TWI557006B - 自動化車輛全域性風險分析的區域規劃演算法與軌跡最佳化閃避系統 - Google Patents
自動化車輛全域性風險分析的區域規劃演算法與軌跡最佳化閃避系統 Download PDFInfo
- Publication number
- TWI557006B TWI557006B TW103118394A TW103118394A TWI557006B TW I557006 B TWI557006 B TW I557006B TW 103118394 A TW103118394 A TW 103118394A TW 103118394 A TW103118394 A TW 103118394A TW I557006 B TWI557006 B TW I557006B
- Authority
- TW
- Taiwan
- Prior art keywords
- vehicle
- threat
- probability
- road
- analysis
- Prior art date
Links
Landscapes
- Traffic Control Systems (AREA)
Description
本發明為一種自動化車輛之風險分析的演算法與閃避系統,尤指一種於車輛行駛時提供全域性風險分析之區域規劃的演算法以及提供車輛軌跡最佳化的閃避系統。
智能車輛近來受到廣泛討論,目前已有許多研究學者針對不同領域進行相關研究,包含有:(1)駕駛輔助系統(driver assistance systems):當車輛前方發生事故時,會及時發出警告以提醒駕駛,並且適度自動調整車輛行駛狀態(例如:LDW(lane departure warning)、LCA(lane change assist)與ACC(adaptive cruise control)):(2)自主駕駛車輛(autonomous vehicles):藉由緊急駕駛輔助演算法(emergency driving support algorithm)結合前述駕駛輔助系統使該車輛可獨立行駛在道路中;(3)合作智慧車輛(cooperative-intelligent-vehicles):在道路上的不同車輛利用車載隨意網路(Vehicle Ad-hoc Network,VANET)結合細胞(cell)通訊模式可共享資訊,提供當前道路資訊並彼此合作。
以下列舉現有車輛常見的車輛防撞機制:
車輛防撞系統(Cooperative Collision Avoidance System,CCAS),主要藉由偵測、判斷與致動三階段加以分析周圍的道路狀況,避免車輛在道路行駛時發生連鎖碰撞,該車輛防撞系統是以車載隨意網路(VANET)為傳輸平台,將前方路況提前告知後方車輛駕駛,使該駕駛能即時做出反應。
自動化防撞機制(Autonomous Precrash Brake,APB),以車輛間的合作,即時分享道路資訊如:車輛流量(Traffic flow)、車流密度(Traffic density)或車速變化(Velocity variation)等適性控制車輛避免車輛事故發生。一般駕駛煞車是因看到前車異狀或對向車頭燈所產生的反射行為,然而自動化機制,會因各狀況的不確定性而產生系統誤判,加上駕駛反應時間(從看到異狀到車輛實際開始煞車時間)通常為0.75~1.5秒,請參閱圖13所示,假設道路在一時間點產生威脅車(violation vehicle)時,會因車輛狀態的不同而導致道路車流動向的改變,使得車隊(一同行駛的複數車輛)無法評估四周來車所造成的道路危險等級,進而造成車隊駕駛(尤指車隊最前方車輛的駕駛人)閃避不及之危機。當事故或異狀車輛接近時能立即通知車隊駕駛,促使車隊駕駛有充裕的反應時間,有效防止車隊駕駛因事故閃避不及之情況發生,透過合作適性定速控制(Cooperate Adaptive Cruise Control,CACC)以車輛間相互合作,即時分享道路資訊並縱向地控制車輛以避免車輛事故發生,使得車隊高速移動行駛在複雜的道路環境中,利用車輛本身配備的車上機(On-Board Unit,OBU)、雷達、感測器、GPS以及鄰近車輛的資源將訊息加以分析,透過車輛防撞機制減少駕駛在道路行駛的危險性。
隨著道路上的車輛數量與日俱增,現有駕駛輔助系統以及相關領域的研究越來越多,然而大都以相對速度、加速度及安全距離做為車隊或單一車輛之適性調整的依據,現今防碰撞系統(Collision Avoidance Systems,CAS)是利用相對距離、相對速度以及加速度定義碰撞時間(time-to-collision,TTC),單
