WO2019082727A1 - 露光装置および物品の製造方法 - Google Patents

露光装置および物品の製造方法

Info

Publication number
WO2019082727A1
WO2019082727A1 PCT/JP2018/038417 JP2018038417W WO2019082727A1 WO 2019082727 A1 WO2019082727 A1 WO 2019082727A1 JP 2018038417 W JP2018038417 W JP 2018038417W WO 2019082727 A1 WO2019082727 A1 WO 2019082727A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
exposure
optical system
shielding member
Prior art date
Application number
PCT/JP2018/038417
Other languages
English (en)
French (fr)
Inventor
道生 河野
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018146250A external-priority patent/JP2019079029A/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201880068453.4A priority Critical patent/CN111247485B/zh
Priority to KR1020207013920A priority patent/KR102433491B1/ko
Publication of WO2019082727A1 publication Critical patent/WO2019082727A1/ja
Priority to US16/854,152 priority patent/US11099488B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/40Systems for automatic generation of focusing signals using time delay of the reflected waves, e.g. of ultrasonic waves
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to an exposure apparatus and a method of manufacturing an article using the same.
  • An exposure apparatus which transfers the pattern of an original (mask) onto a photosensitive substrate via a projection optical system.
  • the size of the substrate exposed by the exposure apparatus has been increased, and accordingly, the mask on which the pattern is formed is also increased.
  • the size of the mask increases, the cost of the mask itself increases, and the mask manufacturing period increases, leading to an increase in the mask manufacturing cost.
  • the maskless exposure apparatus is a digital exposure apparatus using a light modulator such as a digital micromirror device (DMD).
  • a pattern can be formed on a substrate without using a mask by generating exposure light corresponding to the exposure pattern by the DMD and exposing pattern data corresponding to the exposure pattern on the substrate. .
  • Patent Document 1 an image exposure based on image data is performed by causing a laser beam emitted from a laser emission unit to be incident on each element of a light modulation element and modulating each element into an exposed state or a non-exposed state.
  • a maskless exposure apparatus that
  • the intensity distribution of the spot light on the substrate has a great influence on the resolution of the pattern.
  • the intensity distribution of the spot light on the substrate may vary, resulting in a decrease in pattern resolution performance.
  • the resolution performance of the pattern can be improved by performing focus control to reduce the defocus indicating the positional deviation between the condensing position of the spot light and the substrate surface.
  • Patent Document 2 discloses a focus control method using an image processing sensor for detecting defocus provided on a holding member for holding a substrate.
  • the light reflected by the light modulator and transmitted through the projection optical system is imaged on the image processing sensor, and the light beam reflected by the light modulator is enhanced so that the contrast of the optical image formed on the image processing sensor becomes high. Focus control is performed by adjusting the angle.
  • An object of the present invention is to provide an exposure apparatus capable of performing focus control on a substrate at high speed.
  • An exposure apparatus comprises a projection optical system for projecting exposure light for forming a pattern on a substrate onto a substrate, a light shielding member including an opening for passing the exposure light, and a condensing position of the exposure light. And a control unit for moving the light shielding member in the optical axis direction of the projection optical system based on the detection result of the focus detection unit. It is characterized by
  • the exposure apparatus of the present invention is suitable as a so-called maskless exposure apparatus capable of forming a pattern on a substrate without using a mask on which a pattern is formed.
  • the exposure apparatus of the present invention can also be applied to an exposure apparatus that forms a pattern on a substrate using a mask on which a pattern is formed.
  • the light amount of the light beam reflected by the substrate PL and transmitted through the pinhole provided in the projection optical system PO is detected to indicate the positional deviation between the spot light condensing position and the substrate PL surface. Detect the focus amount. Then, focus control is performed to change the detected defocus amount by moving a pinhole as a light shielding member.
  • the light beam emitted from the illumination optical system IL is incident on a digital micro mirror device (hereinafter referred to as DMD) as a light modulation unit which is one of the light modulators.
  • DMD digital micro mirror device
  • exposure light corresponding to the exposure pattern is generated by the DMD, and the exposure light is condensed on the substrate PL via the projection optical system PO, whereby pattern data corresponding to the exposure pattern is exposed on the substrate.
  • the light source LS a semiconductor laser or an LED (Light Emitting Diode) is used.
  • the wavelength of the light source is determined by the type of photosensitive resist applied on the substrate PL.
  • the wavelength of the light source LS is generally about 300 nm to 440 nm.
  • the luminous flux emitted from the light source LS is collimated by the optical system IL1 to illuminate the fly's eye lens FE.
  • the fly's eye lens FE in FIG. 1 includes nine lens cells arranged in an XY plane including an X axis and a Y axis perpendicular to the optical axis (Z axis) of the illumination optical system IL.
  • the nine lens cells are arranged side by side in the X axis direction, and three side by side in the Y axis direction.
  • the number of lens cells constituting the fly's eye lens FE can be changed as appropriate.
  • a light flux illuminated substantially uniformly to the optical system IL2 by the fly's eye lens FE is imaged on a micro mirror as a light modulation element constituting the DMD by the action of the optical system IL2.
  • the light flux incident on the DMD is drawn so as to pass through the DMD, the light flux incident on the DMD is actually reflected by the reflection surface of each micro mirror constituting the DMD. .
  • the plurality of micro mirrors constituting the DMD are two-dimensionally arranged, and the angle of the reflection surface of each mirror can be individually changed. Thereby, the light irradiated to each mirror can be modulated to either an exposed state or a non-exposed state.
  • the light beam reflected by the micro mirror that constitutes the DMD is incident on the optical system PO1 that constitutes the projection optical system PO.
  • the optical system PO1 has a function of condensing the light flux incident on the optical system PO1 on the microlens array MLA.
  • the microlens array MLA is composed of a field lens MF and an imaging lens Mi located at a distance from the field lens MF by the focal length of the field lens MF.
  • the light flux imaged on the field lens MF by the optical system PO1 is re-imaged by the imaging lens Mi.
  • the re-imaging point by the imaging lens Mi is located inside the imaging lens Mi.
  • the light flux from the re-imaging point is imaged again by the optical system PO2, and a pinhole PH1 having a plurality of apertures is arranged at this imaging position.
  • the pinhole PH1 is disposed in the light path of the projection optical system PO, and the openings of the pinhole PH1 correspond to the positions of the micro mirrors constituting the DMD.
