WO2019078080A1 - レベリング剤、機能層形成用インク組成物及び積層電子部品 - Google Patents

レベリング剤、機能層形成用インク組成物及び積層電子部品 Download PDF

Info

Publication number
WO2019078080A1
WO2019078080A1 PCT/JP2018/037872 JP2018037872W WO2019078080A1 WO 2019078080 A1 WO2019078080 A1 WO 2019078080A1 JP 2018037872 W JP2018037872 W JP 2018037872W WO 2019078080 A1 WO2019078080 A1 WO 2019078080A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink composition
block copolymer
functional layer
siloxane
layer
Prior art date
Application number
PCT/JP2018/037872
Other languages
English (en)
French (fr)
Inventor
秋山 英也
徹 鶴田
寿計 田中
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2019078080A1 publication Critical patent/WO2019078080A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode

Definitions

  • the present invention relates to a leveling agent, an ink composition for forming a functional layer, and a laminated electronic component.
  • the laminated electronic components can be roughly classified into low molecular weight materials and high molecular weight materials from the viewpoint of materials.
  • low molecular weight electronic materials in addition to vacuum film formation conventionally used, in recent years, various coating methods such as inkjet, nozzle jet, flexographic printing, transfer method, etc. are used to form a film containing an electronic material. Research and development of technology is being conducted. On the other hand, the high molecular weight electronic materials are not suitable for vacuum film formation because of their large molecular weight, and the coating methods described above are mainly used as in the low molecular weight materials.
  • a film formed of a functional layer obtained by coating film formation is inferior in smoothness to vacuum film formation and lowers the characteristics of the laminated electronic component, so the functional layer constituting the laminated electronic component, for example, the light emitting layer has high flatness.
  • the leveling agent that can be formed, the method of using the same, the ink composition, and the laminated electronic component are examined.
  • a radically polymerizable compound containing a polydimethylsiloxane structure, and an aromatic vinyl It has been proposed to use as a leveling agent a block copolymer containing a polydimethylsiloxane structure in the side chain, which is copolymerized with a compound.
  • the obtained coating film may have a certain flatness as a leveling effect, but from the viewpoint of pointing to a high-performance laminated electronic component, the flatness is I can not secure enough.
  • this leveling agent has a flat coating film as a result of the relative decrease in the exposed polydimethylsiloxane structure at the surface of the applied functional layer since the polydimethylsiloxane structure constituting it is located on the molecular side chain of the polymer. The sex was insufficient and there was a possibility of swelling. As a result, when manufacturing a multilayer electronic component including such a functional layer, there is a concern that the driving stability such as the light emission efficiency and the life may deteriorate.
  • An object of the present invention is to provide a leveling agent, an ink composition for forming a functional layer, and a laminated electronic component.
  • a desired functional material can be obtained by using, as a leveling agent, a copolymer having a polydimethylsiloxane structure located in the molecular main chain of a polymer.
  • a leveling agent a copolymer having a polydimethylsiloxane structure located in the molecular main chain of a polymer.
  • the present invention is a leveling agent comprising a linear block copolymer containing poly (aromatic vinyl) and organopoly (siloxane) as structural units and containing a siloxane bond in the main chain.
  • a leveling agent comprising a linear block copolymer containing poly (aromatic vinyl) and organopoly (siloxane) as structural units and containing a siloxane bond in the main chain.
  • the present invention includes a linear block copolymer including a poly (aromatic vinyl) and an organopoly (siloxane) as structural units, and having a main chain containing a siloxane bond, and a functional material
  • the present invention relates to an ink composition for forming a functional layer, which contains an organic solvent.
  • the present invention includes a linear block copolymer including a poly (aromatic vinyl) and an organopoly (siloxane) as structural units, and a siloxane bond being contained in the main chain, and a functional material.
  • the present invention relates to a laminated electronic component including a film to be contained as an essential functional layer.
  • the copolymer having the polydimethylsiloxane structure located in the molecular main chain of the polymer is used as the leveling agent, segregation of the polysiloxane structure on the application surface is remarkable, and a desired functional material is obtained In the formation of the functional layer containing the organic layer, it is possible to produce a smoother organic thin film, and the laminated electronic component having the functional layer formed from the ink composition containing the leveling agent further improves the driving stability. There is a remarkable technical effect of being able to
  • the present invention is a leveling agent comprising a linear block copolymer containing poly (aromatic vinyl) and organopoly (siloxane) as structural units and arranged so that a siloxane bond is contained in the main chain. .
  • the linear block copolymer constituting the leveling agent contains, as structural units, poly (aromatic vinyl) which is a polymerized unit of aromatic vinyl and organopoly (siloxane) which is a polymerized unit of siloxane.
  • the structural unit of the organopoly (siloxane), which is a polymerized unit of siloxane that constitutes a linear block copolymer, is a polymer main chain in terms of achieving the above-described technical effects of the present invention when viewed as a polymer.
  • siloxane bond it is necessary to be arranged.
  • the use of a siloxane monomer having a siloxane bond in the side chain of the polymer for example, a monomer represented by the following general formula (1) achieves the technical effects of the present invention. It is not suitable for the occasion.
  • n 1 to 1000
  • R 1 and R 2 each represent a hydrocarbon group which may have an ether bond
  • R 3 has a vinyl group or a vinyl group. Represents an organic group
  • siloxane monomer suitable for the preparation of the linear block copolymer in the present invention is not particularly limited.
  • Cyclic siloxane monomers such as siloxane, tetradecamethylcycloheptasiloxane, hexadecamethylcyclooctasiloxane, octadecamethylcyclononasiloxane, etc. may be mentioned.
  • the cyclic siloxane monomer is linked to the end of the structural unit of poly (aromatic vinyl) described later by ring opening.
  • the other constituent unit constituting the linear block copolymer is poly (aromatic vinyl), which is a polymerized unit of aromatic vinyl.
  • the aromatic vinyl is not particularly limited, but styrene, styrene derivative (p-dimethylsilylstyrene, (p-vinylphenyl) methyl sulfide, p-hexynylstyrene, p-methoxystyrene, p-tert-butyldimethylsiloxy Styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, ⁇ -methylstyrene, chlorostyrene and the like), vinyl naphthalene, vinyl anthracene, 1,1-diphenylethylene, vinyl carbazole and the like can be mentioned.
  • aromatic vinyls such as styrene and styrene derivatives such as styrene, ⁇ -methylstyrene, ⁇ -ethylstyrene, ⁇ -butylstyrene or alkyl-substituted styrenes such as 4-methylstyrene.
  • linear block copolymer used in the present invention is a linear block copolymer which contains poly (aromatic vinyl) and organopoly (siloxane) as structural units and is arranged such that a siloxane bond is contained in the main chain. It can be obtained by copolymerizing the aromatic vinyl and the siloxane monomer as described above.
  • the linear block copolymer may be a diblock copolymer containing one poly (aromatic vinyl) structural unit and one organopoly (siloxane) structural unit as block units, or poly (aromatic vinyl) ) May be a triblock copolymer containing two structural units and one organopoly (siloxane) structural unit, or tetra containing two poly (aromatic vinyl) structural units and two organo poly (siloxane) structural units. It may be a block copolymer.
  • a linear block copolymer of polystyrene and polydimethylsiloxane is easy to produce, and it is easy to separately form block copolymers having different numbers of block units as described above, and the effect of improving the leveling property is higher. And it is preferable at the point which the drive stability of the obtained electronic device at the time of using the said leveling agent for manufacture of an electronic device is more excellent.
  • the present invention contains a structural unit consisting of a polymerization unit of an aromatic vinyl or another copolymerizable monomer other than the above-mentioned siloxane monomer, as long as the above-described technical effects of the present invention are not impaired. It is good.