純針對車體面積計算安全閃避之轉向角度來提升安全性的概念已不適用於現今道路環境,道路中因駕駛行為之不確定性而存在車輛分佈不均、亂象行徑、行駛危急性等潛在威脅,容易造成系統誤判,而導致系統高誤判率的主要問題為:(1)道路駕駛人因隨意變換速度及行車軌跡,改變車輛之間原有的安全距離,造成因時間與危險性差異而導致誤判;(2)由於威脅或危險車輛屬多方位性,當有突發情況時(如人為失誤或機械意外),會因車流狀態的高複雜度而降低系統可靠度,帶來更危險的交通事故,以及增加道路危害指標,以及(3)在防碰撞系統分析出的碰撞時間與危險等級,因缺乏轉向機率、欲加速度,調整時間需求等,使得駕駛在得知訊息後會因差異性而降低決策的準確性。
現有車輛於道路行駛環境中,多數文獻探討的是許多危險事故是發生在車輛(以下簡稱本車)前方,以車輛周遭的環境定義來說,大都是以與本車相同車道的前方車輛或因對向車道超車的車輛,使得迎面而來的車輛帶來碰撞威脅,然而大多數事故發生的情況,造成危險的車輛往往都是在本車駕駛無法警覺的狀態下發生的,也就是說相較於前方車輛的危害等級,鄰近方位產生的違規車輛所帶來的危險指數是相對高出許多。然而,多數文獻並沒有考慮到下列因素:(1)車輛分布不均、駕駛的行為與潛在危機會有所變異;(2)因威脅種類不同,相對於駕駛的車道威脅等級會隨之改變;(3)當道路環境改變,車輛在高速移動下,影響範圍與相對因子為連續性變數,車道危險指數也會連續性轉變,而降低駕駛決策精確度。
綜上所述,可知現有技術仍無法精確掌握道路上多方位之威脅車輛對於本車造成碰撞的可能性作出相對應的機制,且也無法有效將駕駛安全引導至正確的行駛路線上,意即,現有車輛輔助安全系統只能將車輛碰撞傷害減
輕但不能提供有效安全的保證,實有必要提出改進的技術,以解決駕駛人的行車隱憂並提升駕駛人的安全。
如前揭所述,現有車輛輔助安全系統為減輕事故時的碰撞傷害而不能提供有效安全性的保證,造成駕駛人安全隱憂的問題,因此本發明主要目的在提供一自動化車輛全域性風險分析的區域規劃演算法與軌跡最佳化閃避系統,主要是辨識多車道上之威脅車與鄰近車並評估其道路危險程度,以及計算其與本車的危險機率,並提供駕駛人行車資訊以作出駕駛決策,解決現有駕駛人易受威脅或危險車輛影響以及車輛輔助系統不足之處,所造成安全性不足的問題。
為達成前述目的所採取的主要技術是令前述自動化車輛全域性風險分析的軌跡最佳化閃避系統包含有:一威脅車輛分級模組,其對車道之一個以上的威脅車輛進行分級,並針對威脅車輛的特徵分類及所在的車道位置,以及與本車的相對參數執行適性分析道路危險等級;一道路危險機率分析模組,其與威脅車輛分級模組連接,該道路危險機率分析模組是以威脅車輛分級模組取得的資訊分析威脅車輛與鄰近車輛之轉向與碰撞機率,並針對分析結果計算危及本車的機率以物體動力學與跟車理論規劃連續性動態調整色塊分佈與級別;以及一威脅閃避模組,其與道路危險機率分析模組連接,該威脅閃避模組包含有一威脅閃避演算法,該威脅閃避模組係取得威脅車輛分級模組分類之軌跡調
整的移動成本以及道路危險機率分析模組之危及本車機率,產生航向最短之路徑或最快閃避之路徑,並進一步分析最佳落點。
為達成前述目的所採取的主要技術是令前述自動化車輛全域性風險分析的區域規劃演算法包含有下列步驟:對威脅車輛進行分級,係先計算道路上之車輛的速度與行駛時間,判斷車輛的優先權重與威脅車輛的碰撞時間;對道路的危險機率進行分析,係對車輛分析碰撞機率、潛在威脅機率並產生關鍵權重區域調色輔助機制;以及規畫威脅閃避演算法,係產生車輛閃避路徑並計算移動的軌跡成本,並由危險機率與移動的軌跡成本提高準確性。
由上述步驟可知,該自動化車輛全域性風險分析的區域規劃演算法與軌跡最佳化閃避系統是對車道上之威脅車輛計算並分析與其碰撞機率後,以連續性動態調整色塊提供最佳閃避的行車路徑指示,並藉由辨識威脅車輛與一般車輛的差別輔以評估道路危險程度,提供駕駛人行車資訊以作出駕駛決策,解決現有駕駛人易受外界威脅或危險車輛影響以及車輛輔助系統不足,所造成安全性不足的問題。
10‧‧‧威脅車輛分級模組
20‧‧‧道路危險機率分析模組
30‧‧‧威脅閃避模組
圖1是本發明一較佳實施例之車輛雲的行車狀態及方塊圖。
圖2是本發明一較佳實施例之軌跡最佳化閃避系統的方塊圖。
圖3是本發明一較佳實施例之道路策略示意圖。
圖4是本發明一較佳實施例之威脅車輛關鍵分析的示意圖。
圖5是本發明一較佳實施例之計算碰撞時間示意圖。
圖6是本發明一較佳實施例之道路危險機率分析的流程圖。
圖7是本發明一較佳實施例之道路車流的碰撞級數示意圖。
圖8是本發明一較佳實施例之威脅車輛轉向機率的示意圖。
圖9是本發明一較佳實施例之本車威脅機率的示意圖。
圖10是本發明一較佳實施例之車道危險指數的示意圖。
圖11是本發明一較佳實施例之軌跡移動成本的示意圖。
圖12是本發明一較佳實施例之危險機率的示意圖。
圖13是現有用於車輛之合作適性定速控制的使用示意圖。