  • the spot light whose diameter is reduced by the pinhole PH1 is irradiated onto the substrate PL via the optical system PO3.
  • the pinhole PH1 is made of, for example, metal. Since metal has a high light reflectance, the light shielding property of the pinhole PH1 can be enhanced by using the metal as the material of the pinhole PH1. In addition, the pinhole PH1 may be coated with a dielectric film.
  • the beam splitter BS1a as a reflection member is disposed between the optical system PO2 included in the projection optical system PO and the pinhole PH1.
  • the light beam reflected by the beam splitter BS1a is imaged on the light receiving element LR1a by the imaging lens L1a.
  • the spot light that has passed through the pinhole PH1 is condensed on the substrate PL via the optical system PO3.
  • part of the spot light condensed on the substrate PL is reflected by the substrate PL, passes through the openings of the optical system PO3 and the pinhole PH1, and enters the beam splitter BS1a.
  • Part of the light incident on the beam splitter BS1a is reflected by the beam splitter BS1a, and is imaged on the light receiving element LR1a by the imaging lens L1a.
  • the defocus amount indicating the positional deviation between the condensing position of the spot light and the surface of the substrate PL is estimated based on the amount of light received by the light receiving element LR1a.
  • the pinhole PH1 is disposed on a surface optically conjugate to the surface of the substrate PL, and the amount of light received by the light receiving element LR1a is maximized in the in-focus state where the defocus amount is smaller than a predetermined amount.
  • vignetting occurs in the light flux passing through the pinhole PH, and the light amount received by the light receiving element LR1a decreases.
  • the defocus amount is estimated with the maximum light amount detected by the light receiving element LR1a in the in-focus state as a reference value.
  • the defocus amount can be estimated from the light amount detected by the light receiving element LR1a by determining in advance the relative relationship between the light amount detected by the light receiving element LR1a and the defocus amount. For example, by storing the above-described relative relationship in the control unit CTR and inputting the detection result of the light amount in the light receiving element LR1a to the control unit CTR, the control unit CTR functions as a defocus detection unit that detects the defocus amount. Furthermore, the control unit CTR can execute focus control to reduce the defocus amount.
  • focus control is performed by moving the pinhole PH1 in the optical axis direction of the projection optical system PO. Specifically, the pinhole PH1 is moved in the direction in which the amount of light detected in the light receiving element LR1a increases.
  • the movement amount of the pinhole PH1 is determined by the defocus amount estimated by the above-described method, the focal length of the optical system PO3, and the like.
  • the pinhole PH1 is driven by the actuator AFD1, and the movement amount of the pinhole PH1 is input from the control unit CTR to the actuator AFD1.
  • focus control is performed based on the detection result of the light amount in the light receiving element LR1a. Since the light amount detection in the light receiving element LR1a can be performed in a relatively short time, speeding up of focus control can be realized by performing the focus control according to the present embodiment. Further, since the light amount detected by the light receiving element LR1a is obtained by directly detecting the light flux reflected in the exposure region on the substrate PL, by performing focus control based on the light amount detected by the light receiving element LR1a, The accuracy of focus control can be enhanced.
  • the focus control is performed by driving the relatively lightweight pinhole PH1, it is easy to realize the speed-up of the focus control.
  • the pinhole PH1 is used for detecting the defocus amount, focusing control, and reducing the diameter of the spot light, the overall configuration of the exposure apparatus can be simplified.
  • the light receiving element LR1a in which a plurality of light receiving portions are two-dimensionally arranged is used.
  • Each of the light receiving units constituting the light receiving element LR1a corresponds to one aperture of the pinhole PH1 and one micro mirror constituting the DMD.
  • the light receiving element LR1a may be formed of one light receiving portion. Thereby, the time required for focus control can be further shortened.
  • the beam splitter BS1 b is further disposed between the pinhole PH1 and the optical system PO3.
  • the light beam reflected by the beam splitter BS1b is imaged on the light receiving element LR1b by the imaging lens L1b. Based on the amount of light detected by the light receiving element LR1b, correction of the reference value of the amount of light detected in the light receiving element LR1a accompanying the change in the surface reflectance of the substrate PL is performed.
  • the surface reflectance of the substrate PL changes in accordance with the type of the applied resist material.
  • the maximum light amount detected by the light receiving element LR1a in the in-focus state also changes.
  • the focus control is executed with the maximum light amount detected by the light receiving element LR1a as a reference value, it is necessary to change the reference value with the change of the surface reflectance of the substrate PL .
  • the light flux reflected by the substrate PL reaches the light receiving element LR1b without passing through the pinhole PH1. Therefore, the amount of light detected by the light receiving element LR1b hardly changes regardless of the surface reflectance of the substrate PL. That is, by normalizing the detected light amount of the light receiving element LR1a using the detected light amount of the light receiving element LR1b, it is possible to maintain the accuracy of the focus control even when the surface reflectance of the substrate PL changes. For example, normalization of the detection value of the light receiving element LR1a can be performed using the ratio of the detection light amount of the light receiving element LR1a and the detection light amount of the light receiving element LR1b.
  • an exposure apparatus according to a second embodiment of the present invention will be described with reference to FIG.
  • the optical unit OU includes a light source LSB, an imaging optical system LK1, a pinhole PH4 as a second light shielding member, and an imaging optical system LK2.
  • the light beam emitted from the light source LSB is condensed on the pinhole PH4 by the imaging optical system LK1, and is condensed on the position A on the substrate PL by the imaging optical system LK2.
  • a beam splitter BS4a is disposed between the imaging optical system LK1 and the pinhole PH4, and the light beam reflected by the beam splitter BS4a is condensed on the light receiving element LR4a by the imaging lens L4a.
  • the pinhole PH4 is disposed so that the light amount detected in the light receiving element LR4a decreases when defocusing occurs, and this embodiment is performed in the same manner as the defocusing amount detection method in the first embodiment. Detection of the amount of defocus in the form is performed.
  • Information on the defocus amount detected by the optical unit OU is transmitted to the control unit CTR, and the control unit CTR drives the pinhole PH1 as a first light blocking member included in the exposure unit EU based on the received information.
  • the actuator AFD1 executes focus control by moving the pinhole PH1 based on the received drive signal.