  • other copolymerizable monomers for example, known and commonly used (meth) acrylate monomers, styryl monomers, vinyl ether monomers, allyl monomers and the like can be used.
  • the silicon content in the linear block copolymer is not particularly limited, but is preferably 5% by mass or more, more preferably 12% by mass or more, and still more preferably 14 to 25% by mass. .
  • the silicon content in the copolymer is 12% by mass or more, the surface conditioning ability becomes high, and the function of the leveling agent (preferential evaporation suppression or prevention effect of the solvent and / or generation of layer waviness) It is preferable from the ability to exhibit the suppression or prevention effect) effectively.
  • the silicon content rate of the said copolymer can be controlled by adjusting the addition amount of a siloxane monomer suitably.
  • the value calculated by the following formula shall be adopted as the value of "silicon content rate".
  • the linear block copolymer may have any molecular weight, but for example, the weight average molecular weight (Mw) in terms of polystyrene is preferably 500 to 100,000, and the copolymer From the viewpoint of the smoothness of the incorporated coating film, it is more preferably 5,000 to 50,000.
  • Mw weight average molecular weight
  • the value measured by the measuring method of an Example shall be employ
  • a linear block copolymer used as a leveling agent for example, a block copolymer having the following structure is mentioned.
  • x, y and z mean the number of repeating units of aromatic vinyl or siloxane in parentheses.
  • R4 and R6 each represent a hydrogen atom or an alkyl group.
  • R5 and R7 each represent a hydrogen atom, an alkyl group which may have a substituent, an aromatic ring or a halogen atom.
  • Linear block copolymers having a plurality of repeating units x and z of aromatic vinyl and repeating units y of siloxane such as the block copolymer represented by the above general formula (3) are of x, y and z If the value is too large, the viscosity itself tends to be high, so it is preferable to use a linear block copolymer in which x, y and z are properly adjusted.
  • the polymerization method is not particularly limited.
  • the polymerization method may, for example, be radical polymerization, anionic polymerization or cationic polymerization.
  • radical polymerization or anion polymerization from the viewpoint of molecular weight control.
  • reaction conditions are not specifically limited as radical polymerization, For example, it can superpose
  • radical polymerization initiators can be used, such as 2,2'-azobisisobutyronitrile, 2,2'-azobis- (2,4-dimethylvaleronitrile), 2,2'- Azo compounds such as azobis- (4-methoxy-2,4-dimethylvaleronitrile), polymer azo polymerization initiator containing polydimethylsiloxane unit; benzoyl peroxide, lauroyl peroxide, t-butylperoxypivalate, t-butyl peroxy Organic peroxides such as ethyl hexanoate, 1,1'-bis- (t-butylperoxy) cyclohexane, t-amyl peroxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate and the like Hydrogen peroxide and the like can be mentioned. These may be used alone or in combination of two or more.
  • the amount of the radical polymerization initiator to be used is not particularly limited, and generally 0.1 to 20 parts by mass with respect to 100 parts by mass of the monomer.
  • the amount of the radical polymerization initiator used is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the monomer, 1 More preferably, it is 10 parts by mass.
  • Representative solvents which can be used for radical polymerization include, for example, acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl isopropyl ketone, methyl n-butyl ketone, methyl isobutyl ketone, methyl n-amyl ketone, Ketone solvents such as methyl-n-hexyl ketone, diethyl ketone, ethyl-n-butyl ketone, di-n-propyl ketone, diisobutyl ketone, cyclohexanone, holone and the like;
  • Ether solvents such as ethyl ether, isopropyl ether, n-butyl ether, diisoamyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol, dioxane, tetrahydrofuran and the like;
  • Alcohol solvents such as methanol, ethanol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, diacetone alcohol, 3-methoxy-1-propanol, 3-methoxy-1-butanol, 3-methyl-3-methoxybutanol and the like;
  • Hydrocarbon solvents such as toluene, xylene, Solvesso 100, Solvesso 150, Swazole 1800, Swazole 310, Isopar E, Isopar G, Exxon naphtha No. 5, Exxon naphtha No. 6, etc. may be mentioned.
  • solvents may be used alone or in combination of two or more.
  • the amount of the solvent used in the radical polymerization reaction is not particularly limited, but is preferably 10 to 3,000 parts by mass from the viewpoint of the stirring property with respect to 100 parts by mass of the charged monomer, from the viewpoint of reactivity
  • the amount is more preferably 10 to 1,000 parts by mass, and further preferably 10 to 500 parts by mass from the viewpoint of molecular weight control.
  • reaction conditions are not specifically limited as anionic polymerization, For example, it can superpose
  • anionic polymerization initiators can be used, and examples thereof include methyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, isopropyllithium, n-propyllithium, isopropyllithium phenyllithium and benzyl.
  • Organic alkali metals such as lithium, hexyllithium, butylsodium, butylpotassium, etc .; Organic substances such as methylmagnesium chloride, methylmagnesium bromide, methylmagnesium iodide, ethylmagnesium bromide, propylmagnesium bromide, phenylmagnesium chloride, phenylmagnesium chloride, dibutylmagnesium, etc. Alkaline earth metals; alkali metals such as lithium, sodium, potassium and the like; diethyl zinc, dibutyl zinc, ethyl butyl zinc etc.
  • Zinc trimethylaluminum, triethylaluminum, methylbisphenoxyaluminum, isopropylbisphenoxyaluminum, bis (2,6-di-t-butylphenoxy) methylaluminum, bis (2,6-di-t-butyl-4-methylphenoxy And organic aluminum such as methyl aluminum. These may be used alone or in combination of two or more.
  • the amount of the anionic polymerization initiator used is not particularly limited, but is preferably 0.001 to 3 parts by mass, and more preferably 0.005 to 2 parts by mass with respect to 100 parts by mass of the monomer. More preferably, it is 0.01 to 1 part by mass.
  • a solvent inert with respect to an anion is mentioned among the solvents which can be used for the said radical polymerization.
  • These organic solvents can be used alone or in combination of two or more.
  • the amount of the solvent used in the anionic polymerization reaction is not particularly limited, but is preferably 10 to 3,000 parts by mass from the viewpoint of the stirring property with respect to 100 parts by mass of the charged monomer, from the viewpoint of reactivity
  • the amount is more preferably 10 to 1,000 parts by mass, and further preferably 10 to 500 parts by mass from the viewpoint of molecular weight control.
  • reaction conditions are not specifically limited as cationic polymerization, For example, it can superpose
  • cationic polymerization initiators can be used, for example, protonic acids such as hydrochloric acid, sulfuric acid, perchloric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, chlorosulfonic acid, fluorosulfonic acid, etc. And boron trifluoride, aluminum chloride, titanium tetrachloride, stannic chloride, Lewis acids such as ferric chloride, and the like. These may be used alone or in combination of two or more.
  • the amount of the cationic polymerization initiator to be used is not particularly limited, and generally 0.001 to 1 part by mass with respect to 100 parts by mass of the monomer.
  • the amount of the cationic polymerization initiator used is preferably 0.005 to 0.5 parts by mass with respect to 100 parts by mass of the monomer. More preferably, it is 0.01 to 0.3 parts by mass.
  • the solvent inert with respect to a cation is mentioned among the solvents which can be used for the said radical polymerization.
  • These organic solvents can be used alone or in combination of two or more.
  • the amount of the solvent used in the cationic polymerization reaction is not particularly limited, but is preferably 10 to 3000 parts by mass from the viewpoint of the stirring property with respect to 100 parts by mass of the charged monomer, and 10 from the viewpoint of reactivity.
  • the amount is more preferably 1000 parts by mass, and further preferably 10 parts by mass to 500 parts by mass from the viewpoint of molecular weight control.
