WO2019080556A1 - 成像镜头 - Google Patents

成像镜头

Info

Publication number
WO2019080556A1
WO2019080556A1 PCT/CN2018/095980 CN2018095980W WO2019080556A1 WO 2019080556 A1 WO2019080556 A1 WO 2019080556A1 CN 2018095980 W CN2018095980 W CN 2018095980W WO 2019080556 A1 WO2019080556 A1 WO 2019080556A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
focal length
effective focal
imaging lens
Prior art date
Application number
PCT/CN2018/095980
Other languages
English (en)
French (fr)
Inventor
闻人建科
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711001644.2A external-priority patent/CN107577033B/zh
Priority claimed from CN201721377030.XU external-priority patent/CN207301465U/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019080556A1 publication Critical patent/WO2019080556A1/zh
Priority to US16/743,908 priority Critical patent/US11435554B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length

Definitions

  • the present application relates to an imaging lens, and more particularly, to an imaging lens including five lenses.
  • the market demand for product-side imaging lenses has become more diverse.
  • the imaging lens in addition to requiring the imaging lens to have a miniaturized feature to be suitable for portable tape electronic products, the lens is required to have high pixel, high resolution and long focal length to meet the imaging needs of various fields.
  • the present application provides an imaging lens that can be adapted to at least one of the above-described disadvantages of the prior art, such as a miniaturized telephoto lens, that is applicable to portable electronic products.
  • the present application provides an imaging lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a positive power, and both the object side and the image side may be convex;
  • the second lens may have a negative power, and both the object side and the image side may be concave;
  • the third lens may have a positive power.
  • the image side may be a convex surface;
  • the fourth lens may have a negative power, and the image side may be a concave surface;
  • the fifth lens has a positive power or a negative power, wherein the maximum half angle of view HFOV of the imaging lens can satisfy HFOV ⁇ 25°.
  • the effective focal length f1 of the first lens and the separation distance T23 of the second lens and the third lens on the optical axis may satisfy 3.0 ⁇ f1/T23 ⁇ 5.0.
  • the distance TTL of the center of the object side of the first lens to the imaging surface of the imaging lens on the optical axis and the total effective focal length f of the imaging lens may satisfy TTL/f ⁇ 1.0.
  • the effective focal length f1 of the first lens and the center thickness CT1 of the first lens on the optical axis may satisfy 1.5 ⁇ f1/CT1 ⁇ 3.0.
  • the total effective focal length f of the imaging lens and the separation distance T45 of the fourth lens and the fifth lens on the optical axis may satisfy 4.0 ⁇ f/T45 ⁇ 6.0.
  • the total effective focal length f of the imaging lens and the effective focal length f3 of the third lens may satisfy 0 ⁇ f/f3 ⁇ 1.
  • the effective focal length f3 of the third lens and the effective focal length f4 of the fourth lens may satisfy 1.5 ⁇ (f3 - f4) / (f3 + f4) ⁇ 8.
  • the effective focal length f1 of the first lens and the effective focal length f2 of the second lens may satisfy -0.3 ⁇ (f1+f2)/(f1-f2) ⁇ 0.
  • the radius of curvature R2 of the image side of the first lens and the radius of curvature R3 of the object side of the second lens may satisfy 0 ⁇ (R2-R3)/(R2+R3) ⁇ 0.20.
  • the effective focal length f1 of the first lens, the effective focal length f3 of the third lens, and the total effective focal length f of the imaging lens may satisfy 3.0 mm ⁇ f1 * f3 / f ⁇ 5.5 mm.
  • the effective focal length f2 of the second lens, the effective focal length f4 of the fourth lens, and the total effective focal length f of the imaging lens may satisfy 2.5 mm ⁇ f2 * f4 / f ⁇ 3.5 mm.
  • the present application also provides an imaging lens that sequentially includes, from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a positive power, and both the object side and the image side may be convex; the second lens may have a negative power, and both the object side and the image side may be concave; the third lens may have a positive power.
  • the image side may be a convex surface; the fourth lens may have a negative power, and the image side may be a concave surface; the fifth lens has a positive power or a negative power, wherein the center of the object side of the first lens to the imaging lens
  • the distance TTL of the imaging surface on the optical axis and the total effective focal length f of the imaging lens can satisfy TTL/f ⁇ 1.0.
  • the present application further provides an imaging lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a positive power, and both the object side and the image side may be convex; the second lens may have a negative power, and both the object side and the image side may be concave; the third lens may have a positive power.
  • the image side may be a convex surface; the fourth lens may have a negative power, and the image side may be a concave surface; the fifth lens has a positive power or a negative power, wherein the total effective focal length f of the imaging lens and the fourth lens
  • the separation distance T45 from the fifth lens on the optical axis can satisfy 4.0 ⁇ f / T45 ⁇ 6.0.
  • the present application further provides an imaging lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a positive power, and both the object side and the image side may be convex; the second lens may have a negative power, and both the object side and the image side may be concave; the third lens may have a positive power.
  • the image side may be a convex surface; the fourth lens may have a negative power, the image side may be a concave surface; the fifth lens has a positive power or a negative power, wherein the third lens has an effective focal length f3 and a fourth lens
  • the effective focal length f4 can satisfy 1.5 ⁇ (f3 - f4) / (f3 + f4) ⁇ 8.
  • the present application further provides an imaging lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a positive power, and both the object side and the image side may be convex; the second lens may have a negative power, and both the object side and the image side may be concave; the third lens may have a positive power.
  • the image side may be a convex surface; the fourth lens may have a negative power, and the image side may be a concave surface; the fifth lens has a positive power or a negative power, wherein the effective focal length f2 of the second lens and the fourth lens
  • the effective focal length f4 and the total effective focal length f of the imaging lens can satisfy 2.5 mm ⁇ f2 * f4 / f ⁇ 3.5 mm.
  • the present application employs a plurality of (for example, five) lenses, and the above-mentioned imaging lens is ultra-thin by rationally distributing the power, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses. At least one beneficial effect, such as miniaturization, telephoto, low sensitivity, good processability, and high image quality.
  • FIG. 1 is a schematic structural view of an imaging lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural view of an imaging lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 2.
  • FIG. 5 is a schematic structural view of an imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 3.
  • FIG. 7 is a schematic structural view of an imaging lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 4.
  • FIG. 9 is a schematic structural view of an imaging lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 5;
  • FIG. 11 is a schematic structural view of an imaging lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Example 6;
  • FIG. 13 is a schematic structural view of an imaging lens according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 7;
  • FIG. 15 is a schematic structural view of an imaging lens according to Embodiment 8 of the present application.
  • 16A to 16D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 8;
  • FIG. 17 is a schematic structural view of an imaging lens according to Embodiment 9 of the present application.
  • 18A to 18D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Example 9.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • the imaging lens according to an exemplary embodiment of the present application may include, for example, five lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the five lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens may have a positive power, the object side may be a convex surface, and the image side may be a convex surface; the second lens may have a negative power, the object side may be a concave surface, and the image side may be a Concave; the third lens may have a positive power, the image side may be a convex surface; the fourth lens may have a negative power, the image side may be a concave surface; and the fifth lens has a positive power or a negative power.
  • the object side of the fifth lens may be a concave surface, and the image side may be a convex surface.
  • the imaging lens of the present application may satisfy the conditional expression 3.0 ⁇ f1/T23 ⁇ 5.0, where f1 is the effective focal length of the first lens, and T23 is the interval between the second lens and the third lens on the optical axis. distance. More specifically, f1 and T23 can further satisfy 3.35 ⁇ f1/T23 ⁇ 4.43. When the conditional expression 3.0 ⁇ f1/T23 ⁇ 5.0 is satisfied, the condensing characteristics of the first lens can be ensured, and the spherical aberration of the central field of view can be effectively reduced.
  • the imaging lens of the present application can satisfy the conditional TTL / f ⁇ 1.0, wherein TTL is the distance from the center of the object side of the first lens to the imaging plane of the imaging lens on the optical axis, and f is imaging The total effective focal length of the lens. More specifically, TTL and f can further satisfy 0.87 ⁇ TTL / f ⁇ 0.90.
  • the conditional TTL/f ⁇ 1.0 is satisfied, so that the lens can satisfy the telephoto characteristics while ensuring miniaturization characteristics.
  • the imaging lens of the present application may satisfy the conditional expression 1.5 ⁇ f1/CT1 ⁇ 3.0, where f1 is the effective focal length of the first lens, and CT1 is the center thickness of the first lens on the optical axis. More specifically, f1 and CT1 can further satisfy 1.91 ⁇ f1/CT1 ⁇ 2.55. When the conditional expression 1.5 ⁇ f1/CT1 ⁇ 3.0 is satisfied, the processing characteristics of the first lens can be effectively ensured, and the demand for miniaturization of the imaging lens can be satisfied.
  • the imaging lens of the present application may satisfy the conditional expression 4.0 ⁇ f/T45 ⁇ 6.0, where f is the total effective focal length of the imaging lens, and T45 is the interval between the fourth lens and the fifth lens on the optical axis. distance. More specifically, f and T45 can further satisfy 4.31 ⁇ f / T45 ⁇ 5.79. Reasonably arranging the separation distance between the fourth lens and the fifth lens can effectively ensure the distortion of the edge field of view.
  • the imaging lens of the present application may satisfy the conditional expression 0 ⁇ f/f3 ⁇ 1, where f is the total effective focal length of the imaging lens and f3 is the effective focal length of the third lens. More specifically, f and f3 may further satisfy 0.50 ⁇ f / f3 ⁇ 0.90, for example, 0.60 ⁇ f / f3 ⁇ 0.82. Reasonably distributing the power of the third lens helps to reduce the sensitivity of the imaging lens and improve the processability of the lens.
  • the imaging lens of the present application may satisfy the conditional expression 1.5 ⁇ (f3-f4)/(f3+f4) ⁇ 8, where f3 is the effective focal length of the third lens, and f4 is effective for the fourth lens focal length. More specifically, f3 and f4 can further satisfy 1.99 ⁇ (f3 - f4) / (f3 + f4) ⁇ 7.65. By properly distributing the power of the third lens and the fourth lens, the axial chromatic aberration of the imaging lens can be balanced.
  • the imaging lens of the present application may satisfy the conditional expression -0.3 ⁇ (f1 + f2) / (f1 - f2) ⁇ 0, where f1 is the effective focal length of the first lens, and f2 is the second lens Effective focal length. More specifically, f1 and f2 can further satisfy -0.29 ⁇ (f1 + f2) / (f1 - f2) ⁇ -0.08.
  • the imaging lens of the present application may satisfy the conditional expression 0 ⁇ (R2-R3)/(R2+R3) ⁇ 0.20, where R2 is the radius of curvature of the image side of the first lens, and R3 is the second The radius of curvature of the object side of the lens. More specifically, R2 and R3 may further satisfy 0.05 ⁇ (R2-R3) / (R2 + R3) ⁇ 0.20. Reasonably distributing the radius of curvature of the side of the first lens image and the side of the second lens object is advantageous for balancing the superior spherical aberration and the high astigmatism of the imaging lens.
  • the imaging lens of the present application may satisfy the conditional expression 3.0 mm ⁇ f1*f3/f ⁇ 5.5 mm, where f1 is the effective focal length of the first lens, f3 is the effective focal length of the third lens, and f is The total effective focal length of the imaging lens. More specifically, f1, f3 and f can further satisfy 3.32 mm ⁇ f1 * f3 / f ⁇ 5.34 mm. By properly distributing f1, f3 and f, it is beneficial to reduce the angle of view of the imaging lens and make the imaging lens better meet the needs of telephoto.
  • the imaging lens of the present application may satisfy the conditional expression 2.5 mm ⁇ f2*f4/f ⁇ 3.5 mm, where f2 is the effective focal length of the second lens, f4 is the effective focal length of the fourth lens, and f is The total effective focal length of the imaging lens. More specifically, f2, f4, and f can further satisfy 2.62 mm ⁇ f2 * f4 / f ⁇ 3.28 mm. By properly distributing f2, f4, and f, it is advantageous for the balanced primary aberration and high-level aberration of the imaging lens, which is advantageous for realizing the telephoto characteristics of the lens while ensuring the miniaturization of the lens.
  • the imaging lens of the present application may satisfy the conditional formula HFOV ⁇ 25°, where HFOV is the maximum half angle of view of the imaging lens. More specifically, HFOV can further satisfy 16.0° ⁇ HFOV ⁇ 16.6°. Satisfying the conditional HFOV ⁇ 25° is beneficial to achieve the telephoto characteristics of the lens.
  • the imaging lens may further include at least one aperture to enhance the imaging quality of the lens.
  • the diaphragm may be disposed between the second lens and the third lens, and for example, the diaphragm may be disposed between the object side and the first lens.
  • the above-described imaging lens may further include a filter for correcting the color deviation and/or a cover glass for protecting the photosensitive element on the imaging surface.
  • the imaging lens according to the above embodiment of the present application may employ a plurality of lenses, such as the five sheets described above.
