WO2019080238A1 - 柔性直流输电线路的电压行波差动保护时域计算方法 - Google Patents

柔性直流输电线路的电压行波差动保护时域计算方法

Info

Publication number
WO2019080238A1
WO2019080238A1 PCT/CN2017/112767 CN2017112767W WO2019080238A1 WO 2019080238 A1 WO2019080238 A1 WO 2019080238A1 CN 2017112767 W CN2017112767 W CN 2017112767W WO 2019080238 A1 WO2019080238 A1 WO 2019080238A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
sampling
traveling wave
frequency
wire
Prior art date
Application number
PCT/CN2017/112767
Other languages
English (en)
French (fr)
Inventor
李博通
吕明睿
李斌
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to US16/316,043 priority Critical patent/US11397206B2/en
Publication of WO2019080238A1 publication Critical patent/WO2019080238A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/265Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured making use of travelling wave theory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line

Definitions

  • the invention relates to the field of power system protection and control, in particular to the research of traveling wave differential protection of a flexible direct current transmission line, in particular to the principle and calculation of voltage traveling wave differential protection of a flexible direct current transmission line considering the influence of frequency related parameters.
  • VSC-HVDC Flexible DC transmission
  • VSC-HVDC High Voltage Direct Current
  • VSC voltage source converter
  • MMC Modular Multilevel Converter Due to its small DC side damping, when the short circuit occurs on the flexible DC transmission line side, the current will rise sharply and the voltage will be rapid. The decline is a serious threat to the security of systems and equipment. Therefore, it is of great practical significance to study the protection principle of fast, reliable and selective resection faults to ensure the safe and stable operation of flexible HVDC transmission systems.
  • flexible DC transmission line protection generally still follows the line protection configuration of the traditional line commutated high-voltage direct current transmission system, that is, traveling wave protection as a fast main protection, and current differential protection as a backup protection scheme.
  • the traditional longitudinal differential protection has the advantages of good selectivity and high sensitivity, but its long delay is not enough to meet the need of quick-acting for flexible DC systems.
  • the transient electrical quantity of the flexible direct current transmission system is not like the AC system, but the power frequency is the main frequency, but contains abundant frequency components, and is greatly affected by the line frequency related parameters during the transmission of the DC line. Therefore, on the basis of considering the influence of the frequency dependent parameters of the flexible DC line, how to further exploit the potential of the longitudinal differential protection in the quick action is whether the protection principle can be successfully applied to the flexible DC line and exert its inherent advantages.
  • the basic premise The basic premise.
  • the present invention aims to A voltage traveling wave differential protection method considering the frequency variation characteristics of line parameters is proposed, which can ensure more accurate and rapid detection of faults in the area.
  • the technical scheme adopted by the invention is a time domain calculation method for voltage traveling wave differential protection of a flexible direct current transmission line, and considering the influence of frequency dependent parameters of the flexible direct current line, calculating the characteristic impedance and the propagation coefficient of the frequency dependent transmission line in the time domain
  • the forward and reverse voltage traveling waves of the first end and the end of the transmission line are respectively calculated, and according to the difference between the head end and the terminal voltage and the set voltage threshold value
  • the size is compared to determine if a fault has occurred in the area.
  • Step A calculating the characteristic impedance and the propagation coefficient of the frequency-dependent transmission line in the time domain
  • Step B Collecting the voltage and current signals at the head end and the end of the transmission line are: the voltage at the head end of the sampling transmission line u m , the current i m , the voltage at the end of the line u n , the current i n , the sampling frequency is f s , and the number of sampling points is N s .
  • Step C According to the difference between the leading end and the end voltage traveling wave difference value and the set voltage threshold value, thereby determining whether the fault occurs in the area: calculating the double-ended voltage traveling wave time-domain differential momentum uwave diffm and uwave diffn ;
  • the threshold value is u set , and the power transmission is judged according to the failure criterion uwave diffm [n 3 ] ⁇ u set
  • uwave diffn [n 3 ] ⁇ u set (n 3 1,2...N x -M 2 /2) Whether there is a fault in the line area; the fault identification is calculated by using the voltage and current two-mode components; further, it is judged whether the fault occurs:
  • Step A specifically:
  • Step 1 According to the transmission line including the wire radius, the average height of the wire to the ground, the distance between the wires, the geometric distance between the wire and the wire mirror, and the conductance matrix G, calculate the impedance matrix of the wire by using the Carson formula, and calculate the matrix of the potential coefficient. Obtain a capacitance matrix, and then calculate a frequency domain expression of the characteristic impedance and the propagation coefficient corresponding to the full length l of the line, and finally transform it into the time domain by using a rational function fitting or an inverse Fourier transform method;
  • Step 2 In order to achieve the frequency domain matching between the time domain expression of the characteristic impedance and the propagation coefficient corresponding to the full length of the transmission line and the voltage current collection amount, the characteristic impedance and the propagation coefficient are filtered by using a sinc filter with a Blackman window;
  • Step 3 Reduce the sampling impedance of the characteristic impedance and the propagation coefficient corresponding to the full length of the filtered transmission line to f maxres .
  • Step 1 in step A specifically:
  • N 1 corresponds to the first sampling timing sampling points T [n 1] is:
  • n 1 1,2,3 ... N t, n 1 corresponds to the first frequency of sampling points F [n 1] is:
  • Step (1) The process of calculating the line impedance matrix Z by the Carson formula:
  • R i, ac is the alternating current resistance of wire i;
  • X i, ac is the alternating current reactance of wire i;
  • ⁇ R si and ⁇ X si are the return-effect correction terms of the carson;
  • h i is the average height of wire i to ground ;
  • r i is the radius of the wire i;
  • the earth and the air have the same magnetic permeability ⁇ 0 , and the value is 4 ⁇ 10 ⁇ 4 H/m;
  • the mutual impedance Z mij is:
  • d ij represents the distance between the wire i and the wire j
  • d ij mir is the distance between the wire i and the wire mirror of the wire j
  • ⁇ R mij and ⁇ X mij are the Carson land Return effect correction term
  • Step (2) Calculation process of the potential coefficient matrix P:
  • P Si is the diagonal element of the matrix P
  • P mij is the off-diagonal element of the matrix P
  • Step (3) Phase mode conversion process:
  • Z' represents the modulus of the impedance per unit length of the wire
  • C' represents the modulus of the capacitance per unit length of the wire
  • G' represents the modulus of the conductance per unit length of the wire
  • S is the decoupling matrix
  • Step (4) Calculation of the frequency domain function of the characteristic impedance Z c and the propagation coefficient A:
  • R' is the resistance per unit length of the wire, and L' is the inductance per unit length;
  • the rational function fitting method is used to fit the Z c ( ⁇ ) and A( ⁇ ) functions in the frequency domain.
  • the point where the slope of the line segment changes is the pole and zero of the rational function, then the frequency domain of the characteristic impedance and the propagation coefficient.
  • the approximate representation is:
  • z c (t) is the time domain value of the characteristic impedance
  • a(t) is the time domain value of the propagation coefficient
  • k m2 is the coefficient of the rational function expansion; corresponding to each sampling instant t[n 1 ], ie There is a characteristic impedance z c [n 1 ] and a propagation coefficient a[n 1 ].
  • Step 2 in step A specifically:
  • the windowed sinc filter kernel h[j 1 ] is calculated as:
  • the filtering process is:
  • z cfilter represents the filtered characteristic impedance
  • a filter represents the filtered propagation coefficient
  • the filtered signal and the original signal have a delay of M/2 points, then sampling
  • the filtered points corresponding to the time t[n 1 ] are z cfilter [n 1 +M/2] and a filter [n 1 +M/2].
  • Step 3 in step A specifically:
  • the number of sampling points N tres in the time domain corresponding to the resampling point is:
  • N tres t max ⁇ f maxres
  • f maxres is the sampling frequency after resampling
  • the sampling time t new [n 2 ] corresponding to the nth second sampling point is:
  • n 2 1, 2, 3...N tres , using linear interpolation, the sampled value after resampling is:
  • z cres denotes the characteristic impedance after resampling
  • a res denotes the resampled propagation coefficient
  • t 1 and t 2 are two adjacent moments in the original sampling time sequence t, and t 1 ⁇ t new [n 2 ] ⁇ t 2
  • z c1 and z c2 are the sampled values corresponding to the time t 1 and t 2 in the filtered characteristic impedance z cfilter
  • a 1 and a 2 are the filtered propagation coefficients a filter , t 1 and The sample value corresponding to t 2 time.
  • x represents the sampled voltages u m , u n and currents i m , i n with f s as the sampling frequency;
  • x rec represents the sampling frequency after insertion zero is f Max voltages u mrec , u nrec and currents i mrec , i nrec ;
  • the filter kernel is h 2 [j 2 ], filtering out the upper harmonics of 1/(2 ⁇ N add ):
  • x restore represents the voltage after the waveform reduction u mrestore , u nrestore and the current i mrestore , i nrestore ;
  • step B The electric quantity phase mode conversion process in step B specifically:
  • u mmod1 , u nmod1 , and i mmod1 , i nmod1 are the modulo components of the voltage and current after waveform reduction;
  • u mmod2 , u nmod2 , and i mmod2 , i nmod2 represent the two-modulus components of voltage and current after waveform reduction, respectively.
  • n np and i nn are the p phase and the n phase of the current i nre , respectively.
  • Step C specifically:
  • uwave diffm is a line using a two-mode forward voltage traveling wave at the head end of the line The full-length transmission and the end two-mode reverse voltage traveling wave do the differential calculation results;
  • uwave diffn is the full-length transmission of the line using the two-mode forward voltage traveling wave at the end of the line and the difference between the first-end two-mode reverse voltage traveling wave Dynamic calculation result;
  • xx[j 3 ] is an N 1 point input signal
  • j 3 is a positive integer from 1 to N 1
  • hh[j 4 ] is an N 2 point impulse response
  • j 4 is a positive integer from 1 to N 2
  • y[j 5 ] is an N 1 +N 2 -1 point signal, j 5 from 1 to N 1 +N 2 -1
  • the method considers that the transmission of transient electrical quantity in the flexible direct current transmission line is affected by the frequency-related parameters, and is realized based on the double-ended electric quantity of the line to meet the selectivity requirements.
  • this method can shorten the delay to the minimum while ensuring the calculation accuracy, which is beneficial to the rapid identification of faults. It can be used as the main fault when the length of the flexible DC transmission line is not too long. protection.
  • the method of calculating the voltage traveling wave is clear and easy to implement.
  • Figure 1 Schematic diagram of a flexible DC transmission line.
  • Figure 2 is a flow chart for calculating the time domain values of the characteristic impedance and the propagation coefficient.
  • Figure 3 is a flow chart of the waveform reduction algorithm.
  • a time domain calculation method for voltage traveling wave differential protection of flexible direct current transmission lines is proposed.
  • the method collects the electrical quantity time domain values of the first end and the end of the line, and establishes a flexible direct current transmission line by establishing a flexible DC transmission line.
  • the frequency correlation model function performs the calculation of the opposite-side voltage traveling wave, and finally calculates the voltage traveling wave differential value to achieve the purpose of detecting the fault in the line region.
  • the method can calculate the voltage traveling wave of the line online according to the electric quantity collected in real time, and reduce the delay in the calculation process, and meet the requirements of the flexible DC system for the quick action and selectivity.