  • radical polymerization anionic polymerization
  • cationic polymerization may be living polymerization, and for example, it is possible to use the method described in “Quaternary chemical review No. 18, 1993 Precision polymerization Japan Chemical Society ed. it can.
  • the linear block copolymer used as the leveling agent of the present invention is, for example, a poly (aromatic) polymer unit obtained by polymerizing aromatic vinyl in the presence of an initiator (nucleophilic species) in an organic solvent Group unit is obtained by ring-opening polymerization of a siloxane monomer such as cyclic siloxane, optionally using a combination of an alcohol; trimethylsilyl chloride; a terminator such as alkyl halide, etc. by living anionic polymerization method You can get it more easily.
  • aromatic vinyl is polymerized in the presence of n-butyllithium as an initiator, it becomes a copolymer in which at least one polymer terminal is terminated by n-butyl group.
  • a cyclic reactor tubular reactor
  • the linear block copolymer used as the leveling agent of the present invention comprises polymerizing aromatic vinyl in an organic solvent in the presence of a polydimethylsiloxane unit-containing polymeric azo polymerization initiator to form a poly (dimethylsiloxane) structural unit It can also be easily obtained by radical polymerization methods such as obtaining structural units of poly (aromatic vinyl) and poly (aromatic vinyl).
  • the leveling agent comprising the linear block copolymer of the present invention has a function of improving the leveling properties after film formation of functional materials, so, for example, various functional layer formation in combination with a solvent Can be applied to the composition for Specifically, for example, a curable composition by heat or light, an ink composition, a coating composition, an electronic material composition and the like can be mentioned.
  • the leveling agent comprising the linear block copolymer of the present invention may be used in combination with various binder resins for ink, paint or molding, a solvent and, if necessary, a coloring agent, clear or colored. Resin compositions for obtaining printing inks, paints and plastic moldings can be prepared.
  • the ink composition of the present invention includes, for example, a linear block copolymer containing a poly (aromatic vinyl) and an organopoly (siloxane) as structural units, and containing a siloxane bond in the main chain,
  • the ink composition for functional layer formation which contains a functional material and an organic solvent is mentioned.
  • the ink composition for forming a functional layer of the present invention comprises a functional material as described below, a leveling agent comprising the above-mentioned specific linear block copolymer of the present invention, and an organic solvent.
  • the functional material may be any of publicly known and commonly used materials, and is not particularly limited. For example, dyes, pigments, semiconductor nanocrystals, semiconductor materials, organic electroluminescent materials, conductive materials, and insulation Materials and the like.
  • Dyes as functional materials include 4-dicyanmethylene-2-methyl-6- (p-dimethyaminostyryl) -4H-pyran (DCM), coumarin, pyrene, perylene, rubrene, derivatives thereof, Or any combination thereof.
  • DCM 4-dicyanmethylene-2-methyl-6- (p-dimethyaminostyryl) -4H-pyran
  • Nanocrystals Semiconductor nanocrystals (hereinafter, sometimes simply referred to as “nanocrystals”) as functional materials are nanosized crystals (nanocrystal particles) that absorb excitation light and emit fluorescence or phosphorescence, For example, it is a crystal having a maximum particle diameter of 100 nm or less measured by a transmission electron microscope or a scanning electron microscope.
  • the nanocrystals can be excited, for example, by light energy or electrical energy of a predetermined wavelength to emit fluorescence or phosphorescence.
  • the nanocrystal may be a red light emitting crystal that emits light (red light) having an emission peak in the wavelength range of 605 to 665 nm, and emits light (green light) having an emission peak in the wavelength range of 500 to 560 nm It may be a green light emitting crystal, or may be a blue light emitting crystal which emits light (blue light) having an emission peak in the wavelength range of 420 to 480 nm. Also, in one embodiment, the ink preferably contains at least one of these nanocrystals.
  • the wavelength of the emission peak of the nanocrystal can be confirmed, for example, in a fluorescence spectrum or a phosphorescence spectrum measured using an ultraviolet-visible spectrophotometer.
  • the nanocrystals may be formed of a semiconductor material and can have various structures.
  • the nanocrystal may be composed only of the core composed of the first semiconductor material, and the core composed of the first semiconductor material and at least a part of the core are covered with the first semiconductor It may be configured to have a material and a shell composed of a second semiconductor material different from the material.
  • the nanocrystal structure may be a structure consisting only of the core (core structure) or a structure consisting of the core and the shell (core / shell structure).
  • the nanocrystal covers at least a part of the shell and is a third semiconductor different from the first and second semiconductor materials. It may further have a shell (second shell) composed of a material.
  • the structure of the nanocrystals may be a structure (core / shell / shell structure) composed of the core, the first shell and the second shell.
  • each of the core and the shell may be composed of a mixed crystal (for example, CdSe + CdS, CIS + ZnS, etc.) containing two or more semiconductor materials.
  • the nanocrystal is at least one semiconductor material selected from the group consisting of II-VI semiconductors, III-V semiconductors, I-III-VI semiconductors, IV semiconductors and I-II-IV-VI semiconductors. It is preferable to be composed of
  • the semiconductor material CdS, CdSe, CdTe, ZnS , ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, InP, InAs, InSb, GaP, GaAs, GaSb, AgInS 2, AgInSe 2, AgInTe 2, AgGaS 2 , AgGaSe 2 , AgGaTe 2 , CuInS 2 , CuInSe 2 , CuInTe 2 , CuInTe 2 , CuGaS 2 , CuGaSe 2 , CuGaTe 2 , CuGaTe 2 , Si, C, Ge, and Cu 2 ZnSnS 4 and the like.
  • the nanocrystals composed of these semiconductor materials can easily control the emission spectrum, can reduce the production cost and improve the mass productivity while securing the reliability.
  • the shape of the nanocrystal is not particularly limited, and may be any geometric shape or any irregular shape.
  • Examples of the shape of the nanocrystal include a sphere, a tetrahedron, an ellipsoid, a pyramid, a disc, a branch, a net, and a rod.
  • a shape with less directionality for example, spherical shape, tetrahedral shape, etc.
  • the uniformity and flowability of the ink can be further enhanced by using the nanocrystals of such shape.
  • Semiconductor nanocrystals are sometimes referred to as quantum dots, quantum rods, etc., as described above, depending on their shape.
  • Organic electroluminescent material It will not restrict
  • a light emitting material used for a light emitting layer a hole injecting material used for a hole injecting layer, a hole transporting layer
  • the hole transport material used, the electron transport material used for the electron transport layer, and the electron injection material used for the electron injection layer can be mentioned.
  • the light-emitting material has a function of contributing directly or indirectly to light emission performed using holes and electrons in the light-emitting layer.
  • emission includes emission by fluorescence and emission by phosphorescence.
  • the light emitting material comprises a dopant material and a host material.
  • Dopant material has a function of emitting light using energy obtained by recombining the transported holes and electrons.
  • the dopant material is not particularly limited as long as it has the above-mentioned function. Dopant materials are generally classified into red dopant materials, blue dopant materials, and green dopant materials.
  • the red dopant material is not particularly limited, and various red fluorescent materials and red phosphorescent materials can be used alone or in combination of two or more.
  • the red fluorescent material is not particularly limited as long as it emits red fluorescence.
  • perylene derivatives benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, porphyrin derivatives, nile red, 2- (1,1- (1,1-) Dimethylethyl) -6- (2- (2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H-benzo (ij) quinolizine-9-yl) ethenyl) -4H- Pyrane-4H-ylidene) propanedinitrile (DCJTB), 4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran (DCM), poly [2-methoxy-5- (4) 2-ethylhexyloxy) -1,4- (1-cyanovinylenephenylene)], poly [ ⁇ 9,9-dihexyl-2,7-bis
  • the red phosphorescent material is not particularly limited as long as it emits red phosphorescence, and examples thereof include metal complexes such as iridium, ruthenium, platinum, osmium, rhenium, palladium and europium, and ligands of these metal complexes Those in which at least one of them has a phenylpyridine skeleton, a bipyridyl skeleton, a porphyrin skeleton and the like are also mentioned.