  • the throughput of the exposure process can be improved by using the optical unit OU for detecting the defocus amount as a unit different from the exposure unit EU for performing the focus control.
  • the exposure area on the substrate PL passes through the projection area of the optical unit OU after passing through the projection area of the optical unit OU. That is, after the focus control is performed based on the defocus amount detected at the timing when it passes through the projection area of the optical unit OU, the exposure processing can be performed by the exposure unit EU. Since scanning exposure can be performed without stopping the substrate PL for focus control, it is possible to achieve both improvement in focus accuracy and improvement in throughput.
  • an exposure apparatus according to a third embodiment of the present invention will be described with reference to FIG.
  • an optical unit for detecting a defocus amount indicating a positional shift between a spot light condensing position and the substrate PL surface separately from the exposure unit EU including the illumination optical system IL and the projection optical system PO OU2 is provided. Since the configuration of the exposure unit EU is the same as the configuration described in the above embodiments, the description regarding the exposure unit EU will be omitted.
  • the difference between this embodiment and the second embodiment lies in the defocus detection method in the optical unit OU2.
  • a light beam is obliquely incident on the substrate PL, and defocus detection is performed based on a signal obtained by condensing the light beam reflected by the substrate PL on the light receiving element LRo.
  • the luminous flux emitted from the light source LDD is condensed on the substrate PL by the imaging lens LO1, and the luminous flux reflected by the substrate PL is condensed on the light receiving element LRo by the imaging lens LO2.
  • the focus control unit CTRD determines the defocus amount based on the shift amount of the light collection position on the light receiving element LRo.
  • Information on the defocus amount detected by the optical unit OU2 is transmitted to the control unit CTR, and the control unit CTR transmits a drive signal of the pinhole PH1 included in the exposure unit EU to the actuator AFD1 based on the received information.
  • the actuator AFD1 executes focus control by moving the pinhole PH1 based on the received drive signal.
  • the throughput of the exposure process can be improved by using the optical unit OU2 for detecting the defocus amount as a unit different from the exposure unit EU for executing the focus control. Also in the present embodiment, as in the second embodiment, since scanning exposure can be performed without stopping the substrate PL for focus control, it is possible to achieve both improvement in focus accuracy and improvement in throughput.
  • FIG. 4 is a diagram showing an outline of scanning exposure on a substrate.
  • the DMD is composed of a plurality of micro mirrors arranged in the XY plane, and each point in FIG. 4 shows the spot light formed by the micro mirrors constituting the DMD.
  • Sx and Sy in FIG. 4 indicate the scanning direction of the substrate PL at the time of scanning exposure.
  • the arrangement direction of the spot light is configured to be inclined by an angle ⁇ with respect to the scanning direction of the substrate PL. With such a configuration, the substrate PL can be uniformly exposed.
  • FIG. 4 shows that a specific exposure area on the substrate PL is sequentially exposed by the spot lights S1, S2, S3, S4 and S5.
  • Focus control for exposure by the spot light S n + 1 may be executed based on the amount of light detected by the light receiving element by the irradiation of a specific spot light S n , or detection by the light receiving element by irradiation of a plurality of spot lights Focus control may be performed based on the amount of light received.
  • the spot light S n based on the amount of light detected by the light receiving element for each irradiation of each spot light S n + 99, executes the focus control for the exposure by the spot light S n + 100.
  • a focus control method in scanning exposure to a specific area on a substrate will be described with reference to FIG.
  • the horizontal axis represents the defocus amount indicating the positional deviation between the spot light focusing position and the substrate surface.
  • the vertical axis represents the amount of light detected by the light receiving element.
  • (A) in FIG. 5 indicates the light amount detected by the light receiving element at the start of focus control and the defocus amount at the start of focus control.
  • the pinhole PH1 is driven toward either the light source LS side or the substrate PL side.
  • the amount of light detected in the light receiving element decreases as shown in (B).
  • the relationship between the direction in which the pinhole PH is moved and the increase or decrease in the amount of light detected by the light receiving element is known.
  • the pin is moved in the direction in which the defocus amount increases at the start of focus control. I may move the hall.
  • FIG. 4 in the maskless exposure apparatus, multiple exposure is performed in which exposure with spot light is performed multiple times in a specific exposure area on the substrate. Therefore, even if control is performed to increase the defocus amount at the start of focus control, it only affects the accuracy of focus control in the initial stage of exposure, and the accuracy of pattern formation on the substrate can be reduced. Sex is low.
  • FIG. 6 shows the variation of the surface height of the substrate PL in the Y-axis direction.
  • the scanning exposure is sequentially performed by the spot lights S1, S2, S3, S4, and S5 shown in FIG.
  • focusing on the spot light S1 exposure of each region of Ys, Ys + 1, Ys + 2,... Ye is sequentially performed by the spot light S1.
  • the exposure operation may be performed in a state where the focusing accuracy is insufficient.
  • FIG. 6 there is a possibility that the focusing accuracy in the exposure at the position Ys by the spot light S1 is insufficient.
  • FIG. 5 it is possible to improve the focus accuracy by continuously executing the focus control.
  • the focusing accuracy in the exposure by the spot light S2 may be lower than the focusing accuracy in the exposure by the spot light S1.
  • the focus accuracy in the exposure by the spot light S3 can be improved more than the focus accuracy in the exposure by the spot lights S1 and S2.
  • the pinhole PH1 is integrally moved for focus control, but the pinhole PH1 may be configured by a plurality of individually drivable members. For example, by arranging a plurality of members having openings and moving members corresponding to the region on the substrate PL at the time of focus control, it is possible to enhance the focus accuracy.
  • the method of manufacturing an article according to the embodiment of the present invention is suitable, for example, for manufacturing an article such as a microdevice such as a semiconductor device or an element having a microstructure.
  • a latent image pattern is formed in the step of forming a latent image pattern on the photosensitive agent applied to the substrate using the above-described exposure apparatus (the step of exposing the substrate) And developing the substrate.
  • a manufacturing method includes other known steps (oxidation, film formation, deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, etc.).
  • the method of manufacturing an article according to the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of an article, as compared to the conventional method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