關於本發明的一較佳實施例,請參閱圖1所示,其定義一車輛雲(Vehicular Cloud)的網路模型(G),該網路模型(G)由一組移動車輛集合(N)以及一組無線網路鏈結集合(E)所形成,意即,G=(N,E)。如圖所示,是將道路車流區分為威脅車(輛)(Violation Vehicle)、車隊(Platoon)以及鄰近車(輛)(Adjacency Vehicle),該車隊是指包含有一領航車(leader)(以下簡稱本車)與一台以上的跟隨車(follower),在道路車流中因各車輛行駛軌跡不同,會造成道路拓樸變化頻繁。以威脅駕駛方面,威脅車輛的定義是以會危及或即將危及到該車隊之車輛的安全,意即,在道路上之潛在車輛有可能危及到車隊的就列為威脅車。而車隊中的領航車與跟隨車是以等速度行駛,車隊間的各車輛是資訊共享,領航車擁有一行動裝置(圖中未示)以接收從雲端來的道路資訊,並評估道路危險等級,因此會依據鄰近車的距離(d)、相對速度(v)與相對加速度(a),經計算後使該領航車的駕駛可有效決定閃避策略並通知跟隨車,其次車輛雲會依據道路上接收到的
各車流資訊,針對道路(主幹線或支線)車流狀況,將資訊即時分享至其它雲端用戶,並結合本地端(local)資訊使道路資訊更加完整。
在多車道環境中需考慮到事故發生的機率問題,因此依據下列幾個因子來解決當事故發生時車隊閃避的問題,(1)道路等級,考慮每條道路之速限以及車流速度與密度,利用車流速度及路段長度計算每台車在該路段的行駛時間,並將感測器與車輛雲接收到的威脅資訊統整;(2)利用上述條件計算出碰撞時間及碰撞機率;(3)依據面積概念,以不同色塊或區域區分行駛路徑(危險路徑、條件路徑與安全路徑),例如規劃出紅色區域(危險路徑)與綠色區域(安全路徑);(4)進一步針對色塊分析最佳移動落點位置,以引導駕駛行駛安全路段(路徑)。
接著本發明所述之軌跡最佳化閃避系統,請參閱圖2所示,其包含有三個模組,分別為一威脅車輛分級模組10、一道路危險機率分析模組20與一威脅閃避模組30,該威脅車輛分級模組10、道路危險機率分析模組20及威脅閃避模組30是依序連接並執行不同階段步驟:
階段1:由威脅車輛分級模組10對車道上的威脅車輛進行分級(Class of Threaten Vehicle,CTV),針對具有威脅或危險車輛的特徵及其所在的車道位置進行分類,依據其與本車的相對參數(差異性)執行適性分析道路危險等級。
階段2:由道路危險機率分析模組20進行道路危險機率分析(Road Hazard Probability Analysis,RHPA),藉由階段1得出的資訊分析威脅車輛、鄰近車輛的轉向及碰撞機率,並針對分析結果算出危及本車的機率並適性調整色塊(Coloring 。
階段3:由威脅閃避模組30執行威脅閃避演算法(Threat Avoidance Algorithm
,TAA),呈現道路上之危險等級區域後,準確引導本車駕駛航向最短路徑(安全路徑或最快閃避路徑)。以下針對各階段作詳細說明。
階段1:對威脅車輛進行分級(CTV)
階段1-1:道路策略(Road Strategy),請配合參閱圖3所示,利用車流速度及路段長度計算每台車在該路段行駛所擁有最高的安全行駛速度μ r ,平均車輛速度為,而其路段的交通密度為ρ r ,則車輛平均速度,如下式(1)
計算出每條路段的車流速度後,再分別除以該路段的長度D i ,則可推估出該條路段所需的行駛時間T i ,如式(2),
階段1-2:威脅車輛關鍵分析(Threaten Vehicle Criticality Analysis),請參閱圖4所示,其中,Y軸為加速度(Acceleration),X軸為距離(Distance),而斜向軸為行駛時間(Travel Time),藉由該座標之相對關係,以縮小威脅車輛的偵測範圍,針對各車輛狀態依據參數分析出對於本車駕駛而言的潛在威脅車輛,並判別優先考量權重,再將其較高權重車輛資訊提取並進一步分析,如式(3)。
其中,依據GPS定位(Dt)為,而速動指標(Vt)為與碰撞時間(TTC)評估影響範圍,在一時間點評估周圍車輛與本車位移與速度的相對關係,依據相對位置的遠近、速度差以及加速度分析危險之落點位置,由式(1)之值將範圍內車輛之速度將其作比較,並以斜率與距離分析出當下最危急之車輛狀態,而落點位置在三參數曲線面積
內,則表示該點為當下最危急之車輛狀態,如潛在碰撞發生在滯留時間內時,可即時針對區域內之車輛同時作多車輛之考量,藉此降低迭代分析所產生的風險性。
階段1-3:計算碰撞時間(Calculate Time to Collision,TTC),計算出道路上車輛之滯留時間T i 後,此時需分析威脅車輛與本車的碰撞時間(TTC),該碰撞時間(TTC)為計算當前威脅車輛將危害到本身車輛的碰撞時間,利用相對速度(relative speeds)(v eco,n )與距離(distance)(d eco,n )套用加速度公式算出減速度(deceleration)(a i ),因環境中車輛為持續移動,請參閱圖5所示,因此提出相對
減速度(a eco,n )並計算出相對末速度,將相對距離與相對速度作運算,即可預估當本車的車速不變情況下,多久時間會被後方威脅車輛碰撞的碰撞時間TTC eco,n ,如式(4)、(5),02=v th 2+2a i d stop (4)
