3つの仮想ブロック31Bの位置を示しており、LC1~LC2はそれぞれ、仮想流動エリア30C内における2つの仮想ブロック31Cの位置を示している。
 そして、仮想流動エリア30Bの各仮想ブロック31Bは、当該各仮想ブロック31Bが終端に到達するタイミングで始端から流動する仮想流動エリア30Cの仮想ブロック31Cと対応関係を有している。各図に示される例では、仮想ブロックBB1は、仮想ブロックBC3と対応関係を有しており、仮想ブロックBB2は、仮想ブロックBC4と対応関係を有している。
 このような場合、上記ステップS105では、管制サーバ1の制御部11は、2つの隣接する仮想流動エリア(30B、30C)の道路(32B、32C)を移動する各車両2に対して、各仮想流動エリア(30B、30C)の互いに対応関係のある各仮想ブロック(31B、31C)を割り当てる。
 各図の例では、制御部11は、仮想流動エリア30Bにおいて仮想ブロック(BB1)を割り当てた車両2Bに対して、仮想流動エリア30Cにおいては、仮想ブロック(BB1)と対応関係を有する仮想ブロック(BC3)を割り当てている。図10Dのハッチングは、車両2Bに割り当てたブロックID(BB1、BC3)の仮想ブロック(31B、31C)を示している。
 これにより、ステップS108において、車載装置20の制御部21は、車両2Bの移動を制御する際に、仮想流動エリア30Bと仮想流動エリア30Cとの間で全く又はほとんど待ち時間を設けなくてもよくなる。そのため、車両2Bは、仮想流動エリア30Bから仮想流動エリア30Cにスムーズに渡ることができる。したがって、当該割り当てによれば、隣接する仮想流動エリア(30B、30C)間を車両2Bがスムーズに移動するような管制を実現することができる。
 (2)移動速度の制御
 第2に、図11A~図11Eを用いて、各車両2の移動速度を段階的に変化させる制御の一例を説明する。図11A~図11Dは、3つの仮想流動エリア(30D、30E、30F)それぞれにおける仮想ブロック(31D、31E、31F)の割り当て、及び各仮想ブロック(31D、31E、31F)を割り当てられた車両2Dが移動する過程の一場面を模式的に例示する。図11Eは、各仮想流動エリア(30D、30E、30F)に設定された仮想ブロック(31D、31E、31F)の流動のスケジュールを示すフロースケジュール情報(124D、124E、124F)を模式的に例示する。フロースケジュール情報124Dは、仮想流動エリア30Dに設定された各仮想ブロック31Dの流動のスケジュールを示し、フロースケジュール情報124Eは、仮想流動エリア30Eに設定された各仮想ブロック31Eの流動のスケジュールを示し、フロースケジュール情報124Fは、仮想流動エリア30Fに設定された各仮想ブロック31Fの流動のスケジュールを示す。なお、図11A~図11Dでは、説明の便宜上、車両の符号を「2D」と表記しているが、この車両2Dは、3つの仮想流動エリア(30D、30E、30F)を移動する車両2を示しているに過ぎない。
 3つの仮想流動エリア(30D、30E、30F)は、上記道路網300に設定される複数の仮想流動エリア30に含まれ、順に配列されている。仮想流動エリア30Dと仮想流動エリア30Eとが互いに隣接しており、仮想流動エリア30Eと仮想流動エリア30Fとが互いに隣接している。仮想流動エリア30Dの終端が、仮想流動エリア30Eの始端に接続し、仮想流動エリア30Eの終端が、仮想流動エリア30Fの始端に接続している。仮想流動エリア30Dは、本発明の「第1の仮想流動エリア」に相当し、仮想流動エリア30Eは、本発明の「第2の仮想流動エリア」に相当し、仮想流動エリア30Fは、本発明の「第3の仮想流動エリア」に相当する。
 各図に示されるとおり、仮想流動エリア30Dでは、(BD1)、(BD2)、(BD3)、(BD4)、(BD5)、(BD6)、(BD7)、の順で、仮想ブロック31Dが始端から発生し、終端に向けて流動する。当該仮想流動エリア30Dでは、2つの仮想ブロック31Dが同時に存在可能になっている。また、仮想流動エリア30Eでは、(BE1)、(BE2)、(BE3)、(BE4)、(BE5)、(BE6)、(BE7)、の順で、仮想ブロック31Eが始端から発生し、終端に向けて流動する。当該仮想流動エリア30Eでは、2つの仮想ブロック31Eが同時に存在可能になっている。更に、仮想流動エリアFでは、(BF1)、(BF2)、(BF3)、(BF4)、(BF5)、(BF6)、(BF7)、の順で、仮想ブロック31Fが始端から発生し、終端に向けて流動する。当該仮想流動エリア30Fでは、2つの仮想ブロック31Fが同時に存在可能になっている。なお、各図において、LD1~LD2はそれぞれ、仮想流動エリア30D内における2つの仮想ブロック31Dの位置を示しており、LE1~LE2はそれぞれ、仮想流動エリア30E内における2つの仮想ブロック31Eの位置を示しており、LF1~LF2はそれぞれ、仮想流動エリア30F内における2つの仮想ブロック31Fの位置を示している。
 仮想流動エリア30Dの各仮想ブロック31Dは、当該各仮想ブロック31Dが終端に到達するタイミングで始端から流動する仮想流動エリア30Eの仮想ブロック31Eと対応関係を有している。同様に、仮想流動エリア30Eの各仮想ブロック31Eは、当該各仮想ブロック31Eが終端に到達するタイミングで始端から流動する仮想流動エリア30Fの仮想ブロック31Fと対応関係を有している。各図に示される例では、仮想ブロックBD1~BD5はそれぞれ、仮想ブロックBE3~BE7それぞれと対応関係を有しており、仮想ブロックBE1~BE5はそれぞれ、仮想ブロックBE3~BE7それぞれと対応関係を有している。
 この第2の例では、各仮想流動エリア(30D、30E、30F)内の道路(32D、32E、32F)に適用する移動規則として、少なくとも移動速度が規定される。1つ目の仮想流動エリア30Dに設定された移動速度は、3つ目の仮想流動エリア30Fに設定された移動速度とは相違するように設定される。そして、2つ目の仮想流動エリア30Eに設定された移動速度は、1つ目の仮想流動エリア30Dに設定された移動速度と3つ目の仮想流動エリア30Fに設定された移動速度との間であるように設定される。