基板(PL)にパターンを形成するための露光光を基板上に投影する投影光学系(PO)と、露光光を通過させるための開口を含む遮光部材(PH1)と、露光光の集光位置と基板との位置ずれを示すデフォーカス量を検出するフォーカス検出部と、フォーカス検出部における検出結果に基づいて遮光部材(PH1)を投影光学系(PO)の光軸方向に移動させる制御部(CTR)を含むように露光装置を構成する。

Description

露光装置および物品の製造方法
 本発明は、露光装置およびそれを用いた物品の製造方法に関する。
 原版(マスク)のパターンを、投影光学系を介して感光性の基板に転写する露光装置が知られている。近年、露光装置によって露光される基板の大型化が進み、それに伴い、パターンが形成されるマスクも大型化している。マスクが大型化すると、マスク自体のコストが上昇するとともに、マスクの製造期間が長くなり、マスクの製造コストの上昇につながる。
 そこで、パターンが形成されたマスクを用いることなく、基板上にパターンを形成することが可能な所謂マスクレス露光装置が注目されている。マスクレス露光装置は、デジタルマイクロミラーデバイス(Digital Micromirror Device:DMD)等の光変調器を用いたデジタル露光装置である。マスクレス露光装置では、DMDにより露光パターンに対応する露光光を生成し、露光パターンに対応するパターンデータを基板上に露光することで、マスクを用いることなく基板上にパターンを形成することができる。
 特許文献1は、レーザ出射部から出射されたレーザビームを光変調素子の各素子に入射させ、各露光素子により露光状態と非露光状態のいずれかに変調することで、画像データに基づく画像露光を行うマスクレス露光装置を開示している。
特開2004-62155号公報 特開2011-2512号公報
 マスクレス露光装置では、基板上でのスポット光の強度分布がパターンの解像性能に大きな影響を及ぼす。スポット光の集光位置が基板と垂直な方向にずれることにより、基板上でのスポット光の強度分布にばらつきが生じ、結果としてパターンの解像性能の低下をもたらすおそれがある。スポット光の集光位置と基板面との位置ずれを示すデフォーカスを低減させるフォーカス制御を行うことで、パターンの解像性能を向上させることができる。
 特許文献2は、基板を保持する保持部材に設けられた、デフォーカスを検知するための画像処理センサを用いたフォーカス制御方法を開示している。光変調器で反射され投影光学系を透過した光を画像処理センサに結像させ、画像処理センサに結像された光学像のコントラストが高くなるように、光変調器によって反射される光ビームの角度を調節することでフォーカス制御を行っている。
 特許文献2のフォーカス制御方法では、基板の保持面を基準としたデフォーカスに対するフォーカス制御を実行することは可能であるが、実際にパターンが形成される基板を基準としたデフォーカスに対するフォーカス制御を実行することは困難である。それゆえ、特許文献2におけるフォーカス制御方法では、フォーカス精度を十分に高めることができないおそれがある。また、光学像のコントラストに基づくフォーカス制御を実行するためには比較的長い時間を要するため、高速なフォーカス制御を実現することは困難である。
 本発明は、基板上におけるフォーカス制御を高速に実行することが可能な露光装置を提供することを目的とする。
 本発明の露光装置は、基板にパターンを形成するための露光光を基板上に投影する投影光学系と、前記露光光を通過させるための開口を含む遮光部材と、前記露光光の集光位置と前記基板との位置ずれを示すデフォーカス量を検出するフォーカス検出部と、前記フォーカス検出部における検出結果に基づいて前記遮光部材を前記投影光学系の光軸方向に移動させる制御部を含むことを特徴とする。
 本発明によれば、基板上におけるフォーカス制御を高速に実行することが可能な露光装置が得られる。
第1実施形態に係る光学系の構成を示す図である。 第2実施形態に係る光学系の構成を示す図である。 第3実施形態に係る光学系の構成を示す図である。 本発明に係る基板上の走査露光の概要を示す図である。 デフォーカス量と受光素子の検出光量の関係を示す図である。 基板における表面高さの変動を示す図である。
 以下、各図面を参照して本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、以下の実施形態は本発明の具体例を示すにすぎない。本発明の露光装置は、パターンが形成されたマスクを用いることなく、基板上にパターンを形成することが可能な所謂マスクレス露光装置として好適なものである。なお、本発明の露光装置は、パターンが形成されたマスクを用いて基板上にパターンを形成する露光装置にも適用することができる。
 (第1実施形態)
 図1を用いて、本実施形態に係る照明光学系IL及び投影光学系POを含む露光装置の構成を説明する。
 本実施形態では、基板PLにおいて反射され、投影光学系POに設けられたピンホールを通過した光束の光量を検出することにより、スポット光の集光位置と基板PL面との位置ずれを示すデフォーカス量の検出を行う。そして、遮光部材としてのピンホールを移動させることにより、検出されたデフォーカス量を変化させるフォーカス制御を行う。
 本実施形態に係る所謂マスクレス露光装置では、照明光学系ILから照射された光束を、光変調器の一つである光変調部としてのデジタルマイクロミラーデバイス(以下、DMDと記載する)に入射させる。そして、DMDにより露光パターンに対応する露光光を生成し、投影光学系POを介して露光光を基板PL上に集光させることにより、露光パターンに対応するパターンデータを基板上に露光する。
 光源LSとしては、半導体レーザやLED(Light Emitting Diode)が用いられる。光源の波長は、基板PL上に塗布される感光性レジストの種類により決定される。光源LSの波長は、一般的には300nmから440nm程度である。
 続いて照明光学系ILの構成について説明する。光源LSから照射された光束は、光学系IL1によりコリメートされ、フライアイレンズFEを照明する。
 図1中のフライアイレンズFEは、照明光学系ILの光軸(Z軸)と垂直なX軸とY軸を含むXY平面内に配置された9つのレンズセルを含む。9つのレンズセルは、X軸方向に3つ並べて配置され、Y軸方向に3つ並べて配置されている。なお、フライアイレンズFEを構成するレンズセルの数は適宜変更することが可能である。
 フライアイレンズFEによって光学系IL2に対して略均一に照明された光束は、光学系IL2の作用により、DMDを構成する光変調素子としてのマイクロミラーに結像される。ここで、図1では、DMDに入射された光束がDMDを透過するように描かれているが、実際にはDMDに入射された光束はDMDを構成する各マイクロミラーの反射面により反射される。
 DMDを構成する複数のマイクロミラーは二次元状に配置されており、各ミラーの反射面の角度はそれぞれ個別に変更可能になっている。これにより、各ミラーに照射される光を露光状態と非露光状態のいずれかに変調することができる。
 次に、投影光学系POの構成について説明する。DMDを構成するマイクロミラーで反射された光束は、投影光学系POを構成する光学系PO1に入射される。光学系PO1は、光学系PO1に入射された光束をマイクロレンズアレイMLAに集光する作用を持つ。マイクロレンズアレイMLAは、フィールドレンズMFと、フィールドレンズMFからフィールドレンズMFの焦点距離だけ離れた位置にある結像レンズMiから構成される。
 光学系PO1によってフィールドレンズMFに結像された光束は、結像レンズMiにより再結像される。本実施形態では、結像レンズMiによる再結像点は、結像レンズMiの内部に位置する。再結像点からの光束は光学系PO2により再び結像され、この結像位置に複数の開口を有するピンホールPH1を配置している。ピンホールPH1は投影光学系POの光路中に配置され、ピンホールPH1の各開口は、DMDを構成するマイクロミラーの位置に対応している。ピンホールPH1により小径化されたスポット光は、光学系PO3を介して基板PL上に照射される。
 ピンホールPH1は例えば金属から構成される。金属は光反射率が高いため、ピンホールPH1の材料として金属を用いることでピンホールPH1の遮光特性を高めることができる。また、ピンホールPH1を誘電体膜によって被膜する構成としても良い。