  • the technical scheme adopted by the invention is a time domain calculation method for voltage traveling wave differential protection of a flexible direct current transmission line, and considering the influence of frequency dependent parameters of the flexible direct current line, calculating the characteristic impedance and the propagation coefficient of the frequency dependent transmission line in the time domain
  • the forward and reverse voltage traveling waves of the first end and the end of the transmission line are respectively calculated, and according to the difference between the head end and the terminal voltage and the set voltage threshold value
  • the size is compared to determine if a fault has occurred in the area.
  • Step A Calculating the characteristic impedance and the propagation coefficient of the frequency-dependent transmission line in the time domain, and implementing the following steps:
  • Step 1 According to the geometric parameters of the transmission line (including the wire radius, the average height of the wire to the ground, the distance between the wires, the distance between the wire and the wire mirror, etc.) and the conductance matrix G (generally negligible, can be set to 0), using the Carson
  • the impedance matrix of the wire is calculated by the formula.
  • the capacitance matrix is calculated by the matrix of potential coefficients, and then the frequency domain expression of the characteristic impedance and propagation coefficient corresponding to the full length l of the line is calculated. Finally, the rational function fitting or inverse Fourier transform is used. Transform it into the time domain;
  • N 1 corresponds to the first frequency of sampling points F [n 1] is:
  • Step (1) The process of calculating the line impedance matrix Z by the Carson formula:
  • R i, ac is the alternating current resistance of wire i;
  • X i, ac is the alternating current reactance of wire i;
  • ⁇ R si and ⁇ X si are the return-effect correction terms of the carson;
  • h i is the average height of wire i to ground ;
  • r i is the radius of the wire i;
  • the earth and the air have the same magnetic permeability ⁇ 0 , and the value is 4 ⁇ 10 ⁇ 4 H/m;
  • d ij represents the distance between the wire i and the wire j
  • d ij mir is the distance between the wire i and the wire j of the wire j
  • ⁇ R mij and ⁇ X mij are the Carson earth return effect correction term
  • Step (2) Calculation process of the potential coefficient matrix P:
  • P Si is the diagonal element of the matrix P
  • P mij is the off-diagonal element of the matrix P
  • Step (3) Phase mode conversion process:
  • Z' represents the modulus of the impedance per unit length of the wire
  • C' represents the modulus of the capacitance per unit length of the wire
  • G' represents the modulus of the conductance per unit length of the wire
  • S is the decoupling matrix
  • Step (4) Calculation of the frequency domain function of the characteristic impedance Z c and the propagation coefficient A:
  • R' is the resistance per unit length of the wire, and L' is the inductance per unit length;
  • Step (5) Frequency domain transformation to time domain process (rational function fitting method):
  • the rational function fitting method is used to fit the Z c ( ⁇ ) and A( ⁇ ) functions in the frequency domain.
  • the point where the slope of the line segment changes is the pole and zero of the rational function, then the frequency domain of the characteristic impedance and the propagation coefficient.
  • the approximate representation is:
  • z c (t) is the time domain value of the characteristic impedance
  • a(t) is the time domain value of the propagation coefficient
  • k m2 is the coefficient of the rational function expansion; corresponding to each sampling instant t[n 1 ], ie Characteristic impedance z c [n 1 ] and propagation coefficient a[n 1 ];
  • Step 2 In order to achieve the frequency domain matching between the time domain expression of the characteristic impedance and the propagation coefficient corresponding to the full length of the transmission line and the voltage current collection amount, the characteristic impedance and the propagation coefficient are filtered by using a sinc filter with a Blackman window;
  • the windowed sinc filter kernel h[j 1 ] is calculated as:
  • the filtering process is:
  • z cfilter denotes the filtered characteristic impedance
  • a filter denotes the filtered propagation coefficient.
  • the filtered signal has a delay of M/2 point with the original signal, and the filtered point corresponding to the sampling time t[n 1 ] is z cfilter [n 1 +M/2] and a filter [n 1 +M /2];
  • Step 3 reducing the sampling frequency of the characteristic impedance and the propagation coefficient corresponding to the full length of the filtered transmission line to f maxres (f maxres ⁇ f max );
  • the number of sampling points N tres in the time domain corresponding to the resampling point is:
  • N tres t max ⁇ f maxres
  • z cres denotes the re-sampling characteristic impedance
  • a res denotes the resampled propagation coefficient
  • t 1 and t 2 are two adjacent moments in the original sampling time series t, and t 1 ⁇ t new [n 2 ] ⁇ t 2
  • z c1 and z c2 are the sampled values corresponding to the time t 1 and t 2 in the filtered characteristic impedance z cfilter
  • a 1 and a 2 are the filtered propagation coefficients a filter , t 1 and a sample value corresponding to time t 2 ;
  • Step B Sampling the voltage at the head end of the transmission line, u m , current i m , and the line end voltage u n , current i n , the sampling frequency is f s (f s ⁇ f maxres ), and the number of sampling points is N s .
  • the following steps are used to reduce the voltage and current, and calculate the modulus component of the voltage and current.
  • the sampling frequency of the voltage and current is increased to f maxres , and phase mode conversion is performed; specifically, the following steps are included:
  • Step 1 Calculation process of waveform reduction method:
  • x represents the sampled frequency u m , u n and the currents i m , i n with f s as the sampling frequency
  • x rec represents the voltages u mrec , u nrec and current of the sampling frequency f max after the insertion of the zero point i mrec , i nrec ;
  • the filter kernel is h 2 [j 2 ], filtering out the upper harmonics of 1/(2 ⁇ N add ):
  • x restore represents the voltage after the waveform reduction u mrestore , u nrestore and the current i mrestore , i nrestore ;
  • Step 2 Electrical quantity phase model transformation process:
  • u mmod1 , u nmod1 , and i mmod1 , i nmod1 are the modulo components of the voltage and current after waveform reduction;
  • u mmod2 , u nmod2 , and i mmod2 , i nmod2 represent the two-modulus components of voltage and current after waveform reduction, respectively.
  • u mp, u mn respectively p-phase and the n voltage u mre phase
  • u np respectively voltage u nre p-phase and n-phase
  • i mp, i mn respectively current i mre p-phase and the n Phase n np , i nn are the p phase and the n phase of the current i nre respectively;
  • Step C Calculate the double-ended voltage traveling wave time-domain differential momentum uwave diffm and uwave diffn ; set the threshold value to u set according to the failure criterion uwave diffm [n 3 ] ⁇ u set
  • uwave diffm is a line using a two-mode forward voltage traveling wave at the head end of the line The full-length transmission and the end two-mode reverse voltage traveling wave do the differential calculation results;
  • uwave diffn is the full-length transmission of the line using the two-mode forward voltage traveling wave at the end of the line and the difference between the first-end two-mode reverse voltage traveling wave Dynamic calculation results.
  • xx[j 3 ] is an N 1 point input signal
  • j 3 is a positive integer from 1 to N 1
  • hh[j 4 ] is an N 2 point impulse response
  • j 4 is a positive integer from 1 to N 2
  • y[j 5 ] is an N 1 +N 2 -1 point signal, j 5 from 1 to N 1 +N 2 -1
  • the implementation includes the following specific steps:
  • the flexible DC transmission line is shown in Figure 1.
  • the geometric parameters of the transmission line including the wire radius, the average height of the wire to the ground, the distance between the wires, the distance between the wire and the wire mirror, etc.
  • the conductance matrix G generally negligible, can be set to 0
  • the impedance matrix of the wire is calculated by using the matrix of potential coefficients, and then the frequency domain expression of the characteristic impedance and propagation coefficient corresponding to the full length l of the line is calculated. Finally, it is transformed by rational function fitting or inverse Fourier transform. To the time domain, the specific process is shown in Figure 2;
  • N 1 corresponds to the first frequency of sampling points F [n 1] is:
  • R i, ac is the alternating current resistance of wire i;
  • X i, ac is the alternating current reactance of wire i;
  • ⁇ R si and ⁇ X si are the return-effect correction terms of the carson;
  • h i is the average height of wire i to ground ;
  • r i is the radius of the wire i;
  • the earth and air have the same magnetic permeability ⁇ 0 , and the value is 4 ⁇ 10 ⁇ 4 H/m;
  • d ij represents the distance between the wire i and the wire j
  • d ij mir is the distance between the wire i and the wire j of the wire j
  • ⁇ R mij and ⁇ X mij are the Carson earth return effect correction term.
  • P Si is the diagonal element of matrix P
  • P mij is the off-diagonal element of matrix P
  • Z' represents the modulus of the impedance per unit length of the wire
  • C' represents the modulus of the capacitance per unit length of the wire
  • G' represents the modulus of the conductance per unit length of the wire
  • S is the decoupling matrix
  • R' is the resistance per unit length of the wire and L' is the inductance per unit length.
  • the rational function fitting method is used to fit the Z c ( ⁇ ) and A( ⁇ ) functions in the frequency domain.
  • the point where the slope of the line segment changes is the pole and zero of the rational function, then the frequency domain of the characteristic impedance and the propagation coefficient.
  • the approximate representation is:
  • z c (t) is the time domain value of the characteristic impedance
  • a(t) is the time domain value of the propagation coefficient
  • k m2 is the coefficient of the rational function expansion; corresponding to each sampling instant t[n 1 ], ie Characteristic impedance z c [n 1 ] and propagation coefficient a[n 1 ];
  • the characteristic impedance and the propagation coefficient are filtered by using a sinc filter with a Blackman window;
  • the windowed sinc filter kernel h[j 1 ] is calculated as:
  • the filtering process is:
  • z cfilter denotes the filtered characteristic impedance
  • a filter denotes the filtered propagation coefficient.
  • the filtered signal has a delay of M/2 point with the original signal, and the filtered point corresponding to the sampling time t[n 1 ] is z cfilter [n 1 +M/2] and a filter [n 1 +M /2];
  • the number of sampling points N tres in the time domain corresponding to the resampling point is:
  • N tres t max ⁇ f maxres
  • z cres denotes the re-sampling characteristic impedance
  • a res denotes the resampled propagation coefficient
  • t 1 and t 2 are two adjacent moments in the original sampling time series t, and t 1 ⁇ t new [n 2 ] ⁇ t 2
  • z c1 and z c2 are the sampled values corresponding to the time t 1 and t 2 in the filtered characteristic impedance z cfilter
  • a 1 and a 2 are the filtered propagation coefficients a filter , t 1 and The sample value corresponding to t 2 time.
  • x represents the sampled frequency u m , u n and the currents i m , i n with f s as the sampling frequency
  • x rec represents the voltages u mrec , u nrec and current of the sampling frequency f max after the insertion of the zero point i mrec , i nrec ;
  • x restore represents the voltage after the waveform reduction u mrestore , u nrestore and the current i mrestore , i nrestore ;
  • u mmod1 , u nmod1 , and i mmod1 , i nmod1 are the modulo components of the voltage and current after waveform reduction;
  • u mmod2 , u nmod2 , and i mmod2 , i nmod2 represent the two-modulus components of voltage and current after waveform reduction, respectively.
  • u mp , u mn are the p phase of the voltage u mre (ie u m+ in the figure) and the n phase (ie u m- in the figure);
  • u np , u nn are the p phase (u n+ ) of the voltage u nre respectively and n-phase (u n-);
  • i mp, i mn are the p-i mre phase current (i m +) and phase n (i m-);
  • i np, i nn are the p-i nre phase current (i n+ ) and n-phase (i n- ).
  • uwave diffm is the result of the differential calculation of the full-length line transmission and the end two-mode reverse voltage traveling wave using the two-mode forward voltage traveling wave at the head end of the line;
  • uwave diffn is the two-mode forward voltage using the end of the line The traveling wave performs the full-length transmission of the line and the first-end two-mode reverse voltage traveling wave makes a differential calculation result;
  • u mfw is a two-mode forward voltage traveling wave at the head end of the line,
  • u mbw The two-mode reverse voltage traveling wave at the head end of the line;
  • u nfw is the two-mode forward voltage traveling wave at the end of the line, and
  • u nbw is the two-mode reverse voltage traveling wave at the end of the line;
  • xx[j 3 ] is an N 1 point input signal
  • j 3 is a positive integer from 1 to N 1
  • hh[j 4 ] is an N 2 point impulse response
  • j 4 is a positive integer from 1 to N 2
  • y[j 5 ] is an N 1 +N 2 -1 point signal, j 5 from 1 to N 1 +N 2 -1