  • the blue dopant material is not particularly limited, and examples thereof include various blue fluorescent materials and blue phosphorescent materials, and one or more of them can be used in combination.
  • the blue fluorescent material is not particularly limited as long as it emits blue fluorescence.
  • distyrylamine derivatives such as distyryldiamine compounds, fluoranthene derivatives, pyrene derivatives, perylene and perylene derivatives, anthracene derivatives, benzo Oxazole derivatives, benzothiazole derivatives, benzimidazole derivatives, chrysene derivatives, phenanthrene derivatives, distyrylbenzene derivatives, tetraphenylbutadiene, 4,4'-bis (9-ethyl-3-carbazovinylene) -1,1'-biphenyl (BCzVBi) ), Poly [(9.9-dioctylfluorene-2,7-diyl) -co- (2,5-dimethoxybenzene-1,4-diyl)], poly [(9,9-dihexyloxyfluorene-2, 7-diyl)
  • the blue phosphorescent material is not particularly limited as long as it emits blue phosphorescence, and examples thereof include metal complexes such as iridium, ruthenium, platinum, osmium, rhenium, palladium, etc. Specifically, bis [4 , 6-Difluorophenyl pyridinate-N, C2 ']-picolinate-iridium, tris [2- (2,4-difluorophenyl) pyridinate-N, C2'] iridium, bis [2- (3,5-tri) And fluoromethyl) pyridinate-N, C2 ']-picolinate-iridium, bis (4,6-difluorophenyl pyridinate-N, C2') iridium (acetylacetonate) and the like.
  • Green dopant material The green dopant material is not particularly limited, and examples thereof include various green fluorescent materials and green phosphorescent materials, and one or more of them may be used in combination.
  • the green fluorescent material is not particularly limited as long as it emits green fluorescence.
  • quinacridone and its derivatives such as coumarin derivatives and quinacridone derivatives, 9,10-bis [(9-ethyl-3-carbazole)- Vinylenyl] -anthracene, poly (9,9-dihexyl-2,7-vinylene fluorenylene), poly [(9,9-dioctyl fluorene-2,7-diyl) -co- (1,4-diphenylene-vinylene] -2-methoxy-5- ⁇ 2-ethylhexyloxy ⁇ benzene)], poly [(9,9-dioctyl-2,7-divinylene fluorenylene) -ortho-co- (2-methoxy-5- (2 -Ethoxylhexyloxy) -1,4-phenylene)] and the like.
  • the green phosphorescent material is not particularly limited as long as it emits green phosphorescence, and examples thereof include metal complexes such as iridium, ruthenium, platinum, osmium, rhenium, palladium and the like.
  • fac-tris [5-fluoro-2- (5-trifluoro) And methyl-2-pyridine) phenyl-C, N] iridium and the like.
  • the host material has a function of recombining holes and electrons to generate an exciton and transferring energy of the exciton to the dopant material (Forster transfer or Dexter transfer) to excite the dopant material.
  • a dopant material can be used as doped into the host material.
  • Such host material is not particularly limited as long as it exerts the above-mentioned function to the dopant material to be used, but, for example, acene derivatives such as naphthacene derivatives, naphthalene derivatives, anthracene derivatives (acene type Materials), Distyrylarylene derivatives, perylene derivatives, distyrylbenzene derivatives, distyrylamine derivatives, quinolinolato metal complexes such as tris (8-quinolinolato) aluminum complex (Alq3), and triaryls such as tetramer of triphenylamine Amine derivatives, oxadiazole derivatives, silole derivatives, carbazole derivatives, biscarbazole derivatives, indolocarbazole derivatives, oligothiophene derivatives, benzopyran derivatives, triazole derivatives, benzoxazole derivatives, benzothia Lumpur derivatives, quinoline derivatives, 4,4'-bis
  • the molecular weight of the light emitting material is preferably 5,000 g / mol or less, more preferably 2,000 g / mol or less, and more preferably 300 to 2,000 g / mol because the light emitting material can be easily dissolved in a solvent. More preferably, it is mol.
  • the content of the dopant material as the functional material is preferably 0.1 to 50% by mass, and more preferably 0.1 to 20% by mass, with respect to the mass of the host material. It is preferable from the ability to form a uniform film
  • a quantum dot light emitting diode which is a type of semiconductor nanocrystal, has a narrower emission spectrum width than an organic light emitting diode (OLED), and an organic EL element using OLED
  • a light emitting element using a QLED is preferable because the color reproduction range in forming a display can be wider. For example, in the case of a wider color gamut standard, for example, “BT2020”, color display that can not be produced by OLED becomes possible with QLED.
  • the hole injection material has a function of taking in holes from the anode in the hole injection layer. Usually, the holes taken from the anode are transported to the hole transport layer or the light emitting layer.
  • the hole injection material is not particularly limited, but phthalocyanine compounds such as copper phthalocyanine; triphenylamine derivatives such as 4,4 ′, 4 ′ ′-tris [phenyl (m-tolyl) amino] triphenylamine; 1,4 Cyano compounds such as 5, 5, 8, 9, 12-hexaazatriphenylenehexacarbonitrile, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane; vanadium oxide, molybdenum oxide, etc.
  • phthalocyanine compounds such as copper phthalocyanine
  • triphenylamine derivatives such as 4,4 ′, 4 ′ ′-tris [phenyl (m-tolyl) amino] triphenylamine
  • 1,4 Cyano compounds such as 5, 5, 8, 9, 12-hexaazatriphenylenehexacarbonitrile, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethan
  • Oxides amorphous carbon; conductive polymers such as polyaniline (emeraldin), poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonic acid) (PEDOT-PSS), polypyrrole etc.
  • the hole injection material is preferably a conductive polymer, and PEDOT-PSS It is more preferable that
  • the above-mentioned hole injection materials may be used alone or in combination of two or more.
  • the hole transport material has a function of efficiently transporting holes in the hole transport layer.
  • the hole transport layer can have a function of preventing transport of electrons.
  • the hole transport layer generally takes holes from the anode or the hole injection layer and transports the holes to the light emitting layer.
  • the hole transport material is not particularly limited, but TPD (N, N'-diphenyl-N, N'-di (3-methylphenyl) -1,1'-biphenyl-4,4'diamine), ⁇ - NPD (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), m-MTDATA (4,4 ', 4' '-tris (3-methylphenylphenylamino) triphenylamine) And low molecular weight triphenylamine derivatives such as polyvinyl chloride, high molecular compounds such as diamine polymers polymerized by introducing a substituent into polyvinylcarbazole and triarylamine derivatives, etc.
  • TPD N, N'-diphenyl-N, N'-di (3-methylphenyl) -1,1'-biphenyl-4,4'diamine
  • ⁇ - NPD 4,4'-bis [N-
  • the hole transport material is a triphenylamine derivative.
  • a polymer compound obtained by introducing a substituent into a triarylamine derivative and polymerizing it, and a diamine polymer having a fluorene skeleton Rukoto is more preferable.
  • the above-mentioned hole transport materials may be used alone or in combination of two or more.
  • the electron transport material has a function of efficiently transporting electrons in the electron transport layer.
  • the electron transport layer can have a function of preventing the transport of holes.
  • the electron transport layer generally takes electrons from the cathode or electron injection layer and transports the electrons to the light emitting layer.
  • the electron transport material is not particularly limited, but tris (8-quinolate) aluminum (Alq), tris (4-methyl-8-quinolinolate) aluminum (Almq3), bis (10-hydroxybenzo [h] quinolinate) beryllium Quinoline skeletons such as BeBq2), bis (2-methyl-8-quinolinolato) (p-phenylphenolate) aluminum (BAlq), bis (8-quinolinolato) zinc (Znq), 8-hydroxyquinolinolatolithium (Liq), etc.