 この場合、上記ステップS105では、管制サーバ1の制御部11は、3つの仮想流動エリア(30D、30E、30F)の道路(32D、32E、32F)を移動する車両2Dに対して、各仮想流動エリア(30D、30E、30F)の対応関係のある仮想ブロック(31D、31E、31F)を割り当てる。
 各図の例では、制御部11は、車両2Dに対して、1つ目の仮想流動エリア30Dにおける仮想ブロック(BD1)、2つ目の仮想流動エリア30Eにおける仮想ブロック(BE3)、3つ目の仮想流動エリア30Fにおける仮想ブロック(BF5)を割り当てている。図11Eのハッチングは、車両2Dに割り当てたブロックID(BD1、BE3、BF5)の仮想ブロック(31D、31E、31F)を示している。
 これにより、ステップS108において、車載装置20の制御部21は、3つの仮想流動エリア(30D、30E、30F)の道路(32D、32E、32F)を移動する間に、段階的に移動速度を変化させるように車両2Dの移動を制御する。例えば、1つ目の仮想流動エリア30Dに設定された移動速度が時速40kmであり、2つ目の仮想流動エリア30Eに設定された移動速度が時速50kmであり、3つ目の仮想流動エリア30Fに設定された移動速度が時速60kmであるとする。この場合、車両2Dの移動速度は、3つの仮想流動エリア(30D、30E、30F)を車両2Dが移動する間に、時速40kmから時速60kmに徐々に加速するように管制される。減速の場合も同様である。
 したがって、第2の例によれば、車両2Dの速度変化をスムーズにかつ段階的に行うための管制を実現することができる。また、このような管制方法により、急激な加減速を防止し、車内に作用する慣性力を低減することができるため、車両2Dに乗車した乗員への移動の負担を抑制することができる。
 なお、各仮想ブロック31の大きさは、実施の形態に応じて適宜設定されてよい。一例として、図11A~図11Dの例では、速度の大きさに応じて、各仮想ブロック(31D、31E、31F)の大きさ(進行方向の長さ)が大きくなっている。具体的には、仮想ブロック31Eの大きさは、仮想ブロック31Dの大きさよりも大きくなっており、仮想ブロック31Fの大きさは、仮想ブロック31Eの大きさよりも大きくなっている。このように、各仮想ブロック31の大きさは、例えば、設定する移動速度の大きさに応じて決定されてよい。
 (3)合流地点の制御
 第3に、図12A~図12Dを用いて、道路3の合流地点における各車両2の移動の管制の一例を説明する。図12A~図12Cは、3つの仮想流動エリア(30G、30H、30I)それぞれにおける仮想ブロック(31G、31H、31I)の割り当て、及び仮想ブロック(31G、31I)(31H、31I)を割り当てられた各車両(2G、2H)が移動する過程の一場面を模式的に例示する。図12Dは、各仮想流動エリア(30G、30H、30I)に設定された仮想ブロック(31G、31H、31I)の流動のスケジュールを示すフロースケジュール情報(124G、124H、124I)を模式的に例示する。フロースケジュール情報124Gは、仮想流動エリア30Gに設定された各仮想ブロック31Gの流動のスケジュールを示し、フロースケジュール情報124Hは、仮想流動エリア30Hに設定された各仮想ブロック31Hの流動のスケジュールを示し、フロースケジュール情報124Iは、仮想流動エリア30Iに設定された各仮想ブロック31Iの流動のスケジュールを示す。なお、図12A~図12Cでは、説明の便宜上、車両の符号を「2G」「2H」と表記しているが、各車両(2G、2H)は、合流地点を含む道路(32G、32I)(32H、32I)を移動する車両2を示しているに過ぎない。
 各仮想流動エリア(30G、30H、30I)は、上記道路網300に設定される複数の仮想流動エリア30に含まれる。2つの仮想流動エリア(30G、30H)は、合流地点手前の各道路(32G、32H)を含むように設定され、残りの仮想流動エリア30Iは、合流地点後の道路32Iを含むように設定される。合流地点手前の各仮想流動エリア(30G、30H)は、合流地点後の仮想流動エリア30Iに隣接しており、各仮想流動エリア(30G、30H)の終端は、仮想流動エリア30Iの始端に接続している。合流地点手前の2つの仮想流動エリア(30G、30H)はそれぞれ、本発明の「第1の仮想流動エリア」に相当し、合流地点後の仮想流動エリア30Iは、本発明の「第2の仮想流動エリア」に相当する。
 各図に示されるとおり、仮想流動エリア30Gでは、(BG1)、(BG2)、(BG3)、の順で、仮想ブロック31Gが始端から発生し、終端に向けて流動する。当該仮想流動エリア30Gでは、2つの仮想ブロック31Gが同時に存在可能になっている。また、仮想流動エリア30Hでは、(BH1)、(BH2)、(BH3)、の順で、仮想ブロック31Hが始端から発生し、終端に向けて流動する。当該仮想流動エリア30Hでは、2つの仮想ブロック31Hが同時に存在可能になっている。更に、仮想流動エリア30Iでは、(BI1)、(BI2)、(BI3)、(BI4)、(BI5)、(BI6)、(BI7)、(BI8)、の順で、仮想ブロック31Iが始端から発生し、終端に向けて流動する。当該仮想流動エリア30Iでは、4つの仮想ブロック31Iが同時に存在可能になっている。なお、各図において、LG1~LG2はそれぞれ、仮想流動エリア30G内における2つの仮想ブロック31Gの位置を示しており、LH1~LH2はそれぞれ、仮想流動エリア30H内における2つの仮想ブロック31Hの位置を示しており、LI1~LI4はそれぞれ、仮想流動エリア30I内における2つの仮想ブロック31Iの位置を示している。