階段2:道路危險機率分析(RHPA),在階段2與3中,提出以機率的模式分析威脅車輛的危及性,依據交通局提供的2009~2013事故調查分析,事故發生的原因有80%是來自駕駛行為不當,15%是來自視線死角,因此提出以機率分析的方式概括大多數事故種類,因此針對碰撞、危險、閃避機率進一步探討,如圖6所示,以將威脅降至最低。在此階段中是將車輛狀態分成三部分分析:(1)碰撞機率分析,(2)車輛潛在威脅機率,(3)關鍵權重區域調色(或稱色塊(Coloring))輔助機制;由於道路上車輛的拓樸變化大,在每一時間點所評估的狀態都有可能在下一時間點有所改變,當存在威脅車輛時,為了避免在連續時間
上發生誤判,提出以威脅機率算法,如圖6所示,將危險進一步整合分析,以強化系統的準確性。
階段2-1:車輛潛在威脅機率分析(Analysis Probability of Vehicle Potential Criticality),本階段是對威脅車輛變換車道機率分析,計算各鄰近車輛之碰撞機率後,將環境中危險機率進行三部分分析:(1)危險比值,(2)道路權重值,(3)轉向機率分析。
在駕駛行為模式下依據碰撞時間(TTC)來評估鄰近車輛對本車的威脅並非絕對性,因此提出將危險等級以範圍觀念來做規劃,依據當前時間與本身車輛道路滯留時間差T eco 和碰撞時間(TTC)值做運算,如式(6),得出各車輛碰撞機率。
計算出鄰近每一車輛之碰撞機率並依照機率分布,規劃出常態分佈曲線,得知各車輛機率分布,即可針對單一或多車輛進行威脅等級劃分,如式(7),其中σ為碰撞機率分布,μ為位置分布,呈現道路車流分布情況下每台車的碰撞級數,如圖7所示。
由於分析威脅機率前要先依據安全距離來判斷威脅指數,藉由駕駛反應時間下的反應距離與煞車距離推算安全距離,如式(8)。
S Th =S resp +S adj (8)
將威脅車的安全距離S Th 和本車、鄰近車的相對距離d th,j 做比例計算,如式(9),再取鄰近車道比例最大值與原車道距離比做運算得出危險指數Th Index,如式(10)、(11)。
請參閱圖8與9所示,為威脅車之轉向機率分析,由於駕駛在操控車輛行徑時會有一期望的動向,因此針對駕駛變換車道的行為分為隨意行為與急迫行為,藉此分析並計算出危險等級,如式(12),以隨意轉向行為指數函數計算,其中NLC n-1為威脅車輛不轉向,M n 為道路上之車輛,α(0 α 1)為一車道權值係數,將相同車道權值之α設為0.7,鄰近車道之α各設為0.15,將威脅車與前車之相對距離d n-1,1與左側車道前車輛的相對距離為d ml-1,2與右側車道前車輛之相對距離d mr-1,3,威脅車與本車的相對速度v n-1,1,與左側車輛的相對速度v l-1,2,與右側車輛的相對速度v r-1,3,而以急迫轉向來說,當得距離比值時將所選定的車道車輛與危險車輛做機率計算即可,再將不轉向機率以及碰撞機率乘積得出危險機率p d (t)如式(14)。
p d (t)=p NLC (t).p TTC (t) (13)
階段2-2:關鍵權重區域調色(Drawing Color of critical weight for area),在道路行駛中,為降低駕駛行駛的分心與危險性,在此提出色塊(coloring)機制,依據階段2-1的機率分析後,為達到以色塊標示道路危險等級,提出以物
體運動學計算出緊急制動時間(紅色區)與跟車理論定義駕駛需變換本車狀態而達到安全的調整時間,並將機率與推算出駕駛應制動的時間分析出紅色、黃色、綠色區塊的臨界,如圖9,其中,最靠近車輛的稀疏灑點區域為紅色區塊,紅色區塊旁的灑點區域為黃色區塊,最外側的密集灑點區域為綠色區塊。
依據物體運動學,假設本車的速度為v,駕駛反應時間為t reac ,表示車輛開始剎車前已行進vt reac ,這段距離就是平常開車時與前方至少應該保持的跟車距離。若兩車之間的距離少於此,則會發生撞車,而反應時間內的滑行的距離為平均速度與剎車時間的乘積,如式(14)。因此緊急制動時間為t urg =vt reac +d brake 即為紅區的臨界值,其次因考量到在非危及情況下,變換車速即可達到安全,由於在不同環境下敏感度會受到間距及速率的影響而改變,因此依據羅伯特.赫爾曼(Dr.Robert Herman)的跟車理論計算出欲加、減速度變化,以其值判斷需調整的空間,如式(15)。再將其值代入加速度公式v 2=2ad即可推導出需調整時間t adj ,如此環境不同,車輛狀態不同的情況下,區塊的臨界值(安全範圍值)也隨之改變。
其中,(t+△t)為在t+△t時間車輛之安全期望跟車速度,
為推估出足夠調整碰撞避免機制的時間,達到即時調整車輛間距。若(t+△t)大於0表示狀態不穩定,應減速;若(t+△t)等於0表示狀態穩定,維持速度;若(t+△t)小於0表示狀態不穩定,應加速。