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Locating Faults (AREA)

Abstract

一种考虑线路参数频变特性的电压行波差动保护方法,应用于电力系统保护与控制领域,该方法能够保证更为准确和快速地检测区内故障。采用的技术方案是,一种柔性直流输电线路的电压行波差动保护时域计算方法,考虑柔性直流线路频率相关参数的影响,在时域内计算频率相关输电线路的特征阻抗和传播系数,通过采集输电线路首端和末端的电压和电流信号,分别计算该输电线路首端和末端的正反向电压行波,并根据首端与末端电压行波差值与设定电压门槛值的大小进行对比,从而判断区内故障是否发生,应用于电力系统保护与控制场合。

Description

柔性直流输电线路的电压行波差动保护时域计算方法 技术领域
本发明涉及电力系统保护与控制领域,尤其涉及柔性直流输电线路行波差动保护的研究,特别是涉及考虑频率相关参数影响的柔性直流输电线路的电压行波差动保护的原理及计算。
背景技术
柔性直流输电(VSC-HVDC)是以电压源型换流器(Voltage Source Converter,VSC)和全控型可关断电力电力电子器件为核心的新型直流输电方式(High Voltage Direct Current,HVDC),具有经济、灵活和环保等突出优点,是智能电网研究及应用领域具有代表性的关键技术之一。柔性直流输电系统一般采用模块化多电平换流器(Modular Multilevel Converter,MMC)实现交直流转换,由于其直流侧阻尼小,当柔性直流输电线路侧发生短路时会出现电流急剧上升、电压迅速下降的情况,对系统及设备的安全性造成了严重威胁。因此,研究能够快速、可靠、有选择的切除故障的保护原理,对保障柔性直流输电系统的安全、稳定运行具有重要的实用意义。
目前,柔性直流输电线路保护一般仍沿用传统线换相型高压直流输电系统的线路保护配置,即行波保护作为快速主保护,电流差动保护作为后备保护的方案。传统的纵联差动保护具有选择性好、灵敏度高等优势,但是其延时较长,无法满足柔性直流系统对速动性的需要。此外,柔性直流输电系统的暂态电气量不像交流系统那样以工频为主频率,而是包含丰富的频率成分,且在直流线路的传输过程中受线路频率相关参数的影响很大。因此,在考虑柔性直流线路频率相关参数的影响的基础上,如何进一步挖掘纵联差动保护在速动性上的潜力,是该保护原理能否成功应用于柔性直流线路并发挥其固有优势的基本前提。
发明内容
为克服现有技术的不足,鉴于对柔性直流输电线路的纵联差动保护均未考虑线路参数频率相关特性的问题,以及存在延时较长不利于故障的快速识别的问题,本发明旨在提出一种考虑线路参数频变特性的电压行波差动保护方法,该方法能够保证更为准确和快速地检测区内故障。本发明采用的技术方案是,一种柔性直流输电线路的电压行波差动保护时域计算方法,考虑柔性直流线路频率相关参数的影响,在时域内计算频率相关输电线路的特征阻抗和传播系数,通过采集输电线路首端和末端的电压和电流信号,分别计算该输电线路首端和末端的正反向电压行波,并根据首端与末端电压行波差值与设定电压门槛值的大小进行对比,从而判断区内故障是否发生。
一个实例中的具体步骤细化为:
步骤A:在时域内计算频率相关输电线路的特征阻抗和传播系数;
步骤B:采集输电线路首端和末端的电压和电流信号是,采样输电线路首端电压um、电流im以及线路末端电压un、电流in,采样频率为fs,采样点数为Ns。根据波形还原法,选择滤波器内核为M2的滤波器进行滤波后截取,将电压和电流的采样频率提高为重采样后频率 fmaxres(fmaxres>fs),则采样点数变为Nx-M2/2,其中Nx=Nsfmaxres/fs;并进行相模变换;
步骤C:根据首端与末端电压行波差值与设定电压门槛值的大小进行对比,从而判断区内故障是否发生:计算双端电压行波时域差动量uwavediffm和uwavediffn;设定门槛值为uset,依据故障判据uwavediffm[n3]≥uset||uwavediffn[n3]≥uset(n3=1,2…Nx-M2/2)来判断输电线路区内是否发生故障;对故障的识别采用电压电流二模分量进行计算;进一步地,判断故障是否发生:
uwavediffm[n3]≥uset||uwavediffn[n3]≥uset
即当uwavediffm[n3]或uwavediffn[n3]两者之中任一值大于设定的门槛值uset时,则认为t[n3]时刻区内发生故障,为保证判断的可靠性,此时进行连续判断若干次或采用积分方法进行判断。
步骤A具体地:
步骤1:根据输电线路包括导线半径、导线对地平均高度、导线间距离、导线与导线镜像间距离的几何参数和电导矩阵G,利用卡松公式计算得到导线的阻抗矩阵,利用电位系数矩阵计算得到电容矩阵,进而计算线路全长l对应的特征阻抗和传播系数的频域表达式,最后运用有理函数拟合或傅里叶反变换方法将其变换到时域;
步骤2:为实现输电线路全长对应的特征阻抗和传播系数的时域表达式与电压电流采集量的频域匹配,采用加布莱克曼窗的sinc滤波器对特征阻抗和传播系数进行滤波;
步骤3:降低滤波后的输电线路全长对应的特征阻抗和传播系数的采样频率至fmaxres
步骤A中步骤1具体地:
设定采样时间tmax,采样频率fmax,时域的采样点数Nt与频域的采样点数Nf为:
Nt=Nf=tmax·fmax
对应第n1个采样点的采样时刻t[n1]为:
t[n1]=(n1-1)/fmax
n1=1,2,3…Nt,对应第n1个采样点的频率f[n1]为:
f[n1]=(n1-1)/tmax
步骤(1):卡松公式计算线路阻抗矩阵Z的过程:
自阻抗Zsi(i=1,2)为:
Figure PCTCN2017112767-appb-000001
式中Ri,ac为导线i的交流电阻;Xi,ac表示导线i的交流内电抗;ΔRsi和ΔXsi均为卡松大地返回效应校正项;hi表示导线i对地的平均高度;ri为导线i的半径;大地和空气具有同一导磁率μ0,其值为4π×10-4H/m;ω为角频率,ω=2πf[n1];
互阻抗Zmij为:
Figure PCTCN2017112767-appb-000002
式中j=1,2且j≠i,dij表示导线i和导线j之间的距离;dij,mir为导线i和导线j大地镜像 间的距离;ΔRmij和ΔXmij为卡松大地返回效应校正项;
Figure PCTCN2017112767-appb-000003
步骤(2):电位系数矩阵P的计算过程:
Figure PCTCN2017112767-appb-000004
Figure PCTCN2017112767-appb-000005
式中,Psi为矩阵P的对角线元素;Pmij为矩阵P的非对角线元素;ε0为空间介电常数,取值8.85×10-12F/m;则电容矩阵C=P-1
步骤(3):相模变换过程:
Z′=SZ
C′=SC
G′=SG
式中,Z′表示导线单位长度阻抗的模量;C′表示导线单位长度电容的模量;G′表示导线单位长度电导的模量;S为解耦矩阵,
Figure PCTCN2017112767-appb-000006
步骤(4):特征阻抗Zc和传播系数A的频域函数的计算:
Z′=R′+jωL′
Figure PCTCN2017112767-appb-000007
Figure PCTCN2017112767-appb-000008
式中,R′为导线单位长度的电阻,L′为单位长度电感;
步骤(5):采用有理函数拟合法的频域变换到时域过程:
利用有理函数拟合法对频域的Zc(ω)和A(ω)函数进行拟合,拟合线段斜率有变化的点即为有理函数的极点和零点,则特征阻抗和传播系数的频域近似表示形式为:
Figure PCTCN2017112767-appb-000009
Figure PCTCN2017112767-appb-000010
式中,s=jω并且m1<m2;zm1为零点,m1=1,2,3…,m2=1,2,3…,pm2为极点,所有零点与极点均为负的实数;k为系数;τmin表示波的最短传播时间;Zc,approx(s)表示特征阻抗的有理函数近似式;Aapprox(s)表示传播系数的有理函数近似式;
将其变换到时域:
Figure PCTCN2017112767-appb-000011
Figure PCTCN2017112767-appb-000012
式中,zc(t)为特征阻抗的时域值;a(t)为传播系数的时域值;km2为有理函数展开的系数;对应到每个采样时刻t[n1],即有特征阻抗zc[n1]和传播系数a[n1]。
步骤A中步骤2具体地:
加窗sinc滤波器内核h[j1]计算为:
Figure PCTCN2017112767-appb-000013
进行归一处理:
Figure PCTCN2017112767-appb-000014
式中,j1=1,2…M+1,fc为截止频率,大小在0到0.5之间;M为滤波器内核长度,其必须为偶数;K为系数;w[j1]为布莱克曼窗函数,表示为:
w[j1]=0.42-0.5cos(2πj1/M)+0.08cos(4πj1/M)
滤波过程为:
Figure PCTCN2017112767-appb-000015
Figure PCTCN2017112767-appb-000016
式中,n1=1,2…Nt;zcfilter表示滤波后的特征阻抗;afilter表示滤波后的传播系数,滤波后的的信号与原信号存在M/2点的延时,则采样时刻t[n1]对应的滤波后的点为zcfilter[n1+M/2]和afilter[n1+M/2]。