 合流地点手前の各仮想流動エリア(30G、30H)の各仮想ブロック(31G、31H)は、各仮想ブロック(31G、31H)が終端に到達するタイミングで始端から流動する合流地点後の仮想流動エリア30Iの各仮想ブロック31Iと対応関係を有している。このとき、各仮想流動エリア(30G、30H)の各仮想ブロック(31G、31H)と仮想流動エリア30Iの各仮想ブロック31Iとの対応関係は、各仮想流動エリア(30G、30H)の各仮想ブロック(31G、31H)が仮想流動エリア30Iの各仮想ブロック31Iに所定の比率で対応付けられるように設定される。各図に示される例では、各仮想流動エリア(30G、30H)の各仮想ブロック(31G、31H)は、仮想流動エリア30Iの各仮想ブロック31Iに、1:1の割合で交互に対応付けられている。
 加えて、各図に示される例では、仮想流動エリア30Gの各仮想ブロック31Gが終端に到達するタイミングは、仮想流動エリア30Hの各仮想ブロック31Hが終端に到達するタイミングと異なるように設定されている。具体的には、各仮想ブロック(31G、31H)がそれぞれの終端に到達するタイミングで、仮想流動エリア30Iの各仮想ブロック31Iが始端から発生するように、各仮想ブロック(31G、31H)の終端に到達するタイミングをずらしている。各図に示される例では、仮想流動エリア30Gの仮想ブロック(BG1、BG2)がそれぞれ、仮想流動エリア30Iの仮想ブロック(BI5、BI7)と対応関係を有しており、仮想流動エリア30Hの仮想ブロック(BH1、BH2)がそれぞれ、仮想流動エリア30Iの仮想ブロック(BI6、BI8)と対応関係を有している。
 このような場合、上記ステップS105では、管制サーバ1の制御部11は、一方の仮想流動エリア30Gを通って仮想流動エリア30Iに入る車両2Gに対して、各仮想流動エリア(30G、30I)の対応関係のある仮想ブロック(31G、31I)を割り当てる。同様に、制御部11は、他方の仮想流動エリア30Hを通って仮想流動エリア30Iに入る車両2Hに対して、各仮想流動エリア(30H、30I)の対応関係のある仮想ブロック(31H、31I)を割り当てる。
 各図の例では、制御部11は、車両2Gに対して、合流地点手前の仮想流動エリア30Gにおける仮想ブロック(BG1)、及び合流地点後の仮想流動エリア30Iにおける仮想ブロック(BI5)を割り当てている。一方、制御部11は、車両2Hに対して、合流地点手前の仮想流動エリア30Hにおける仮想ブロック(BH1)、及び合流地点後の仮想流動エリア30Iにおける仮想ブロック(BI6)を割り当てている。図12Dのハッチン具は、各車両(2G、2H)に割り当てたブロックID(BG1、BI5)(BH1、BI6)の仮想ブロック(31G、31I)(31H、31I)を示している。
 これにより、ステップS108において、各車両(2G、2H)の車載装置20の制御部21は、合流地点で互いに衝突しないように、各車両(2G、2H)の移動を制御することができる。また、各仮想ブロック(31G、31H)の終端に到達するタイミングがずれていることにより、各仮想ブロック(31G、31H)から仮想ブロック31Iへの移行がスムーズに行うことができるようになっている。したがって、当該方法によれば、道路3の合流地点を各車両2が停止することなくスムーズに移動可能な管制を実現することができる。
 なお、上記の例では、合流地点手前の道路は2つであるため、第1の仮想流動エリアの数は2つである。しかしながら、上記の合流地点の制御方法は、このような例に限られなくてもよい。合流地点手前の道路は3つ以上であってもよく、これに応じて、第1の仮想流動エリアは3つ以上設定されてもよい。
 また、上記の例では、各第1の仮想流動エリアの各仮想ブロックを第2の仮想流動エリアの各仮想ブロックに対応付ける比率は1:1である。しかしながら、当該比率は、1:1に限られなくてもよく、実施の形態に応じて適宜設定されてよい。
 更に、上記の例では、各第1の仮想流動エリアの各仮想ブロックが終端に到達するタイミングは、他の第1の仮想流動エリアの各仮想ブロックが終端に到達するタイミングと異なるように設定されている。しかしながら、各第1の仮想流動エリアの各仮想ブロックが終端に到達するタイミングの設定は、このような例に限られなくてもよく、実施の形態に応じて適宜決定されてよい。
 [作用・効果]
 以上のように、本実施形態に係る管制方法では、道路3により構成された道路網300は、複数の仮想流動エリア30に分割されている。そこで、管制サーバ1は、上記ステップS104及びS105の処理により、各車両2に対して、移動の開始位置から目的地までに利用する対象の1又は複数の仮想流動エリア30、及び少なくとも最初に進入する対象の仮想流動エリア30への進入時刻を決定する。これにより、管制サーバ1は、開始位置から目的地までの移動のスケジュールを各車両2に対して決定する。
 そして、各仮想流動エリア30では、エリア内道路32に対して移動規則が設定されており、各車両2の車載装置20は、上記ステップS108の処理により、各仮想流動エリア30に設定された移動規則に従って、各車両2の移動を制御する。これにより、各仮想流動エリア30では、各車両2は、同一の移動規則が適用されることで、一定の規律に従って、エリア内道路32を移動(走行)する。そのため、各仮想流動エリア30では、各車両2は、衝突することなく移動することができる。
 更に、当該管制方法では、各仮想流動エリア30に移動規則が設定されているため、管制サーバ1は、上記ステップS104において、各車両2の移動に利用する対象の仮想流動エリア30を決定(選択)する処理を実行するだけで、対象の移動規則が適用される範囲を特定することができる。つまり、当該管制方法では、対象の移動規則が適用される範囲を個別に特定する処理等を省略可能であり、これによって、各車両2の移動の開始位置から目的地までの移動のスケジュールを決定するための計算処理を簡略化することができる。