 次に、ピンホール及び後述する受光素子を用いた、デフォーカス量の検出方法及びデフォーカス量を変化させるフォーカス制御方法について説明する。
 はじめにピンホールと受光素子を用いたデフォーカス量の検出方法について説明する。本実施形態では、投影光学系POに含まれる光学系PO2とピンホールPH1の間に、反射部材としてのビームスプリッタBS1aを配置している。ビームスプリッタBS1aにより反射された光束は結像レンズL1aにより受光素子LR1a上に結像される。
 上述したように、ピンホールPH1を通過したスポット光は、光学系PO3を介して基板PL上に集光される。ここで基板PL上に集光されたスポット光の一部は、基板PLにより反射され、光学系PO3及びピンホールPH1の開口を通過してビームスプリッタBS1aに入射する。ビームスプリッタBS1aに入射された光の一部はビームスプリッタBS1aにより反射され、結像レンズL1aにより受光素子LR1a上に結像される。
 本実施形態では、受光素子LR1aで受光された光量に基づいて、スポット光の集光位置と基板PL面との位置ずれを示すデフォーカス量の推定を行っている。ピンホールPH1は、基板PL面に対して光学的に共役な面に配置されており、デフォーカス量が所定量よりも小さい合焦状態において、受光素子LR1aで受光される光量が最大となる。一方、所定量以上のデフォーカス量が生じている非合焦状態においてはピンホールPHを通過する光束にケラレが生じ、受光素子LR1aで受光される光量が低下する。
 合焦状態において受光素子LR1aで検出される最大光量を基準値としてデフォーカス量の推定を行う。具体的には、受光素子LR1aにおいて検出される光量とデフォーカス量との相対関係を予め決定しておくことで、受光素子LR1aにおいて検出される光量からデフォーカス量を推定することができる。例えば、上述した相対関係を制御部CTRに記憶させ、受光素子LR1aにおける光量の検出結果を制御部CTRに入力することで、制御部CTRはデフォーカス量を検出するデフォーカス検出部として機能する。さらに制御部CTRは、デフォーカス量を低減させるためのフォーカス制御を実行することができる。
 次に、フォーカス制御方法の詳細について説明する。本発明ではピンホールPH1を投影光学系POの光軸方向に移動させることでフォーカス制御を行う。具体的には、受光素子LR1aにおいて検出される光量が増加する方向にピンホールPH1を移動させる。ピンホールPH1の移動量は、上述した方法で推定されたデフォーカス量と、光学系PO3の焦点距離等により決定される。
 ピンホールPH1はアクチュエータAFD1により駆動され、ピンホールPH1の移動量は制御部CTRからアクチュエータAFD1に入力される。
 以上説明したように、本実施形態では、受光素子LR1aにおける光量の検出結果に基づいてフォーカス制御を行う。受光素子LR1aにおける光量検出は比較的短時間で実行することができるため、本実施形態に係るフォーカス制御を行うことにより、フォーカス制御の高速化を実現することができる。また、受光素子LR1aで検出される光量は、基板PL上の露光領域において反射された光束を直接検出したものであるため、受光素子LR1aにおいて検出された光量に基づいてフォーカス制御を行うことで、フォーカス制御の精度を高めることができる。
 本実施形態では、比較的軽量なピンホールPH1を駆動させることによりフォーカス制御を行っているためフォーカス制御の高速化を実現しやすい。また、デフォーカス量の検出、フォーカス制御及びスポット光の小径化のためにピンホールPH1を用いているため、露光装置全体としての構成を簡略化することができる。
 本実施形態では、複数の受光部が二次元状に配置された受光素子LR1aを用いることを想定している。受光素子LR1aを構成する各受光部はそれぞれ、ピンホールPH1の1つの開口及びDMDを構成する1つのマイクロミラーに対応している。これにより、DMDを構成する1つのミラーで反射された光束によって露光される基板上の領域ごとにフォーカス制御を実行することができるため、フォーカス制御の精度を高めることができる。
 一方、複数の受光部で個別に光量の検出を行うとフォーカス制御に時間を要するおそれがある。そこで、DMDを構成する1つのマイクロミラーの露光領域における基板PLの表面形状の変化量が十分に小さい場合には、受光素子LR1aを1つの受光部から構成しても良い。これにより、フォーカス制御に要する時間をさらに短縮することができる。
 また、本実施形態では、ピンホールPH1と光学系PO3の間に、ビームスプリッタBS1bをさらに配置している。ビームスプリッタBS1bにより反射された光束は結像レンズL1bにより受光素子LR1b上に結像される。受光素子LR1bによって検出される光量に基づいて、基板PLの表面反射率の変化に伴う受光素子LR1aにおいて検出される光量の基準値の補正を行う。
 受光素子LR1aにおいて検出される光量の基準値の補正について詳細に説明する。例えば基板PLには種々のレジスト材料が塗布され得るため、塗布されたレジスト材料の種類に応じて基板PLの表面反射率が変化する。基板PLの表面反射率が変化すると、合焦状態において受光素子LR1aで検出される最大光量も変化してしまう。上述したように、本実施形態では、受光素子LR1aで検出される最大光量を基準値としてフォーカス制御を実行しているため、基板PLの表面反射率の変化に伴い基準値を変更する必要がある。
 基板PLにより反射された光束はピンホールPH1を通過することなく、受光素子LR1bに至る。それゆえ、受光素子LR1bで検出される光量は、基板PLの表面反射率に関わらずほとんど変化しない。つまり、受光素子LR1bにおける検出光量を用いて受光素子LR1aの検出光量を正規化することで、基板PLの表面反射率が変化した場合においてもフォーカス制御の精度を維持することができる。例えば、受光素子LR1aの検出光量と受光素子LR1bの検出光量の比を用いて受光素子LR1aの検出値の正規化を行うことができる。
 (第2実施形態)
 図2を用いて本発明の第2実施形態に係る露光装置について説明する。本実施形態では、照明光学系ILと投影光学系POを含む露光ユニットEUとは別に、スポット光の集光位置と基板PL面との位置ずれを示すデフォーカス量の検出を行うための光学ユニットOUを設けている。なお露光ユニットEUの構成はこれまでの実施形態において説明した構成と同一であるため、露光ユニットEUに関する説明は割愛する。
 光学ユニットOUには、光源LSB、結像光学系LK1、第2の遮光部材としてのピンホールPH4、結像光学系LK2が含まれる。光源LSBから出射した光束は、結像光学系LK1によりピンホールPH4上に集光され、結像光学系LK2によって基板PL上の位置Aに集光される。
 結像光学系LK1とピンホールPH4の間にはビームスプリッタBS4aが配置され、ビームスプリッタBS4aにより反射された光束は、結像レンズL4aにより受光素子LR4a上に集光される。
 ピンホールPH4は、デフォーカスが生じたときに、受光素子LR4aにおいて検出される光量が低下するように配置されており、第1実施形態におけるデフォーカス量の検出方法と同様の方法で、本実施形態におけるデフォーカス量の検出が行われる。光学ユニットOUによって検出されたデフォーカス量に関する情報は制御部CTRに送信され、制御部CTRは受信した情報に基づいて、露光ユニットEUに含まれる第1の遮光部材としてのピンホールPH1の駆動信号をアクチュエータAFD1に送信する。アクチュエータAFD1は受信した駆動信号に基づいてピンホールPH1を移動させることでフォーカス制御を実行する。
 本実施形態のように、デフォーカス量を検出するための光学ユニットOUを、フォーカス制御を実行するための露光ユニットEUと別のユニットとすることで、露光処理のスループットを向上させることができる。
 図2において、基板PLがX軸のプラス側からマイナス側に向けて走査露光される場合について説明する。基板PL上の露光領域は、光学ユニットOUの投影領域を通過した後に露光ユニットEUの投影領域を通過する。つまり、光学ユニットOUの投影領域を通過したタイミングで検出されたデフォーカス量に基づいてフォーカス制御を実行した上で、露光ユニットEUによって露光処理を実行することができる。フォーカス制御のために基板PLを停止させることなく走査露光を行うことができるため、フォーカス精度の向上とスループット向上を両立させることが可能となる。