  • a plurality of lenses such as the five sheets described above.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • the imaging lens is not limited to including five lenses.
  • the imaging lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an imaging lens according to Embodiment 1 of the present application.
  • an imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a first lens.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is convex.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a concave surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power, and the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the imaging lens may further include a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the imaging lens may further include a stop STO disposed between the second lens E2 and the third lens E3 to improve the imaging quality of the lens.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the imaging lens of Example 1, in which the unit of curvature radius and thickness are both millimeters (mm).
  • each aspherical lens can be defined by using, but not limited to, the following aspherical formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the higher order coefficient A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 which can be used for each aspherical mirror surface S1-S10 in the embodiment 1. .
  • the total optical length of the imaging lens i.e., the distance from the center of the object side S1 of the first lens E1 to the imaging plane S13 on the optical axis
  • TTL 6.39 mm.
  • the imaging lens in Embodiment 1 satisfies:
  • F1/T23 3.54, where f1 is the effective focal length of the first lens E1, and T23 is the separation distance of the second lens E2 and the third lens E3 on the optical axis;
  • TTL/f 0.87, where TTL is the total optical length of the imaging lens and f is the total effective focal length of the imaging lens;
  • F1/CT1 2.55, where f1 is the effective focal length of the first lens E1, and CT1 is the center thickness of the first lens E1 on the optical axis;
  • f/T45 5.79, where f is the total effective focal length of the imaging lens, and T45 is the separation distance of the fourth lens E4 and the fifth lens E5 on the optical axis;
  • f/f3 0.82, where f is the total effective focal length of the imaging lens, and f3 is the effective focal length of the third lens E3;
  • R2-R3)/(R2+R3) 0.05, where R2 is the radius of curvature of the image side surface S2 of the first lens E1, and R3 is the radius of curvature of the object side surface S3 of the second lens E2;
  • F1*f3/f 3.93mm, where f1 is the effective focal length of the first lens E1, f3 is the effective focal length of the third lens E3, and f is the total effective focal length of the imaging lens;
  • F2*f4/f 2.62 mm, where f2 is the effective focal length of the second lens E2, f4 is the effective focal length of the fourth lens E4, and f is the total effective focal length of the imaging lens.
  • FIG. 2A shows an axial chromatic aberration curve of the imaging lens of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • 2B shows an astigmatism curve of the imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 2C shows a distortion curve of the imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 1, which indicates a deviation of different image heights on the imaging plane after the light passes through the lens.
  • the imaging lens given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an imaging lens according to Embodiment 2 of the present application.
  • an imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a first lens.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is convex.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a concave surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power, and the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the imaging lens may further include a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the imaging lens may further include a stop STO disposed between the second lens E2 and the third lens E3 to improve the imaging quality of the lens.
  • Table 3 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the imaging lens of Example 2, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 4 shows the high order term coefficients which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • 4A shows an axial chromatic aberration curve of the imaging lens of Embodiment 2, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • 4B shows an astigmatism curve of the imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 4C shows a distortion curve of the imaging lens of Embodiment 2, which shows the distortion magnitude value in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • the imaging lens given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an imaging lens according to Embodiment 3 of the present application.
  • an imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a first lens.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is convex.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a concave surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power, and the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the imaging lens may further include a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the imaging lens may further include a stop STO disposed between the second lens E2 and the third lens E3 to improve the imaging quality of the lens.
  • Table 5 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the imaging lens of Example 3, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 6 shows the high order term coefficients which can be used for each aspherical mirror surface in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Fig. 6A shows an axial chromatic aberration curve of the imaging lens of Embodiment 3, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 6B shows an astigmatism curve of the imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the imaging lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 6D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 6A to 6D, the imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an imaging lens according to Embodiment 4 of the present application.
  • an imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a first lens.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is convex.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a concave surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power, the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the imaging lens may further include a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the imaging lens may further include a stop STO disposed between the object side and the first lens E1 to improve the imaging quality of the lens.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the imaging lens of Example 4, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Fig. 8A shows an axial chromatic aberration curve of the imaging lens of Embodiment 4, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 8B shows an astigmatism curve of the imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the imaging lens of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 4, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 8A to 8D, the imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a view showing the configuration of an imaging lens according to Embodiment 5 of the present application.
  • an imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a first lens.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is convex.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a concave surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power, and the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the imaging lens may further include a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the imaging lens may further include a stop STO disposed between the object side and the first lens E1 to improve the imaging quality of the lens.
  • Table 9 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the imaging lens of Example 5, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 10 shows the high order term coefficients which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Fig. 10A shows an axial chromatic aberration curve of the imaging lens of Embodiment 5, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 10B shows an astigmatism curve of the imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the imaging lens of Embodiment 5, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 10D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 5, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 10A to 10D, the imaging lens given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a view showing the configuration of an imaging lens according to Embodiment 6 of the present application.
  • an imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a first lens.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is convex.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a concave surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power, and the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the imaging lens may further include a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the imaging lens may further include a stop STO disposed between the object side and the first lens E1 to improve the imaging quality of the lens.
  • Table 11 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the imaging lens of Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 12 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Fig. 12A shows an axial chromatic aberration curve of the imaging lens of Embodiment 6, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 12B shows an astigmatism curve of the imaging lens of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the imaging lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 6, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 12A to 12D, the imaging lens given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a view showing the configuration of an imaging lens according to Embodiment 7 of the present application.
  • an imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a first lens.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is convex.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a concave surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power, and the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the imaging lens may further include a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the imaging lens may further include a stop STO disposed between the object side and the first lens E1 to improve the imaging quality of the lens.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the imaging lens of Example 7, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 14 shows the high order term coefficients which can be used for each aspherical mirror surface in Embodiment 7, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Fig. 14A shows an axial chromatic aberration curve of the imaging lens of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 14B shows an astigmatism curve of the imaging lens of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the imaging lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 14D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 14A to 14D, the imaging lens given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a view showing the configuration of an imaging lens according to Embodiment 8 of the present application.
  • an imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a first lens.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is convex.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a concave surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power, and the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the imaging lens may further include a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the imaging lens may further include a stop STO disposed between the second lens E2 and the third lens E3 to improve the imaging quality of the lens.
  • Table 15 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the imaging lens of Example 8, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 16 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 8, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Fig. 16A shows an axial chromatic aberration curve of the imaging lens of Embodiment 8, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 16B shows an astigmatism curve of the imaging lens of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16C shows a distortion curve of the imaging lens of Embodiment 8, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 16D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 8, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 16A to 16D, the imaging lens given in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 is a view showing the configuration of an imaging lens according to Embodiment 9 of the present application.
  • an imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a first lens.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is convex.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a concave surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power, the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the imaging lens may further include a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • a filter E6 having an object side S11 and an image side S12. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the imaging lens may further include a stop STO disposed between the object side and the first lens E1 to improve the imaging quality of the lens.
  • Table 17 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the imaging lens of Example 9, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 18 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 9, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Fig. 18A shows an axial chromatic aberration curve of the imaging lens of Embodiment 9, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 18B shows an astigmatism curve of the imaging lens of Example 9, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 18C shows a distortion curve of the imaging lens of Embodiment 9, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 18D shows the magnification chromatic aberration line of the imaging lens of Embodiment 9, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 18A to 18D, the imaging lens given in Embodiment 9 can achieve good imaging quality.
  • Embodiments 1 to 9 respectively satisfy the relationship shown in Table 19.
  • the present application also provides an image forming apparatus whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the imaging lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种成像镜头,沿光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)和第五透镜(E5)。第一透镜(E1)具有正光焦度,其物侧面(S1)和像侧面(S2)均为凸面;第二透镜(E2)具有负光焦度,其物侧面(S3)和像侧面(S4)均为凹面;第三透镜(E3)具有正光焦度,其像侧面(S6)为凸面;第四透镜(E4)具有负光焦度,其像侧面(S8)为凹面;第五透镜(E5)具有正光焦度或负光焦度,其中,成像镜头的最大半视场角HFOV满足HFOV≤25°。