 したがって、当該管制方法によれば、各仮想流動エリア30に異なる移動規則が設定され、道路網300内で適用される移動規則が多様化しても、各車両2の移動を管制するための計算処理が複雑化してしまうのを抑制することができる。そのため、多様な移動規則が設定され得る道路3を移動する複数の車両2の管制にかかる計算コストを低減することができる。
 また、本実施形態では、各仮想流動エリア30では、始端301から終端302にかけて配列された状態のまま流動する複数の仮想ブロック31が設定される。これに応じて、管制サーバ1は、上記ステップS105において、各仮想流動エリア30の各仮想ブロック31を各車両2に割り当てることで、当該各車両2の移動スケジュールを決定する。これにより、まるでベルトコンベアで運んでいるように各車両2の移動を管制することができる。また、各仮想ブロック31に各車両2を割り当てるという簡単な処理を採用することで、各車両2の移動スケジュールを決定するための計算処理を簡略化しつつ、当該移動スケジュールを適切に設定することができようになる。したがって、本実施形態によれば、複数の車両2を適切に管制することができ、かつ多様な移動規則が設定され得る道路3を移動する複数の車両2の管制にかかる計算コストを更に低減することができる。
 §4 変形例
 以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略した。以下の変形例は適宜組み合わせ可能である。
 <4.1>
 上記実施形態において、車両2は、本発明の「移動体」の一例である。また、道路3(及びエリア内道路32)は、本発明の「通路」の一例である。具体的には、上記道路3(及びエリア内道路32)は、陸上に設けられた通路の一例である。更に、道路網300は、本発明の「通路網」の一例である。ただし、移動体、通路、及び通路網は、このような例に限定されなくてもよく、実施の形態に応じて適宜選択可能である。
 移動体は、自律的に移動可能に構成されていれば特に限定されなくてもよく、自動運転可能に構成された上記車両2(自動車)の他、例えば、自動的に航行可能な船舶、ドローン及び飛行可能な自動車を含む飛行体等であってもよい。通路は、各移動体の移動に利用するための領域を規定可能であれば特に限定されなくてもよく、陸上の他、空中、海上等に設定されてよい。また、通路は、上記道路3(及びエリア内道路32)の他、例えば、空域を運航するために規定された通路、海上又は河川を航行するために規定された通路等の航路を含んでもよい。これに応じて、通路網は、上記道路網300の他、航路網等と称されてもよい。更に、通路は、路肩、バスの引き込み道路、タクシーの乗り場通路等、少しの移動空間であってもよい。
 また、上記実施形態では、車両2は、自動運転可能に構成されており、ステップS108では、車両2の制御部21が、当該車両2の移動を制御している。自律的に移動可能な移動体には、このような車両2の他、自動航行可能な船舶、飛行体等が含まれる。更に、自律的に移動可能な移動体には、手動運転により移動する、車両、船舶、飛行体等の移動体が含まれてもよい。自律的に移動可能な移動体が、手動運転により移動する移動体である場合、上記ステップS108では、当該移動体の制御部は、管制サーバ1からの指示内容を運転者に対して出力するように構成されてよい。なお、当該指示内容の出力には、スピーカ、ディスプレイ等の出力装置が用いられてよい。
 <4.2>
 上記実施形態では、本発明の「制御装置」の一例として、車載装置20を例示した。しかしながら、移動体の制御装置は、このような例に限定されなくてもよく、実施の形態に応じて、適宜選択されてよい。例えば、移動体の制御装置は、移動の開始位置及び目的地をサーバに送信するように構成された送信装置、及び移動体の移動を制御するコントローラを含んでもよい。この場合、送信装置及びコントローラは、同一の場所に配置されてもよいし、異なる場所に配置されてもよい。
 図13は、本変形例に係る制御装置の適用場面を模式的に例示する。本変形例では、制御装置は、送信装置201及びコントローラ202を含む。コントローラ202は、上記車載装置20と同様に、各車両2に配置される。一方、図13の例では、送信装置201は、各車両2とは離れた位置に存在するユーザにより保持されている。ただし、送信装置201の配置は、このような例に限られなくてもよく、各車両2に乗車したユーザが、送信装置201を保持していてもよい。
 送信装置201は、CPU等を含む制御部、記憶部、通信インタフェース、入力装置、及び出力装置が電気的に接続されたコンピュータであってよい。具体例として、この送信装置201は、スマートフォン等の携帯端末、タブレットPC等の汎用のコンピュータ等であってよい。また、コントローラ202は、上記車載装置20と同様のハードウェア構成を有してもよい。
 この例では、送信装置201は、プログラムの実行により、ソフトウェアモジュールとして上記移動申請部211を備え、上記ステップS101及びS102の処理を行う。一方、コントローラ202は、プログラムの実行により、ソフトウェアモジュールとして上記指示受取部212及び自動運転制御部213を備え、上記ステップS107及びS108の処理を行う。これにより、ユーザは、送信装置201を所持していれば、車両2に乗車していなくても、当該車両2の移動を制御することができる。例えば、ユーザは、遠隔地に存在する車両2を自身の下に呼び寄せることができる。
 <4.3>
 上記実施形態において、管制サーバ1の数は、複数であってもよい。また、上記通路網(道路網300)は、複数の通路区間に分割されていてもよい。そして、各通路区間は、1又は複数の仮想流動エリア(仮想流動エリア30)を含むように設定されてよい。
 図14は、本変形例に係る2つの管制サーバ1の分配の一例を模式的に例示する。本変形例では、道路網は、2つの道路区間(40、41)に分割されている。各道路区間(40、41)は、上記通路区間の一例である。各道路区間(40、41)は、1又は複数の仮想流動エリア30を含むように設定されている。
