WO2019080832A1 - 一种分子筛组合物、其制造方法及其用途 - Google Patents

一种分子筛组合物、其制造方法及其用途

Info

Publication number
WO2019080832A1
WO2019080832A1 PCT/CN2018/111420 CN2018111420W WO2019080832A1 WO 2019080832 A1 WO2019080832 A1 WO 2019080832A1 CN 2018111420 W CN2018111420 W CN 2018111420W WO 2019080832 A1 WO2019080832 A1 WO 2019080832A1
Authority
WO
WIPO (PCT)
Prior art keywords
alpo
molecular sieve
oxide
prepared
catalyst
Prior art date
Application number
PCT/CN2018/111420
Other languages
English (en)
French (fr)
Inventor
王仰东
周海波
杨为民
刘苏
刘畅
赵昱
刘红星
陆贤
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to BR112020008174-4A priority Critical patent/BR112020008174B1/pt
Priority to SG11202003804VA priority patent/SG11202003804VA/en
Priority to US16/759,714 priority patent/US11739001B2/en
Priority to EP18870835.8A priority patent/EP3702030A4/en
Publication of WO2019080832A1 publication Critical patent/WO2019080832A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/334Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing molecular sieve catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates [APO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/83Aluminophosphates (APO compounds)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a molecular sieve composition, and more particularly to a molecular sieve composition comprising a phosphorus aluminum molecular sieve and a CO adsorbing component.
  • the invention also relates to a process for the manufacture of the molecular sieve composition and its use in the production of light olefins.
  • Low-carbon olefins represented by ethylene, propylene, etc. are important criteria for measuring the level of a country's chemical industry. Due to the growing scarcity of global petroleum resources, the world's major petrochemical companies are actively developing new routes to replace traditional olefin production. Among these new routes, the direct production of low-carbon olefins from syngas has the advantages of short process, low energy consumption and low coal consumption. It is a hot research topic and has a good development prospect.
  • Chinese Patent Publication No. CN102698764A relates to a catalyst for producing a low-carbon olefin from syngas, a preparation method thereof and use thereof.
  • the catalyst comprises a primary active component and a co-active component, wherein the primary active component is iron oxide and zinc oxide, and the co-active component is potassium hydroxide or magnesium carbonate.
  • the inventors of the present invention have found that by using a special molecular sieve composition as a catalyst and syngas as a raw material to produce a low-carbon olefin, high low-carbon olefin selectivity can be obtained, and at the same time, low by-products can be effectively reduced.
  • the selectivity of the carbon alkane has been completed based on this finding.
  • the present invention relates to the following aspects.
  • a molecular sieve composition comprising a phosphorus aluminum molecular sieve and a CO adsorbing component, wherein the CO adsorbing component comprises an oxide selected from a Group II B metal of the periodic table, an oxide of a Group VI B metal And at least one metal oxide of gallium oxide and indium oxide (preferably selected from at least one of zinc oxide, chromium oxide, gallium oxide and indium oxide, more preferably selected from at least zinc oxide and chromium oxide)
  • molecular sieve composition of any of the preceding or subsequent aspects, wherein the phosphoaluminum molecule is selected from the group consisting of AlPO 4 -5, AlPO 4 -11, AlPO 4 -17, AlPO 4 -18, AlPO 4 -20, AlPO At least one of 4 - 31, AlPO 4 - 33, AlPO 4 - 34, AlPO 4 - 35, AlPO 4 - 44, AlPO 4 - 56, preferably selected from the group consisting of AlPO 4 -17, AlPO 4 -18, AlPO 4 - 31.
  • At least one of AlPO 4 -33, AlPO 4 -34, and AlPO 4 -35 preferably at least one selected from the group consisting of AlPO 4 -18 and AlPO 4 -34, more preferably AlPO 4 -34 and AlPO 4 - 18 eutectic molecular sieves.
  • the weight ratio is from 1:9 to 9:1, preferably from 1:3 to 3:1.
  • the molecular sieve composition of any of the preceding or subsequent aspects, wherein the weight ratio of the aluminum phosphate molecular sieve to the CO adsorptive component is from 1:5 to 5:1, preferably from 1:3 to 4:1 More preferably, it is 1:2 to 3:1, more preferably 1.5:1 to 1:1.5.
  • the CO adsorptive component further comprises a binder (preferably selected from at least one of alumina, magnesia, titania and zirconia, more Alumina is preferred.
  • a binder preferably selected from at least one of alumina, magnesia, titania and zirconia, more Alumina is preferred.
  • the phosphoaluminum molecular sieve is in the form of particles and has a 90% particle diameter of 0.3-9 mm (preferably 0.4-5 mm, more preferably 0.5-0.9 mm), and /
  • the CO-adsorbing component is present in the form of particles, and its 90% particle diameter is from 0.3 to 9 mm (preferably from 0.4 to 5 mm, more preferably from 0.5 to 0.9 mm).
  • a method of producing a molecular sieve composition comprising the steps of combining a phosphorus aluminum molecular sieve and a CO adsorbing component with each other, such as being individually packaged or mechanically mixed with each other, preferably mechanically mixed with each other, wherein the CO adsorbing component And comprising at least one metal oxide selected from the group consisting of a metal of Group II B of the periodic table, an oxide of a Group VI B metal, gallium oxide and indium oxide (preferably selected from the group consisting of zinc oxide, chromium oxide, gallium oxide, and At least one metal oxide of indium oxide is more preferably at least one metal oxide selected from the group consisting of zinc oxide and chromium oxide, more preferably a composite metal oxide of zinc oxide and chromium oxide.
  • a method for producing a low-carbon olefin comprising the step of producing a light olefin by contacting a synthesis gas with a molecular sieve composition according to any of the preceding aspects or a molecular sieve composition produced by the production method according to any of the preceding aspects.
  • reaction temperature is 320 to 480 ° C (preferably 360 to 440 ° C, more preferably 370 to 430 ° C, more preferably 380 to 410 ° C)
  • reaction pressure gauge pressure
  • space velocity is 800-10000h -1 (preferably 1,000-8,000h -1, more preferably 2,000-7,000h -1)
  • syngas CO The volume ratio of H 2 is from 0.3 to 3.5 (preferably from 0.5 to 3, more preferably from 0.7 to 2.5).
  • the process for producing a light olefin according to the present invention in one embodiment, has the advantage of having a low olefin selectivity (expressed by a low olefin/lower alkane ratio).
  • the lower olefin/lower alkane ratio is generally greater than 10 and up to 26 or even higher.
  • Example 1 is an XRD spectrum of molecular sieves produced in Example 3, Example 6, and Comparative Example 5.
  • lower olefin refers to a C 2 -C 4 olefins
  • lower alkane refers to a C 2 -C 4 alkane
  • 90% of the particle diameter is measured by hand sieving, which is to measure the particle diameter by passing the particles through sieves of different sizes, meaning that more than 90% by weight of the particles are in a certain range of values.
  • the range of values includes a lower value limit and an upper numerical limit.
  • a particle having a 90% particle diameter of 0.3 to 9 mm means that 90% by weight or more of the particle can pass through a mesh having a diameter of 9 mm and cannot pass through a mesh having a diameter of 0.3 mm.
  • the range of values for the other 90% particle diameters can be similarly measured and understood.
  • XRD measurements were performed using a Bruker-AXS D8 Advanced X-ray diffractometer.
  • the measurement conditions included a Cu target K ⁇ line, a Ni filter, and a tube pressure of 40 kV and a tube flow of 40 mA.
  • the scan range was 5-50°.
  • any two or more aspects or embodiments of the present invention may be arbitrarily combined, and the technical solutions thus formed are part of the original disclosure of the present specification, and also fall within the scope of protection of the present invention. .
  • a molecular sieve composition is first described.
  • the molecular sieve composition comprises a phosphorus aluminum molecular sieve and a CO adsorbing component.
  • the molecular sieve composition is particularly suitable as a catalyst for producing a light olefin from a synthesis gas.
  • the phosphorus aluminum molecular sieve is not particularly limited, and specific examples thereof include AlPO4-5, AlPO4-11, AlPO4-17, AlPO4-18, AlPO4-20, AlPO4-31, and AlPO4. -33, AlPO4-34, AlPO4-35, AlPO4-44 and AlPO4-56, more specifically AlPO4-17, AlPO4-18, AlPO4-31, AlPO4-33, AlPO4-34 and AlPO4-35, more specifically AlPO4-18 and AlPO4-34 can be mentioned. These phosphorus aluminum molecular sieves may be used alone or in combination of any ones in any ratio. Moreover, such a phosphorus-aluminum molecular sieve may be commercially available as it is, or may be produced according to any method known in the art, and the present invention is not particularly limited thereto.
  • a combination of AlPO4-34 and AlPO4-18, particularly AlPO4-34 is particularly exemplified from the viewpoint of achieving higher low-carbon olefin selectivity.
  • Eutectic molecular sieve of AlPO4-18 The relative ratio of AlPO4-34 and AlPO4-18 in the combination is not particularly limited in the present invention, but the weight ratio of AlPO4-18 to AlPO4-34 is generally from 1:9 to 9:1, preferably from 1:3 to 3: 1.
  • the eutectic molecular sieve may be directly obtained commercially or may be produced according to any method known in the art, and the present invention is not particularly limited thereto.
  • the phosphorus aluminum molecular sieve is present in the form of particles.
  • the 90% particle diameter of the phosphorus aluminum molecular sieve is generally from 0.3 to 9 mm, preferably from 0.4 to 5 mm, from the viewpoint of achieving higher low carbon olefin selectivity.
  • the CO adsorbing component comprises a metal oxide, or according to a particular embodiment, the CO adsorbing component is the metal oxide.
  • the metal oxide include an oxide of a Group II B metal of the periodic table, an oxide of a Group VI B metal, gallium oxide, and indium oxide.
  • zinc oxide, chromium oxide, gallium oxide and indium oxide are preferable, zinc oxide and chromium oxide are more preferable, and a composite metal oxide of zinc oxide and chromium oxide is more preferable.
  • These metal oxides may be used alone or in combination of any ones in any ratio.
  • such a metal oxide may be commercially available as it is, or may be produced according to any method known in the art, and the present invention is not particularly limited.
  • At least a part (preferably 50% or more, more preferably 80% or more, more preferably 90% or more) of the metal oxide exhibits a spinel structure.
  • the spinel structure can be identified by XRD methods in a manner known in the art.
  • the CO adsorbing component may further comprise a binder in addition to the metal oxide.
  • a binder for example, any binder conventionally used in the production of a metal oxide catalyst in the art may be mentioned, and for example, a refractory metal oxide may be mentioned, and more specifically, for example, alumina or magnesia may be mentioned. , titanium dioxide and zirconia, especially alumina. These binders may be used alone or in combination of any ones in any ratio.