依據上述理論進一步分析各車輛值,將道路最高限速80,車隊速度設為60,相對距離(relative distance)與安全距離(safety distance)設一定值,套用式(13)得出在x=0.68時該車碰撞時間已小於駕駛反應時間,因此設定為紅區,而在0.38 x<0.68間車速在限速範圍內,因而設為黃區,其餘設為綠區,如式(16)。
階段3:威脅閃避演算法(Threat Avoidance Algorithm,TAA),藉由階段2分析出道路危險與閃避機率後,依據道路尖峰或離峰時刻,從車輛雲的一雲端伺服器(圖中未示)取得歷史資訊加以統計並評估每一狀態下之車道的危險指數,如圖10所示,當駕駛得知色塊的色彩資訊後,隨之呈現危險指數,當駕駛察覺到危險車輛逼近時,會採取即時的決策,遵循系統所提供的危險指數,可協助於駕駛在許可的時間內決策出屬於自己的最佳化路徑,更可達到同時閃避多車輛,或突發事件的危及。
階段3-1:決策落點機率分析(Strategic Placement Probability Analysis),請參閱圖10至12所示,進一步分析駕駛閃避落點最佳化算法,將車輛要前往的區域大小依照車輛長VC l 劃分出可到達的位置個數,如式(15)。在得知鄰近車道閃避空間後,先行針對車輛長度評估車輛閃避可能的落點,再將其每一位置點利用階段2重新分析危險等級,如式(16)。最後將依據初始位置移動到目的位置之移動到各點的移動成本(cost function)最小值與P d 乘積即為新的危險機率(t),如式(17)。再取最小值即為最佳位置,如式(18)。
階段3-2:軌跡移動成本分析(Trajectory Cost Function Analysis),本階段針對橫向移動位置的軌跡成本分析,駕駛在行徑過程中,若遇威脅而選擇變換原先軌跡時,因鄰近車輛之間距會直接影響決策的安全性,如圖11。提出利用三次多項式求出移動軌跡幅度,如式(19),其中k,m為變數(為了修正其幅度大小變化),依據駕駛與威脅車輛的相對距離d i,j 、本車到達該點的時間t與推估出的到達時間τ的時間比出計算出軌跡幅度,達到軌跡最佳化,如式(20)。要達到軌跡最佳化,在此考量了在行徑過程中的加速度,因加速度的大小決定軌跡移動時間,首先將起始點位置與落點位置二次微分,即可求得多項式移
向軌跡,如式(21)。假設行駛時間,歷程時間,即可得出在每次微分下的多項式,如式(22),再將行駛軌跡的依據初始位置t=t 0,行駛時間τ=0,推導出移向軌跡係數,如式(23)。如此軌跡平滑度表示為式(24)最後計算出移動成本(cost function)並與危險機率同時判斷,不但提升駕駛決策的準確性也降低了系統誤判率。
由上述可知,考量道路威脅車輛危及到車隊情況發生時,將發生無法即時反應的碰撞以及相鄰車輛不一的車間距,使得駕駛在閃避過程中更難準確避免碰撞情形發生,本發明提出之自動化車隊控制協助機制和威脅車輛閃避系統,其透過三個階段:(1)對威脅車輛進行分級(CTV);(2)道路危險機率分析(RHPA);以及(3)威脅閃避演算法(TAA)降低道路危險車輛所帶來的影響。
藉此,由車流速度及路段長度計算車輛在該路段的行駛時間,由該路段擁有最高的安全速度、交通密度算出平均的車輛速度;計算出每條路段
的車流速度後,再將該路段的長度納入考量,則可推估出該條路段所需的行駛時間;計算出道路上車輛之滯留時間之後,分析危險車輛與本車的碰撞時間,該碰撞時間為計算在當前有危險車輛將危害到本身車輛的時間;在可用時間內且閃避機制觸發時,藉由本車與危險車輛的時間差,足夠碰撞避免機制及隨後的變換車道;利用多項式得知軌跡幅度後,將相關參數代入等加速度公式,即得到依據該軌跡位移成功所需時間;再以加速度與位移時間為移動成本的參數,計算出每一位移點的移動耗費成本,最後利用危險機率與移動成本提高駕駛決策的準確性。
藉由即時分析潛在威脅車輛動態,依據平均速度、安全距離、相對距離,動態調整顏色區塊範圍,並考量道路狀況,鄰近車流以及個別車輛狀態,將色塊完整呈現在道路上,使駕駛能針對色塊引導到正確的路徑上,藉此現有駕駛人易受危險車輛影響以及車輛輔助系統不足之處,而造成安全性不足的問題。
10‧‧‧威脅車輛分級模組
20‧‧‧道路危險機率分析模組
30‧‧‧威脅閃避模組
Claims (9)
- 一種自動化車輛全域性風險分析的軌跡最佳化閃避系統,包含有: 一威脅車輛分級模組,其對車道之一個以上的威脅車輛進行分級,並針對威脅車輛的特徵分類及所在的車道位置,以及與本車的相對參數執行適性分析道路危險等級; 一道路危險機率分析模組,其與威脅車輛分級模組連接,該道路危險機率分析模組是以威脅車輛分級模組取得的資訊分析威脅車輛與鄰近車輛之轉向與碰撞機率,並針對分析結果計算危及本車的機率以物體動力學與跟車理論規劃連續性動態調整色塊分佈與級別;以及 一威脅閃避模組,其與道路危險機率分析模組連接,該威脅閃避模組包含有一威脅閃避演算法,該威脅閃避模組係取得威脅車輛分級模組分類之軌跡調整的移動成本以及道路危險機率分析模組之危及本車機率,產生航向最短之路徑或最快閃避之路徑,並進一步分析最佳落點。