 (第3実施形態)
 図3を用いて本発明の第3実施形態に係る露光装置について説明する。本実施形態では、照明光学系ILと投影光学系POを含む露光ユニットEUとは別に、スポット光の集光位置と基板PL面との位置ずれを示すデフォーカス量の検出を行うための光学ユニットOU2を設けている。なお露光ユニットEUの構成はこれまでの実施形態において説明した構成と同一であるため、露光ユニットEUに関する説明は割愛する。
 本実施形態と第2実施形態との差異は、光学ユニットOU2におけるデフォーカス検出方法にある。本実施形態における光学ユニットOU2では、基板PL上に光束を斜入射させ、基板PLで反射された光束を受光素子LRoに集光させることで得られる信号に基づいてデフォーカスの検出を行う。
 光源LDDから出射した光束を結像レンズLO1により基板PL上に集光し、基板PLで反射された光束を結像レンズLO2により受光素子LRo上に集光させる。デフォーカスが生じたときには、受光素子LRo上の集光位置にずれが生じる。フォーカス制御部CTRDは、受光素子LRo上の集光位置のずれ量に基づいてデフォーカス量を決定する。
 光学ユニットOU2によって検出されたデフォーカス量に関する情報は制御部CTRに送信され、制御部CTRは受信した情報に基づいて、露光ユニットEUに含まれるピンホールPH1の駆動信号をアクチュエータAFD1に送信する。アクチュエータAFD1は受信した駆動信号に基づいてピンホールPH1を移動させることでフォーカス制御を実行する。
 本実施形態のように、デフォーカス量を検出するための光学ユニットOU2を、フォーカス制御を実行するための露光ユニットEUと別のユニットとすることで、露光処理のスループットを向上させることができる。本実施形態においても第2実施形態と同様に、フォーカス制御のために基板PLを停止させることなく走査露光を行うことができるため、フォーカス精度の向上とスループット向上を両立させることが可能となる。
 (走査露光の概要)
 図4は、基板上の走査露光の概要を示す図である。DMDはXY平面内に配置された複数のマイクロミラーから構成され、図4における各点は、DMDを構成するマイクロミラーによって形成されたスポット光を示している。
 図4におけるSx、Syは走査露光時の基板PLの走査方向を示している。基板PLの走査方向に対してスポット光の配列方向が角度αだけ傾くように構成されている。このような構成とすることで、基板PL上を均一に露光することができる。Sy方向に基板が走査される場合には、Sx-Sy座標におけるSx=0に位置する領域は、図4中に黒点で示したように間欠的に複数回にわたって露光される。図4は、基板PL上の特定の露光領域が、スポット光S1、S2、S3、S4、S5において順次露光される様子を示している。
 各露光タイミングで検出された受光素子における光量に基づいて上述したフォーカス制御が行われる。特定のスポット光Sの照射により受光素子で検出された光量に基づいて、スポット光Sn+1による露光のためのフォーカス制御を実行しても良いし、複数のスポット光の照射により受光素子で検出された光量に基づいてフォーカス制御を実行しても良い。
 例えば、スポット光SからSn+99の各スポット光の照射ごとに受光素子で検出された光量に基づいて、スポット光Sn+100による露光のためのフォーカス制御を実行することができる。
 基板上の特定の領域に対しての走査露光におけるフォーカス制御方法について図5を用いて説明する。図5において、横軸はスポット光の集光位置と基板面との位置ずれを示すデフォーカス量を表している。縦軸は受光素子における検出光量を表している。以下、実施形態1に係る露光装置におけるフォーカス制御方法について説明する。
 図5中の(A)は、フォーカス制御の開始時に受光素子によって検出される光量とフォーカス制御の開始時のデフォーカス量を示している。(A)の段階では、スポット光の集光位置と基板面との位置ずれの方向が不明であるため、ピンホールPH1を光源LS側と基板PL側のいずれかに向けて駆動する。例えば、デフォーカス量がマイナス方向にZ1だけ増大するようにピンホールPHを移動させると、(B)のように受光素子において検出される光量が低下する。この時点で、ピンホールPHを移動させる方向と受光素子における検出光量の増減の関係が判明するため、(C)では、(A)から(B)へのピンホールPH1の駆動方向とは反対方向にピンホールPH1を移動させる。ここで、(B)から(C)へのピンホールPH1の移動量が、(A)から(B)へのピンホールPH1の移動量の2倍となるようにピンホールPH1が駆動される。
 以上のようにピンホールPH1の駆動方向を適切に設定することで、高速なフォーカス制御を実現することができる。
 なお、図5で示したように、フォーカス制御を開始するタイミングではピンホールの駆動方向とデフォーカスの増減との関係が不明であるため、フォーカス制御の開始時にはデフォーカス量が増大する方向にピンホールを移動させてしまうことがある。ただし、図4で示したように、マスクレス露光装置では、基板上の特定の露光領域においてスポット光による露光を複数回にわたって行う多重露光が実行される。そのため、たとえフォーカス制御の開始時にデフォーカス量を増大させるような制御を行ったとしても、初期段階の露光におけるフォーカス制御の精度に影響を与えるのみであり、基板上のパターン形成精度を低下させる可能性は低い。
 また、図6に示したように、実際の基板PLの表面高さは緩やかに変化していることが多い。図6は、基板PLにおける表面高さのY軸方向の変動を示している。例えば、Y軸方向の位置Ysにおいては、図4に示した、スポット光S1、S2、S3、S4、S5によって順次走査露光が行われる。また、スポット光S1に着目すると、スポット光S1によってYs、Ys+1、Ys+2、…Yeの各領域の露光が順次行われる。
 高精度な露光動作を実行するためには、基板の表面高さの変動に合わせてデフォーカス量を低減させるフォーカス制御を行うことが求められる。ただし、図5において説明したように、走査露光の開始タイミングではデフォーカス量を低減させるためにピンホールPH1を駆動する方向が定まっていない。
 それゆえ走査露光の開始直後の期間では、フォーカス精度が不十分な状態で露光動作が実行されてしまうおそれがある。図6の例では、スポット光S1による位置Ysでの露光におけるフォーカス精度が不十分なおそれがある。ただし、図5に示したように、継続してフォーカス制御を実行することで、フォーカス精度を高めることが可能である。
 具体的には、スポット光S2による露光におけるフォーカス精度は、スポット光S1による露光におけるフォーカス精度よりも低下する可能性がある。しかしながら、スポット光S3による露光におけるフォーカス精度は、スポット光S1やS2による露光におけるフォーカス精度よりも向上させることが可能である。
 このように基板PL上の特定の領域においてスポット光による露光を繰り返し行う多重露光を実行することで、高精度なパターン形成が可能となる。これは、フォーカス精度が不十分な状態で露光される露光量の多重露光全体の露光量に占める割合が小さいからである。
 (変形例)
 各実施形態では、フォーカス制御のためにピンホールPH1を一体的に移動させているが、個別に駆動可能な複数の部材によりピンホールPH1を構成しても良い。例えば、開口を有する部材を複数配置して、フォーカス制御に際して基板PL上の領域に対応する部材を移動させることで、フォーカス精度を高めることができる。
 (物品の製造方法)
 本発明の実施形態にかかる物品の製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品の製造方法は、基板に塗布された感光剤に上記の露光装置を用いて潜像パターンを形成する工程(基板を露光する工程)と、かかる工程で潜像パターンが形成された基板を現像する工程とを含む。さらに、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
 以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2017年10月24日提出の日本国特許出願特願2017-205645と2018年8月2日提出の日本国特許出願特願2018-146250を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。