Description

成像镜头
相关申请的交叉引用
本申请要求于2017年10月24日提交于中国国家知识产权局(SIPO)的、专利申请号为201711001644.2的中国专利申请以及于2017年10月24日提交至SIPO的、专利申请号为201721377030.X的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种成像镜头,更具体地,本申请涉及一种包括五片透镜的成像镜头。
背景技术
近年来,随着手机、平板电脑等便携式电子产品的快速更新换代,市场对产品端成像镜头的要求愈加多样化。现阶段,除了要求成像镜头具有小型化特征以较好的适用于便携带式电子产品,还要求镜头具有高像素、高分辨率以及较长焦距等特性,以满足各个领域的成像需求。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的成像镜头,例如,小型化长焦镜头。
一方面,本申请提供了这样一种成像镜头,该成像镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有正光焦度,其物侧面和像侧面均可为凸面;第二透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第三透镜可具有正光焦度,其像侧面可为凸面;第四透镜可具有负光焦度,其像侧面可为凹面;第五透镜具有正光焦度或负光焦度,其中,成像镜 头的最大半视场角HFOV可满足HFOV≤25°。
在一个实施方式中,第一透镜的有效焦距f1与第二透镜和第三透镜在光轴上的间隔距离T23可满足3.0<f1/T23<5.0。
在一个实施方式中,第一透镜的物侧面的中心至成像镜头的成像面在光轴上的距离TTL与成像镜头的总有效焦距f可满足TTL/f≤1.0。
在一个实施方式中,第一透镜的有效焦距f1与第一透镜于光轴上的中心厚度CT1可满足1.5<f1/CT1<3.0。
在一个实施方式中,成像镜头的总有效焦距f与第四透镜和第五透镜在光轴上的间隔距离T45可满足4.0<f/T45<6.0。
在一个实施方式中,成像镜头的总有效焦距f与第三透镜的有效焦距f3可满足0<f/f3<1。
在一个实施方式中,第三透镜的有效焦距f3与第四透镜的有效焦距f4可满足1.5<(f3-f4)/(f3+f4)<8。
在一个实施方式中,第一透镜的有效焦距f1与第二透镜的有效焦距f2可满足-0.3≤(f1+f2)/(f1-f2)<0。
在一个实施方式中,第一透镜的像侧面的曲率半径R2与第二透镜的物侧面的曲率半径R3可满足0<(R2-R3)/(R2+R3)≤0.20。
在一个实施方式中,第一透镜的有效焦距f1、第三透镜的有效焦距f3和成像镜头的总有效焦距f可满足3.0mm<f1*f3/f<5.5mm。
在一个实施方式中,第二透镜的有效焦距f2、第四透镜的有效焦距f4和成像镜头的总有效焦距f可满足2.5mm<f2*f4/f<3.5mm。
另一方面,本申请还提供了这样一种成像镜头,该成像镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有正光焦度,其物侧面和像侧面均可为凸面;第二透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第三透镜可具有正光焦度,其像侧面可为凸面;第四透镜可具有负光焦度,其像侧面可为凹面;第五透镜具有正光焦度或负光焦度,其中,第一透镜的物侧面的中心至成像镜头的成像面在光轴上的距离TTL与成像镜头的总有效焦距f可满足TTL/f≤1.0。
又一方面,本申请还提供了这样一种成像镜头,该成像镜头沿光 轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有正光焦度,其物侧面和像侧面均可为凸面;第二透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第三透镜可具有正光焦度,其像侧面可为凸面;第四透镜可具有负光焦度,其像侧面可为凹面;第五透镜具有正光焦度或负光焦度,其中,成像镜头的总有效焦距f与第四透镜和第五透镜在光轴上的间隔距离T45可满足4.0<f/T45<6.0。
又一方面,本申请还提供了这样一种成像镜头,该成像镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有正光焦度,其物侧面和像侧面均可为凸面;第二透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第三透镜可具有正光焦度,其像侧面可为凸面;第四透镜可具有负光焦度,其像侧面可为凹面;第五透镜具有正光焦度或负光焦度,其中,第三透镜的有效焦距f3与第四透镜的有效焦距f4可满足1.5<(f3-f4)/(f3+f4)<8。
又一方面,本申请还提供了这样一种成像镜头,该成像镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有正光焦度,其物侧面和像侧面均可为凸面;第二透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第三透镜可具有正光焦度,其像侧面可为凸面;第四透镜可具有负光焦度,其像侧面可为凹面;第五透镜具有正光焦度或负光焦度,其中,第二透镜的有效焦距f2、第四透镜的有效焦距f4和成像镜头的总有效焦距f可满足2.5mm<f2*f4/f<3.5mm。
本申请采用了多片(例如,五片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述成像镜头具有超薄、小型化、长焦、低敏感度、良好的可加工性、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其 他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的成像镜头的结构示意图;
图18A至图18D分别示出了实施例9的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的成像镜头可包括例如五片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。这五片透镜沿着光轴由物侧至像侧依序排列。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凸面;第二透镜可具有负光焦度,其物侧面可为凹面,像侧面可为凹面;第三透镜可具有正光焦度,其像侧面为可为凸面;第四透镜可具有负光焦度,其像侧面可为凹面;第五透镜具有正光焦度或负光焦度。
在示例性实施方式中,第五透镜的物侧面可为凹面,像侧面可为凸面。
在示例性实施方式中,本申请的成像镜头可满足条件式3.0<f1/T23<5.0,其中,f1为第一透镜的有效焦距,T23为第二透镜与第三透镜在光轴上的间隔距离。更具体地,f1和T23进一步可满足3.35≤f1/T23≤4.43。满足条件式3.0<f1/T23<5.0,可确保第一透镜的聚光特性,并且可有效地减小中心视场的球差。
在示例性实施方式中,本申请的成像镜头可满足条件式TTL/f≤1.0,其中,TTL为第一透镜的物侧面的中心至成像镜头的成像面在光轴上的距离,f为成像镜头的总有效焦距。更具体地,TTL和f进一步可满足0.87≤TTL/f≤0.90。满足条件式TTL/f≤1.0,可使得镜头在满足长焦特性的同时,保证小型化特征。
在示例性实施方式中,本申请的成像镜头可满足条件式1.5<f1/CT1<3.0,其中,f1为第一透镜的有效焦距,CT1为第一透镜于光轴上的中心厚度。更具体地,f1和CT1进一步可满足1.91≤f1/CT1≤2.55。满足条件式1.5<f1/CT1<3.0,能够有效地保证第一透镜的加工特性,满足成像镜头小型化的需求。
在示例性实施方式中,本申请的成像镜头可满足条件式4.0<f/T45<6.0,其中,f为成像镜头的总有效焦距,T45为第四透镜和第五透镜在光轴上的间隔距离。更具体地,f和T45进一步可满足4.31≤f/T45≤5.79。合理布置第四透镜和第五透镜的间隔距离,可有效地保证边缘视场的畸变大小。
在示例性实施方式中,本申请的成像镜头可满足条件式0<f/f3<1,其中,f为成像镜头的总有效焦距,f3为第三透镜的有效焦距。更具体地,f和f3进一步可满足0.50≤f/f3≤0.90,例如,0.60≤f/f3≤0.82。合理分配第三透镜的光焦度,有利于降低成像镜头的敏感度,提高镜头的可加工性能。
在示例性实施方式中,本申请的成像镜头可满足条件式1.5<(f3-f4)/(f3+f4)<8,其中,f3为第三透镜的有效焦距,f4为第四透镜的有效焦距。更具体地,f3和f4进一步可满足1.99≤(f3-f4)/(f3+f4)≤7.65。通过合理分配第三透镜和第四透镜的光焦度,可平衡成像镜头的轴上色差。
在示例性实施方式中,本申请的成像镜头可满足条件式-0.3≤(f1+f2)/(f1-f2)<0,其中,f1为第一透镜的有效焦距,f2为第二透镜的有效焦距。更具体地,f1和f2进一步可满足-0.29≤(f1+f2)/(f1-f2)≤-0.08。通过合理分配第一透镜和第二透镜的光焦度,有利于降低边缘视场的像差。
在示例性实施方式中,本申请的成像镜头可满足条件式0<(R2-R3)/(R2+R3)≤0.20,其中,R2为第一透镜的像侧面的曲率半径,R3为第二透镜的物侧面的曲率半径。更具体地,R2和R3进一步可满足0.05≤(R2-R3)/(R2+R3)≤0.20。合理分配第一透镜像侧面和第二透镜物侧面的曲率半径,有利于平衡成像镜头的高级球差和高级象散。
在示例性实施方式中,本申请的成像镜头可满足条件式3.0mm<f1*f3/f<5.5mm,其中,f1为第一透镜的有效焦距,f3为第三透镜的有效焦距,f为成像镜头的总有效焦距。更具体地,f1、f3和f进一步可满足3.32mm≤f1*f3/f≤5.34mm。通过合理分配f1、f3和f,有利于减小成像镜头的视场角,并使得成像镜头能更好地满足摄远的需求。
在示例性实施方式中,本申请的成像镜头可满足条件式2.5mm<f2*f4/f<3.5mm,其中,f2为第二透镜的有效焦距,f4为第四透镜的有效焦距,f为成像镜头的总有效焦距。更具体地,f2、f4和f进一步可满足2.62mm≤f2*f4/f≤3.28mm。通过合理分配f2、f4和f,有利于成像镜头的平衡初级像差和高级像差,有利于在确保镜头小型化的同时实现镜头的长焦特性。
在示例性实施方式中,本申请的成像镜头可满足条件式HFOV≤25°,其中,HFOV为成像镜头的最大半视场角。更具体地,HFOV进一步可满足16.0°≤HFOV≤16.6°。满足条件式HFOV≤25°,有利于实现镜头的长焦特性。
在示例性实施方式中,成像镜头还可包括至少一个光阑,以提升镜头的成像质量。例如,光阑可设置在第二透镜与第三透镜之间,又例如,光阑也可设置在物侧与第一透镜之间。
可选地,上述成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的成像镜头可采用多片镜片,例如上文所述的五片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得成像镜头更有利于生产加工并且可适用于便携式电子产品。同时,通过上述配置的成像镜头,还具有例如超薄、长焦、高成像品质等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五个透镜为 例进行了描述,但是该成像镜头不限于包括五个透镜。如果需要,该成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的成像镜头。图1示出了根据本申请实施例1的成像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2凸面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。
可选地,成像镜头还可包括具有物侧面S11和像侧面S12的滤光片E6。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
可选地,成像镜头还可包括设置在第二透镜E2与第三透镜E3之间的光阑STO,以提高镜头的成像质量。
表1示出了实施例1的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018095980-appb-000001
Figure PCTCN2018095980-appb-000002
表1
由表1可知,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2018095980-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.6390E-03 -7.2600E-03 1.9167E-02 -2.4190E-02 1.8396E-02 -8.3200E-03 2.1040E-03 -2.5000E-04 4.8800E-06
S2 -4.3220E-02 1.0205E-01 -1.2552E-01 1.1807E-01 -8.5150E-02 4.2530E-02 -1.3350E-02 2.3250E-03 -1.7000E-04
S3 -1.1041E-01 2.8836E-01 -4.2568E-01 4.7040E-01 -4.0245E-01 2.4944E-01 -1.0098E-01 2.3398E-02 -2.3300E-03