  • the CO-adsorbing component containing the binder may be directly commercially available or may be produced according to any method known in the art, which is not particularly limited in the present invention.
  • the present invention is not particularly limited to the content of the binder in the CO-adsorbing component, in the CO-adsorbing component, the metal oxide and the binder
  • the weight ratio is generally from 10:1 to 1:1, preferably from 4:1 to 1.2:1.
  • the CO adsorbing component is present in the form of particles.
  • the 90% particle diameter of the CO-adsorbing component is generally from 0.3 to 9 mm, preferably from 0.4 to 5 mm.
  • the phosphorus aluminum molecular sieve and the CO adsorbing component are present in a form independent of each other.
  • the independent form for example, a form in which the phosphorus aluminum molecular sieve and the CO adsorptive component are physically combined (in accordance with a predetermined relative ratio) after being separately manufactured may be mentioned, and more specifically, for example, the phosphorus may be mentioned.
  • the aluminum molecular sieve and the CO adsorptive component (in a predetermined relative proportion) are packaged separately from each other, or the aluminum phosphate molecular sieve and the CO adsorptive component (in a predetermined relative proportion) are mechanically mixed with each other. Wait.
  • the relative ratio (such as weight ratio) of the phosphorus aluminum molecular sieve and the CO adsorbing component is not particularly limited, but is generally 1:5 to 5:1, preferably 1:3. To 4:1, more preferably 1:2 to 3:1, more preferably 1.5:1 to 1:1.5.
  • the molecular sieve composition (including its constituent components such as the phosphorus aluminum molecular sieve and the CO adsorptive group) from the viewpoint of achieving more desirable low carbon olefin selectivity Sub) basically does not contain silicon, vanadium or antimony.
  • substantially free of means that the molecular sieve composition or its constituent components are not intentionally introduced into the silicon, vanadium or niobium during manufacture or use, but do not exclude very low levels (such as oxides). Less than 0.01% by weight, relative to the total mass of the molecular sieve composition, of silicon, vanadium or antimony in the form of unavoidable impurities.
  • the manufacturing method includes a step of combining the phosphorus aluminum molecular sieve and the CO adsorbing component.
  • the combination for example, the phosphorus aluminum molecular sieve and the CO adsorptive component may be physically combined (in a predetermined relative proportion) after being separately manufactured, and more specifically, for example, the phosphorus aluminum molecular sieve and The CO adsorbing components (according to a predetermined relative ratio) are packaged independently of each other, or the phosphorus aluminum molecular sieve and the CO adsorptive component (according to a predetermined relative ratio) are mechanically mixed with each other or the like.
  • a process for producing a low carbon olefin comprising the step of contacting a synthesis gas with any of the foregoing molecular sieve compositions of the present invention to produce a lower olefin.
  • the method for producing the lower olefin may be carried out in any reaction means known in the art in any manner known in the art, except for the following explicit contents, and is not particularly limited.
  • the reaction temperature of the process for producing the lower olefin is not particularly limited, and can be referred to the knowledge conventionally known in the art, but is generally 320 to 480 ° C, preferably 360 to 440 ° C, more preferably 370-430 ° C, more preferably 380-410 ° C.
  • the reaction pressure (gauge pressure) of the low carbon olefin production method is not particularly limited, and can be referred to the knowledge conventionally known in the art, but is generally 0.5-8 MPa, preferably 1-6 MPa. More preferably, it is 2-5 MPa.
  • the volumetric space velocity of the method for producing the low-carbon olefin is not particularly limited, and can be referred to the knowledge conventionally known in the art, but is generally 800-10000 h -1 , preferably 1,000-8,000 h - 1 is more preferably 2,000-7,000 h -1 .
  • the synthesis gas composition of the low carbon olefin production method is not particularly limited, and reference may be made to knowledge conventionally known in the art, but the volume ratio of CO to H 2 in the synthesis gas is generally 0.3-3.5, preferably 0.5-3, more preferably 0.7-2.5. Further, the synthesis gas may further contain impurities such as CO 2 and N 2 and the like in an acceptable amount to those skilled in the art, and is not particularly limited.
  • % is mass%
  • space velocity is volumetric space velocity
  • pressure is gauge pressure
  • n hydrogen :n carbon monoxide is a molar ratio
  • CO conversion (CO inlet content - CO outlet content) / CO import content * 100%
  • the olefin/paraffin ratio (referred to as the lower olefin/lower alkane ratio) was calculated according to the following formula.
  • Olefin/paraffin ratio (2 * moles of ethylene product + 3 * moles of propylene product + 4 * moles of butene product) / (2 * moles of ethane product + 3 * moles of propane product + 4 * butane product) Molar number)
  • the Ga 2 O 3 +Cr 2 O 3 catalyst was prepared as follows:
  • the AlPO 4 -5 catalyst was prepared as follows:
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a Cr 2 O 3 catalyst was prepared as in Example 1.
  • the AlPO 4 -17 catalyst was prepared as follows:
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • the ZnIn 0.3 catalyst was prepared as follows:
  • the AlPO 4 -18 catalyst was prepared as follows:
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a Ga 2 O 3 catalyst was prepared as in Example 1.
  • the Zn 2 Cr catalyst was prepared as follows:
  • AlPO 4 -20 catalysts prepared as follows:
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • the ZnCr 0.8 In 0.2 catalyst was prepared as follows:
  • the AlPO 4 -31 catalyst was prepared as follows:
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • the Zn 0.7 Cr catalyst was prepared as follows:
  • the AlPO 4 -34 catalyst was prepared as follows:
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • the Zn 0.2 /ZnCr 2 catalyst was prepared as follows:
  • AlPO 4 -5 catalyst was prepared as in Example 1.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • the ZnCr 0.9 Al 0.3 catalyst was prepared as follows:
  • AlPO 4 -5 catalyst was prepared as in Example 1.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • the reaction kettle was aged for 2 hours, and stirred at 200 ° C for 48 hours, the obtained solid was washed with deionized water to neutrality, and the solid was separated, dried, and calcined at 550 ° C for 6 hours in a muffle furnace to obtain AlPO 4 -11 molecular sieve. .
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • AlPO 4 -18 was prepared as described in Example 3 catalyst.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • AlPO 4 -31 catalyst was prepared as in Example 5.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • AlPO 4 -34 catalyst was prepared as in Example 6.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • the AlPO 4 -35 catalyst was prepared as follows:
  • the mixture was aged for 2 hours, and stirred at 200 ° C for 24 hours.
  • the obtained solid was washed with deionized water to neutrality, and the solid was separated, dried, and calcined at 550 ° C for 6 hours in a muffle furnace to obtain AlPO 4 - 35 molecular sieves.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • the AlPO 4 -44 catalyst was prepared as follows:
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • the AlPO 4 -56 catalyst was prepared as follows:
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • AlPO 4 -34 catalyst was prepared as in Example 6.
  • All shaped catalysts have a 90% particle diameter of 5.0-5.5 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • AlPO 4 -34 catalyst was prepared as in Example 6.
  • All shaped catalysts have a 90% particle diameter of 0.3-0.5 mm.
  • AlPO 4 -34 catalyst was prepared as in Example 6.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • AlPO 4 -34 catalyst was prepared as in Example 6.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • AlPO 4 -34 catalyst was prepared as in Example 6.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • AlPO 4 -18 was prepared as described in Example 3 catalyst.
  • AlPO 4 -34 catalyst was prepared as in Example 6.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • AlPO 4 -18 was prepared as described in Example 3 catalyst.
  • AlPO 4 -34 catalyst was prepared as in Example 6.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • AlPO 4 -18 was prepared as described in Example 3 catalyst.
  • AlPO 4 -34 catalyst was prepared as in Example 6.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • the AlPO 4 -18/AlPO 4 -34 eutectic molecular sieve catalyst was prepared as follows:
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • the ZnCrAl 0.2 catalyst was prepared as follows:
  • AlPO 4 -35 catalyst was prepared as in Example 15.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCrAl 0.2 catalyst was prepared as in Example 27.
  • AlPO 4 -35 catalyst was prepared as in Example 15.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCrAl 0.2 catalyst was prepared as in Example 27.
  • AlPO 4 -35 catalyst was prepared as in Example 15.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • a ZnCrAl 0.2 catalyst was prepared as in Example 27.
  • AlPO 4 -35 catalyst was prepared as in Example 15.
  • All shaped catalysts have a 90% particle diameter of 0.5-0.9 mm.
  • Example 14 The catalyst prepared in Example 14 was used for the synthesis of a gas to produce a light olefin.
  • the reaction conditions and evaluation results are shown in Table 2.
  • the reaction system pressure is 4 MPa, and the gas volumetric space velocity is 4,000 h -1 to carry out the synthesis gas to produce a low-carbon olefin reaction.
  • the results of the 200 hour activity evaluation are shown in Table 4.
  • Zn 3.5 CrAl and SAPO-34 were synthesized according to the preparation method of the literature [Science, 2016, 351, 1065-1068].
  • ZnZr 2 and SAPO-34 were synthesized according to the preparation method of the literature [Angewandte Chemie, 2016, 128, 4803-4806].
  • a supported iron-based catalyst was synthesized according to the preparation method of the patent document [CN102441383A].
  • the FeZn-K catalyst was synthesized according to the preparation method of the patent document [CN102698764A].
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • the SAPO-34 catalyst was prepared as follows:
  • a ZnCr 0.9 Al 0.3 catalyst was prepared as in Example 8.
  • SAPO-34 catalyst was prepared in Comparative Example 5.
  • the SAPO-18 catalyst was prepared as follows:
  • orthophosphoric acid, pseudoboehmite and tetraethyl orthosilicate are respectively a phosphorus source, an aluminum source and a silicon source.
  • the molar ratio of Al 2 O 3 : P 2 O 5 :SiO 2 :DIEA:H 2 O 1 :0.9:0.4:1.8:100, was stirred and crystallized at 200 ° C for 24 h, and the obtained solid was washed with deionized water until neutral. The solid was separated, dried, and calcined at 550 ° C for 6 hours in a muffle furnace to obtain a SAPO-18 molecular sieve.
  • Zn 3.5 CrAl and SAPO-34 were synthesized according to the preparation method of the literature [Science, 2016, 351, 1065-1068].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