  • a metal complex having a benzoquinoline skeleton a metal complex having a benzoxazoline skeleton such as bis [2- (2′-hydroxyphenyl) benzoxazolato] zinc (Zn (BOX) 2); bis [2- (2 ′) -Hydroxyphenyl) benzothiazolate] zinc (Z (BTZ) 2) a metal complex having a benzothiazoline skeleton; 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (PBD), 3- (4-) Biphenylyl) -4-phenyl-5- (4-tert-butylphenyl) -1,2,4-triazole (TAZ), 1,3-bis [5- (p-tert-butylphenyl) -1,3,6 4-Oxadiazol-2-yl] benzene (OXD-7), 9- [4- (5-phenyl-1,3,4-oxazo
  • the above-mentioned electron transport materials may be used alone or in combination of two or more.
  • the electron injection material has a function of taking in electrons from the cathode in the electron transport layer. Usually, electrons taken from the cathode are transported to the electron transport layer or the light emitting layer.
  • the electron injecting material that can be used for the electron injecting layer is not particularly limited, but includes alkali metals such as lithium and calcium; metals such as strontium and aluminum; alkali metal salts such as lithium fluoride and sodium fluoride; Alkali metal compounds such as lithium lithium; alkaline earth metal salts such as magnesium fluoride; oxides such as aluminum oxide and the like.
  • the electron injecting material is preferably an alkali metal, an alkali metal salt or an alkali metal compound, and more preferably an alkali metal salt or an alkali metal compound.
  • the above-mentioned electron injection materials may be used alone or in combination of two or more.
  • the content of the organic electroluminescent material as a functional material in the functional layer forming ink composition is preferably 0.1 to 20% by mass with respect to the total amount of the functional layer forming ink composition, and 0 More preferably, it is 1 to 10% by mass. It is preferable from the ability to form the uniform film
  • examples of the solvent or dispersion medium applicable to the ink for forming a functional layer of the present invention include known organic solvents. Specifically, aromatic solvents, alkane solvents, aliphatic ester solvents, aliphatic ether solvents, aliphatic ketone solvents, alcohol solvents, amide solvents, other solvents and the like can be mentioned.
  • aromatic solvents examples include mesitylene, tert-butylbenzene, indane, diethylbenzene, pentylbenzene, 1,2,3,4-tetrahydronaphthalene, naphthalene, hexylbenzene, heptylbenzene, cyclohexylbenzene, 1-methylnaphthalene, and 2-methylnaphthalene.
  • Aromatic hydrocarbon solvents such as ethylnaphthalene, 1-ethylnaphthalene, octylbenzene, diphenylmethane, 1,4-dimethylnaphthalene, nonylbenzene, 3-ethylbiphenyl and dodecylbenzene; phenyl acetate, methyl benzoate, ethyl benzoate, benzoic acid
  • Aromatic ester solvents such as isopropyl acid, methyl 4-methylbenzoate, propyl benzoate, butyl benzoate, isopentyl benzoate, ethyl p-anisate, dimethyl phthalate; ethyl phenyl ether 4-Methylanisole, 2,6-dimethylanisole, 2,5-dimethylanisole, 3,5-dimethylanisole, 4-ethylanisole, 2,3-dimethylanisole, butylphenylether, p-d
  • aliphatic ester solvents examples include hexyl acetate, butyl lactate, isoamyl lactate, amyl valerate, ethyl levrilate, ⁇ -valerolactone, ethyl octanoate, ⁇ -hexalactone, isoamyl hexanate, amyl hexanate, acetic acid Nonyl, methyl decanoate, diethyl glutarate, ⁇ -heptalactone, ⁇ -caprolactone, octalactone, propylene carbonate, ⁇ -nonanolactone, hexyl hexanoate, diisopropyl adipate, ⁇ -nonanolactone, glycerol triacetate, ⁇ -decanolactone, adipine And dipropyl acid, ⁇ -undecalactone and the like.
  • aliphatic ether solvents examples include diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, diethylene glycol diethyl ether, diethylene glycol diacetate, diethylene glycol butyl methyl ether, diethylene glycol monoethyl ether acetate, dihexyl ether, diethylene glycol monobutyl ether acetate and diethylene glycol Dibutyl ether, diheptyl ether, dioctyl ether and the like can be mentioned.
  • aliphatic ketone solvents examples include diisobutyl ketone, cycloheptanone, isophorone, 6-undecanone and the like.
  • alcohol solvent examples include 1-heptanol, 2-ethyl-1-hexanol, propylene glycol, ethylene glycol, diethylene glycol monobutyl ether, ethyl 3-hydroxyhexanate, tripropylene glycol monomethyl ether, diethylene glycol, cyclohexanol and the like. Can be mentioned.
  • amide solvents examples include N, N-dimethylacetamide and the like.
  • Examples of the other solvent include water, dimethyl sulfoxide, acetone, chloroform, methylene chloride and the like.
  • the above-mentioned solvents may be used alone or in combination of two or more.
  • the content of the organic solvent is preferably 90 to 99.5% by mass, and more preferably 95 to 99.5% by mass from the viewpoint of film formation, with respect to the total amount of the functional layer-forming ink composition.
  • the ink composition for forming a functional layer of the present invention can be applied to known printing methods and coating methods. Specifically, for example, an offset printing method, a gravure printing method, a flexo printing method, a screen printing method, a reverse printing method, a dispenser printing method, an inkjet printing method, a microcontact printing method and the like can be mentioned. Among them, it is preferable to apply the ink jet printing method because ink can be applied only to a necessary amount in a fine area and there is no ink waste.
  • the viscosity of the organic solvent is not particularly limited, but is preferably 0.6 to 6.0 mPa ⁇ s, more preferably 1.2 to 5.0 mPa ⁇ s, and 1.5 to 5 Particularly preferred is 4.5 mPa ⁇ s.
  • the viscosity of the organic solvent is less than 1.0 mPa ⁇ s, the ink composition of the present invention is ejected by the inkjet method to form a coating film with ink droplets, clogging of the nozzle of the inkjet head easily occurs. Therefore, the viscosity is preferably 1.0 mPa ⁇ s or more.
  • the viscosity of the organic solvent exceeds 6.0 mPa ⁇ s, the viscosity of the obtained ink composition becomes excessively high, and it becomes difficult to discharge the minute droplets of the ink from the ink jet head. It is preferable that it is the following.
  • the surface tension of the organic solvent is preferably 20 to 45 mN / m, more preferably 25 to 43 mN / m, and particularly preferably 28 to 40 mN / m.
  • the wettability of the ink composition on the nozzle surface does not become excessively high when the ink composition of the present invention is ejected by the inkjet method when the surface tension of the ink is 20 mN / m or more, and the ink composition It is preferable because bending in the flying direction of the droplets due to adhesion around the nozzle is less likely to occur.
  • the surface tension of the ink composition is 45 mN / m or less because the shape of the meniscus at the nozzle tip is easily stabilized, and the control of the discharge amount and discharge timing of the ink can be facilitated.
  • the surface tension at 25 ° C. is set to 25 to 40 mN / m and 25 It is preferable to set the viscosity at 1 ° C. to 1 to 75 mPa ⁇ s.
  • an organic solvent for preparing the ink composition for forming a functional layer using an organic solvent having an aromatic ring structure in one molecule, such as cyclohexylbenzene, is able to obtain an organic electroluminescent element obtained. It is preferable because long life can be achieved.
  • the organic solvent which has aromatic ring structure and another organic solvent can also be combined, the organic electroluminescence obtained by using together aliphatic ether like diethylene glycol butyl methyl ether in that case is obtained. It is more preferable because the organic light emitting device such as the device can have a longer lifetime.