步骤A中步骤3具体地:
对应重采样点后的时域的采样点数Ntres为:
Ntres=tmax·fmaxres
式中,fmaxres为重采样后的采样频率,
对应第n2个采样点的采样时刻tnew[n2]为:
tnew[n2]=(n2-1)/fmaxres
n2=1,2,3…Ntres,采用线性插值,得到重采样后的采样值为:
Figure PCTCN2017112767-appb-000017
Figure PCTCN2017112767-appb-000018
式中,zcres表示重采样后的特征阻抗;ares表示重采样后的传播系数;t1和t2为原采样时 间序列t中的两个相邻时刻,且t1≤tnew[n2]≤t2;zc1和zc2为滤波后的特征阻抗zcfilter中,t1和t2时刻对应的采样值;a1和a2为滤波后的传播系数afilter中,t1和t2时刻对应的采样值。
步骤B中波形还原法的计算过程具体地:
步骤(1):设与进行行波传输计算需要的采样率为fmaxres,对原信号x[i2]按照新的采样率的要求插入数值为零的点,i2=1,2…Ns,使得采样点数由Ns变为Nx,Nx=Ns·Nadd,Nadd=fmaxres/fs,得到重组信号xrec[i3]即:
xrec[1+(i2-1)·Ndd]=x[i2],其余点为零,
式中,i3=1,2…Nx,x代表以fs为采样频率,采样得到的电压um、un以及电流im、in;xrec代表插入零点后的采样频率为fmax的电压umrec、unrec以及电流imrec、inrec
步骤(2):采用加布莱克曼窗的sinc滤波器对重组信号xrec[i3]滤波,设定截止频率fc2=1/(2·Nadd),选取适当的滤波器内核长度M2,滤波器内核为h2[j2],滤除1/(2·Nadd)以上次谐波:
Figure PCTCN2017112767-appb-000019
式中,j2=1,2…M2+1且i3=1,2…Nx;xrestore代表波形还原后的电压umrestore、unrestore以及电流imrestore、inrestore
步骤(3):还原后波形的截取,即去除xrestore信号的前M2/2个采样点和后M2/2个采样点,使得样时刻t[i3]对应的波形还原信号xrestore[i3+M2/2],得到截取后的还原信号xre[n3](n3=1,2…Nx-M2/2),有xre[n3]=xrestore[n3+M2/2];xre代表波形还原并截取后的电压umre、unre以及电流imre、inre
步骤B中电气量相模变换过程具体地:
Figure PCTCN2017112767-appb-000020
Figure PCTCN2017112767-appb-000021
Figure PCTCN2017112767-appb-000022
Figure PCTCN2017112767-appb-000023
式中,ummod1、unmod1以及immod1、inmod1分别为波形还原后电压和电流的一模分量;ummod2、unmod2以及immod2、inmod2分别表示波形还原后电压和电流的二模分量;ump、umn分别为电压umre的p相和n相;unp、unn分别为电压unre的p相和n相;imp、imn分别为电流imre的p相和n相;inp、inn分别为电流inre的p相和n相。
步骤C具体地:
电压行波时域差动量的计算过程:
uwavediffm[n3]=(ummod2[n3]+zcres[n2]*immod2[n3])*ares[n2]-(unmod2[n3]-zcres[n2]*inmod2[n3])
uwavediffn[n3]=(unmod2[n3]+zcres[n2]*inmod2[n3])*ares[n2]-(ummod2[n3]-zcres[n2]*immod2[n3])
式中,n3=1,2…Nx-M2/2且n2=1,2…Ntres;*表示卷积运算;uwavediffm为利用线路首端的二模正向电压行波进行线路全长传输和末端二模反向电压行波做差动的计算结果;uwavediffn为利用线路末端的二模正向电压行波进行线路全长传输和首端二模反向电压行波做差动的计算结果;
卷积计算的具体过程:
假设xx[j3]是一个N1点输入信号,j3为从1到N1的正整数,hh[j4]是N2点冲激响应,j4为从1到N2的正整数,两者卷积的结果为y[j5],它是一个N1+N2-1点信号,j5从1到N1+N2-1,则
Figure PCTCN2017112767-appb-000024
式中,j5=1,2…N1+N2-1且j4=1,2…N2
本发明的特点及有益效果是:
1.该方法考虑到暂态电气量在柔性直流输电线路中的传输受频率相关参数的影响,并且基于线路双端电气量实现,满足在选择性方面的要求。
2.该方法相对于传统纵联差动保护,能够在保证计算准确度的同时将延时缩短到最小,有利于故障的快速识别,可在柔性直流输电线路长度不太长的情况下作为主保护。
3.该方法对电压行波的计算原理清晰,易于实现。
附图说明:
图1柔性直流输电线路示意图。
图2特征阻抗和传播系数的时域值计算流程图。
图3波形还原算法流程图。
具体实施方式
为克服现有技术的不足,提出了一种柔性直流输电线路的电压行波差动保护时域计算方法,该方法采集线路首端和末端的电气量时域值,通过建立柔性直流输电线路的频率相关模型函数进行对端电压行波的计算,最终计算得到电压行波差动值从而达到检测线路区内故障的目的。该方法能够根据实时采集到的电气量在线计算线路的电压行波,并且减小计算过程中的延时,满足柔性直流系统对速动性及选择性的要求。
本发明采用的技术方案是,一种柔性直流输电线路的电压行波差动保护时域计算方法,考虑柔性直流线路频率相关参数的影响,在时域内计算频率相关输电线路的特征阻抗和传播系数,通过采集输电线路首端和末端的电压和电流信号,分别计算该输电线路首端和末端的正反向电压行波,并根据首端与末端电压行波差值与设定电压门槛值的大小进行对比,从而判断区内故障是否发生。
一个实例中的具体步骤细化为:
步骤A:在时域内计算频率相关输电线路的特征阻抗和传播系数,实现包括具体以下步骤:
步骤1:根据输电线路的几何参数(包括导线半径、导线对地平均高度、导线间距离、导线与导线镜像间距离等)和电导矩阵G(一般忽略不计,可设为0),利用卡松公式计算得到导线的阻抗矩阵,利用电位系数矩阵计算得到电容矩阵,进而计算线路全长l对应的特征阻抗和传播系数的频域表达式,最后运用有理函数拟合或傅里叶反变换等方法将其变换到时域;
设定采样时间tmax,采样频率fmax,时域的采样点数Nt与频域的采样点数Nf为:
Nt=Nf=tmax·fmax
对应第n1个采样点的采样时刻t[n1](n1=1,2,3…Nt)为:
t[n1]=(n1-1)/fmax
对应第n1个采样点的频率f[n1]为:
f[n1]=(n1-1)/tmax
步骤(1):卡松公式计算线路阻抗矩阵Z的过程:
自阻抗Zsi(i=1,2)为:
Figure PCTCN2017112767-appb-000025
式中Ri,ac为导线i的交流电阻;Xi,ac表示导线i的交流内电抗;ΔRsi和ΔXsi均为卡松大地返回效应校正项;hi表示导线i对地的平均高度;ri为导线i的半径;大地和空气具有同一导磁率μ0,其值为4π×10-4H/m;ω为角频率,ω=2πf[n1];
互阻抗Zmij(j=1,2且j≠i)为:
Figure PCTCN2017112767-appb-000026
式中,dij表示导线i和导线j之间的距离;dij,mir为导线i和导线j大地镜像间的距离;ΔRmij 和ΔXmij为卡松大地返回效应校正项;
Figure PCTCN2017112767-appb-000027
步骤(2):电位系数矩阵P的计算过程:
Figure PCTCN2017112767-appb-000028
Figure PCTCN2017112767-appb-000029
式中,Psi为矩阵P的对角线元素;Pmij为矩阵P的非对角线元素;ε0为空间介电常数,取值8.85×10-12F/m;则电容矩阵C=P-1
步骤(3):相模变换过程:
Z′=SZ
C′=SC
G′=SG
式中,Z′表示导线单位长度阻抗的模量;C′表示导线单位长度电容的模量;G′表示导线单位长度电导的模量;S为解耦矩阵,
Figure PCTCN2017112767-appb-000030
步骤(4):特征阻抗Zc和传播系数A的频域函数的计算:
Z′=R′+jωL′
Figure PCTCN2017112767-appb-000031
Figure PCTCN2017112767-appb-000032
式中,R′为导线单位长度的电阻,L′为单位长度电感;
步骤(5):频域变换到时域过程(有理函数拟合法):
利用有理函数拟合法对频域的Zc(ω)和A(ω)函数进行拟合,拟合线段斜率有变化的点即为有理函数的极点和零点,则特征阻抗和传播系数的频域近似表示形式为:
Figure PCTCN2017112767-appb-000033
Figure PCTCN2017112767-appb-000034
式中,s=jω并且m1<m2;zm1为零点,m1=1,2,3…,m2=1,2,3…,pm2为极点,所有零点与极点均为负的实数;k为系数;τmin表示波的最短传播时间;Zc,approx(s)表示特征阻抗的有理函数近似式;Aapprox(s)表示传播系数的有理函数近似式;
将其变换到时域:
Figure PCTCN2017112767-appb-000035
Figure PCTCN2017112767-appb-000036
式中,zc(t)为特征阻抗的时域值;a(t)为传播系数的时域值;km2为有理函数展开的系数;对应到每个采样时刻t[n1],即有特征阻抗zc[n1]和传播系数a[n1];
步骤2:为实现输电线路全长对应的特征阻抗和传播系数的时域表达式与电压电流采集量的频域匹配,采用加布莱克曼窗的sinc滤波器对特征阻抗和传播系数进行滤波;
加窗sinc滤波器内核h[j1]计算为:
Figure PCTCN2017112767-appb-000037
进行归一处理:
Figure PCTCN2017112767-appb-000038
式中,j1=1,2…M+1,fc为截止频率,大小在0到0.5之间;M为滤波器内核长度,其必须为偶数;K为系数;w[j1]为布莱克曼窗函数,表示为:
w[j1]=0.42-0.5cos(2πj1/M)+0.08cos(4πj1/M)
滤波过程为:
Figure PCTCN2017112767-appb-000039
Figure PCTCN2017112767-appb-000040
式中,n1=1,2…Nt;zcfilter表示滤波后的特征阻抗;afilter表示滤波后的传播系数。滤波后的的信号与原信号存在M/2点的延时,则采样时刻t[n1]对应的滤波后的点为zcfilter[n1+M/2]和afilter[n1+M/2];
步骤3:降低滤波后的输电线路全长对应的特征阻抗和传播系数的采样频率至fmaxres(fmaxres<fmax);
对应重采样点后的时域的采样点数Ntres为:
Ntres=tmax·fmaxres
对应第n2个采样点的采样时刻tnew[n2](n2=1,2,3…Ntres)为:
tnew[n2]=(n2-1)/fmaxres
采用线性插值,得到重采样后的采样值为:
Figure PCTCN2017112767-appb-000041
Figure PCTCN2017112767-appb-000042
式中,zcres表示重采样后的特征阻抗;ares表示重采样后的传播系数;t1和t2为原采样时间序列t中的两个相邻时刻,且t1≤tnew[n2]≤t2;zc1和zc2为滤波后的特征阻抗zcfilter中,t1和t2时刻对应的采样值;a1和a2为滤波后的传播系数afilter中,t1和t2时刻对应的采样值;
步骤B:采样输电线路首端电压um、电流im以及线路末端电压un、电流in,采样频率为fs(fs<fmaxres),采样点数为Ns。为在较短线路长度下实现电压电流采样率与传播常数的匹配,得到准确的计算结果,采用如下步骤对电压电流进行波形还原,并计算电压电流的模分量。根据波形还原法,将电压和电流的采样频率提高为fmaxres,并进行相模变换;具体包括以下步骤:
步骤1:波形还原法的计算过程:
步骤(1):设与进行行波传输计算需要的采样率为fmaxres,对原信号x[i2]按照新的采样率的要求插入数值为零的点,i2=1,2…Ns,使得采样点数由Ns变为Nx(Nx=Ns·Nadd,Nadd=fmaxres/fs),得到重组信号xrec[i3](i3=1,2…Nx)即:
xrec[1+(i2-1)·Ndd]=x[i2],其余点为零,
式中,x代表以fs为采样频率,采样得到的电压um、un以及电流im、in;xrec代表插入零点后的采样频率为fmax的电压umrec、unrec以及电流imrec、inrec
步骤(2):采用加布莱克曼窗的sinc滤波器对重组信号xrec[i3]滤波,设定截止频率fc2=1/(2·Nadd),选取适当的滤波器内核长度M2,滤波器内核为h2[j2],滤除1/(2·Nadd)以上次谐波:
Figure PCTCN2017112767-appb-000043
式中,j2=1,2…M2+1且i3=1,2…Nx;xrestore代表波形还原后的电压umrestore、unrestore以及电流imrestore、inrestore
步骤(3):还原后波形的截取,即去除xrestore信号的前M2/2个采样点和后M2/2个采样点,使得样时刻t[i3]对应的波形还原信号xrestore[i3+M2/2],得到截取后的还原信号xre[n3](n3=1,2…Nx-M2/2),有xre[n3]=xrestore[n3+M2/2];xre代表波形还原并截取后的电压umre、unre以及电流imre、inre
步骤2:电气量相模变换过程:
Figure PCTCN2017112767-appb-000044
Figure PCTCN2017112767-appb-000045
Figure PCTCN2017112767-appb-000046
Figure PCTCN2017112767-appb-000047
式中,ummod1、unmod1以及immod1、inmod1分别为波形还原后电压和电流的一模分量;ummod2、unmod2以及immod2、inmod2分别表示波形还原后电压和电流的二模分量;ump、umn分别为电压umre的p相和n相;unp、unn分别为电压unre的p相和n相;imp、imn分别为电流imre的p相和n相;inp、inn分别为电流inre的p相和n相;
步骤C:计算双端电压行波时域差动量uwavediffm和uwavediffn;设定门槛值为uset,依据故障判据uwavediffm[n3]≥uset||uwavediffn[n3]≥uset来判断输电线路区内是否发生故障;由于本算法不讨论故障类型的区分,故对故障的识别采用电压电流二模分量进行计算;
判断故障是否发生:
uwavediffm[n3]≥uset||uwavediffn[n3]≥uset
即当uwavediffm[n3]或uwavediffn[n3]两者之中任一值大于设定的门槛值uset时,则认为t[n3]时刻区内发生故障。为保证判断的可靠性,此时可以连续判断若干次或采用积分等方法进行判断。
电压行波时域差动量的计算过程:
uwavediffm[n3]=(ummod2[n3]+zcres[n2]*immod2[n3])*ares[n2]-(unmod2[n3]-zcres[n2]*inmod2[n3])
uwavediffn[n3]=(unmod2[n3]+zcres[n2]*inmod2[n3])*ares[n2]-(ummod2[n3]-zcres[n2]*immod2[n3])
式中,n3=1,2…Nx-M2/2且n2=1,2…Ntres;*表示卷积运算;uwavediffm为利用线路首端的二模正向电压行波进行线路全长传输和末端二模反向电压行波做差动的计算结果;uwavediffn为利用线路末端的二模正向电压行波进行线路全长传输和首端二模反向电压行波做差动的计算结果。
卷积计算的具体过程:
假设xx[j3]是一个N1点输入信号,j3为从1到N1的正整数,hh[j4]是N2点冲激响应,j4为从1到N2的正整数,两者卷积的结果为y[j5],它是一个N1+N2-1点信号,j5从1到N1+N2-1,则
Figure PCTCN2017112767-appb-000048
式中,j5=1,2…N1+N2-1且j4=1,2…N2
下面通过具体实施例,来详细说明本发明的技术方案:
A.在时域内计算频率相关输电线路的特征阻抗和传播系数,实现包括具体以下步骤:
(1)柔性直流输电线路如图1所示。根据输电线路的几何参数(包括导线半径、导线对地平均高度、导线间距离、导线与导线镜像间距离等)和电导矩阵G(一般忽略不计,可设为0),利用卡松公式计算得到导线的阻抗矩阵,利用电位系数矩阵计算得到电容矩阵,进而计算线路全长l对应的特征阻抗和传播系数的频域表达式,最后运用有理函数拟合或傅里叶反变换等方法将其变换到时域,具体流程如图2;
设定采样时间tmax,采样频率fmax,时域的采样点数Nt与频域的采样点数Nf为:
Nt=Nf=tmax·fmax
对应第n1个采样点的采样时刻t[n1](n1=1,2,3…Nt)为:
t[n1]=(n1-1)/fmax
对应第n1个采样点的频率f[n1]为:
f[n1]=(n1-1)/tmax
a)卡松公式计算线路阻抗矩阵Z的过程:
自阻抗Zsi(i=1,2)为:
Figure PCTCN2017112767-appb-000049
式中Ri,ac为导线i的交流电阻;Xi,ac表示导线i的交流内电抗;ΔRsi和ΔXsi均为卡松大地返回效应校正项;hi表示导线i对地的平均高度;ri为导线i的半径;大地和空气具有同一导磁率μ0,其值为4π×10-4H/m;ω为角频率,ω=2πf[n1]。
互阻抗Zmij(j=1,2且j≠i)为:
Figure PCTCN2017112767-appb-000050
式中,dij表示导线i和导线j之间的距离;dij,mir为导线i和导线j大地镜像间的距离;ΔRmij和ΔXmij为卡松大地返回效应校正项。则
Figure PCTCN2017112767-appb-000051
b)电位系数矩阵P的计算过程:
Figure PCTCN2017112767-appb-000052
Figure PCTCN2017112767-appb-000053
式中,Psi为矩阵P的对角线元素;Pmij为矩阵P的非对角线元素;ε0为空间介电常数, 取值8.85×10-12F/m;则电容矩阵C=P-1
c)相模变换过程:
Z′=SZ
C′=SC
G′=SG