一种分子筛组合物、其制造方法及其在低碳烯烃生产中的用途。分子筛组合物包含磷铝分子筛和CO吸附性组分,二者以彼此独立的形式存在。分子筛组合物作为催化剂在用于以合成气为原料来制造低碳烯烃时,表现出低碳烯烃选择性高等优点。

Description

一种分子筛组合物、其制造方法及其用途 技术领域
本发明涉及一种分子筛组合物,特别是一种包含磷铝分子筛和CO吸附性组分的分子筛组合物。本发明还涉及所述分子筛组合物的制造方法及其在低碳烯烃生产中的用途。
背景技术
以乙烯、丙烯等为代表的低碳烯烃是衡量一个国家化学工业水平的重要标准。由于全球石油资源日渐匮乏,世界各大石油化工公司正积极开发替代传统烯烃生产的新路线。在这些新路线之中,合成气直接制取低碳烯烃工艺具有流程短、能耗和煤耗低的优势,是当前的研究热点,具有良好的发展前景。
中国专利公开CN102698764A涉及一种合成气制低碳烯烃的催化剂、制备方法及其用途。所述催化剂包含主活性组分和助活性组分,其中主活性组分为氧化铁和氧化锌,助活性组分为氢氧化钾或碳酸镁。
包信和等人(Science,2016,351,1065-1068)也公开了一种CO加氢高选择性制烯烃的方法。
但是,现有技术的合成气制低碳烯烃技术在低碳烯烃选择性上还存在进一步改善的余地。
发明内容
本发明的发明人发现,通过使用一种特殊的分子筛组合物作为催化剂,并以合成气为原料来制造低碳烯烃,就可以获得高的低碳烯烃选择性,同时可以有效降低对副产物低碳烷烃的选择性。本发明基于这一发现而完成。
具体而言,本发明涉及以下方面的内容。
1.一种分子筛组合物,包含磷铝分子筛和CO吸附性组分,其中所述CO吸附性组分包含选自元素周期表第II B族金属的氧化物、第VI B族金属的氧化物、氧化镓和氧化铟中的至少一种金属氧化物(优选选自氧化锌、氧化铬、氧化镓和氧化铟中的至少一种金属氧化物,更优选选自氧化锌和氧化铬中的至少一种 金属氧化物,更优选氧化锌和氧化铬的复合金属氧化物),其中所述磷铝分子筛和所述CO吸附性组分以彼此独立的形式存在,比如彼此的独立包装物或者机械混合物。
2.前述或后述任一方面所述的分子筛组合物,其中所述磷铝分子筛选自AlPO 4-5、AlPO 4-11、AlPO 4-17、AlPO 4-18、AlPO 4-20、AlPO 4-31、AlPO 4-33、AlPO 4-34、AlPO 4-35、AlPO 4-44、AlPO 4-56中的至少一种,优选选自AlPO 4-17、AlPO 4-18、AlPO 4-31、AlPO 4-33、AlPO 4-34、AlPO 4-35中的至少一种,优选选自AlPO 4-18和AlPO 4-34中的至少一种,更优选AlPO 4-34和AlPO 4-18的共晶分子筛。
3.前述或后述任一方面所述的分子筛组合物,其中所述磷铝分子筛选自AlPO 4-34和AlPO 4-18的组合,并且所述AlPO 4-18和所述AlPO 4-34的重量比为1∶9至9∶1,优选1∶3至3∶1。
4.前述或后述任一方面所述的分子筛组合物,其中根据XRD谱图,所述金属氧化物至少部分(优选50%以上,更优选80%以上,更优选90%以上)呈现为尖晶石结构。
5.前述或后述任一方面所述的分子筛组合物,其中所述磷铝分子筛和所述CO吸附性组分的重量比为1∶5至5∶1,优选1∶3至4∶1,更优选1∶2至3∶1,更优选1.5∶1至1∶1.5。
6.前述或后述任一方面所述的分子筛组合物,其中所述CO吸附性组分还包含粘合剂(优选选自氧化铝、氧化镁、二氧化钛和氧化锆中的至少一种,更优选氧化铝)。
7.前述或后述任一方面所述的分子筛组合物,其中所述金属氧化物与所述粘合剂的重量比为10∶1至1∶1,优选4∶1至1.2∶1。
8.前述或后述任一方面所述的分子筛组合物,基本上不含有选自硅、钒和铌中的至少一种元素。
9.前述任一方面所述的分子筛组合物,其中所述磷铝分子筛以颗粒形式存在,并且其90%颗粒直径为0.3-9mm(优选0.4-5mm,更优选0.5-0.9mm),和/或,所述CO吸附性组分以颗粒形式存在,并且其90%颗粒直径为0.3-9mm(优选0.4-5mm,更优选0.5-0.9mm)。
10.一种分子筛组合物的制造方法,包括使磷铝分子筛和CO吸附性组分彼此组合(比如各自独立包装或者彼此机械混合,优选彼此机械混合)的步骤,其中所述CO吸附性组分包含选自元素周期表第II B族金属的氧化物、第VI B族金属的氧化物、氧化镓和氧化铟中的至少一种金属氧化物(优选选自氧化锌、氧化铬、氧化镓和氧化铟中的至少一种金属氧化物,更优选选自氧化锌和氧化 铬中的至少一种金属氧化物,更优选氧化锌和氧化铬的复合金属氧化物)。
11.一种低碳烯烃的制造方法,包括使合成气与前述任一方面所述的分子筛组合物或者通过前述任一方面所述的制造方法制造的分子筛组合物接触而制造低碳烯烃的步骤。
12.前述任一方面所述的制造方法,其中反应温度为320-480℃(优选360-440℃,更优选370-430℃,更优选380-410℃),反应压力(表压)为0.5-8MPa(优选1-6MPa,更优选2-5MPa),体积空速为800-10000h -1(优选1,000-8,000h -1,更优选2,000-7,000h -1),所述合成气中CO与H 2的体积比为0.3-3.5(优选0.5-3,更优选0.7-2.5)。
技术效果
根据本发明的低碳烯烃的制造方法,在一个实施方式中,具有低碳烯烃选择性高(用低碳烯烃/低碳烷烃比值表示)的优点。
根据本发明的低碳烯烃的制造方法,在一个实施方式中,所述低碳烯烃/低碳烷烃比值一般大于10,最高可以达到26或者甚至更高。
附图说明
图1是实施例3、实施例6和对比例5制造的分子筛的XRD谱图。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
在本发明的上下文中,术语“低碳烯烃”指的是C 2-C 4烯烃,术语“低碳烷烃”指的是C 2-C 4烷烃。
在本发明的上下文中,90%颗粒直径的测量采用手工筛分法,它是使颗粒通过不同尺寸的筛孔来测试颗粒直径的,指的是颗粒的90wt%以上都处于某一数 值范围之内。该数值范围包括一个数值下限和一个数值上限。具体举例而言,以90%颗粒直径为0.3-9mm的颗粒为例,指的是该颗粒的90wt%以上能够通过直径9mm的筛孔而不能通过直径0.3mm的筛孔。其他90%颗粒直径的数值范围可以类似测量和理解。
在本说明书的上下文中,采用Bruker-AXS D8 Advanced X光衍射仪进行XRD测量,测量条件包括:以Cu靶Kα线,Ni滤光片,在管压40kV,管流40mA下扫描,扫描范围为5-50°。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,除非以重量为基准时不符合本领域技术人员的常规认识。
在本说明书的上下文中,本发明的任何两个或多个方面或者实施方式都可以任意组合,由此而形成的技术方案属于本说明书原始公开内容的一部分,同时也落入本发明的保护范围。
根据本发明,首先涉及一种分子筛组合物。所述分子筛组合物包含磷铝分子筛和CO吸附性组分。所述分子筛组合物特别适合作为以合成气为原料制造低碳烯烃的催化剂。
根据本发明的一个实施方式,对所述磷铝分子筛没有特别的限定,但具体比如可以举出AlPO4-5、AlPO4-11、AlPO4-17、AlPO4-18、AlPO4-20、AlPO4-31、AlPO4-33、AlPO4-34、AlPO4-35、AlPO4-44和AlPO4-56,更具体可以举出AlPO4-17、AlPO4-18、AlPO4-31、AlPO4-33、AlPO4-34和AlPO4-35,更具体可以举出AlPO4-18和AlPO4-34。这些磷铝分子筛可以单独使用一种,或者以任意的比例组合使用多种。而且,这类磷铝分子筛可以直接商购获得,也可以按照本领域已知的任何方法进行制造,本发明对此没有特别的限定。
根据本发明的一个实施方式,从实现更高的低碳烯烃选择性的角度来看,作为所述磷铝分子筛,特别可以举出AlPO4-34和AlPO4-18的组合,特别是AlPO4-34和AlPO4-18的共晶分子筛。本发明对于所述组合中AlPO4-34和AlPO4-18的相对比例没有特别的限定,但AlPO4-18和AlPO4-34的重量比一般为1∶9至9∶1,优选1∶3至3∶1。所述共晶分子筛可以直接商购获得,也可以按照本领域已知的任何方法进行制造,本发明对此没有特别的限定。
根据本发明的一个实施方式,所述磷铝分子筛以颗粒形式存在。另外,从实现更高的低碳烯烃选择性的角度来看,所述磷铝分子筛的90%颗粒直径一般为0.3-9mm,优选0.4-5mm。
根据本发明的一个实施方式,所述CO吸附性组分包含金属氧化物,或者根 据一个特别的实施方式,所述CO吸附性组分是所述金属氧化物。在此,作为所述金属氧化物,比如可以举出元素周期表第II B族金属的氧化物、第VI B族金属的氧化物、氧化镓和氧化铟。作为所述金属氧化物,优选氧化锌、氧化铬、氧化镓和氧化铟,更优选氧化锌和氧化铬,更优选氧化锌和氧化铬的复合金属氧化物。这些金属氧化物可以单独使用一种,或者以任意的比例组合使用多种。而且,这类金属氧化物可以直接商购获得,也可以按照本领域已知的任何方法进行制造,本发明对此没有特别的限定。
根据本发明的一个实施方式,在所述CO吸附性组分中,所述金属氧化物至少部分(优选50%以上,更优选80%以上,更优选90%以上)呈现为尖晶石结构。所述尖晶石结构可以通过XRD方法按照本领域已知的方式进行鉴定。
根据本发明的一个实施方式,所述CO吸附性组分除了所述金属氧化物之外,还可以进一步包含粘合剂。作为所述粘合剂,比如可以举出本领域在制造金属氧化物催化剂时常规使用的任何粘合剂,比如可以举出难熔性金属氧化物,更具体比如可以举出氧化铝、氧化镁、二氧化钛和氧化锆,特别是氧化铝。这些粘合剂可以单独使用一种,或者以任意的比例组合使用多种。而且,包含所述粘合剂的所述CO吸附性组分可以直接商购获得,也可以按照本领域已知的任何方法进行制造,本发明对此没有特别的限定。另外,虽然本发明对于所述粘合剂在所述CO吸附性组分中的含量没有特别的限定,但在所述CO吸附性组分中,所述金属氧化物与所述粘合剂的重量比一般为10∶1至1∶1,优选4∶1至1.2∶1。