- 如請求項1所述之自動化車輛全域性風險分析的軌跡最佳化閃避系統,該威脅車輛分級模組之分級是指執行一道路策略步驟、一車輛威脅關鍵分析步驟與一計算碰撞時間步驟,其中該道路策略步驟是計算該路段的行駛時間,該車輛威脅關鍵分析步驟是對各車輛狀態分析其威脅等級並考量權重,該計算碰撞時間步驟是計算一威脅車輛將危害本車的時間。
- 如請求項2所述之自動化車輛全域性風險分析的軌跡最佳化閃避系統,該計算碰撞時間步驟是執行下列步驟,行駛時間為,其中, 為車流速度,為路段長度;該碰撞時間(TTC)為: , 其中,為相對速度,為距離,為相對減速度。
- 如請求項2或3所述之自動化車輛全域性風險分析的軌跡最佳化閃避系統,該道路危險機率分析模組係執行一碰撞機率分析步驟、一車輛潛在威脅機率分析步驟與一關鍵權重區域調色步驟,該碰撞機率分析步驟是計算碰撞機率,該車輛潛在威脅機率分析步驟是對威脅車輛變換車道進行機率分析,該關鍵權重區域調色步驟是利用顏色區塊標示道路危險等級,以引導駕駛航向安全路徑。
- 如請求項4所述之自動化車輛全域性風險分析的軌跡最佳化閃避系統,該車輛潛在威脅機率分析步驟係執行下列步驟, 車輛碰撞機率:,其中,為道路滯留時間差,為預估碰撞時間; 本車不改道機率:,其中 ,為威脅車與前車之相對距離,為左側車道前車輛的相對距離,為與右側車道前車輛之相對距離,為威脅車與本車的相對速度,為與左側車輛的相對速度,為與右側車輛的相對速度;以及 危險機率:。
- 如請求項5所述之自動化車輛全域性風險分析的軌跡最佳化閃避系統,該關鍵權重區域調色步驟是以多數顏色色塊標示道路危險等級,其中以安全距離當成緊急區域(紅色區)的臨界點 改變車輛狀態所需調整距離公式為, 其中,為在時間車輛之安全期望跟車速度,為推估出足夠調整碰撞避免機制的時間,以達到即時調整車輛間距。
- 如請求項6所述之自動化車輛全域性風險分析的軌跡最佳化閃避系統,進一步針對車輛長度評估車輛閃避可能的落點,再將其每一位置點利用道路危險機率分析模組重新分析危險等級: , 將依據初始位置移動到目的位置之移動到各點的移動成本(cost function)最小值與乘積即為新的危險機率, , 再取最小值即為最佳位置, 。
- 如請求項7所述之自動化車輛全域性風險分析的軌跡最佳化閃避系統,進一步以三次多項式求出移動軌跡幅度,其中k,m為變數,依據駕駛與威脅車輛的相對距離、本車到達該點的時間與推估出的到達時間的時間比出計算出軌跡幅度,達到軌跡最佳化,其中: 因加速度的大小決定軌跡移動時間,將起始點位置與落點位置二次微分,即可求得多項式移向軌跡, 設行駛時間,歷程時間,可得出在每次微分下的多項式, 再將行駛軌跡的依據初始位置,行駛時間,推導出移向軌跡係數, 軌跡平滑度表示為, 。
- 一種自動化車輛全域性風險分析的區域規劃演算法,包含有下列步驟: 對威脅車輛進行分級,係先計算道路上之車輛的速度與行駛時間,判斷車輛的優先權重與威脅車輛的碰撞時間; 對道路的危險機率進行分析,係對車輛分析碰撞機率、潛在威脅機率並產生關鍵權重區域調色輔助機制;以及 規畫威脅閃避演算法,係產生車輛閃避路徑並計算移動的軌跡成本,並由危險機率與移動的軌跡成本提高準確性。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103118394A TWI557006B (zh) | 2014-05-27 | 2014-05-27 | 自動化車輛全域性風險分析的區域規劃演算法與軌跡最佳化閃避系統 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103118394A TWI557006B (zh) | 2014-05-27 | 2014-05-27 | 自動化車輛全域性風險分析的區域規劃演算法與軌跡最佳化閃避系統 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201544377A TW201544377A (zh) | 2015-12-01 |
TWI557006B true TWI557006B (zh) | 2016-11-11 |
Family
ID=55406925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103118394A TWI557006B (zh) | 2014-05-27 | 2014-05-27 | 自動化車輛全域性風險分析的區域規劃演算法與軌跡最佳化閃避系統 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI557006B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI680433B (zh) * | 2017-10-26 | 2019-12-21 | 日商歐姆龍股份有限公司 | 管制方法、管制裝置以及記錄媒體 |