S4 -1.3590E-02 2.1409E-01 -5.6802E-01 1.1330E+00 -1.6333E+00 1.5547E+00 -9.0983E-01 2.9590E-01 -4.1000E-02
S5 -1.8040E-02 -8.6370E-02 2.2982E-01 -1.3021E+00 3.1009E+00 -4.3760E+00 3.7329E+00 -1.7523E+00 3.4310E-01
S6 -1.0190E-02 -4.0450E-02 1.7128E-02 -7.0956E-01 1.9806E+00 -2.8336E+00 2.4295E+00 -1.1760E+00 2.4505E-01
S7 -4.3870E-02 1.0163E-02 -4.8495E-01 1.7566E+00 -4.0462E+00 6.0498E+00 -5.4681E+00 2.7049E+00 -5.6453E-01
S8 -2.3120E-02 1.2133E-02 -1.2298E-01 3.7725E-01 -6.7935E-01 8.3168E-01 -6.4025E-01 2.7167E-01 -4.8200E-02
S9 -5.3840E-02 3.4079E-02 -3.4030E-02 3.0829E-02 -1.9290E-02 7.6970E-03 -1.8000E-03 2.2200E-04 -1.1000E-05
S10 -7.3400E-02 2.8454E-02 -1.8990E-02 1.0514E-02 -4.1900E-03 1.1820E-03 -2.5000E-04 3.8100E-05 -2.9000E-06
表2
在实施例1中,成像镜头的总有效焦距f=7.31mm;第一透镜E1的有效焦距f1=3.21mm;第二透镜E2的有效焦距f2=-4.80mm;第三 透镜E3的有效焦距f3=8.94mm;第四透镜E4的有效焦距f4=-3.99mm;第五透镜E5的有效焦距f5=68561.24mm。成像镜头的光学总长度(即,从第一透镜E1的物侧面S1的中心至成像面S13在光轴上的距离)TTL=6.39mm。成像面S13上有效像素区域对角线长的一半ImgH=2.15mm。成像镜头的最大半视场角HFOV=16.0°。
实施例1中的成像镜头满足:
f1/T23=3.54,其中,f1为第一透镜E1的有效焦距,T23为第二透镜E2与第三透镜E3在光轴上的间隔距离;
TTL/f=0.87,其中,TTL为成像镜头的光学总长度,f为成像镜头的总有效焦距;
f1/CT1=2.55,其中,f1为第一透镜E1的有效焦距,CT1为第一透镜E1于光轴上的中心厚度;
f/T45=5.79,其中,f为成像镜头的总有效焦距,T45为第四透镜E4与第五透镜E5于光轴上的间隔距离;
f/f3=0.82,其中,f为成像镜头的总有效焦距,f3为第三透镜E3的有效焦距;
(f3-f4)/(f3+f4)=2.61,其中,f3为第三透镜E3的有效焦距,f4为第四透镜E4的有效焦距;
(f1+f2)/(f1-f2)=-0.20,其中,f1为第一透镜E1的有效焦距,f2为第二透镜E2的有效焦距;
(R2-R3)/(R2+R3)=0.05,其中,R2为第一透镜E1像侧面S2的曲率半径,R3为第二透镜E2物侧面S3的曲率半径;
f1*f3/f=3.93mm,其中,f1为第一透镜E1的有效焦距,f3为第三透镜E3的有效焦距,f为成像镜头的总有效焦距;
f2*f4/f=2.62mm,其中,f2为第二透镜E2的有效焦距,f4为第四透镜E4的有效焦距,f为成像镜头的总有效焦距。
另外,图2A示出了实施例1的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的成像镜头的畸变曲线,其表示不同视角情况下的畸 变大小值。图2D示出了实施例1的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的成像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2凸面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。
可选地,成像镜头还可包括具有物侧面S11和像侧面S12的滤光片E6。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
可选地,成像镜头还可包括设置在第二透镜E2与第三透镜E3之间的光阑STO,以提高镜头的成像质量。
表3示出了实施例2的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018095980-appb-000004
Figure PCTCN2018095980-appb-000005
表3
由表3可知,在实施例2中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表4示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.6220E-03 1.3007E-02 -2.1420E-02 2.4524E-02 -1.5890E-02 5.6520E-03 -8.8000E-04 3.9617E-06 5.6200E-06
S2 1.1703E-02 5.7752E-02 -1.0738E-01 2.0698E-02 1.0215E-01 -1.1597E-01 5.6443E-02 -1.3417E-02 1.2740E-03
S3 6.1420E-03 5.5697E-02 -6.4210E-02 -1.1146E-01 3.1124E-01 -2.9871E-01 1.4647E-01 -3.6878E-02 3.8000E-03
S4 1.3852E-01 -3.5074E-01 1.3582E+00 -3.6324E+00 6.1801E+00 -6.5944E+00 4.2957E+00 -1.5636E+00 2.4409E-01
S5 -6.3680E-02 3.2919E-02 -2.1809E-01 2.8740E-01 -2.4158E-01 1.0644E-01 -1.7150E-02 0.0000E+00 0.0000E+00
S6 -4.1780E-02 -2.6620E-02 -5.2100E-02 6.2561E-02 -2.7426E-02 -3.2600E-03 5.5120E-03 0.0000E+00 0.0000E+00
S7 -2.6200E-02 3.7653E-02 4.1712E-02 -5.3830E-02 2.1067E-02 -3.5300E-03 2.1700E-04 0.0000E+00 0.0000E+00
S8 6.3994E-02 -1.7550E-02 1.0275E-01 -9.9940E-02 4.3486E-02 -9.8100E-03 8.9300E-04 0.0000E+00 0.0000E+00
S9 -1.8666E-01 8.1860E-02 -4.3280E-02 1.4386E-02 -2.0349E-03 7.3100E-05 3.8900E-06 0.0000E+00 0.0000E+00
S10 -1.8607E-01 9.7703E-02 -6.3550E-02 3.1214E-02 -1.0118E-02 1.7920E-03 -1.3000E-04 0.0000E+00 0.0000E+00
表4
在实施例2中,成像镜头的总有效焦距f=7.15mm;第一透镜E1的有效焦距f1=2.44mm;第二透镜E2的有效焦距f2=-2.85mm;第三透镜E3的有效焦距f3=9.72mm;第四透镜E4的有效焦距f4=-7.47mm;第五透镜E5的有效焦距f5=-12.36mm。成像镜头的光学总长度TTL=6.40mm。成像面S13上有效像素区域对角线长的一半ImgH=2.16mm。成像镜头的最大半视场角HFOV=16.1°。
图4A示出了实施例2的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的成像镜头的畸变曲线,其表示不同视角情况下的畸变 大小值。图4D示出了实施例2的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的成像镜头。图5示出了根据本申请实施例3的成像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2凸面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。
可选地,成像镜头还可包括具有物侧面S11和像侧面S12的滤光片E6。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
可选地,成像镜头还可包括设置在第二透镜E2与第三透镜E3之间的光阑STO,以提高镜头的成像质量。
表5示出了实施例3的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018095980-appb-000006
Figure PCTCN2018095980-appb-000007
表5
由表5可知,在实施例3中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表6示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.4400E-03 -4.5200E-03 1.1667E-02 -1.2060E-02 6.2690E-03 -6.5000E-04 -8.9000E-04 4.1700E-04 -5.9685E-05
S2 -8.0780E-02 2.1485E-01 -3.2263E-01 3.5881E-01 -2.8845E-01 1.5595E-01 -5.2640E-02 9.8970E-03 -7.8524E-04
S3 -1.1351E-01 3.2532E-01 -5.2622E-01 6.1631E-01 -5.2088E-01 2.9910E-01 -1.0776E-01 2.1609E-02 -1.8108E-03
S4 -9.5400E-03 1.6470E-01 -4.1406E-01 7.1880E-01 -8.6800E-01 6.8413E-01 -3.2693E-01 8.4523E-02 -8.8731E-03
S5 -3.9980E-02 3.1766E-02 -3.8326E-01 1.1310E+00 -2.6309E+00 3.9222E+00 -3.4681E+00 1.6669E+00 -3.3517E-01
S6 -7.1110E-02 2.5925E-01 -1.1130E+00 2.9917E+00 -6.0966E+00 8.3280E+00 -6.9721E+00 3.2219E+00 -6.2826E-01
S7 -1.2804E-01 3.4078E-01 -1.1720E+00 3.1525E+00 -6.5670E+00 9.2670E+00 -8.1316E+00 3.9851E+00 -8.3201E-01
S8 -8.7690E-02 2.8258E-01 -6.8806E-01 1.4265E+00 -2.3533E+00 2.7343E+00 -2.0237E+00 8.4538E-01 -1.5091E-01
S9 -5.9420E-02 1.3095E-02 2.4672E-02 -4.0090E-02 3.1884E-02 -1.4760E-02 3.9480E-03 -5.6000E-04 3.2412E-05
S10 -7.5520E-02 1.5869E-02 2.8080E-03 -3.5700E-03 -7.9000E-04 1.9060E-03 -8.7000E-04 1.6900E-04 -1.2177E-05
表6
在实施例3中,成像镜头的总有效焦距f=7.31mm;第一透镜E1的有效焦距f1=3.21mm;第二透镜E2的有效焦距f2=-5.89mm;第三透镜E3的有效焦距f3=11.72mm;第四透镜E4的有效焦距f4=-3.89mm;第五透镜E5的有效焦距f5=67120.11mm。成像镜头的光学总长度TTL=6.39mm。成像面S13上有效像素区域对角线长的一半ImgH=2.15mm。成像镜头的最大半视场角HFOV=16.1°。
图6A示出了实施例3的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D 可知,实施例3所给出的成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的成像镜头。图7示出了根据本申请实施例4的成像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2凸面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。
可选地,成像镜头还可包括具有物侧面S11和像侧面S12的滤光片E6。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
可选地,成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提高镜头的成像质量。