根据本发明的一个实施方式,所述CO吸附性组分以颗粒形式存在。另外,从实现更为理想的低碳烯烃选择性的角度来看,所述CO吸附性组分的90%颗粒直径一般为0.3-9mm,优选0.4-5mm。
根据本发明的一个实施方式,所述磷铝分子筛和所述CO吸附性组分以彼此独立的形式存在。作为所述独立形式,比如可以举出所述磷铝分子筛和所述CO吸附性组分在分别制造之后再(按照预定的相对比例)物理组合的形式,更具体比如可以举出将所述磷铝分子筛和所述CO吸附性组分(按照预定的相对比例)彼此独立包装的形式,或者将所述磷铝分子筛和所述CO吸附性组分(按照预定的相对比例)彼此机械混合的形式等。
根据本发明的一个实施方式,对所述磷铝分子筛和所述CO吸附性组分的相对比例(比如重量比)没有特别的限定,但一般为1∶5至5∶1,优选1∶3至4∶1,更优选1∶2至3∶1,更优选1.5∶1至1∶1.5。
根据本发明的一个实施方式,从实现更为理想的低碳烯烃选择性的角度来看,所述分子筛组合物(也包括其构成组分,比如所述磷铝分子筛和所述CO吸 附性组分)基本上不含有硅、钒或者铌。在此,所谓“基本上不含有”,指的是所述分子筛组合物或其构成组分在制造或使用过程中不有意引入硅、钒或者铌,但不排除极低含量(比如以氧化物计低于0.01wt%,相对于所述分子筛组合物的总质量)的以不可避免的杂质形式存在的硅、钒或者铌。
根据本发明的一个实施方式,还涉及所述分子筛组合物的制造方法。在此,所述制造方法包括使所述磷铝分子筛和所述CO吸附性组分组合的步骤。作为所述组合,比如可以举出所述磷铝分子筛和所述CO吸附性组分在分别制造之后再(按照预定的相对比例)物理组合,更具体比如可以举出将所述磷铝分子筛和所述CO吸附性组分(按照预定的相对比例)彼此独立包装,或者将所述磷铝分子筛和所述CO吸附性组分(按照预定的相对比例)彼此机械混合等。
根据本发明的一个实施方式,还涉及一种低碳烯烃的制造方法,包括使合成气与本发明任意前述的分子筛组合物接触而制造低碳烯烃的步骤。除了以下明确的内容之外,所述低碳烯烃的制造方法可以按照本领域已知的任何方式在本领域已知的任何反应装置中进行,并没有特别的限定。
根据本发明的一个实施方式,对所述低碳烯烃制造方法的反应温度没有特别的限定,可以参照本领域常规已知的知识,但一般为320-480℃,优选360-440℃,更优选370-430℃,更优选380-410℃。
根据本发明的一个实施方式,对所述低碳烯烃制造方法的反应压力(表压)没有特别的限定,可以参照本领域常规已知的知识,但一般为0.5-8MPa,优选1-6MPa,更优选2-5MPa。
根据本发明的一个实施方式,对所述低碳烯烃制造方法的体积空速没有特别的限定,可以参照本领域常规已知的知识,但一般为800-10000h -1,优选1,000-8,000h -1,更优选2,000-7,000h -1
根据本发明的一个实施方式,对所述低碳烯烃制造方法的合成气组成没有特别的限定,可以参照本领域常规已知的知识,但所述合成气中CO与H 2的体积比一般为0.3-3.5,优选0.5-3,更优选0.7-2.5。另外,所述合成气中还可以含有对于本领域技术人员而言可接受量的杂质比如CO 2和N 2等,并没有特别的限定。
实施例
以下采用实施例进一步详细地说明本发明,但本发明并不限于这些实施例。
在以下的实施例和对比例中,所有的试剂和材料均为商购获得。
在以下的实施例和对比例中,在没有明确的情况下,%均为质量%,空速均 为体积空速,压力均为表压,n 氢气∶n 一氧化碳均为摩尔比。
在本说明书的上下文中,包括在以下的实施例和对比例中,CO转化率=(CO进口含量-CO出口含量)/CO进口含量*100%
在本说明书的上下文中,包括在以下的实施例和对比例中,烯烃/烷烃比值(指的是低碳烯烃/低碳烷烃比值)按照如下公式进行计算。
烯烃/烷烃比值=(2*乙烯产物摩尔数+3*丙烯产物摩尔数+4*丁烯产物摩尔数)/(2*乙烷产物摩尔数+3*丙烷产物摩尔数+4*丁烷产物摩尔数)
实施例1
Ga 2O 3+Cr 2O 3催化剂按如下步骤制备:
称取1mol的硝酸镓,用1000mL蒸馏水溶解,然后将3.2mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h,得到Ga 2O 3催化剂。
称取1mol的硝酸铬,用1000mL蒸馏水溶解,然后将3.2mol NaOH溶于1000 mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h,得到Cr 2O 3催化剂。
AlPO 4-5催化剂按如下步骤制备:
以拟薄水铝石、磷酸、三正丙胺(TPA)分别为铝源、磷源、模板剂,摩尔比Al 2O 3∶P 2O 5∶TPA∶乙醇∶H 2O=1∶1.2∶2.66∶80∶1000,加入反应釜后陈化2小时,190℃下搅拌晶化48h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO 4-5分子筛。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.375克制备好的Ga 2O 3催化剂、0.375克制备好的Cr 2O 3催化剂和0.75克制备好的AlPO 4-5混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例2
Cr 2O 3催化剂按实施例1制备。
AlPO 4-17催化剂按如下步骤制备:
以拟薄水铝石、磷酸、环己胺分别为铝源、磷源、模板剂,摩尔比Al 2O 3∶P 2O 5∶CHA∶HF∶H 2O=1∶1∶1∶1∶40,加入反应釜后陈化2小时,200℃下搅拌晶化72h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO 4-17分子筛。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.75克制备好的Cr 2O 3催化剂和0.75克制备好的AlPO 4-17混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例3
ZnIn 0.3催化剂按如下步骤制备:
称取1mol的硝酸锌,0.3mol的硝酸铟,用1000mL蒸馏水溶解,然后将3mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h,得到ZnIn 0.3催化剂。
AlPO 4-18催化剂按如下步骤制备:
以拟薄水铝石、磷酸、N,N-二异丙基乙胺分别为铝源、磷源、模板剂,摩尔比Al 2O 3∶P 2O 5∶TPA∶H 2O=1∶1∶1∶50,加入反应釜后陈化2小时,200℃下搅拌晶化48h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO 4-18分子筛。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.75克制备好的ZnIn 0.3催化剂和0.75克制备好的AlPO 4-18混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例4
Ga 2O 3催化剂按实施例1制备。
Zn 2Cr催化剂按如下步骤制备:
称取2mol的硝酸锌,1mol的硝酸铬,用1000mL蒸馏水溶解,然后将7mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h,得到Zn 2Cr催化剂。
AlPO 4-20催化剂按如下步骤制备:
以拟薄水铝石、磷酸、四甲基氢氧化胺分别为铝源、磷源、模板剂,摩尔比Al 2O 3∶P 2O 5∶TMAOH∶H 2O=1∶1∶1∶50,加入反应釜后陈化2小时,200℃下搅拌晶化48h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO 4-20分子筛。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.25克制备好的Ga 2O 3催化剂、0.5克制备好的Zn 2Cr催化剂和0.75克 制备好的AlPO 4-20混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例5
ZnCr 0.8In 0.2催化剂按如下步骤制备:
称取1mol的硝酸锌,0.8mol的硝酸铬,0.2mol的硝酸铟,用1000mL蒸馏水溶解,然后将5mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h,得到ZnCr 0.8In 0.2催化剂。
AlPO 4-31催化剂按如下步骤制备:
以拟薄水铝石、磷酸、二正丁胺,分别为铝源、磷源、模板剂,摩尔比Al 2O 3∶P 2O 5∶DBA∶H 2O=1∶1∶1.4∶40,加入反应釜后陈化2小时,170℃下搅拌晶化2h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO 4-31分子筛。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.75克制备好的ZnCr 0.8In 0.2催化剂和0.75克制备好的AlPO 4-31混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例6
Zn 0.7Cr催化剂按如下步骤制备:
称取0.7mol的硝酸锌,1mol的硝酸铬,用1000mL蒸馏水溶解,然后将5mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到Zn 0.7Cr催化剂。
AlPO 4-34催化剂按如下步骤制备:
以拟薄水铝石、磷酸、吗啉,分别为铝源、磷源、模板剂,摩尔比Al 2O 3∶P 2O 5∶Mor∶HF∶H 2O=1∶1∶2.0∶0.5∶100,加入反应釜后陈化2小时,180℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO 4-34分子筛。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.75克制备好的Zn 0.7Cr催化剂和0.75克制备好的AlPO 4-34混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中, 进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例7
Zn 0.2/ZnCr 2催化剂按如下步骤制备:
称取1mol的硝酸锌,2mol的硝酸铬,用1000mL蒸馏水溶解,然后将8mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。焙烧完成后,催化剂中间体负载0.2mol的醋酸锌,在80℃下烘干过夜,在400℃下焙烧1h,得到Zn 0.2/ZnCr 2催化剂。
AlPO 4-5催化剂按实施例1制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.75克制备好的Zn 0.2/ZnCr 2催化剂和0.75克制备好的AlPO 4-5混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例8
ZnCr 0.9Al 0.3催化剂按如下步骤制备:
称取1mol的硝酸锌,0.9mol的硝酸铬,0.3mol的硝酸铝,用1000mL蒸馏水溶解,然后将6mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCr 0.9Al 0.3催化剂。
AlPO 4-5催化剂按实施例1制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-5混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例9
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-11催化剂按如下步骤制备:
以拟薄水铝石、磷酸、二异丙胺分别为铝源、磷源、模板剂,摩尔比Al 2O 3∶P 2O 5∶DIPA∶H 2O=1∶1∶1∶50,加入反应釜后陈化2小时,200℃下搅拌晶化48h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉 中550℃焙烧6小时,得AlPO 4-11分子筛。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-11混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例10
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-17催化剂按实施例2制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-17混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例11
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-18催化剂按实施例3制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-18混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例12
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-20催化剂按实施例4制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-20混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例13
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-31催化剂按实施例5制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-31混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例14
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-34催化剂按实施例6制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-34混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例15
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-35催化剂按如下步骤制备:
以磷酸、异丙醇铝、六亚甲基亚胺分别为磷源、铝源、模板剂,摩尔比Al 2O 3∶P 2O 5∶HMI∶H 2O=1∶1.5∶4.5∶100,加入反应釜后陈化2小时,200℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO 4-35分子筛。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-35混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例16
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-44催化剂按如下步骤制备:
以拟薄水铝石、磷酸、三乙胺,分别为铝源、磷源、模板剂,摩尔比Al 2O 3∶P 2O 5∶TEA∶H 2O=1∶1∶1.5∶60,加入反应釜后陈化2小时,180℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO 4-44分子筛。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-44混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例17
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-56催化剂按如下步骤制备:
以磷酸、异丙醇铝、N,N,N’,N’-四甲基-1,6-己二胺分别为磷源、铝源、模板剂,摩尔比Al 2O 3∶P 2O 5∶TMHD∶H 2O=1∶1.1∶2∶50,加入反应釜后陈化2小时,200℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO 4-56分子筛。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-56混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例18
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-34催化剂按实施例6制备。
所有成型催化剂90%颗粒直径为5.0-5.5mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-34混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例19
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-34催化剂按实施例6制备。
所有成型催化剂90%颗粒直径为0.3-0.5mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-34混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例20
Z nC r0.9Al 0.3催化剂按实施例8制备。
AlPO 4-34催化剂按实施例6制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-34混合,以硅溶胶为硅源,浸渍负载5%的Si,焙烧后,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例21
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-34催化剂按实施例6制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-34混合,以钒酸铵为钒源,浸渍负载0.5%的钒,焙烧后,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例22