 2つの管制サーバ1は、2つの道路区間(40、41)のいずれかに割り当てられている。そして、各道路区間(40、41)における各車両2に対する上記ステップS103~S106の一連の処理は、各道路区間(40、41)に割り当てられた管制サーバ1によって行われる。
 各道路区間(40、41)は、道路3の種別に応じて設定されてよい。道路3の種別として、例えば、一般道路、高速道路、幹線道路等を挙げることができる。一例として、1つ目の道路区間40が高速道路を含むように設定され、2つ目の道路区間40は一般道路を含むように設定されてよい。
 これにより、各管制サーバ1の処理負荷を道路区間(40、41)毎に分割することができる。また、例えば、同一の移動規則を有する1又は複数の仮想流動エリア30を含むように各道路区間(40、41)を設定することで、比較的に同一の移動規則が適用され得る道路区間(40、41)毎に異なる管制サーバ1を割り当てることができる。したがって、本変形例によれば、各管制サーバ1の処理負荷を低減することができる。
 なお、道路網に設定される道路区間の数は、2つに限られなくてもよく、3つ以上であってもよい。また、管制サーバ1の数は、2つに限られなくてもよく、3つ以上であってもよい。また、複数の管制サーバ1それぞれが、複数の道路区間のいずれかに割り当てられるのであれば、各道路区間に割り当てられる管制サーバ1の数は、1つに限られなくてもよく、2つ以上であってもよい。
 また、隣接する道路区間は、必ずしも道路の種別が異なっていなくてもよい。例えば、一定の移動規則が設定された長距離の高速道路に対して複数の道路区間を設定してもよい。これにより、管理者の異なる地域をまたいで延びる高速道路であっても、管理者毎に、道路区間を設定して、異なる管理サーバを各道路区間に割り当てることができる。
 <4.4>
 上記実施形態において、各仮想流動エリア30に設定される移動規則は、実施の形態に応じて適宜決定されてよい。隣接する2つの仮想流動エリア30において、共通の移動規則が設定されてもよいし、異なる移動規則が設定されてもよい。
 また、上記実施形態において、各仮想流動エリア30には、複数の仮想ブロック31が設定されている。しかしながら、各仮想ブロック31の設定は省略されてもよい。この場合、上記ステップS108では、車載装置20の制御部21は、各仮想流動エリア30に設定された移動規則に従って、各エリア内道路32の移動を制御する。
 また、上記実施形態において、各仮想流動エリア30の範囲は、実施の形態に応じて適宜決定されてよい。例えば、複数の車線を含む道路では、車線に応じて異なる仮想流動エリア30が設定されてもよい。
 また、上記実施形態において、隣接する仮想流動エリア30は、物理的に離れていてもよい。この場合、隣接する仮想流動エリア30間の移動に関する制約条件が課されてもよい。例えば、2つの港それぞれまでの道路に仮想流動エリア30が設定され、2つの港間で車両2を船により輸送する条件(例えば、輸送時間)が制約条件として設定されてもよい。これにより、管制サーバ1は、隣接する仮想流動エリア30間の移動にかかる時間を把握することができるため、移動の開始位置から目的地までの経路にこのような範囲を含む場合であっても、上記ステップS104及びS105により、各車両2の移動スケジュールを決定することができる。
 <4.5>
 上記実施形態では、管制サーバ1は、地図情報122、エリア設定情報123、フロースケジュール情報124、及び割当情報125を保持している。これに応じて、車載装置20は、地図情報222、エリア設定情報223、及びフロースケジュール情報224を保持している。しかしながら、管制サーバ1及び車載装置20に保持される情報は、このような例に限定されなくてもよく、実施の形態に応じて適宜決定されてよい。例えば、地図情報(122、222)及びエリア設定情報(123、223)は1つの情報で表現されてもよい。また、仮想流動エリア30内に仮想ブロック31を設定しない場合には、フロースケジュール情報(124、224)及び割当情報125は省略されてもよい。
 1…管制サーバ、
 11…制御部、12…記憶部、13…通信インタフェース、
 14…入力装置、15…出力装置、16…ドライブ、
 111…受付部、112…スケジュール決定部、
 113…移動指示部、
 121…管制プログラム、122…地図情報、
 123…エリア設定情報、124…フロースケジュール情報、
 125…割当情報、
 2…車両、20…車載装置、
 21…制御部、22…記憶部、23…通信インタフェース、
 24…GPS信号受信回路、25…タッチパネルディスプレイ、
 211…移動申請部、212…指示受取部、
 213…自動運転制御部、
 221…制御プログラム、222…地図情報、
 223…エリア設定情報、224…フロースケジュール情報、
 3…道路、300…道路網、
 30…仮想流動エリア、31…仮想ブロック、32…(エリア内)道路、
 40・41…道路区間

Claims (13)

  1.  1又は複数のサーバが、それぞれ自律的に移動可能に構成された複数の移動体に対して移動の指示を送信することで、当該複数の移動体の移動を管制する管制方法であって、
     前記各移動体の制御装置が、移動の開始位置及び目的地を前記1又は複数のサーバに送信するステップと、
     前記各移動体の移動のために設けられた通路により構成された通路網は、複数の仮想流動エリアに分割されており、当該複数の仮想流動エリアそれぞれでは、それぞれに含まれる通路の移動に対して適用される移動規則が設定されており、前記1又は複数のサーバが、前記複数の仮想流動エリアの中から、前記開始位置から前記目的地までの移動に利用する対象の1又は複数の仮想流動エリアを前記各移動体に対して決定するステップと、
     前記1又は複数のサーバが、前記対象の1又は複数の仮想流動エリアのうちの少なくとも最初に進入する対象の仮想流動エリアへの進入時刻を前記各移動体に対して決定するステップと、