表7示出了实施例4的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018095980-appb-000008
Figure PCTCN2018095980-appb-000009
表7
由表7可知,在实施例4中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.7810E-03 8.2030E-03 -2.1540E-02 3.7564E-02 -3.8260E-02 2.3820E-02 -8.9100E-03 1.8470E-03 -1.7000E-04
S2 1.7550E-03 1.6839E-02 5.7087E-02 -1.6513E-01 1.9271E-01 -1.2587E-01 4.7821E-02 -9.8800E-03 8.5800E-04
S3 -5.3560E-02 9.4706E-02 3.4460E-02 -3.2054E-01 5.0684E-01 -4.1848E-01 1.9877E-01 -5.1440E-02 5.6400E-03
S4 1.1061E-02 3.8790E-03 1.9308E-01 -6.6504E-01 1.0865E+00 -1.0359E+00 5.9310E-01 -1.9029E-01 2.6397E-02
S5 -9.9720E-02 1.3217E-01 -4.6091E-01 1.2806E+00 -3.1063E+00 4.9062E+00 -4.6678E+00 2.4392E+00 -5.4085E-01
S6 -3.5958E-01 1.3920E+00 -4.1925E+00 9.7736E+00 -1.7424E+01 2.1779E+01 -1.7568E+01 8.1317E+00 -1.6330E+00
S7 -3.2313E-01 1.1847E+00 -3.2717E+00 7.1368E+00 -1.2604E+01 1.6341E+01 -1.4007E+01 6.9420E+00 -1.4939E+00
S8 -1.6667E-01 4.7929E-01 -9.1699E-01 1.2597E+00 -1.1422E+00 6.1308E-01 -1.4512E-01 -1.2420E-02 9.4170E-03
S9 -7.5530E-02 1.4830E-02 8.0720E-03 -9.1600E-03 3.3686E-03 -1.5000E-04 -2.0000E-04 4.6800E-05 -3.3000E-06
S10 -7.7990E-02 1.2194E-02 1.1224E-02 -1.5440E-02 9.3195E-03 -3.3700E-03 7.3300E-04 -8.7000E-05 4.2600E-06
表8
在实施例4中,成像镜头的总有效焦距f=7.24mm;第一透镜E1的有效焦距f1=2.86mm;第二透镜E2的有效焦距f2=-4.25mm;第三透镜E3的有效焦距f3=11.87mm;第四透镜E4的有效焦距f4=-4.50mm;第五透镜E5的有效焦距f5=-316.30mm。成像镜头的光学总长度TTL=6.40mm。成像面S13上有效像素区域对角线长的一半ImgH=2.15mm。成像镜头的最大半视场角HFOV=16.1°。
图8A示出了实施例4的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的成像镜头。图9示出了根据本申请实施例5的成像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2凸面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。
可选地,成像镜头还可包括具有物侧面S11和像侧面S12的滤光片E6。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
可选地,成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提高镜头的成像质量。
表9示出了实施例5的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018095980-appb-000010
Figure PCTCN2018095980-appb-000011
表9
由表9可知,在实施例5中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表10示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 6.5800E-03 -8.6300E-03 2.0416E-02 -2.2200E-02 1.3495E-02 -3.6600E-03 -2.0000E-04 3.4613E-04 -5.6761E-05
S2 -4.2170E-02 8.2233E-02 -7.8624E-02 8.9707E-02 -1.1128E-01 9.1843E-02 -4.3210E-02 1.0582E-02 -1.0486E-03
S3 -6.0740E-02 1.0453E-01 -5.6293E-02 -1.5800E-03 -6.3600E-03 3.3124E-02 -2.6970E-02 8.9004E-03 -1.0768E-03
S4 1.2450E-02 7.4364E-02 -2.5424E-01 6.5454E-01 -1.1227E+00 1.1891E+00 -7.4585E-01 2.5465E-01 -3.6547E-02
S5 -6.2130E-02 1.0110E-03 -1.1769E-01 2.7641E-01 -9.4559E-01 1.8066E+00 -1.8298E+00 9.6642E-01 -2.1496E-01
S6 -1.8077E-01 5.6106E-01 -1.6934E+00 3.9771E+00 -7.4135E+00 9.6446E+00 -7.8889E+00 3.6152E+00 -7.0759E-01
S7 -1.7110E-01 4.5653E-01 -8.7121E-01 1.3028E+00 -1.8780E+00 2.3175E+00 -1.9599E+00 9.4202E-01 -1.9349E-01
S8 -1.3917E-01 4.2607E-01 -8.2220E-01 1.3803E+00 -1.9518E+00 2.0716E+00 -1.4572E+00 5.8787E-01 -1.0194E-01
S9 -7.6380E-02 2.4831E-02 -1.2224E-02 1.4395E-02 -1.3180E-02 7.0810E-03 -2.0800E-03 3.0918E-04 -1.8332E-05
S10 -8.5760E-02 1.9738E-02 -2.9700E-03 -2.0400E-03 1.8850E-03 -8.4000E-04 2.1800E-04 -2.7842E-05 1.3392E-06
表10
在实施例5中,成像镜头的总有效焦距f=7.32mm;第一透镜E1的有效焦距f1=3.21mm;第二透镜E2的有效焦距f2=-5.65mm;第三透镜E3的有效焦距f3=12.17mm;第四透镜E4的有效焦距f4=-4.10mm;第五透镜E5的有效焦距f5=70049.70mm。成像镜头的光学总长度TTL=6.40mm。成像面S13上有效像素区域对角线长的一半ImgH=2.15mm。成像镜头的最大半视场角HFOV=16.1°。
图10A示出了实施例5的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的成像镜头。 图11示出了根据本申请实施例6的成像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2凸面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。
可选地,成像镜头还可包括具有物侧面S11和像侧面S12的滤光片E6。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
可选地,成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提高镜头的成像质量。
表11示出了实施例6的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018095980-appb-000012
表11
由表11可知,在实施例6中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表12示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.4400E-03 -4.5219E-03 1.1667E-02 -1.2060E-02 6.2690E-03 -6.5000E-04 -8.9000E-04 4.1700E-04 -5.9685E-05
S2 -8.0780E-02 2.1485E-01 -3.2263E-01 3.5881E-01 -2.8845E-01 1.5595E-01 -5.2640E-02 9.8970E-03 -7.8524E-04
S3 -1.1351E-01 3.2532E-01 -5.2622E-01 6.1631E-01 -5.2088E-01 2.9910E-01 -1.0776E-01 2.1609E-02 -1.8108E-03
S4 -9.5400E-03 1.6470E-01 -4.1406E-01 7.1880E-01 -8.6800E-01 6.8413E-01 -3.2693E-01 8.4523E-02 -8.8731E-03
S5 -3.9980E-02 3.1766E-02 -3.8326E-01 1.1310E+00 -2.6309E+00 3.9222E+00 -3.4681E+00 1.6669E+00 -3.3517E-01
S6 -7.1110E-02 2.5925E-01 -1.1130E+00 2.9917E+00 -6.0966E+00 8.3280E+00 -6.9721E+00 3.2219E+00 -6.2826E-01
S7 -1.2804E-01 3.4078E-01 -1.1720E+00 3.1525E+00 -6.5670E+00 9.2670E+00 -8.1316E+00 3.9851E+00 -8.3201E-01
S8 -8.7690E-02 2.8258E-01 -6.8806E-01 1.4265E+00 -2.3533E+00 2.7343E+00 -2.0237E+00 8.4538E-01 -1.5091E-01
S9 -5.9420E-02 1.3095E-02 2.4672E-02 -4.0090E-02 3.1884E-02 -1.4760E-02 3.9480E-03 -5.6000E-04 3.2412E-05
S10 -7.5520E-02 1.5869E-02 2.8080E-03 -3.5700E-03 -7.9016E-04 1.9060E-03 -8.7000E-04 1.6900E-04 -1.2177E-05
表12
在实施例6中,成像镜头的总有效焦距f=7.31mm;第一透镜E1的有效焦距f1=3.21mm;第二透镜E2的有效焦距f2=-5.89mm;第三透镜E3的有效焦距f3=11.72mm;第四透镜E4的有效焦距f4=-3.89mm;第五透镜E5的有效焦距f5=67120.11mm。成像镜头的光学总长度TTL=6.39mm。成像面S13上有效像素区域对角线长的一半ImgH=2.15mm。成像镜头的最大半视场角HFOV=16.1°。
图12A示出了实施例6的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的成像镜头。图13示出了根据本申请实施例7的成像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2凸面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。
可选地,成像镜头还可包括具有物侧面S11和像侧面S12的滤光片E6。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
可选地,成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提高镜头的成像质量。
表13示出了实施例7的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018095980-appb-000013
表13
由表13可知,在实施例7中,第一透镜E1至第五透镜E5中的 任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.6390E-03 -7.2600E-03 1.9167E-02 -2.4190E-02 1.8396E-02 -8.3200E-03 2.1040E-03 -2.5000E-04 4.8800E-06
S2 -4.3220E-02 1.0205E-01 -1.2552E-01 1.1807E-01 -8.5154E-02 4.2530E-02 -1.3350E-02 2.3250E-03 -1.7000E-04