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-34催化剂按实施例6制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的AlPO 4-34混合,以草酸铌为铌源,浸渍负载0.3%的铌,焙烧后,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例23
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-18催化剂按实施例3制备。
AlPO 4-34催化剂按实施例6制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂、0.084克制备好的AlPO 4-18、和0.756克制备好的AlPO 4-34混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶ n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例24
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-18催化剂按实施例3制备。
AlPO 4-34催化剂按实施例6制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂、0.42克制备好的AlPO 4-18、和0.42克制备好的AlPO 4-34混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例25
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-18催化剂按实施例3制备。
AlPO 4-34催化剂按实施例6制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂、0.756克制备好的AlPO 4-18、和0.084克制备好的AlPO 4-34混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例26
ZnCr 0.9Al 0.3催化剂按实施例8制备。
AlPO 4-18/AlPO 4-34共晶分子筛催化剂按如下步骤制备:
以拟薄水铝石、磷酸、N,N,-二异丙基乙胺和三乙胺,分别为铝源、磷源、模板剂,摩尔比Al 2O 3∶P 2O 5∶DIEA∶TEA∶H 2O=1∶1∶0.4∶1.4∶50,加入反应釜后陈化2小时,180℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO 4-18/AlPO 4-34共晶分子筛。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂、0.84克制备好的AlPO 4-18/AlPO 4-34 共晶分子筛混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例27
ZnCrAl 0.2催化剂按如下步骤制备:
称取1mol的硝酸锌,1mol的硝酸铬,0.2mol的硝酸铝,用1000mL蒸馏水溶解,然后将6mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCrAl 0.2催化剂。
AlPO 4-35催化剂按实施例15制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将1.2克制备好的ZnCrAl 0.2催化剂和0.3克制备好的AlPO 4-35混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例28
ZnCrAl 0.2催化剂按实施例27制备。
AlPO 4-35催化剂按实施例15制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将1.0克制备好的ZnCrAl 0.2催化剂和0.5克制备好的AlPO 4-35混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例29
ZnCrAl 0.2催化剂按实施例27制备。
AlPO 4-35催化剂按实施例15制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.5克制备好的ZnCrAl 0.2催化剂和1.0克制备好的AlPO 4-35混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例30
ZnCrAl 0.2催化剂按实施例27制备。
AlPO 4-35催化剂按实施例15制备。
所有成型催化剂90%颗粒直径为0.5-0.9mm。
将0.3克制备好的ZnCrAl 0.2催化剂和1.2克制备好的AlPO 4-35混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
实施例31至36
取实施例14制备得到的催化剂用于合成气制低碳烯烃反应,反应条件和评价结果见表2。
实施例37
取实施例14制备得到的催化剂,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。200小时的活性评价结果见表4。
对比例1
依据文献[Science,2016,351,1065-1068]的制备方法,合成Zn 3.5CrAl和SAPO-34。
将0.75克Zn 3.5CrAl和0.75克SAPO-34混合,装入一个内径为6毫米的石英反应管中,将合成气(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表3。
对比例2
依据文献[Angewandte Chemie,2016,128,4803-4806]的制备方法,合成ZnZr 2和SAPO-34。
将0.75克ZnZr 2和0.75克SAPO-34混合,装入一个内径为6毫米的石英反应管中,将合成气(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表3。
对比例3
依据专利文献[CN102441383A]的制备方法,合成负载型铁基催化剂。
将1.50克FeMnK/SiO 2催化剂装入一个内径为6毫米的石英反应管中,将合成气(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400 ℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表3。
对比例4
依据专利文献[CN102698764A]的制备方法,合成FeZn-K催化剂。
将1.50克FeZn-K催化剂装入一个直径为6毫米的石英反应管中,将合成气(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表3。
对比例5
ZnCr 0.9Al 0.3催化剂按实施例8制备。
SAPO-34催化剂按如下步骤制备:
以磷酸、拟薄水铝石、正硅酸乙酯、吗啡啉分别为磷源、铝源、硅源、模板剂,摩尔比Al 2O 3∶P 2O 5∶SiO 2∶MOR∶H 2O=1∶1∶0.6∶3∶100,加入反应釜后陈化2小时,200℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得SAPO-34分子筛。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂和0.84克制备好的SAPO-34混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表3。
对比例6
ZnCr 0.9Al 0.3催化剂按实施例8制备。
SAPO-34催化剂按对比例5制备。
SAPO-18催化剂按如下步骤制备:
以N,N-二异丙基乙胺(DIEA)为模板剂,正磷酸、拟薄水铝石和正硅酸乙酯分别为磷源、铝源和硅源。摩尔比Al 2O 3∶P 2O 5∶SiO 2∶DIEA∶H 2O=1∶0.9∶0.4∶1.8∶100,于200℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得SAPO-18分子筛。
将0.7克制备好的ZnCr 0.9Al 0.3催化剂、0.42克制备好的SAPO-34、0.42克制备好的SAPO-18混合,装入一个内径为6毫米的石英反应管中,将(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。活性评价结果见表3。
对比例7
依据文献[Science,2016,351,1065-1068]的制备方法,合成Zn 3.5CrAl和SAPO-34。
将0.75克Zn 3.5CrAl和0.75克SAPO-34混合,装入一个内径为6毫米的石英反应管中,将合成气(n 氢气∶n 一氧化碳=50∶50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h -1条件下进行合成气制低碳烯烃反应。200小时的活性评价结果见表4。
表1
Figure PCTCN2018111420-appb-000001
Figure PCTCN2018111420-appb-000002
表2
Figure PCTCN2018111420-appb-000003
表3
Figure PCTCN2018111420-appb-000004
表4
  催化剂 烯烃/烷烃比值
实施例37 ZnCr 0.9Al 0.3+AlPO 4-34(重量比1∶1.2) 14.92
对比例7 Zn 3.5CrAl+SAPO-34(重量比1∶1) 2.38