式中,Z′表示导线单位长度阻抗的模量;C′表示导线单位长度电容的模量;G′表示导线单位长度电导的模量;S为解耦矩阵,
Figure PCTCN2017112767-appb-000054
d)特征阻抗Zc和传播系数A的频域函数的计算:
Z′=R′+jωL′
Figure PCTCN2017112767-appb-000055
Figure PCTCN2017112767-appb-000056
式中,R′为导线单位长度的电阻,L′为单位长度电感。
e)频域变换到时域过程(有理函数拟合法):
利用有理函数拟合法对频域的Zc(ω)和A(ω)函数进行拟合,拟合线段斜率有变化的点即为有理函数的极点和零点,则特征阻抗和传播系数的频域近似表示形式为:
Figure PCTCN2017112767-appb-000057
Figure PCTCN2017112767-appb-000058
式中,s=jω并且m1<m2;zm1为零点,m1=1,2,3…,m2=1,2,3…,pm2为极点,所有零点与极点均为负的实数;k为系数;τmin表示波的最短传播时间;Zc,approx(s)表示特征阻抗的有理函数近似式;Aapprox(s)表示传播系数的有理函数近似式。
将其变换到时域的过程:
Figure PCTCN2017112767-appb-000059
Figure PCTCN2017112767-appb-000060
式中,zc(t)为特征阻抗的时域值;a(t)为传播系数的时域值;km2为有理函数展开的系数;对应到每个采样时刻t[n1],即有特征阻抗zc[n1]和传播系数a[n1];
(2)为实现输电线路全长对应的特征阻抗和传播系数的时域表达式与电压电流采集量的频域匹配,采用加布莱克曼窗的sinc滤波器对特征阻抗和传播系数进行滤波;
加窗sinc滤波器内核h[j1]计算为:
Figure PCTCN2017112767-appb-000061
进行归一处理:
Figure PCTCN2017112767-appb-000062
式中,j1=1,2…M+1,fc为截止频率,大小在0到0.5之间。若线路长度短,采样频率fmax很大,在与电压和电流进行卷积运算时,需降低采样频率至fmaxres时,可令fc=1/(2×(fmax/fmaxres+1))。M为滤波器内核长度,其必须为偶数,对应该截止频率,可取值为4fc;K为系数;w[j1]为布莱克曼窗函数,表示为:
w[j1]=0.42-0.5cos(2πj1/M)+0.08cos(4πj1/M)
滤波过程为:
Figure PCTCN2017112767-appb-000063
Figure PCTCN2017112767-appb-000064
式中,n1=1,2…Nt;zcfilter表示滤波后的特征阻抗;afilter表示滤波后的传播系数。滤波后的的信号与原信号存在M/2点的延时,则采样时刻t[n1]对应的滤波后的点为zcfilter[n1+M/2]和afilter[n1+M/2];
(3)降低滤波后的输电线路全长对应的特征阻抗和传播系数的采样频率至fmaxres(fmaxres<fmax);
对应重采样点后的时域的采样点数Ntres为:
Ntres=tmax·fmaxres
对应第n2个采样点的采样时刻tnew[n2](n2=1,2,3…Ntres)为:
tnew[n2]=(n2-1)/fmaxres
采用线性插值,得到重采样后的采样值为:
Figure PCTCN2017112767-appb-000065
Figure PCTCN2017112767-appb-000066
式中,zcres表示重采样后的特征阻抗;ares表示重采样后的传播系数;t1和t2为原采样时间序列t中的两个相邻时刻,且t1≤tnew[n2]≤t2;zc1和zc2为滤波后的特征阻抗zcfilter中,t1和t2时刻对应的采样值;a1和a2为滤波后的传播系数afilter中,t1和t2时刻对应的采样值。
B.采样输电线路首端电压um、电流im以及线路末端电压un、电流in,采样频率为fs(fs<fmaxres),采样点数为Ns。为在较短线路长度下实现电压电流采样率与传播常数的匹配,得到准确的计算结果,采用如下步骤对电压电流进行波形还原,并计算电压电流的模分量。根据波形还原法,将电压和电流的采样频率提高为fmaxres,并进行相模变换;具体包括以下步骤:
(1)如图3所示,波形还原法的计算过程为:
a)设与进行行波传输计算需要的采样率为fmaxres,对原信号x[i2]按照新的采样率的要求插入数值为零的点,i2=1,2…Ns,使得采样点数由Ns变为Nx(Nx=Ns·Nadd,Nadd=fmaxres/fs),得到重组信号xrec[i3](i3=1,2…Nx)即:
xrec[1+(i2-1)·Ndd]=x[i2],其余点为零
式中,x代表以fs为采样频率,采样得到的电压um、un以及电流im、in;xrec代表插入零点后的采样频率为fmax的电压umrec、unrec以及电流imrec、inrec
b)采用加布莱克曼窗的sinc滤波器对重组信号xrec[i3]滤波,设定截止频率fc2=1/(2·Nadd),选取适当的滤波器内核长度M2,滤波器内核为h2[j2],滤除1/(2·Nadd)以上次谐波:
Figure PCTCN2017112767-appb-000067
式中,j2=1,2…M2+1且i3=1,2…Nx;xrestore代表波形还原后的电压umrestore、unrestore以及电流imrestore、inrestore
c)还原后波形的截取,即去除xrestore信号的前M2/2个采样点和后M2/2个采样点,使得样时刻t[i3]对应的波形还原信号xrestore[i3+M2/2],得到截取后的还原信号xre[n3](n3=1,2…Nx-M2/2),有xre[n3]=xrestore[n3+M2/2];xre代表波形还原并截取后的电压umre、unre以及电流imre、inre
(2)相模变换过程:
Figure PCTCN2017112767-appb-000068
Figure PCTCN2017112767-appb-000069
Figure PCTCN2017112767-appb-000070
Figure PCTCN2017112767-appb-000071
式中,ummod1、unmod1以及immod1、inmod1分别为波形还原后电压和电流的一模分量;ummod2、unmod2以及immod2、inmod2分别表示波形还原后电压和电流的二模分量;ump、umn分别为电压umre 的p相(即图中um+)和n相(即图中um-);unp、unn分别为电压unre的p相(un+)和n相(un-);imp、imn分别为电流imre的p相(im+)和n相(im-);inp、inn分别为电流inre的p相(in+)和n相(in-)。
C.计算双端电压行波时域差动量uwavediffm和uwavediffn;设定门槛值为uset,依据故障判据uwavediffm[n3]≥uset||uwavediffn[n3]≥uset来判断输电线路区内是否发生故障;由于本算法不讨论故障类型的区分,故对故障的识别采用电压电流二模分量进行计算。
判断故障是否发生:
uwavediffm[n3]≥uset||uwavediffn[n3]≥uset
即当uwavediffm[n3]或uwavediffn[n3]两者之中任一值大于设定的门槛值uset时,则认为t[n3]时刻区内发生故障。为保证判断的可靠性,此时可以连续判断若干次或采用积分等方法进行判断。
则电压行波时域差动量为:
uwavediffm[n3]=umfw[n3]*ares[n2]-unbw[n3]
uwavediffn[n3]=unfw[n3]*ares[n2]-umbw[n3]
式中,uwavediffm为利用线路首端的二模正向电压行波进行线路全长传输和末端二模反向电压行波做差动的计算结果;uwavediffn为利用线路末端的二模正向电压行波进行线路全长传输和首端二模反向电压行波做差动的计算结果;
电压行波的计算过程:
umfw[n3]=ummod2[n3]+zcres[n2]*immod2[n3]
unfw[n3]=unmod2[n3]+zcres[n2]*inmod2[n3]
umbw[n3]=ummod2[n3]-zcres[n2]*immod2[n3]
unbw[n3]=unmod2[n3]-zcres[n2]*inmod2[n3]
式中,n3=1,2…Nx-M2/2且n2=1,2…Ntres;*表示卷积运算;umfw为线路首端的二模正向电压行波,umbw为线路首端的二模反向电压行波;unfw为线路末端的二模正向电压行波,unbw为线路末端的二模反向电压行波;
卷积计算的具体过程:
假设xx[j3]是一个N1点输入信号,j3为从1到N1的正整数,hh[j4]是N2点冲激响应,j4为从1到N2的正整数,两者卷积的结果为y[j5],它是一个N1+N2-1点信号,j5从1到N1+N2-1,则
Figure PCTCN2017112767-appb-000072
式中,j5=1,2…N1+N2-1且j4=1,2…N2。对于电压行波差动量的计算中,得到的信号仅取前Nx项。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:对本发明的具 体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