S3 -1.1041E-01 2.8836E-01 -4.2568E-01 4.7040E-01 -4.0245E-01 2.4944E-01 -1.0098E-01 2.3398E-02 -2.3300E-03
S4 -1.3590E-02 2.1409E-01 -5.6802E-01 1.1330E+00 -1.6333E+00 1.5547E+00 -9.0983E-01 2.9590E-01 -4.1000E-02
S5 -1.8040E-02 -8.6370E-02 2.2982E-01 -1.3021E+00 3.1009E+00 -4.3760E+00 3.7329E+00 -1.7523E+00 3.4310E-01
S6 -1.0190E-02 -4.0450E-02 1.7128E-02 -7.0956E-01 1.9806E+00 -2.8336E+00 2.4295E+00 -1.1760E+00 2.4505E-01
S7 -4.3870E-02 1.0163E-02 -4.8495E-01 1.7566E+00 -4.0462E+00 6.0498E+00 -5.4681E+00 2.7049E+00 -5.6453E-01
S8 -2.3120E-02 1.2133E-02 -1.2298E-01 3.7725E-01 -6.7935E-01 8.3168E-01 -6.4025E-01 2.7167E-01 -4.8200E-02
S9 -5.3840E-02 3.4079E-02 -3.4031E-02 3.0829E-02 -1.9290E-02 7.6970E-03 -1.8000E-03 2.2200E-04 -1.1000E-05
S10 -7.3400E-02 2.8454E-02 -1.8990E-02 1.0514E-02 -4.1857E-03 1.1820E-03 -2.5000E-04 3.8100E-05 -2.9000E-06
表14
在实施例7中,成像镜头的总有效焦距f=7.31mm;第一透镜E1的有效焦距f1=3.21mm;第二透镜E2的有效焦距f2=-4.80mm;第三透镜E3的有效焦距f3=8.94mm;第四透镜E4的有效焦距f4=-3.99mm;第五透镜E5的有效焦距f5=68561.24mm。成像镜头的光学总长度TTL=6.39mm。成像面S13上有效像素区域对角线长的一半ImgH=2.15mm。成像镜头的最大半视场角HFOV=16.0°。
图14A示出了实施例7的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的成像镜头。图15示出了根据本申请实施例8的成像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的成像镜头沿光轴由物 侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2凸面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。
可选地,成像镜头还可包括具有物侧面S11和像侧面S12的滤光片E6。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
可选地,成像镜头还可包括设置在第二透镜E2与第三透镜E3之间的光阑STO,以提高镜头的成像质量。
表15示出了实施例8的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018095980-appb-000014
表15
由表15可知,在实施例8中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表16示出了可用于实施 例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.7660E-03 5.1192E-03 -9.3241E-03 1.4478E-02 -1.4300E-02 8.9430E-03 -3.4000E-03 7.1500E-04 -6.4000E-05
S2 -5.3950E-02 1.5218E-01 -2.2997E-01 2.4446E-01 -1.7982E-01 8.6529E-02 -2.5580E-02 4.1740E-03 -2.9000E-04
S3 -1.3293E-01 4.0534E-01 -7.2350E-01 9.1052E-01 -7.9857E-01 4.6673E-01 -1.7033E-01 3.4755E-02 -3.0000E-03
S4 -1.3050E-02 2.1671E-01 -4.7848E-01 6.1579E-01 -4.1511E-01 6.2650E-03 2.0597E-01 -1.3386E-01 2.7842E-02
S5 -1.8940E-02 -1.0422E-01 4.6469E-01 -2.6667E+00 7.1725E+00 -1.1500E+01 1.1077E+01 -5.8646E+00 1.3083E+00
S6 3.3110E-03 -5.2655E-02 2.8464E-02 -7.9447E-01 2.0166E+00 -2.5217E+00 1.8458E+00 -7.5522E-01 1.3297E-01
S7 -7.0140E-02 1.2012E-01 -7.7015E-01 2.2210E+00 -4.6292E+00 6.5185E+00 -5.5944E+00 2.6342E+00 -5.2576E-01
S8 -6.1750E-02 1.0772E-01 -2.8122E-01 4.8048E-01 -5.8509E-01 5.6814E-01 -3.9046E-01 1.5463E-01 -2.5860E-02
S9 -1.1138E-01 6.2945E-02 -2.9423E-02 8.3880E-03 1.1840E-03 -1.5300E-03 4.2700E-04 -5.3000E-05 2.5300E-06
S10 -1.3646E-01 8.6412E-02 -6.7139E-02 4.4095E-02 -2.1630E-02 7.6180E-03 -1.7600E-03 2.3500E-04 -1.4000E-05
表16
在实施例8中,成像镜头的总有效焦距f=7.27mm;第一透镜E1的有效焦距f1=3.21mm;第二透镜E2的有效焦距f2=-4.60mm;第三透镜E3的有效焦距f3=9.54mm;第四透镜E4的有效焦距f4=-4.60mm;第五透镜E5的有效焦距f5=123451.56mm。成像镜头的光学总长度TTL=6.39mm。成像面S13上有效像素区域对角线长的一半ImgH=2.15mm。成像镜头的最大半视场角HFOV=16.1°。
图16A示出了实施例8的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的成像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的成像镜头。图17示出了根据本申请实施例9的成像镜头的结构示意图。
如图17所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四 透镜E4、第五透镜E5和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2凸面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。
可选地,成像镜头还可包括具有物侧面S11和像侧面S12的滤光片E6。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
可选地,成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提高镜头的成像质量。
表17示出了实施例9的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018095980-appb-000015
表17
由表17可知,在实施例9中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表18示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实 施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.6670E-03 1.5910E-03 -1.4700E-03 2.9800E-03 -2.4000E-03 9.7900E-04 -1.6000E-04 0.0000E+00 0.0000E+00
S2 -1.6900E-03 4.9759E-02 -5.2060E-02 2.7932E-02 -7.6300E-03 4.0800E-04 1.7600E-04 0.0000E+00 0.0000E+00
S3 -5.6870E-02 1.3941E-01 -1.6139E-01 1.1219E-01 -4.5540E-02 9.5620E-03 -6.4000E-04 0.0000E+00 0.0000E+00
S4 1.1505E-02 3.2673E-02 -2.1300E-02 -4.4510E-02 8.0779E-02 -4.9660E-02 1.0965E-02 0.0000E+00 0.0000E+00
S5 -8.3580E-02 -7.3265E-03 2.0836E-01 -1.0057E+00 2.2806E+00 -3.3575E+00 3.1432E+00 -1.6543E+00 3.6092E-01
S6 -3.3606E-01 1.2484E+00 -3.8895E+00 9.6484E+00 -1.8095E+01 2.3070E+01 -1.8474E+01 8.3524E+00 -1.6298E+00
S7 -2.5910E-01 6.9437E-01 -1.2012E+00 1.1988E+00 -8.8660E-01 5.0967E-01 -1.5815E-01 0.0000E+00 0.0000E+00
S8 -1.4279E-01 3.0050E-01 -4.0618E-01 3.4405E-01 -1.6791E-01 4.1894E-02 -3.9800E-03 0.0000E+00 0.0000E+00
S9 -1.1551E-01 1.1379E-01 -9.3170E-02 5.8267E-02 -2.5030E-02 7.0860E-03 -1.2600E-03 1.2700E-04 -5.5000E-06
S10 -8.7870E-02 5.6329E-02 -3.2040E-02 1.3285E-02 -3.7300E-03 6.6800E-04 -6.9000E-05 3.3000E-06 -2.5000E-08
表18
在实施例9中,成像镜头的总有效焦距f=7.08mm;第一透镜E1的有效焦距f1=2.86mm;第二透镜E2的有效焦距f2=-4.29mm;第三透镜E3的有效焦距f3=11.90mm;第四透镜E4的有效焦距f4=-5.42mm;第五透镜E5的有效焦距f5=-18.97mm。成像镜头的光学总长度TTL=6.40mm。成像面S13上有效像素区域对角线长的一半ImgH=2.15mm。成像镜头的最大半视场角HFOV=16.6°。
图18A示出了实施例9的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的成像镜头能够实现良好的成像品质。
综上,实施例1至实施例9分别满足表19中所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8 9
HFOV(°) 16.0 16.1 16.1 16.1 16.1 16.1 16.0 16.1 16.6
f1/T23 3.54 4.37 3.35 4.36 4.07 3.35 3.54 3.47 4.43
TTL/f 0.87 0.89 0.87 0.88 0.87 0.87 0.87 0.88 0.90
f1/CT1 2.55 1.91 2.54 2.02 2.36 2.54 2.55 2.50 2.00
f/T45 5.79 4.31 5.48 4.74 5.46 5.48 5.79 5.76 5.08
f/f3 0.82 0.74 0.62 0.61 0.60 0.62 0.82 0.76 0.60
(f3-f4)/(f3+f4) 2.61 7.65 1.99 2.22 2.02 1.99 2.61 2.86 2.67
(f1+f2)/(f1-f2) -0.20 -0.08 -0.29 -0.20 -0.28 -0.29 -0.20 -0.18 -0.20
(R2-R3)/(R2+R3) 0.05 0.08 0.09 0.12 0.20 0.09 0.05 0.05 0.11
f1*f3/f(mm) 3.93 3.32 5.15 4.69 5.34 5.15 3.93 4.21 4.81
f2*f4/f(mm) 2.62 2.97 3.14 2.64 3.16 3.14 2.62 2.91 3.28
表19
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (22)