US10754003B2 (en) | 2017-12-20 | 2020-08-25 | Industrial Technology Research Institute | Method for determining the position of mobile node and related communication system, road side unit, and vehicle thereof |
TWI789876B (zh) * | 2021-08-19 | 2023-01-11 | 奇點無限有限公司 | 最低風險路線的產生方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9704403B2 (en) * | 2015-12-03 | 2017-07-11 | Institute For Information Industry | System and method for collision avoidance for vehicle |
CN113511134B (zh) * | 2021-06-22 | 2023-02-03 | 华录智达科技股份有限公司 | 一种基于人工智能技术的公交车避险方法 |
TWI812344B (zh) * | 2022-07-13 | 2023-08-11 | 國立雲林科技大學 | 基於先進駕駛輔助系統中行車狀態的駕駛威脅分析控制系統及其方法 |
CN115465288B (zh) * | 2022-08-12 | 2024-09-20 | 重庆长安汽车股份有限公司 | 自动驾驶车辆的控制方法、装置、车辆及存储介质 |
TWI844149B (zh) * | 2022-10-27 | 2024-06-01 | 富智捷股份有限公司 | 車輛狀態偵測方法、裝置及電腦可讀存儲介質 |
CN117711185B (zh) * | 2024-02-05 | 2024-04-09 | 中国水利水电第九工程局有限公司 | 一种基于多源数据的公路施工用预警监控系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1775601A (zh) * | 2005-11-18 | 2006-05-24 | 吉林大学 | 车辆行驶轨迹预估及车道偏离评价方法 |
TWI318604B (zh) * | 2007-11-15 | 2009-12-21 | Univ Nat Taipei Technology | |
CN1922051B (zh) * | 2004-02-24 | 2013-02-13 | 罗伯特·博世有限公司 | 安全系统,提高安全性的方法和驾驶员辅助系统 |
CN103366566A (zh) * | 2013-06-25 | 2013-10-23 | 中国科学院信息工程研究所 | 一种针对特定车辆潜在群体的行驶轨迹预测方法 |
-
2014
- 2014-05-27 TW TW103118394A patent/TWI557006B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1922051B (zh) * | 2004-02-24 | 2013-02-13 | 罗伯特·博世有限公司 | 安全系统,提高安全性的方法和驾驶员辅助系统 |
CN1775601A (zh) * | 2005-11-18 | 2006-05-24 | 吉林大学 | 车辆行驶轨迹预估及车道偏离评价方法 |
TWI318604B (zh) * | 2007-11-15 | 2009-12-21 | Univ Nat Taipei Technology | |
CN103366566A (zh) * | 2013-06-25 | 2013-10-23 | 中国科学院信息工程研究所 | 一种针对特定车辆潜在群体的行驶轨迹预测方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI680433B (zh) * | 2017-10-26 | 2019-12-21 | 日商歐姆龍股份有限公司 | 管制方法、管制裝置以及記錄媒體 |
US10754003B2 (en) | 2017-12-20 | 2020-08-25 | Industrial Technology Research Institute | Method for determining the position of mobile node and related communication system, road side unit, and vehicle thereof |