  1. 一种柔性直流输电线路的电压行波差动保护时域计算方法,其特征是,考虑柔性直流线路频率相关参数的影响,在时域内计算频率相关输电线路的特征阻抗和传播系数,通过采集输电线路首端和末端的电压和电流信号,分别计算该输电线路首端和末端的正反向电压行波,并根据首端与末端电压行波差值与设定电压门槛值的大小进行对比,从而判断区内故障是否发生。
  2. 如权利要求1所述的柔性直流输电线路的电压行波差动保护时域计算方法,其特征是,一个实例中的具体步骤细化为:
    步骤A:在时域内计算频率相关输电线路的特征阻抗和传播系数;
    步骤B:采集输电线路首端和末端的电压和电流信号是,采样输电线路首端电压um、电流im以及线路末端电压un、电流in,采样频率为fs,采样点数为Ns。根据波形还原法,选择滤波器内核为M2的滤波器进行滤波后截取,将电压和电流的采样频率提高为重采样后频率fmaxres(fmaxres>fs),则采样点数变为Nx-M2/2,其中Nx=Nsfmaxres/fs;并进行相模变换;
    步骤C:根据首端与末端电压行波差值与设定电压门槛值的大小进行对比,从而判断区内故障是否发生:计算双端电压行波时域差动量uwavediffm和uwavediffn;设定门槛值为uset,依据故障判据uwavediffm[n3]≥uset||uwavediffn[n3]≥uset(n3=1,2…Nx-M2/2)来判断输电线路区内是否发生故障;对故障的识别采用电压电流二模分量进行计算;进一步地,判断故障是否发生:
    uwavediffm[n3]≥uset||uwavediffn[n3]≥uset
    即当uwavediffm[n3]或uwavediffn[n3]两者之中任一值大于设定的门槛值uset时,则认为t[n3]时刻区内发生故障,为保证判断的可靠性,此时进行连续判断若干次或采用积分方法进行判断。
  3. 如权利要求2所述的柔性直流输电线路的电压行波差动保护时域计算方法,其特征是,步骤A具体地:
    步骤1:根据输电线路包括导线半径、导线对地平均高度、导线间距离、导线与导线镜像间距离的几何参数和电导矩阵G,利用卡松公式计算得到导线的阻抗矩阵,利用电位系数矩阵计算得到电容矩阵,进而计算线路全长l对应的特征阻抗和传播系数的频域表达式,最后运用有理函数拟合或傅里叶反变换方法将其变换到时域;
    步骤2:为实现输电线路全长对应的特征阻抗和传播系数的时域表达式与电压电流采集量的频域匹配,采用加布莱克曼窗的sinc滤波器对特征阻抗和传播系数进行滤波;
    步骤3:降低滤波后的输电线路全长对应的特征阻抗和传播系数的采样频率至fmaxres
  4. 如权利要求3所述的柔性直流输电线路的电压行波差动保护时域计算方法,其特征是,步骤1具体地:
    设定采样时间tmax,采样频率fmax,时域的采样点数Nt与频域的采样点数Nf为:
    Nt=Nf=tmax·fmax
    对应第n1个采样点的采样时刻t[n1]为:
    t[n1]=(n1-1)/fmax
    n1=1,2,3…Nt,对应第n1个采样点的频率f[n1]为:
    f[n1]=(n1-1)/tmax
    步骤(1):卡松公式计算线路阻抗矩阵Z的过程:
    自阻抗Zsi(i=1,2)为:
    Figure PCTCN2017112767-appb-100001
    式中Ri,ac为导线i的交流电阻;Xi,ac表示导线i的交流内电抗;ΔRsi和ΔXsi均为卡松大地返回效应校正项;hi表示导线i对地的平均高度;ri为导线i的半径;大地和空气具有同一导磁率μ0,其值为4π×10-4H/m;ω为角频率,ω=2πf[n1];
    互阻抗Zmij为:
    Figure PCTCN2017112767-appb-100002
    式中j=1,2且j≠i,dij表示导线i和导线j之间的距离;dij,mir为导线i和导线j大地镜像间的距离;ΔRmij和ΔXmij为卡松大地返回效应校正项;
    Figure PCTCN2017112767-appb-100003
    步骤(2):电位系数矩阵P的计算过程:
    Figure PCTCN2017112767-appb-100004
    Figure PCTCN2017112767-appb-100005
    式中,Psi为矩阵P的对角线元素;Pmij为矩阵P的非对角线元素;ε0为空间介电常数,取值8.85×10-12F/m;则电容矩阵C=P-1
    步骤(3):相模变换过程:
    Z′=SZ
    C′=SC
    G′=SG
    式中,Z′表示导线单位长度阻抗的模量;C′表示导线单位长度电容的模量;G′表示导线单位长度电导的模量;S为解耦矩阵,
    Figure PCTCN2017112767-appb-100006
    步骤(4):特征阻抗Zc和传播系数A的频域函数的计算:
    Z′=R′+jωL′
    Figure PCTCN2017112767-appb-100007
    Figure PCTCN2017112767-appb-100008
    式中,R′为导线单位长度的电阻,L′为单位长度电感;
    步骤(5):采用有理函数拟合法的频域变换到时域过程:
    利用有理函数拟合法对频域的Zc(ω)和A(ω)函数进行拟合,拟合线段斜率有变化的点即为有理函数的极点和零点,则特征阻抗和传播系数的频域近似表示形式为:
    Figure PCTCN2017112767-appb-100009
    Figure PCTCN2017112767-appb-100010
    式中,s=jω并且m1<m2;zm1为零点,m1=1,2,3…,m2=1,2,3…,pm2为极点,所有零点与极点均为负的实数;k为系数;τmin表示波的最短传播时间;Zc,approx(s)表示特征阻抗的有理函数近似式;Aapprox(s)表示传播系数的有理函数近似式;
    将其变换到时域:
    Figure PCTCN2017112767-appb-100011
    Figure PCTCN2017112767-appb-100012
    式中,zc(t)为特征阻抗的时域值;a(t)为传播系数的时域值;km2为有理函数展开的系数;对应到每个采样时刻t[n1],即有特征阻抗zc[n1]和传播系数a[n1]。
  5. 如权利要求3所述的柔性直流输电线路的电压行波差动保护时域计算方法,其特征是,步骤2具体地:
    加窗sinc滤波器内核h[j1]计算为:
    Figure PCTCN2017112767-appb-100013
    进行归一处理:
    Figure PCTCN2017112767-appb-100014
    式中,j1=1,2…M+1,fc为截止频率,大小在0到0.5之间;M为滤波器内核长度,其必须为偶数;K为系数;w[j1]为布莱克曼窗函数,表示为:
    w[j1]=0.42-0.5cos(2πj1/M)+0.08cos(4πj1/M)
    滤波过程为:
    Figure PCTCN2017112767-appb-100015
    Figure PCTCN2017112767-appb-100016
    式中,n1=1,2…Nt;zcfilter表示滤波后的特征阻抗;afilter表示滤波后的传播系数,滤波后的的信号与原信号存在M/2点的延时,则采样时刻t[n1]对应的滤波后的点为zcfilter[n1+M/2]和afilter[n1+M/2]。
  6. 如权利要求3所述的柔性直流输电线路的电压行波差动保护时域计算方法,其特征是,步骤3具体地:
    对应重采样点后的时域的采样点数Ntres为:
    Ntres=tmax·fmaxres
    式中,fmaxres为重采样后的采样频率,
    对应第n2个采样点的采样时刻tnew[n2]为:
    tnew[n2]=(n2-1)/fmaxres
    n2=1,2,3…Ntres,采用线性插值,得到重采样后的采样值为:
    Figure PCTCN2017112767-appb-100017
    Figure PCTCN2017112767-appb-100018
    式中,zcres表示重采样后的特征阻抗;ares表示重采样后的传播系数;t1和t2为原采样时间序列t中的两个相邻时刻,且t1≤tnew[n2]≤t2;zc1和zc2为滤波后的特征阻抗zcfilter中,t1和t2时刻对应的采样值;a1和a2为滤波后的传播系数afilter中,t1和t2时刻对应的采样值。
  7. 如权利要求2所述的柔性直流输电线路的电压行波差动保护时域计算方法,其特征是,步骤B中波形还原法的计算过程具体地:
    步骤(1):设与进行行波传输计算需要的采样率为fmaxres,对原信号x[i2]按照新的采样率的要求插入数值为零的点,i2=1,2…Ns,使得采样点数由Ns变为Nx,Nx=Ns·Nadd,Nadd=fmaxres/fs,得到重组信号xrec[i3]即:
    xrec[1+(i2-1)·Ndd]=x[i2],其余点为零,
    式中,i3=1,2…Nx,x代表以fs为采样频率,采样得到的电压um、un以及电流im、in;xrec代表插入零点后的采样频率为fmax的电压umrec、unrec以及电流imrec、inrec
    步骤(2):采用加布莱克曼窗的sinc滤波器对重组信号xrec[i3]滤波,设定截止频率fc2=1/(2·Nadd),选取适当的滤波器内核长度M2,滤波器内核为h2[j2],滤除1/(2·Nadd)以上次谐波:
    Figure PCTCN2017112767-appb-100019
    式中,j2=1,2…M2+1且i3=1,2…Nx;xrestore代表波形还原后的电压umrestore、unrestore以及电流imrestore、inrestore
    步骤(3):还原后波形的截取,即去除xrestore信号的前M2/2个采样点和后M2/2个采样点,使得样时刻t[i3]对应的波形还原信号xrestore[i3+M2/2],得到截取后的还原信号xre[n3], n3=1,2…Nx-M2/2,有xre[n3]=xrestore[n3+M2/2];xre代表波形还原并截取后的电压umre、unre以及电流imre、inre
  8. 如权利要求2所述的柔性直流输电线路的电压行波差动保护时域计算方法,其特征是,步骤B中电气量相模变换过程具体地:
    Figure PCTCN2017112767-appb-100020
    Figure PCTCN2017112767-appb-100021
    Figure PCTCN2017112767-appb-100022
    Figure PCTCN2017112767-appb-100023
    式中,ummod1、unmod1以及immod1、inmod1分别为波形还原后电压和电流的一模分量;ummod2、unmod2以及immod2、inmod2分别表示波形还原后电压和电流的二模分量;ump、umn分别为电压umre的p相和n相;unp、unn分别为电压unre的p相和n相;imp、imn分别为电流imre的p相和n相;inp、inn分别为电流inre的p相和n相。
  9. 如权利要求2所述的柔性直流输电线路的电压行波差动保护时域计算方法,其特征是,步骤C具体地:
    电压行波时域差动量的计算过程:
    uwavediffm[n3]=(ummod2[n3]+zcres[n2]*immod2[n3])*ares[n2]-(unmod2[n3]-zcres[n2]*inmod2[n3])
    uwavediffn[n3]=(unmod2[n3]+zcres[n2]*inmod2[n3])*ares[n2]-(ummod2[n3]-zcres[n2]*immod2[n3])
    式中,n3=1,2…Nx-M2/2且n2=1,2…Ntres;*表示卷积运算;uwavediffm为利用线路首端的二模正向电压行波进行线路全长传输和末端二模反向电压行波做差动的计算结果;uwavediffn为利用线路末端的二模正向电压行波进行线路全长传输和首端二模反向电压行波做差动的计算结果;
    卷积计算的具体过程:
    假设xx[j3]是一个N1点输入信号,j3为从1到N1的正整数,hh[j4]是N2点冲激响应,j4为从1到N2的正整数,两者卷积的结果为y[j5],它是一个N1+N2-1点信号,j5从1到N1+N2-1,则
    Figure PCTCN2017112767-appb-100024
    式中,j5=1,2…N1+N2-1且j4=1,2…N2
PCT/CN2017/112767 2017-10-29 2017-11-24 柔性直流输电线路的电压行波差动保护时域计算方法 WO2019080238A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/316,043 US11397206B2 (en) 2017-10-29 2017-11-24 Time domain calculation method of voltage traveling-wave differential protection for VSC-HVDC transmission lines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711028925.7 2017-10-29
CN201711028925.7A CN107861024B (zh) 2017-10-29 2017-10-29 柔性直流输电线路的电压行波差动保护时域计算方法