Claims (12)

  1. 一种分子筛组合物,包含磷铝分子筛和CO吸附性组分,其中所述CO吸附性组分包含选自元素周期表第II B族金属的氧化物、第VI B族金属的氧化物、氧化镓和氧化铟中的至少一种金属氧化物(优选选自氧化锌、氧化铬、氧化镓和氧化铟中的至少一种金属氧化物,更优选选自氧化锌和氧化铬中的至少一种金属氧化物,更优选氧化锌和氧化铬的复合金属氧化物),其中所述磷铝分子筛和所述CO吸附性组分以彼此独立的形式存在,比如彼此的独立包装物或者机械混合物。
  2. 权利要求1所述的分子筛组合物,其中所述磷铝分子筛选自AlPO 4-5、AlPO 4-11、AlPO 4-17、AlPO 4-18、AlPO 4-20、AlPO 4-31、AlPO 4-33、AlPO 4-34、AlPO 4-35、AlPO 4-44、AlPO 4-56中的至少一种,优选选自AlPO 4-17、AlPO 4-18、AlPO 4-31、AlPO 4-33、AlPO 4-34、AlPO 4-35中的至少一种,优选选自AlPO 4-18和AlPO 4-34中的至少一种,更优选AlPO 4-34和AlPO 4-18的共晶分子筛。
  3. 权利要求1所述的分子筛组合物,其中所述磷铝分子筛选自AlPO 4-34和AlPO 4-18的组合,并且所述AlPO 4-18和所述AlPO 4-34的重量比为1∶9至9∶1,优选1∶3至3∶1。
  4. 权利要求1所述的分子筛组合物,其中根据XRD谱图,所述金属氧化物至少部分(优选50%以上,更优选80%以上,更优选90%以上)呈现为尖晶石结构。
  5. 权利要求1所述的分子筛组合物,其中所述磷铝分子筛和所述CO吸附性组分的重量比为1∶5至5∶1,优选1∶3至4∶1,更优选1∶2至3∶1,更优选1.5∶1至1∶1.5。
  6. 权利要求1所述的分子筛组合物,其中所述CO吸附性组分还包含粘合剂(优选选自氧化铝、氧化镁、二氧化钛和氧化锆中的至少一种,更优选氧化铝)。
  7. 权利要求6所述的分子筛组合物,其中所述金属氧化物与所述粘合剂的重量比为10∶1至1∶1,优选4∶1至1.2∶1。
  8. 权利要求1所述的分子筛组合物,基本上不含有选自硅、钒和铌中的至少一种元素。
  9. 权利要求1所述的分子筛组合物,其中所述磷铝分子筛以颗粒形式存在,并且其90%颗粒直径为0.3-9mm(优选0.4-5mm,更优选0.5-0.9mm),和/或,所述CO吸附性组分以颗粒形式存在,并且其90%颗粒直径为0.3-9mm(优选0.4-5mm,更优选0.5-0.9mm)。
  10. 一种分子筛组合物的制造方法,包括使磷铝分子筛和CO吸附性组分彼此组合(比如各自独立包装或者彼此机械混合,优选彼此机械混合)的步骤,其中所述CO吸附性组分包含选自元素周期表第II B族金属的氧化物、第VI B族金属的氧化物、氧化镓和氧化铟中的至少一种金属氧化物(优选选自氧化锌、氧化铬、氧化镓和氧化铟中的至少一种金属氧化物,更优选选自氧化锌和氧化铬中的至少一种金属氧化物,更优选氧化锌和氧化铬的复合金属氧化物)。
  11. 一种低碳烯烃的制造方法,包括使合成气与权利要求1所述的分子筛组合物或者通过权利要求10所述的制造方法制造的分子筛组合物接触而制造低碳烯烃的步骤。
  12. 权利要求11所述的制造方法,其中反应温度为320-480℃(优选360-440℃,更优选370-430℃,更优选380-410℃),反应压力(表压)为0.5-8MPa(优选1-6MPa,更优选2-5MPa),体积空速为800-10000h -1(优选1,000-8,000h -1,更优选2,000-7,000h -1),所述合成气中CO与H 2的体积比为0.3-3.5(优选0.5-3,更优选0.7-2.5)。
PCT/CN2018/111420 2017-10-26 2018-10-23 一种分子筛组合物、其制造方法及其用途 WO2019080832A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112020008174-4A BR112020008174B1 (pt) 2017-10-26 2018-10-23 Composição de peneira molecular e processo de preparação da mesma
SG11202003804VA SG11202003804VA (en) 2017-10-26 2018-10-23 Molecular sieve composition, manufacturing method therefor and use thereof
US16/759,714 US11739001B2 (en) 2017-10-26 2018-10-23 Molecular sieve composition, process of preparing same and use thereof
EP18870835.8A EP3702030A4 (en) 2017-10-26 2018-10-23 MOLECULAR FILTER COMPOSITION, METHOD OF MANUFACTURING THEREFORE AND USE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711016754.6A CN109701628A (zh) 2017-10-26 2017-10-26 含磷铝分子筛的复合催化剂及其在合成气一步法制烯烃的应用
CN201711016754.6 2017-10-26