  • the content of the linear block copolymer is preferably 0.0001 to 3.0% by mass with respect to the nonvolatile matter containing the functional material, and from the viewpoint of leveling, 0.001 to 1.0 More preferably, it is mass%.
  • the ink composition for forming a functional layer of the present invention may contain known and commonly used additives as required.
  • the linear block copolymer as described above is further optionally provided for the purpose of improving the ink jet discharge property or improving the smoothness upon drying of the ink jet discharge material.
  • Other additives such as leveling agents and viscosity modifiers may be contained.
  • the leveling agent is not particularly limited as other than the above-mentioned linear block copolymer, but silicone compounds, fluorine compounds, siloxane compounds, nonionic surfactants, ionic surfactants, titanate couplings An agent etc. can be used. Among these, silicone compounds and fluorine compounds are preferable.
  • the silicone compound is not particularly limited, and examples thereof include dimethyl silicone, methyl silicone, phenyl silicone, methylphenyl silicone, alkyl modified silicone, alkoxy modified silicone, polyether modified silicone and the like. Among these, dimethyl silicone and methylphenyl silicone are preferable.
  • the fluorine-based compound is not particularly limited, and examples thereof include polytetrafluoroethylene, polyvinylidene fluoride, fluoroalkyl methacrylate, perfluoropolyether, perfluoroalkyl ethylene oxide and the like. Among these, polytetrafluoroethylene is preferred.
  • the siloxane-based compound is not particularly limited, and examples thereof include dimethylsiloxane compounds (trade names: KF96L-1, KF96L-5, KF96L-10, KF96L-100, manufactured by Shin-Etsu Silicone Co., Ltd.).
  • the above-mentioned leveling agents may be used alone or in combination of two or more.
  • the addition ratio of the non-volatile component of the linear block copolymer varies depending on the desired performance, when the ink composition for a light emitting element is assumed as the ink composition for forming a functional layer, it is relative to the total mass of the ink composition.
  • the content is preferably 0.001 to 5% by mass, and more preferably 0.001 to 1% by mass. It is preferable from the ability to improve the smoothness of a coating film as the addition rate of the non volatile matter of the said copolymer is 0.001 mass% or more. On the other hand, it is preferable from the ability to improve luminous efficiency that the addition rate of a leveling agent is 5 mass% or less.
  • the viscosity modifier is not particularly limited, and poly ( ⁇ -methylstyrene), polystyrene, styrene / acrylonitrile copolymer, styrene / butadiene / acrylonitrile copolymer, polymethyl methacrylate, methacryl / styrene copolymer, polycarbonate, etc.
  • Thermoplastic resins can be used.
  • polystyrene polystyrene
  • styrene / acrylonitrile copolymer polystyrene / butadiene / acrylonitrile copolymer
  • polymethyl methacrylate polystyrene
  • the above-mentioned viscosity modifiers may be used alone or in combination of two or more.
  • the addition ratio of the viscosity modifier varies depending on the desired performance, it is preferably 0.001 to 3% by mass, and preferably 0.01 to 1% by mass with respect to the total mass of the ink composition for organic electroluminescence. More preferably, it is%. It is preferable from the ability to suppress aggregation of the light emission host material and to improve the light emission efficiency when the addition ratio of the viscosity modifier is 0.001 mass% or more. On the other hand, it is preferable from the ability to improve the flight
  • a functional material such as, for example, an organic electroluminescent material or a semiconductor nanocrystal is inactivated by oxygen, water, etc. and may not function stably
  • the dissolved oxygen and water content in the ink is preferably 200 ppm or less, more preferably 100 ppm or less, and still more preferably 10 ppm or less.
  • metal ions and halogen ions are repeatedly washed, removed through ion exchange resin, and foreign particles having a large particle diameter are filtered, for example, by using the ink composition for forming a functional layer of the present invention as an inkjet printer.
  • the ink composition for forming a functional layer of the present invention as an inkjet printer.
  • a target electronic component can be obtained by laminating a film containing and as an essential functional layer so as to contain other layers as necessary.
  • the organic electroluminescent (light emitting) device includes at least an anode, a light emitting layer, and a cathode.
  • the organic electroluminescent device may include one or more other layers such as a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer.
  • you may include well-known things, such as a sealing member.
  • the anode is not particularly limited, but metals such as gold (Au), copper iodide (CuI), indium tin oxide (ITO), tin oxide (SnO 2 ), zinc oxide (ZnO) and the like may be used. These materials may be used alone or in combination of two or more.
  • the thickness of the anode is not particularly limited, but is preferably 10 to 1000 nm, and more preferably 10 to 200 nm.
  • the anode can be formed by a method such as vapor deposition or sputtering. At this time, pattern formation may be performed by a photolithography method or a method using a mask.
  • the hole injection layer is an optional component in the organic electroluminescent device and has a function of taking in holes from the anode. Usually, the holes taken from the anode are transported to the hole transport layer or the light emitting layer.
  • the materials that can be used for the hole injection layer are the same as those described above, and thus the description thereof is omitted here.
  • the thickness of the hole injection layer is not particularly limited, but is preferably 0.1 nm to 5 ⁇ m.
  • the hole injection layer may be a single layer or a stack of two or more.
  • the hole injection layer can be formed by a wet film formation method and a dry film formation method.
  • the ink composition containing the above-mentioned known and commonly used hole injection material or the ink composition for forming a functional layer of the present invention is usually obtained. Drying the coated film.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method, a letterpress printing method, a gravure printing method, a screen printing method, a nozzle printing method and the like.
  • the hole injection layer is formed by a dry film formation method, a vacuum evaporation method or the like can be applied.
  • the hole transport layer is an optional component in the organic electroluminescent device and has a function of efficiently transporting holes.
  • the hole transport layer can have a function of preventing transport of electrons.
  • the hole transport layer generally takes holes from the anode or the hole injection layer and transports the holes to the light emitting layer.
  • the materials that can be used for the hole transport layer may be the same as those described above, and thus the description thereof is omitted here.
  • the thickness of the hole transport layer is not particularly limited, but is preferably 1 nm to 5 ⁇ m, more preferably 5 nm to 1 ⁇ m, and still more preferably 10 to 500 nm.
  • the hole transport layer can be formed by a wet film formation method and a dry film formation method.
  • the hole transport layer is formed by a wet film formation method
  • an ink composition containing the above-mentioned known and commonly used hole transport material or the ink composition for forming a functional layer of the present invention is usually obtained. Drying the coated film.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method, a letterpress printing method, a gravure printing method, a screen printing method, a nozzle printing method and the like.
  • a vacuum evaporation method etc. may be applied.
  • the light emitting layer has a function of generating light emission using energy generated by recombination of holes and electrons injected into the light emitting layer.
  • the thickness of the light emitting layer is not particularly limited, but is preferably 2 nm to 30 ⁇ m, more preferably 10 nm to 20 ⁇ m, still more preferably 15 nm to 15 ⁇ m, and particularly preferably 15 to 200 nm. preferable. It is preferable from the ability to control a film thickness with high precision as it is the said range.
  • the light emitting layer can be formed by a wet film formation method and a dry film formation method.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method, a letterpress printing method, a gravure printing method, a screen printing method, a nozzle printing method and the like.
  • the light emitting layer is formed by a dry film formation method, a vacuum evaporation method or the like can be applied.
  • the electron transport layer is an optional component in the organic electroluminescent device and has a function of efficiently transporting electrons.
  • the electron transport layer can have a function of preventing the transport of holes.
  • the electron transport layer generally takes electrons from the cathode or electron injection layer and transports the electrons to the light emitting layer.
  • the above-mentioned electron transport materials may be used alone or in combination of two or more.