Publications (1)

Publication Number Publication Date
WO2019080238A1 true WO2019080238A1 (zh) 2019-05-02

Family

ID=61697902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112767 WO2019080238A1 (zh) 2017-10-29 2017-11-24 柔性直流输电线路的电压行波差动保护时域计算方法

Country Status (3)

Country Link
US (1) US11397206B2 (zh)
CN (1) CN107861024B (zh)
WO (1) WO2019080238A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113361886A (zh) * 2021-05-28 2021-09-07 西安交通大学 一种柔性直流电网直流侧极间短路电流的定量评价方法
CN113962171A (zh) * 2021-10-13 2022-01-21 西安交通大学 一种有损地面上输电线路的高频耦合方法
CN114142443A (zh) * 2021-11-26 2022-03-04 西南交通大学 一种基于随机矩阵的柔性直流电网线路纵联保护方法
CN115267419A (zh) * 2022-06-22 2022-11-01 天津大学 不依赖线路参数及边界元件的柔性直流线路方向纵联保护方法
CN115828819A (zh) * 2023-02-22 2023-03-21 西安热工研究院有限公司 一种高精度传输线高频耦合电流计算方法及系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030915B (zh) * 2019-03-21 2021-11-02 杰克缝纫机股份有限公司 差动量检测装置及方法
CN110133433B (zh) * 2019-03-27 2021-07-06 国网浙江省电力有限公司电力科学研究院 一种基于突变积分乘积的直流配电网故障扰动辨识方法
CN110120653B (zh) * 2019-04-30 2021-03-23 天津大学 一种适用于对称双极直流线路的纵联行波差动保护方法
CN112083237B (zh) * 2020-07-31 2021-06-29 西安交通大学 一种用于大尺度电气设备宽频特性时域测量方法及系统
CN111913076A (zh) * 2020-08-19 2020-11-10 国网江苏省电力有限公司盐城供电分公司 一种输电线路故障检测系统及其检测方法
CN113013850B (zh) * 2021-02-25 2021-12-21 华南理工大学 一种高压直流线路快速纵联保护方法和系统
CN113358973B (zh) * 2021-06-07 2023-11-28 重庆大学 一种柔性直流电网故障检测方法
CN114002559B (zh) * 2021-11-29 2022-10-14 昆明理工大学 一种柔性直流输电线路行波双端测距方法及系统
CN115015686A (zh) * 2022-01-26 2022-09-06 昆明理工大学 一种lcc-vsc混合高压直流输电线路故障测距方法及系统
CN115308538B (zh) * 2022-10-11 2023-04-07 西安兴汇电力科技有限公司 基于yolov5的配电网故障定位方法、系统、终端及存储介质
CN115980514B (zh) * 2023-02-20 2023-06-06 国网湖北省电力有限公司武汉供电公司 一种基于多端行波频率矩阵的复杂配电网故障定位方法
CN117434389B (zh) * 2023-12-20 2024-04-09 昆明理工大学 线路故障检测方法、系统、设备及计算机可读存储介质
CN117572157B (zh) * 2024-01-15 2024-04-12 湖南湘能智能电器股份有限公司 一种配网线路异常行波定位方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071355A (zh) * 2015-05-19 2015-11-18 国家电网公司 一种长距离特高压直流输电线路的差动保护方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252275B (zh) * 2008-04-08 2015-07-22 昆明理工大学 一种利用六相系统新相模变换的耦合双回线故障测距方法
CN101509949B (zh) * 2009-03-20 2011-05-04 华南理工大学 直流输电线路双端非同步且参数自适应的故障测距时域法
RU2489724C1 (ru) * 2009-06-26 2013-08-10 Абб Рисерч Лтд. Способ идентификации вида замыкания в линии электропередачи
CN102081132B (zh) * 2010-12-04 2013-01-16 西南交通大学 一种动态条件下的输电线路故障双端测距方法
CN102721902B (zh) * 2012-06-28 2014-12-31 国家电网公司 基于电压行波预测的输电线路故障检测方法
US9316671B2 (en) * 2012-10-03 2016-04-19 Abb Technology Ltd Method for sensing a fault in a power system based on travelling wave currents
CN103199511B (zh) * 2013-03-29 2015-05-27 西安交通大学 基于模型参数识别的vsc-hvdc输电线路纵联保护方法
CN103248021B (zh) * 2013-05-10 2015-11-04 国家电网公司 一种有损耗输电线路电压行波保护方法
CN105044551B (zh) * 2015-06-10 2018-03-20 中国电力科学研究院 一种架空线‑高压电缆混合线路故障定位方法
US10090664B2 (en) * 2015-09-18 2018-10-02 Schweitzer Engineering Laboratories, Inc. Time-domain directional line protection of electric power delivery systems
CN105262069B (zh) * 2015-11-02 2017-10-03 上海交通大学 基于故障直流分量的高压直流线路纵联保护方法
CN108603909B (zh) * 2016-01-20 2021-11-26 日立能源瑞士股份公司 用于检测电力系统中的传输线路的故障的方法和装置
CN106646140B (zh) * 2017-01-25 2019-07-12 国网四川省电力公司电力科学研究院 基于测量波阻抗的高压直流输电线路区内外故障识别方法
EP3379273B1 (de) * 2017-03-22 2019-09-18 Siemens Aktiengesellschaft Verfahren, einrichtung und system zum ermitteln des fehlerortes eines fehlers auf einer leitung eines elektrischen energieversorgungsnetzes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071355A (zh) * 2015-05-19 2015-11-18 国家电网公司 一种长距离特高压直流输电线路的差动保护方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JING, XIAOPING ET AL.: "Study on Traveling-wave Differential Protection on UHV Transmission Line with High Voltage Shunt Reactor", HIGH VOLTAGE APPARATUS, vol. 52, no. 2, 16 February 2016 (2016-02-16), pages 0121 - 0127, XP055594327, DOI: 10.13296/j.1001-1609.hva.2016.02.020 *
LIN, SHENG ET AL.: "A Single Terminal Fault Location Method Based on Time-Frequency Characteristic of Traveling Wave", POWER SYSTEM TECHNOLOGY, vol. 36, no. 1, January 2012 (2012-01-01), pages 258 - 264 *
LIU, JIAN ET AL.: "A Novel Pilot Directional Protection Scheme for HVDC Transmission Line Based on Specific Frequency Current", 2014 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON 2014, 22 October 2014 (2014-10-22), pages 976 - 982, XP032712001, DOI: doi:10.1109/POWERCON.2014.6993931 *
WANG, LEI ET AL.: "Study on the Traveling Wave Differential Protection and the Improvement Scheme for VSC-HVDC Transmission Lines", POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016 IEEE PES ASIA-PACIFIC, 28 October 2016 (2016-10-28), pages 1943 - 1947, XP033020994, DOI: doi:10.1109/APPEEC.2016.7779829 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113361886A (zh) * 2021-05-28 2021-09-07 西安交通大学 一种柔性直流电网直流侧极间短路电流的定量评价方法
CN113361886B (zh) * 2021-05-28 2023-12-19 西安交通大学 一种柔性直流电网直流侧极间短路电流的定量评价方法
CN113962171A (zh) * 2021-10-13 2022-01-21 西安交通大学 一种有损地面上输电线路的高频耦合方法
CN113962171B (zh) * 2021-10-13 2024-04-16 西安交通大学 一种有损地面上输电线路的高频耦合方法
CN114142443A (zh) * 2021-11-26 2022-03-04 西南交通大学 一种基于随机矩阵的柔性直流电网线路纵联保护方法
CN114142443B (zh) * 2021-11-26 2022-08-16 西南交通大学 一种基于随机矩阵的柔性直流电网线路纵联保护方法
CN115267419A (zh) * 2022-06-22 2022-11-01 天津大学 不依赖线路参数及边界元件的柔性直流线路方向纵联保护方法
CN115828819A (zh) * 2023-02-22 2023-03-21 西安热工研究院有限公司 一种高精度传输线高频耦合电流计算方法及系统

Also Published As

Publication number Publication date
US20210373064A1 (en) 2021-12-02
CN107861024B (zh) 2020-02-21
US11397206B2 (en) 2022-07-26
CN107861024A (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
WO2019080238A1 (zh) 柔性直流输电线路的电压行波差动保护时域计算方法
Evrenosoglu et al. Travelling wave based fault location for teed circuits
Li et al. A new fault detection and fault location method for multi-terminal high voltage direct current of offshore wind farm
CN108107321B (zh) 一种电力系统故障波形比对方法
Gao et al. A novel whole-line quick-action protection principle for HVDC transmission lines using one-end voltage
CN103207308B (zh) 避雷器阻性电流和容性电流暂态值的测量方法
WO2016065959A1 (zh) 中性点不接地的10kV系统中铁磁谐振的诊断方法
CN105866627B (zh) 一种适用于电力电子系统的故障信号检测方法
CN113300343B (zh) 一种基于余弦相似度的柔性直流电网故障线路识别方法
CN102288873A (zh) 一种基于平波电感元件性能方程测后模拟识别直流输电线路区内外故障的方法
CN105259416B (zh) 一种应用于it系统的绝缘电阻检测器及其检测方法
CN103427405B (zh) 基于高阶累积量的输电线路差动保护方法
CN108199356B (zh) 基于波前信息的直流输电线路超高速保护方法
Zhang et al. Research on single-ended protection principle of LCC-VSC three-terminal DC transmission line
CN112526283A (zh) 一种高压直流输电线路的故障定位方法
CN103823158B (zh) 采用不变矩的谐振接地系统故障选线方法
CN105842582A (zh) 基于emtr的柔性直流线路故障测距方法
Nie et al. Convolution based time domain fault location method for lines in MMC-HVDC grids with distributed and frequency dependent line model
CN110426557A (zh) 一种集成绝缘检测的igbt驱动电路及检测方法
Zou et al. Traveling-wave based fault location with high grounding resistance for HVDC transmission lines
CN112103915B (zh) 一种矿用变频驱动系统漏电保护方法和系统
CN114142442A (zh) 一种直流输电线路保护方法及系统
CN114301175A (zh) 基于注入信号的配电台区户变关系识别的方法及装置
CN113848389B (zh) 互耦输电线路的零序阻抗估计方法和装置
Bello et al. A Comparative Study of Different Traveling Wave Fault Location Techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17929476

Country of ref document: EP

Kind code of ref document: A1