TWI789876B (zh) * | 2021-08-19 | 2023-01-11 | 奇點無限有限公司 | 最低風險路線的產生方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201544377A (zh) | 2015-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI557006B (zh) | 自動化車輛全域性風險分析的區域規劃演算法與軌跡最佳化閃避系統 | |
US10864911B2 (en) | Automated detection of hazardous drifting vehicles by vehicle sensors | |
US10933868B2 (en) | Systems and methods for navigating a vehicle | |
CN112204633B (zh) | 概率性对象跟踪和预测框架 | |
EP3407329B1 (en) | Driving assistance method and device | |
CN111448597B (zh) | 驾驶控制方法以及驾驶控制装置 | |
EP3717324B1 (en) | Autonomous vehicle operational management scenarios | |
EP3387385B1 (en) | Assisting a motor vehicle driver in negotiating a roundabout | |
CN104169992B (zh) | 用于借助于无线的车辆到车辆的通信进行拥堵识别的方法 | |
US7729857B2 (en) | System for and method of detecting a collision and predicting a vehicle path | |
US8571786B2 (en) | Vehicular peripheral surveillance device | |
US8112225B2 (en) | Method and system for collision avoidance | |
US20180173236A1 (en) | Vehicle control system, vehicle control method, and vehicle control program | |
EP4086875A1 (en) | Self-driving method and related device | |
CN104340152A (zh) | 在避免碰撞任务中用于情形评估和决策的动态安全防护罩 | |
CN102139696A (zh) | 疏堵 | |
US20190035278A1 (en) | Driving Assistance Method and Device | |
US20230322208A1 (en) | Steering limiters for vehicle navigation | |
CN110198875A (zh) | 对驾驶员辅助系统的改进或与之相关的改进 | |
CN114475648A (zh) | 基于周围作用因素的行为和有限的环境观察的自主车辆的控制 | |
US20230242119A1 (en) | Method and Device for the Automated Driving Mode of a Vehicle, and Vehicle | |
Choi et al. | Framework for connected and automated bus rapid transit with sectionalized speed guidance based on deep reinforcement learning: Field test in Sejong city | |
US20230322218A1 (en) | Platoon behaviors that influence drivers of other vehicles | |
Tomar et al. | Collision avoidance warning for safe lane change | |
EP4357213A1 (en) | A method for determining whether an automatic collision avoidance steering maneuver should be executed or not |