Claims (11)

  1.  基板にパターンを形成するための露光光を基板上に投影する投影光学系と、
     前記露光光を通過させるための開口を含む遮光部材と、
     前記露光光の集光位置と前記基板との位置ずれを示すデフォーカス量を検出するフォーカス検出部と、
     前記フォーカス検出部における検出結果に基づいて前記遮光部材を前記投影光学系の光軸方向に移動させる制御部を含むことを特徴とする露光装置。
  2.  前記基板において反射された後に前記遮光部材の開口を通過した光束を受光する受光素子をさらに有し、
     前記フォーカス検出部は、前記受光素子において受光された光量に基づいて前記デフォーカス量を検出することを特徴とする請求項1に記載の露光装置。
  3.  前記制御部は、前記受光素子において受光される光量が増加するように、前記遮光部材を移動させることを特徴とする請求項2に記載の露光装置。
  4.  前記遮光部材は、前記投影光学系の光路中に配置されることを特徴とする請求項1乃至3のいずれか1項に記載の露光装置。
  5.  前記遮光部材は、前記デフォーカス量が所定量よりも小さい合焦状態において前記基板と光学的に共役な面に配置されていることを特徴とする請求項1乃至4のいずれか1項に記載の露光装置。
  6.  前記遮光部材は金属により構成されることを特徴とする請求項1乃至5のいずれか1項に記載の露光装置。
  7.  基板にパターンを形成するための露光光を基板上に投影する投影光学系と、前記露光光の集光位置を変化させる第1の遮光部材を含む露光ユニットと、
     前記基板において反射された光を通過させるための開口を含む第2の遮光部材と、前記第2の遮光部材を通過した光束を受光する受光素子を含む光学ユニットを有する露光装置であって、
     前記受光素子において受光された光量に応じて、前記第1の遮光部材を前記投影光学系の光軸方向に移動させることを特徴とする露光装置。
  8.  基板にパターンを形成するための露光光を基板上に投影する投影光学系と、前記露光光の集光位置を変化させる遮光部材を含む露光ユニットと、
     前記基板において反射された光を受光する受光素子を含む光学ユニットを有する露光装置であって、
     前記受光素子において受光された光量に応じて、前記遮光部材を前記投影光学系の光軸方向に移動させることを特徴とする露光装置。
  9.  複数の光変調素子を含む光変調部と、
     該光変調部に光を照射する照明光学系をさらに有し、
     前記光変調部によって反射された光が前記投影光学系に入射されることを特徴とする請求項1乃至8のいずれか1項に記載の露光装置。
  10.  前記露光光の集光位置と前記基板との位置ずれを示すデフォーカス量を変化させるフォーカス制御が行われた状態で、前記照明光学系によって形成されたスポット光を前記投影光学系を介して前記基板上に投影する露光動作を行い、
     前記基板上の特定の領域に対して前記露光動作を繰り返すことを特徴とする請求項9に記載の露光装置。
  11.  請求項1乃至10のいずれか1項に記載の露光装置を用いて基板を露光する工程と、
     前記工程で露光された前記基板を現像する工程と、
     を含むことを特徴とする物品の製造方法。
PCT/JP2018/038417 2017-10-24 2018-10-16 露光装置および物品の製造方法 WO2019082727A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880068453.4A CN111247485B (zh) 2017-10-24 2018-10-16 曝光装置和用于制造物品的方法
KR1020207013920A KR102433491B1 (ko) 2017-10-24 2018-10-16 노광장치 및 물품의 제조방법
US16/854,152 US11099488B2 (en) 2017-10-24 2020-04-21 Exposure apparatus and article manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-205645 2017-10-24
JP2017205645 2017-10-24
JP2018-146250 2018-08-02
JP2018146250A JP2019079029A (ja) 2017-10-24 2018-08-02 露光装置および物品の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/854,152 Continuation US11099488B2 (en) 2017-10-24 2020-04-21 Exposure apparatus and article manufacturing method

Publications (1)

Publication Number Publication Date
WO2019082727A1 true WO2019082727A1 (ja) 2019-05-02