Publications (1)

Publication Number Publication Date
WO2019080832A1 true WO2019080832A1 (zh) 2019-05-02

Family

ID=66246212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111420 WO2019080832A1 (zh) 2017-10-26 2018-10-23 一种分子筛组合物、其制造方法及其用途

Country Status (5)

Country Link
US (1) US11739001B2 (zh)
EP (1) EP3702030A4 (zh)
CN (1) CN109701628A (zh)
SG (1) SG11202003804VA (zh)
WO (1) WO2019080832A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112675905A (zh) * 2019-10-18 2021-04-20 中国石油化工股份有限公司 一种合成气制低碳烯烃催化剂、制备方法及应用
CN112691701A (zh) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 催化剂组合物的成型方法及其在低碳烯烃生产中的用途
CN112705258A (zh) * 2019-10-24 2021-04-27 中国石油化工股份有限公司 一氧化碳加氢制备低碳烯烃的催化剂及应用
CN113751066B (zh) * 2020-06-05 2023-08-29 中国石油化工股份有限公司 合成气直接制备乙烯和丙烯的催化剂组合物及其用途
CN118022830B (zh) * 2024-04-15 2024-06-25 临朐泰丰环保科技有限公司 预还原型铁钴双活性组分催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083415A (zh) * 1992-09-03 1994-03-09 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
CN1260823A (zh) * 1997-06-18 2000-07-19 埃克森化学专利公司 用改性的分子筛将合成气转化成低碳烯烃的方法
US20070297975A1 (en) * 2006-06-23 2007-12-27 Janssen Marcel J Metal loading of molecular sieves using organic carriers with limited water content
CN102441383A (zh) 2010-10-12 2012-05-09 中国石油化工股份有限公司 负载型铁基合成气制低碳烯烃催化剂的制备方法
CN102698764A (zh) 2012-06-07 2012-10-03 北京石油化工学院 合成气制低碳烯烃的催化剂、制备方法及其用途
US20140187824A1 (en) * 2012-12-28 2014-07-03 Shell Oil Company Process for the preparation of an olefinic product comprising ethylene and/or propylene
CN106345514A (zh) * 2016-07-29 2017-01-25 厦门大学 一种合成气一步转化制低碳烯烃的催化剂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223601A (zh) * 1996-05-29 1999-07-21 埃克森化学专利公司 烃转化催化剂及其应用
US20070244000A1 (en) * 2006-04-13 2007-10-18 Michel Molinier Producing olefin product from syngas
CN102380414B (zh) * 2011-08-09 2014-05-07 南开大学 一种用于甲醇转化制备烯烃的催化剂及应用方法
EP3368499B1 (en) 2015-10-30 2019-08-07 Dow Global Technologies LLC Process to convert synthesis gas to olefins over a bifunctional chromium oxide/zinc oxide-sapo-34 catalyst
CN108970600B (zh) 2017-06-02 2021-01-19 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083415A (zh) * 1992-09-03 1994-03-09 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
CN1260823A (zh) * 1997-06-18 2000-07-19 埃克森化学专利公司 用改性的分子筛将合成气转化成低碳烯烃的方法
US20070297975A1 (en) * 2006-06-23 2007-12-27 Janssen Marcel J Metal loading of molecular sieves using organic carriers with limited water content
CN102441383A (zh) 2010-10-12 2012-05-09 中国石油化工股份有限公司 负载型铁基合成气制低碳烯烃催化剂的制备方法
CN102698764A (zh) 2012-06-07 2012-10-03 北京石油化工学院 合成气制低碳烯烃的催化剂、制备方法及其用途
US20140187824A1 (en) * 2012-12-28 2014-07-03 Shell Oil Company Process for the preparation of an olefinic product comprising ethylene and/or propylene
CN106345514A (zh) * 2016-07-29 2017-01-25 厦门大学 一种合成气一步转化制低碳烯烃的催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANGEWANDTE CHEMIE, vol. 128, 2016, pages 4803 - 4806
BAO, XINHE ET AL., SCIENCE, vol. 351, 2016, pages 1065 - 1068

Also Published As

Publication number Publication date
SG11202003804VA (en) 2020-05-28
CN109701628A (zh) 2019-05-03
EP3702030A1 (en) 2020-09-02
US20200331768A1 (en) 2020-10-22
EP3702030A4 (en) 2021-06-02
BR112020008174A2 (pt) 2020-10-20
US11739001B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2019080832A1 (zh) 一种分子筛组合物、其制造方法及其用途
CN101555022B (zh) 一种金属改性sapo-34分子筛和含有该分子筛的催化剂的制备方法
WO2017133301A1 (zh) 一类新型sapo分子筛及其合成方法
CN109704900B (zh) 合成气一步法制烯烃的方法
US20100298129A1 (en) selective nickel based hydrogenation catalyst and the preparation thereof
CN104056652B (zh) 一种核壳型zsm-5分子筛小球催化剂
CN107971026B (zh) 用于制低碳烯烃的组合催化剂
CN104056654B (zh) 一种zsm-5分子筛组合物、制备方法及其应用
CN109701629B (zh) 用于制低碳烯烃的组合催化剂及其使用方法
CN104056653B (zh) 一种甲醇制丙烯催化剂
CN110072813B (zh) 使用双功能氧化铬/氧化锌-sapo-34催化剂将合成气转化为烯烃的方法
WO2017031635A1 (zh) 共沉淀-熔融法制备的铁基催化剂、其制备方法及应用
WO2019104778A1 (zh) 分子筛催化剂及其制备方法和应用
CN109153578A (zh) 高硅afx骨架型分子筛
CN109701627B (zh) 含尖晶石结构的复合催化剂及其在合成气一步法制烯烃的应用
CN104828842A (zh) 一种sapo-5和sapo-34共生的复合分子筛的制备方法
CN101259431A (zh) 一种钴改型磷酸硅铝分子筛及其制备方法以及在mto中的催化应用
CN101633509A (zh) 一种磷酸硅铝分子筛的改性方法
Mao et al. Efficient Syngas-to-Olefins Conversion via Kaolin Modified SAPO-34 Catalyst
WO2018152829A1 (zh) Cu-SAPO分子筛、合成方法及其催化应用
CN101318667A (zh) 一种金属改型磷酸硅铝分子筛及其制备方法以及在mto中的催化应用
CN101195093A (zh) 一种铬改性磷酸硅铝分子筛及其制备方法和应用
CN111111764A (zh) 催化剂体系及其用途
CN109701630B (zh) 用于合成气直接制低碳烯烃的耦合催化剂体系
CN106955735A (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018870835

Country of ref document: EP

Effective date: 20200526

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020008174

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020008174

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200424