     前記1又は複数のサーバが、決定した前記対象の1又は複数の仮想流動エリア及び進入時刻を前記各移動体の前記制御装置に送信することで、前記対象の1又は複数の仮想流動エリアの通路に前記進入時刻に基づいて進入し、前記対象の1又は複数の仮想流動エリアそれぞれに設定された前記移動規則に従って当該通路を移動するように前記各移動体に指示するステップと、
    を備える、
    管制方法。
  2.  前記複数の仮想流動エリアそれぞれには、始端から終端にかけて配列された状態のまま、設定された前記移動規則に従って当該始端から当該終端に流動する複数の仮想ブロックが設定されており、
     前記1又は複数のサーバは、前記対象の1又は複数の仮想流動エリアそれぞれに設定された複数の仮想ブロックの中から少なくともいずれかの仮想ブロックを前記各移動体に割り当てることで、前記対象の1又は複数の仮想流動エリアそれぞれに進入する前記進入時刻を決定し、
     前記1又は複数のサーバは、前記対象の1又は複数の仮想流動エリアそれぞれで割り当てた前記仮想ブロックを前記制御装置に通知することで、前記対象の1又は複数の仮想流動エリア及び前記進入時刻を前記制御装置に送信する、
    請求項1に記載の管制方法。
  3.  複数の仮想流動エリアは、互いに隣接する第1の仮想流動エリア及び第2の仮想流動エリアを含み、
     前記第1の仮想流動エリアの終端は、前記第2の仮想流動エリアの始端に接続し、
     前記第1の仮想流動エリアの前記各仮想ブロックは、当該各仮想ブロックが前記終端に到達するタイミングで前記始端から流動する前記第2の仮想流動エリアの仮想ブロックと対応関係を有しており、
     前記1又は複数のサーバは、前記第1の仮想流動エリア及び前記第2の仮想流動エリアの通路を移動する移動体に対して、互いに対応関係のある前記第1の仮想流動エリアの仮想ブロック及び前記第2の仮想流動エリアの仮想ブロックを割り当てる、
    請求項2に記載の管制方法。
  4.  前記移動規則は、少なくとも移動速度を規定し、
     前記複数の仮想流動エリアは、前記第2の仮想流動エリアに隣接する第3の仮想流動エリアを更に含み、
     前記第2の仮想流動エリアの終端は、前記第3の仮想流動エリアの始端に接続し、
     前記第2の仮想流動エリアの前記各仮想ブロックは、当該各仮想ブロックが前記終端に到達するタイミングで前記始端から流動する前記第3の仮想流動エリアの仮想ブロックと対応関係を有しており、
     前記第1の仮想流動エリアに設定された移動速度は、前記第3の仮想流動エリアに設定された移動速度とは相違しており、
     前記第2の仮想流動エリアに設定された移動速度は、前記第1の仮想流動エリアに設定された移動速度と前記第3の仮想流動エリアに設定された移動速度との間であるように設定され、
     前記1又は複数のサーバは、前記第1の仮想流動エリア、前記第2の仮想流動エリア及び前記第3の仮想流動エリアの通路を移動する移動体に対して、対応関係のある前記第1の仮想流動エリアの仮想ブロック、前記第2の仮想流動エリアの仮想ブロック、及び前記第3の仮想流動エリアの仮想ブロックを割り当てる、
    請求項3に記載の管制方法。
  5.  前記複数の仮想流動エリアは、複数の前記第1の仮想流動エリアを含み、
     前記各第1の仮想流動エリアの前記各仮想ブロックと前記第2の仮想流動エリアの前記各仮想ブロックとの前記対応関係は、前記各第1の仮想流動エリアの前記各仮想ブロックが前記第2の仮想流動エリアの前記各仮想ブロックに所定の比率で対応付けられるように設定される、
    請求項3に記載の管制方法。
  6.  前記各第1の仮想流動エリアの前記各仮想ブロックが前記終端に到達するタイミングは、他の第1の仮想流動エリアの前記各仮想ブロックが前記終端に到達するタイミングと異なるように設定される、
    請求項5に記載の管制方法。
  7.  前記複数の仮想流動エリアのうち少なくともいずれかの隣接する仮想流動エリアには異なる移動規則が設定される、
    請求項1から6のいずれか1項に記載の管制方法。
  8.  前記通路網は、複数の通路区間に分割されており、
     前記各通路区間は、1又は複数の前記仮想流動エリアを含み、
     複数の前記サーバは、前記複数の通路区間のいずれかに割り当てられており、
     前記各通路区間における、前記各移動体に対する前記対象の1又は複数の仮想流動エリア及び前記進入時刻の決定は、前記各通路区間に割り当てられた前記サーバによって行われる、
    請求項1から7のいずれか1項に記載の管制方法。
  9.  前記各通路区間は、前記通路の種別に応じて設定される、
    請求項8に記載の管制方法。
  10.  前記通路は、道路であり、
     前記移動体は、自動運転可能に構成された自動車である、
    請求項1から9のいずれか1項に記載の管制方法。
  11.  前記移動規則は、移動速度、及び他の移動体との間の最小距離の少なくともいずれかを規定する、
    請求項1から10のいずれか1項に記載の管制方法。
  12.  それぞれ自律的に移動可能に構成された複数の移動体に対して移動の指示を送信することで、当該複数の移動体の移動を管制する管制装置であって、
     前記各移動体の制御装置からの移動の申請を受け付ける受付部であって、移動の開始位置及び目的地を示す情報を受信する受付部と、
     前記各移動体の移動のために設けられた通路により構成された通路網は、複数の仮想流動エリアに分割されており、当該複数の仮想流動エリアそれぞれでは、それぞれに含まれる通路の移動に対して適用される移動規則が設定されており、前記複数の仮想流動エリアの中から、前記開始位置から前記目的地までの移動に利用する対象の1又は複数の仮想流動エリアを前記各移動体に対して決定し、かつ前記対象の1又は複数の仮想流動エリアのうちの少なくとも最初に進入する対象の仮想流動エリアへの進入時刻を前記各移動体に対して決定するスケジュール決定部と、