  • the thickness of the electron transport layer is not particularly limited, but is preferably 5 nm to 5 ⁇ m, and more preferably 5 to 200 nm.
  • the electron transport layer may be a single layer or a stack of two or more.
  • the electron transport layer can be formed by a wet film formation method and a dry film formation method.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method, a letterpress printing method, a gravure printing method, a screen printing method, a nozzle printing method and the like.
  • the electron transport layer is formed by a dry film formation method, a vacuum evaporation method or the like may be applied.
  • the electron injection layer is an optional component in the organic light emitting device and has a function of taking in electrons from the cathode. Usually, electrons taken from the cathode are transported to the electron transport layer or the light emitting layer.
  • the materials that can be used for the electron injection layer are the same as those described above.
  • the above-mentioned electron injection materials may be used alone or in combination of two or more.
  • the thickness of the electron injection layer is not particularly limited, but is preferably 0.1 nm to 5 ⁇ m.
  • the electron injection layer may be a single layer or two or more layers stacked.
  • the electron injection layer can be formed by a wet film formation method and a dry film formation method.
  • the electron injection layer is formed by a wet film formation method
  • a coated film obtained by applying an ink composition containing the above-mentioned known and commonly used electron injection material or the ink composition for forming a functional layer of the present invention And drying.
  • the coating method is not particularly limited, and examples thereof include an inkjet printing method, a letterpress printing method, a gravure printing method, a screen printing method, a nozzle printing method and the like.
  • the electron injection layer is formed by a dry film formation method, a vacuum evaporation method or the like can be applied.
  • the cathode is not particularly limited, and lithium, sodium, magnesium, aluminum, sodium-potassium alloy, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, rare earth metal, etc. may be mentioned. . These materials may be used alone or in combination of two or more.
  • the cathode can be usually formed by a method such as vapor deposition or sputtering.
  • the thickness of the cathode is not particularly limited, but is preferably 10 to 1000 nm, and more preferably 10 to 200 nm.
  • a method of manufacturing an organic electroluminescent device is provided.
  • the method of manufacturing the organic electroluminescent device is a function prepared to have viscosity and surface tension suitable for the above-mentioned ink jet printing method, using a hole injecting material, a hole transporting material, a light emitting material, etc. as a functional material
  • a step of using a layer forming ink composition as an ink composition for an organic electroluminescent element, and applying it on a support by an inkjet printing method to form a functional layer (hereinafter also referred to as “functional layer forming step” )including.
  • the functional layer forming step is a step of applying the ink composition for an organic electroluminescent element on a support or a lower layer by an inkjet method to form a functional layer.
  • FIG. 1 is a fragmentary sectional view which shows typically the process of forming a coating film by the inkjet method.
  • FIG. 1 has a substrate 1, an anode 2 disposed on the substrate, and a hole transport layer 4 disposed on the anode.
  • the laminate of the plurality of anodes 2 and the hole transport layer 4 provided on the substrate is separated by the bank 3.
  • the ink composition for an organic electroluminescent device is discharged from the nozzle 6 of the ink jet head 7, the coating film 5 of the ink composition for an organic electroluminescent device is formed on the hole transport layer 4.
  • the light emitting layer can be formed by drying the obtained coating film.
  • Ink composition for organic electroluminescent device As the ink composition for an organic electroluminescent element, the above-described one can be used, and the description thereof is omitted here.
  • the support is a constituent layer of the organic electroluminescent device adjacent to the light emitting layer, and differs depending on the organic electroluminescent device to be produced.
  • the support in the case of producing an organic electroluminescent device comprising an anode, a light emitting layer, and a cathode, the support is an anode or a cathode.
  • the support is a hole injection layer or an electron transport layer.
  • the support is an anode, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, or a cathode, preferably an anode, a hole injection layer, a hole transport layer, More preferably, it is a hole injection layer or a hole transport layer, and still more preferably a hole transport layer.
  • a bank may be formed on the support. By having the bank, the light emitting layer can be formed only at a desired location.
  • the height of the bank is preferably 0.1 to 5.0 ⁇ m, more preferably 0.2 to 3.0 ⁇ m, and still more preferably 0.2 to 2.0 ⁇ m.
  • the width of the bank opening is preferably 10 to 200 ⁇ m, more preferably 30 to 200 ⁇ m, and still more preferably 50 to 100 ⁇ m.
  • the length of the bank opening is preferably 10 to 400 ⁇ m, more preferably 20 to 200 ⁇ m, and still more preferably 50 to 200 ⁇ m.
  • the taper angle of the bank is preferably 10 to 100 degrees, more preferably 10 to 90 degrees, and still more preferably 10 to 80 degrees.
  • the application is performed by, for example, an inkjet printing method.
  • the ink composition for organic electroluminescent elements is discharged with respect to a support body from the nozzle of an inkjet head.
  • the ejection amount of the ink composition for an organic electroluminescent element is preferably 1 to 50 pL / time, more preferably 1 to 30 pL / time, and still more preferably 1 to 20 pL / time. .
  • the opening diameter of the ink jet head is preferably 5 to 50 ⁇ m, and more preferably 10 to 30 ⁇ m, from the viewpoint of nozzle clogging and discharge accuracy.
  • the temperature at which the coating film is formed is not particularly limited, but it is preferably 10 to 50 ° C., more preferably 15 to 40 ° C., from the viewpoint of obtaining stable drying speed and printing characteristics. It is more preferable that the temperature is ⁇ 30 ° C.
  • the relative humidity at the time of forming the coating is not particularly limited, but is preferably 0.01 ppm to 80%, more preferably 0.05 ppm to 60%, and preferably 0.1 ppm to 15%. More preferably, it is particularly preferably 1 ppm to 1%, and most preferably 5 to 100 ppm. It is preferable from the control of the conditions which form a coating film becoming it easy that relative humidity is 0.01 ppm or more becomes easy. On the other hand, the relative humidity of 80% or less is preferable because the amount of adsorbed water on the coating film which can affect the obtained light emitting layer can be reduced.
  • a light emitting layer can be formed by drying the obtained coating film.
  • the drying temperature is not particularly limited, but may be left at room temperature (25 ° C.) or may be heated. When heating is performed, the temperature is preferably 40 to 200 ° C., and more preferably 40 to 150 ° C.
  • the pressure for drying is preferably under reduced pressure, more preferably under reduced pressure of 0.001 to 100 Pa.
  • drying time is preferably 1 to 90 minutes, and more preferably 1 to 30 minutes.
  • the leveling agent of the present invention exerts the above-described effects by being contained in at least one of the above-described layers of the light-emitting element. It can also be contained in adjacent or separated two layers. It is preferable that the light emitting layer be contained essentially and also be contained in the adjacent layer.
  • the weight average molecular weight of the linear block copolymer obtained in the above example was measured using polystyrene as a standard substance using a high-speed GPC apparatus (manufactured by Tosoh Corporation).
  • the silicon content was determined from the ratio of the proton of siloxane to the total proton in NMR.
  • the ink composition for organic electroluminescent elements which used the luminescent material as an organic electroluminescent element material which is a functional material was manufactured.
  • Example 9 [Preparation of ink for light emitting layer] 0.01 g of tris [2- (p-tolyl) pyridine] iridium (Ir (mppy) 3 ) (manufactured by Lumtec) and 0.09 g of 9,9 '-(p-tert-butylphenyl) -1, 3-biscarbazole (H-1; manufactured by DIC Corporation) was mixed with 9 g of cyclohexylbenzene and dissolved by heating. The resulting solution was cooled to room temperature, and 0.0005 g of diblock copolymer 1 prepared in Example 1 was added.
  • Example 10 to 16 Except that the linear block copolymer prepared in each of Examples 2 to 8 was used in the same amount as the diblock copolymer 1 in terms of mass of non-volatile component, each was produced in the same manner as in Example 9 An ink composition for an electroluminescent device was produced.