  1. 成像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面和像侧面均为凸面;
    所述第二透镜具有负光焦度,其物侧面和像侧面均为凹面;
    所述第三透镜具有正光焦度,其像侧面为凸面;
    所述第四透镜具有负光焦度,其像侧面为凹面;
    所述第五透镜具有正光焦度或负光焦度,
    其中,所述成像镜头的最大半视场角HFOV满足HFOV≤25°。
  2. 根据权利要求1所述的成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23满足3.0<f1/T23<5.0。
  3. 根据权利要求1所述的成像镜头,其特征在于,所述第一透镜的物侧面的中心至所述成像镜头的成像面在所述光轴上的距离TTL与所述成像镜头的总有效焦距f满足TTL/f≤1.0。
  4. 根据权利要求1所述的成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第一透镜于所述光轴上的中心厚度CT1满足1.5<f1/CT1<3.0。
  5. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头的总有效焦距f与所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45满足4.0<f/T45<6.0。
  6. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头的总有效焦距f与所述第三透镜的有效焦距f3满足0<f/f3<1。
  7. 根据权利要求1至6中任一项所述的成像镜头,其特征在于,所述第三透镜的有效焦距f3与所述第四透镜的有效焦距f4满足1.5<(f3-f4)/(f3+f4)<8。
  8. 根据权利要求1至6中任一项所述的成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜的有效焦距f2满足-0.3≤(f1+f2)/(f1-f2)<0。
  9. 根据权利要求1至6中任一项所述的成像镜头,其特征在于,所述第一透镜的像侧面的曲率半径R2与所述第二透镜的物侧面的曲率半径R3满足0<(R2-R3)/(R2+R3)≤0.20。
  10. 根据权利要求1至6中任一项所述的成像镜头,其特征在于,所述第一透镜的有效焦距f1、所述第三透镜的有效焦距f3和所述成像镜头的总有效焦距f满足3.0mm<f1*f3/f<5.5mm。
  11. 根据权利要求1至6中任一项所述的成像镜头,其特征在于,所述第二透镜的有效焦距f2、所述第四透镜的有效焦距f4和所述成像镜头的总有效焦距f满足2.5mm<f2*f4/f<3.5mm。
  12. 成像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面和像侧面均为凸面;
    所述第二透镜具有负光焦度,其物侧面和像侧面均为凹面;
    所述第三透镜具有正光焦度,其像侧面为凸面;
    所述第四透镜具有负光焦度,其像侧面为凹面;
    所述第五透镜具有正光焦度或负光焦度,
    所述第一透镜的物侧面的中心至所述成像镜头的成像面在所述光轴上的距离TTL与所述成像镜头的总有效焦距f满足TTL/f≤1.0。
  13. 根据权利要求12所述的成像镜头,其特征在于,所述第一透镜的有效焦距f1、所述第三透镜的有效焦距f3和所述成像镜头的总有效焦距f满足3.0mm<f1*f3/f<5.5mm。
  14. 根据权利要求12所述的成像镜头,其特征在于,所述第二透镜的有效焦距f2、所述第四透镜的有效焦距f4和所述成像镜头的总有效焦距f满足2.5mm<f2*f4/f<3.5mm。
  15. 根据权利要求12所述的成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜的有效焦距f2满足-0.3≤(f1+f2)/(f1-f2)<0。
  16. 根据权利要求12所述的成像镜头,其特征在于,所述第三透镜的有效焦距f3与所述第四透镜的有效焦距f4满足1.5<(f3-f4)/(f3+f4)<8。
  17. 根据权利要求12所述的成像镜头,其特征在于,所述成像镜头的总有效焦距f与所述第三透镜的有效焦距f3满足0<f/f3<1。
  18. 根据权利要求12至17中任一项所述的成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23满足3.0<f1/T23<5.0。
  19. 根据权利要求18所述的成像镜头,其特征在于,所述成像镜头的最大半视场角HFOV满足HFOV≤25°。
  20. 根据权利要求12至17中任一项所述的成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第一透镜于所述光轴上的中心厚度CT1满足1.5<f1/CT1<3.0。
  21. 根据权利要求12至17中任一项所述的成像镜头,其特征在于,所述成像镜头的总有效焦距f与所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45满足4.0<f/T45<6.0。
  22. 根据权利要求12至17中任一项所述的成像镜头,其特征在于,所述第一透镜的像侧面的曲率半径R2与所述第二透镜的物侧面的曲率半径R3满足0<(R2-R3)/(R2+R3)≤0.20。
PCT/CN2018/095980 2017-10-24 2018-07-17 成像镜头 WO2019080556A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/743,908 US11435554B2 (en) 2017-10-24 2020-01-15 Imaging lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711001644.2A CN107577033B (zh) 2017-10-24 2017-10-24 成像镜头
CN201711001644.2 2017-10-24
CN201721377030.X 2017-10-24
CN201721377030.XU CN207301465U (zh) 2017-10-24 2017-10-24 成像镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/743,908 Continuation US11435554B2 (en) 2017-10-24 2020-01-15 Imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2019080556A1 true WO2019080556A1 (zh) 2019-05-02