     決定した前記対象の1又は複数の仮想流動エリア及び進入時刻を前記各移動体の前記制御装置に送信することで、前記対象の1又は複数の仮想流動エリアの通路に前記進入時刻に基づいて進入し、前記対象の1又は複数の仮想流動エリアそれぞれに設定された前記移動規則に従って当該通路を移動するように前記各移動体に指示する移動指示部と、
    を備える、
    管制装置。
  13.  それぞれ自律的に移動可能に構成された複数の移動体に対して移動の指示を送信させることで、当該複数の移動体の移動をコンピュータに管制させるための管制プログラムであって、
     前記コンピュータに、
     前記各移動体の制御装置からの移動の申請を受け付けるステップであって、移動の開始位置及び目的地を示す情報を受信するステップと、
     前記各移動体の移動のために設けられた通路により構成された通路網は、複数の仮想流動エリアに分割されており、当該複数の仮想流動エリアそれぞれでは、それぞれに含まれる通路の移動に対して適用される移動規則が設定されており、前記複数の仮想流動エリアの中から、前記開始位置から前記目的地までの移動に利用する対象の1又は複数の仮想流動エリアを前記各移動体に対して決定するステップと、
     前記対象の1又は複数の仮想流動エリアのうちの少なくとも最初に進入する対象の仮想流動エリアへの進入時刻を前記各移動体に対して決定するステップと、
     決定した前記対象の1又は複数の仮想流動エリア及び進入時刻を前記各移動体の前記制御装置に送信することで、前記対象の1又は複数の仮想流動エリアの通路に前記進入時刻に基づいて進入し、前記対象の1又は複数の仮想流動エリアそれぞれに設定された前記移動規則に従って当該通路を移動するように前記各移動体に指示するステップと、
    を実行させるための、
    管制プログラム。
PCT/JP2018/039256 2017-10-26 2018-10-23 管制方法、管制装置及び管制プログラム WO2019082863A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017207124A JP6822377B2 (ja) 2017-10-26 2017-10-26 管制方法、管制装置及び管制プログラム
JP2017-207124 2017-10-26

Publications (1)

Publication Number Publication Date
WO2019082863A1 true WO2019082863A1 (ja) 2019-05-02

Family

ID=66247466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039256 WO2019082863A1 (ja) 2017-10-26 2018-10-23 管制方法、管制装置及び管制プログラム

Country Status (5)

Country Link
JP (1) JP6822377B2 (ja)
KR (1) KR102092472B1 (ja)
CN (1) CN109712422B (ja)
TW (1) TWI680433B (ja)
WO (1) WO2019082863A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348773B2 (ja) * 2019-08-22 2023-09-21 株式会社日立製作所 交通流制御システム、交通流制御プログラム、交通流制御方法、および走行制御装置
WO2023084811A1 (ja) * 2021-11-10 2023-05-19 日本電信電話株式会社 管理装置、管理方法、およびプログラム
JP7263580B1 (ja) 2022-02-14 2023-04-24 ソフトバンク株式会社 サーバシステム及び車両
CN118235183A (zh) * 2022-10-20 2024-06-21 株式会社斯巴鲁 车辆的管制控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021493A (ja) * 1996-07-08 1998-01-23 Toshiba Corp Icネイル情報制御システム
WO2017011113A1 (en) * 2015-07-12 2017-01-19 Qualcomm Incorporated Network architecture and security with simplified mobility procedure
WO2017051478A1 (ja) * 2015-09-25 2017-03-30 三菱電機株式会社 運転支援装置および運転支援方法
WO2018147041A1 (ja) * 2017-02-09 2018-08-16 ソニーセミコンダクタソリューションズ株式会社 走行支援装置と走行支援管理装置およびその方法と走行支援システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6581005B2 (en) * 2000-11-30 2003-06-17 Nissan Motor Co., Ltd. Vehicle position calculation apparatus and method
JP5288423B2 (ja) * 2011-04-11 2013-09-11 株式会社日立製作所 データ配信システム、及びデータ配信方法
TWI557006B (zh) * 2014-05-27 2016-11-11 國立雲林科技大學 自動化車輛全域性風險分析的區域規劃演算法與軌跡最佳化閃避系統
JP6443249B2 (ja) 2015-07-17 2018-12-26 株式会社デンソー 交通システム、車両制御装置