Family

ID=66247412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038417 WO2019082727A1 (ja) 2017-10-24 2018-10-16 露光装置および物品の製造方法

Country Status (1)

Country Link
WO (1) WO2019082727A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05119468A (ja) * 1991-10-29 1993-05-18 Nikon Corp マスク検査装置
JPH05297262A (ja) * 1992-04-23 1993-11-12 Toshiba Corp オートフォーカス装置
JPH09270382A (ja) * 1996-03-29 1997-10-14 Canon Inc 投影露光装置及びそれを用いた半導体デバイスの製造方法
JPH10253327A (ja) * 1997-03-14 1998-09-25 Komatsu Ltd ピンホール及びこれを用いた共焦点光学装置とホログラムの露光装置及び露光方法
JP2000173112A (ja) * 1998-12-04 2000-06-23 Nikon Corp 螺旋パターンの露光方法
JP2002222753A (ja) * 2001-01-26 2002-08-09 Canon Inc 露光装置及び露光装置の光源位置調整方法
JP2006060152A (ja) * 2004-08-24 2006-03-02 Nikon Corp 光学特性測定装置、ステージ装置及び露光装置
JP2007294550A (ja) * 2006-04-21 2007-11-08 Nikon Corp 露光方法及び露光装置、並びにデバイス製造方法
JP2009086641A (ja) * 2007-07-18 2009-04-23 Asml Netherlands Bv 検査方法および装置、リソグラフィ装置、リソグラフィ処理セル、デバイス製造方法および距離測定システム
JP2011007941A (ja) * 2009-06-24 2011-01-13 Fujifilm Corp 露光ヘッド及び露光装置
JP2011527024A (ja) * 2008-06-30 2011-10-20 コーニング インコーポレイテッド マイクロリソグラフィック投影システムのためのテレセントリシティ補正素子
JP2015172750A (ja) * 2010-02-20 2015-10-01 株式会社ニコン 光源調整方法、露光方法及びデバイス製造方法
JP2017010061A (ja) * 2011-02-22 2017-01-12 株式会社ニコン 保持装置、露光装置、及びデバイスの製造方法
JP2017083676A (ja) * 2015-10-29 2017-05-18 株式会社オーク製作所 露光装置用露光ヘッドおよび露光装置用投影光学系
WO2017170514A1 (ja) * 2016-03-30 2017-10-05 株式会社ニコン パターン描画装置、パターン描画方法、および、デバイス製造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05119468A (ja) * 1991-10-29 1993-05-18 Nikon Corp マスク検査装置
JPH05297262A (ja) * 1992-04-23 1993-11-12 Toshiba Corp オートフォーカス装置
JPH09270382A (ja) * 1996-03-29 1997-10-14 Canon Inc 投影露光装置及びそれを用いた半導体デバイスの製造方法
JPH10253327A (ja) * 1997-03-14 1998-09-25 Komatsu Ltd ピンホール及びこれを用いた共焦点光学装置とホログラムの露光装置及び露光方法
JP2000173112A (ja) * 1998-12-04 2000-06-23 Nikon Corp 螺旋パターンの露光方法
JP2002222753A (ja) * 2001-01-26 2002-08-09 Canon Inc 露光装置及び露光装置の光源位置調整方法
JP2006060152A (ja) * 2004-08-24 2006-03-02 Nikon Corp 光学特性測定装置、ステージ装置及び露光装置
JP2007294550A (ja) * 2006-04-21 2007-11-08 Nikon Corp 露光方法及び露光装置、並びにデバイス製造方法
JP2009086641A (ja) * 2007-07-18 2009-04-23 Asml Netherlands Bv 検査方法および装置、リソグラフィ装置、リソグラフィ処理セル、デバイス製造方法および距離測定システム
JP2011527024A (ja) * 2008-06-30 2011-10-20 コーニング インコーポレイテッド マイクロリソグラフィック投影システムのためのテレセントリシティ補正素子
JP2011007941A (ja) * 2009-06-24 2011-01-13 Fujifilm Corp 露光ヘッド及び露光装置
JP2015172750A (ja) * 2010-02-20 2015-10-01 株式会社ニコン 光源調整方法、露光方法及びデバイス製造方法
JP2017010061A (ja) * 2011-02-22 2017-01-12 株式会社ニコン 保持装置、露光装置、及びデバイスの製造方法
JP2017083676A (ja) * 2015-10-29 2017-05-18 株式会社オーク製作所 露光装置用露光ヘッドおよび露光装置用投影光学系
WO2017170514A1 (ja) * 2016-03-30 2017-10-05 株式会社ニコン パターン描画装置、パターン描画方法、および、デバイス製造方法

Similar Documents

Publication Publication Date Title
JP3102076B2 (ja) 照明装置及びそれを用いた投影露光装置
JP7020859B2 (ja) 照明光学系、露光装置および物品の製造方法
KR102478399B1 (ko) 노광 장치, 노광 방법 및 물품 제조 방법
JP6267530B2 (ja) 露光装置、および物品の製造方法
TWI693667B (zh) 移動體之控制方法、曝光方法、元件製造方法、移動體裝置、及曝光裝置
KR102433510B1 (ko) 노광장치 및 물품의 제조방법
JP2000269114A (ja) 照明装置、露光装置及び露光方法
KR102433491B1 (ko) 노광장치 및 물품의 제조방법
WO2019082727A1 (ja) 露光装置および物品の製造方法
WO2019082726A1 (ja) 露光装置および物品の製造方法
JP6436856B2 (ja) 露光装置、露光方法、および物品の製造方法
JP2008124308A (ja) 露光方法及び露光装置、それを用いたデバイス製造方法
JP3102077B2 (ja) 半導体デバイスの製造方法及び投影露光装置
KR102519522B1 (ko) 리소그래피 장치, 조명 장치 및 물품의 제조 방법
JP2015076491A (ja) 検出装置、リソグラフィ装置、および物品の製造方法
CN109307988B (zh) 照明光学系统、曝光装置以及物品制造方法
KR102447672B1 (ko) 조명 광학계, 노광 장치 및 물품의 제조 방법
JP2023000286A (ja) 露光装置、および物品の製造方法
JP6053316B2 (ja) リソグラフィー装置、および、物品製造方法
KR20210018057A (ko) 노광 장치 및 물품의 제조 방법
JPH0875415A (ja) アライメント装置
JP2012084594A (ja) 露光装置、位置検出方法及びデバイスの製造方法
JP2005159068A (ja) 照明光学装置及び露光装置
JP2016162980A (ja) 露光装置、および物品の製造方法
JP2011138887A (ja) 露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207013920

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18869494

Country of ref document: EP

Kind code of ref document: A1