Family

ID=66246190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095980 WO2019080556A1 (zh) 2017-10-24 2018-07-17 成像镜头

Country Status (2)

Country Link
US (1) US11435554B2 (zh)
WO (1) WO2019080556A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111679413B (zh) * 2020-08-12 2020-10-30 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111679412B (zh) * 2020-08-12 2020-11-06 诚瑞光学(常州)股份有限公司 摄像光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988198A (zh) * 2015-02-17 2016-10-05 大立光电股份有限公司 取像镜头组、取像装置及电子装置
CN105988186A (zh) * 2015-06-09 2016-10-05 浙江舜宇光学有限公司 成像镜头
CN106125255A (zh) * 2016-08-18 2016-11-16 瑞声科技(沭阳)有限公司 摄像镜头
CN106199931A (zh) * 2015-04-29 2016-12-07 大立光电股份有限公司 成像镜片系统、取像装置及电子装置
CN107577033A (zh) * 2017-10-24 2018-01-12 浙江舜宇光学有限公司 成像镜头
CN207301465U (zh) * 2017-10-24 2018-05-01 浙江舜宇光学有限公司 成像镜头

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5428240B2 (ja) 2008-08-21 2014-02-26 コニカミノルタ株式会社 撮像レンズ
TWI414840B (zh) 2009-08-11 2013-11-11 Largan Precision Co Ltd 成像透鏡系統
TWI400506B (zh) 2010-04-23 2013-07-01 Largan Precision Co Ltd 攝像光學鏡片組
CN102269861B (zh) 2010-06-01 2013-01-30 大立光电股份有限公司 摄像光学镜片组
JP2014041388A (ja) 2013-12-02 2014-03-06 Konica Minolta Inc 撮像レンズ
JP2015165286A (ja) 2014-02-07 2015-09-17 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
CN104898256B (zh) 2015-02-13 2017-06-06 玉晶光电(厦门)有限公司 光学成像镜头及应用该光学成像镜头的电子装置
CN104898254B (zh) 2015-02-13 2017-11-10 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
TWI545365B (zh) * 2015-02-17 2016-08-11 大立光電股份有限公司 取像鏡頭組、取像裝置及電子裝置
KR20170043279A (ko) * 2015-10-13 2017-04-21 삼성전기주식회사 촬상 광학계
TWI626487B (zh) * 2017-03-31 2018-06-11 大立光電股份有限公司 光學影像鏡頭系統組、取像裝置及電子裝置
CN108152922B (zh) * 2017-12-25 2020-06-09 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN108169876B (zh) * 2017-12-25 2020-09-29 瑞声光电科技(苏州)有限公司 摄像光学镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988198A (zh) * 2015-02-17 2016-10-05 大立光电股份有限公司 取像镜头组、取像装置及电子装置
CN106199931A (zh) * 2015-04-29 2016-12-07 大立光电股份有限公司 成像镜片系统、取像装置及电子装置
CN105988186A (zh) * 2015-06-09 2016-10-05 浙江舜宇光学有限公司 成像镜头
CN106125255A (zh) * 2016-08-18 2016-11-16 瑞声科技(沭阳)有限公司 摄像镜头
CN107577033A (zh) * 2017-10-24 2018-01-12 浙江舜宇光学有限公司 成像镜头
CN207301465U (zh) * 2017-10-24 2018-05-01 浙江舜宇光学有限公司 成像镜头

Also Published As

Publication number Publication date
US11435554B2 (en) 2022-09-06
US20200150383A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
WO2019210672A1 (zh) 光学成像系统
WO2019169853A1 (zh) 光学成像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2019196572A1 (zh) 光学成像系统
WO2019134602A1 (zh) 光学成像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2021073275A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2019101052A1 (zh) 光学成像镜头
WO2019210739A1 (zh) 光学成像镜头
WO2020007069A1 (zh) 光学成像镜片组
WO2019091170A1 (zh) 摄像透镜组
WO2020088022A1 (zh) 光学成像镜片组
WO2019223263A1 (zh) 摄像镜头
WO2019100768A1 (zh) 光学成像镜头
WO2020010878A1 (zh) 光学成像系统
WO2020010879A1 (zh) 光学成像系统
WO2020119171A1 (zh) 光学成像镜头
WO2018103250A1 (zh) 摄像镜头及摄像装置
WO2019137246A1 (zh) 光学成像镜头
WO2018192126A1 (zh) 摄像镜头
WO2019056758A1 (zh) 摄像透镜组
WO2019052220A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2019233142A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870367

Country of ref document: EP

Kind code of ref document: A1