KR101695557B1 (ko) * 2015-07-17 2017-01-24 고려대학교 산학협력단 자율 주행 기반 무인 운반차 시스템 및 이의 제어 방법
WO2017111139A1 (ja) * 2015-12-23 2017-06-29 京セラ株式会社 サーバ装置、車両制御装置、および歩行補助装置
KR20160132789A (ko) * 2016-10-31 2016-11-21 도영민 사회적 자율주행 교통장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021493A (ja) * 1996-07-08 1998-01-23 Toshiba Corp Icネイル情報制御システム
WO2017011113A1 (en) * 2015-07-12 2017-01-19 Qualcomm Incorporated Network architecture and security with simplified mobility procedure
WO2017051478A1 (ja) * 2015-09-25 2017-03-30 三菱電機株式会社 運転支援装置および運転支援方法
WO2018147041A1 (ja) * 2017-02-09 2018-08-16 ソニーセミコンダクタソリューションズ株式会社 走行支援装置と走行支援管理装置およびその方法と走行支援システム

Also Published As

Publication number Publication date
TW201917687A (zh) 2019-05-01
KR20190046629A (ko) 2019-05-07
JP2019079376A (ja) 2019-05-23
CN109712422A (zh) 2019-05-03
JP6822377B2 (ja) 2021-01-27
CN109712422B (zh) 2022-02-25
KR102092472B1 (ko) 2020-03-23
TWI680433B (zh) 2019-12-21

Similar Documents

Publication Publication Date Title
WO2019082863A1 (ja) 管制方法、管制装置及び管制プログラム
KR102078488B1 (ko) 차량 주변의 컨텍스트에 기초하여 차량의 하나 이상의 궤적을 예측하는 방법 및 시스템
CN111835496B (zh) 在自动驾驶系统的不同计算节点之间的定时同步方案
CN105590481B (zh) 自动驾驶车辆、自动驾驶管理装置及其控制方法
US20200021961A1 (en) Vehicle on-board unit for connected and automated vehicle systems
CN112687123B (zh) 自动泊车系统
JP7060398B2 (ja) サーバ装置
CN111380534B (zh) 用于自动驾驶车辆的基于st图学习的方法
CN107021099A (zh) 自主车辆紧急操作模式
US10529233B1 (en) Vehicle and method for detecting a parking space via a drone
CN110727276A (zh) 用于自动驾驶车辆的多模态运动规划框架
US20150285642A1 (en) Reduced network flow and computational load using a spatial and temporal variable scheduler
CN110021180A (zh) 用于以车队模式行驶的车辆的系统和方法
US11605289B2 (en) Notification device
CN113031576B (zh) 自动驾驶车队中的车辆控制方法、车载装置及车辆
US11046304B2 (en) Rider selectable ride comfort system for autonomous vehicle
CN111328313B (zh) 用于自动驾驶车辆的控制占主导的三点转弯规划
CN111736589A (zh) 信息处理装置、信息处理方法及记录介质
EP4027668A1 (en) Waypoint information transmission method, apparatus and system for platooning
JP7038075B2 (ja) 情報処理装置、移動体、通信端末、プログラム及び方法
EP4145420A1 (en) Hierarchical processing of traffic signal face states
US20210005094A1 (en) Mobile body management system, control method for mobile body management system, and management server for mobile body management system
CN112785829B (zh) 设备控制方法、装置、计算机可读存储介质及电子设备
US11512968B2 (en) Systems and methods for queue management of passenger waypoints for autonomous vehicles
US20230106666A1 (en) Remote support server, remote support method, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869657

Country of ref document: EP

Kind code of ref document: A1