  • Example 17 An ink composition for an organic electroluminescent element was produced in the same manner as in Example 9 except that Ir (mppy) 3) and HT-2 represented by the following formula were used instead of H-1.
  • Examples 18 to 24 Except that the linear block copolymer prepared in each of Examples 2 to 8 was used in the same amount as the diblock copolymer 1 in terms of mass of non-volatiles, the respective organic compounds were prepared in the same manner as in Example 17. An ink composition for an electroluminescent device was produced.
  • Example 25 An ink composition for an organic electroluminescent device was manufactured in the same manner as Example 9, except that diethylene glycol butyl methyl ether was used instead of cyclohexylbenzene as a solvent.
  • Example 26 An ink composition for an organic electroluminescent device was produced in the same manner as in Example 9, except that cyclohexylbenzene / diethylene glycol butyl methyl ether (mass ratio 1: 1) was used instead of cyclohexylbenzene as the solvent. .
  • Each of the ink compositions for organic electroluminescent devices of the above-mentioned respective examples has a surface tension of 25 to 40 mN / m at 25 ° C. and a viscosity of 1 to 75 mPa ⁇ s at 25 ° C. It was an ink composition suitable for the printing method.
  • Comparative Example 1 In place of the linear block copolymer used in the examples, the same amount as diblock copolymer 1 is added in terms of mass of nonvolatile component of aralkyl modified dimethylsiloxane ("BYK-322" manufactured by Bick Chemie, Ltd.) An ink composition for an organic electroluminescent device was manufactured in the same manner as in Example 9 except for the above.
  • BYK-322 aralkyl modified dimethylsiloxane
  • Comparative Example 2 In place of the linear block copolymer used in the examples, except that the same amount as diblock copolymer 1 is added in terms of mass of nonvolatile component of the siloxane polymer described in Example 4 of WO 2017/073650. In the same manner as in Example 9, an ink composition for an organic electroluminescent device was produced.
  • Comparative Example 3 In place of the linear block copolymer used in the examples, the same amount as diblock copolymer 1 is added in terms of mass of nonvolatile component of aralkyl modified dimethylsiloxane ("BYK-322" manufactured by Bick Chemie, Ltd.) An ink composition for an organic electroluminescent device was manufactured in the same manner as in Example 17 except for the above.
  • BYK-322 aralkyl modified dimethylsiloxane
  • Comparative Example 4 An ink composition for an organic electroluminescent element was prepared by the same method as in Example 17 except that the siloxane polymer described in Example 4 of WO 2017/073650 was used instead of the linear block copolymer used in the examples. Manufactured.
  • An organic electroluminescent device was produced using the above-described ink composition for an organic electroluminescent device.
  • a positive photoresist added with a fluorine surfactant is spin-coated on a glass substrate (40 mm ⁇ 70 mm) patterned in stripes of ITO, and patterned by photolithography to 300 ⁇ m by 100 ⁇ m (vertical pitch 350 ⁇ m, vertical)
  • a bank-formed supporting substrate was produced with pixels of 150 ⁇ m in lateral pitch attached.
  • the film thickness of the bank was measured using an optical interference surface shape measuring apparatus (manufactured by Ryoka System Co., Ltd.), and it was confirmed that a 2.0 ⁇ m thick bank was formed.
  • Example 9 to 16, 25, 26, Comparative Examples 1 and 2 Poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid) (PEDOT-PSS) in a bank-forming support substrate using an inkjet printer (DMP 2831, cartridge box DMC-11610, manufactured by Fujifilm Corporation) Was formed into a film of 45 nm and heated in the air at 180.degree. C. for 15 minutes to form a hole injection layer. Then, a hole transport layer is formed by depositing a 10 wt% HT-2 0.3 wt% xylene solution on the hole injection layer by ink jet discharge, and drying it at 200 ° C. for 30 minutes in a nitrogen atmosphere. It formed.
  • DMP 2831 cartridge box DMC-11610, manufactured by Fujifilm Corporation
  • the ink composition for an organic electroluminescent element containing a light emitting material as a functional material of each of the above Examples 9 to 16, 25, and 26 and Comparative Examples 1 and 2 is inkjet-printed on the hole transport layer.
  • a light emitting layer was formed by depositing a film of 30 nm and drying at 110 ° C. for 15 minutes in a nitrogen atmosphere. Then, under vacuum conditions of 5 ⁇ 10 -3 Pa, ET-1 of 45 nm as an electron transport layer, 0.5 nm of lithium fluoride as an electron injection layer, and 100 nm of aluminum as a cathode are sequentially formed. did. Finally, the substrate was transported to a glove box and sealed with a glass substrate to fabricate an organic electroluminescent device which is a laminated electronic component.
  • Example 17 to 24, Comparative Examples 3 and 4 Using the ink jet printer, 45 nm of poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonic acid) (PEDOT-PSS) is formed in a bank-forming support substrate, and the film is formed at 180 ° C. for 15 minutes in the air. It heated and formed the positive hole injection layer.
  • PEDOT-PSS poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonic acid)
  • An ink composition for an organic electroluminescent device containing HT-2 as a hole transporting material as a functional material of each of Examples 17 to 24 and Comparative Examples 3 and 4 was formed into a 10 nm film by ink jet, The hole transport layer was formed by drying at 200 ° C. for 30 minutes.
  • a light emitting layer was formed by depositing Ir (mppy) 3 and H-1 at a weight ratio of 10:90 under a vacuum condition of 5 ⁇ 10 ⁇ 3 Pa so as to be 10:90. Then, ET-1 of 45 nm as an electron transport layer, lithium fluoride of 0.5 nm as an electron injection layer, and aluminum of 100 nm as a cathode were sequentially formed. Finally, the substrate was transported to a glove box and sealed with a glass substrate to fabricate an organic electroluminescent device which is a laminated electronic component.
  • the ink composition for an organic electroluminescent device produced in each Example had a silicon content in the linear block copolymer of 10% or more and a weight average molecular weight of 5,000 to 50,000.
  • a leveling agent composed of a linear block copolymer which is superior in surface segregation ability because it does not contain an organic modifying group other than methyl group in the organopoly (siloxane), and the siloxane structure is in the coating film.
  • the leveling agent of the present invention improves the smoothness of the obtained coating film because it can reduce not only the smoothness of the obtained coating film but also, for example, the driving stability of the laminated electronic component by being included in the ink composition. It is possible to provide an ink composition for forming a functional layer excellent in driving stability of a laminated electronic component, and a laminated electronic component.
  • substrate 2 anode 3: bank 4: hole transport layer 5: coating film 6: nozzle 7: ink jet head

Abstract

平滑性に優れた皮膜が得られるレベリング剤を提供することを目的とする。 ポリ(芳香族ビニル)とオルガノポリ(シロキサン)を構造単位として含み、かつ主鎖にシロキサン結合が含まれる様に配置された直鎖ブロック共重合体を含有してなるレベリング剤、左記レベリング剤と、機能性材料と、有機溶剤とを含有する、機能層形成用インク組成物及びポリ(芳香族ビニル)とオルガノポリ(シロキサン)を構造単位として含み、かつ主鎖にシロキサン結合が含まれる様に配置された直鎖ブロック共重合体と、機能性材料とを含む皮膜を必須機能層として含有する積層電子部品。

Description

レベリング剤、機能層形成用インク組成物及び積層電子部品
 本発明は、レベリング剤、機能層形成用インク組成物及び積層電子部品に関する。
 近年、異なる機能を有する二つ以上の機能層を積層して得た積層電子部品を含むTFT、太陽電池、有機エレクトロルミネッセンス素子などの電子素子の研究が多岐にわたって、進められている。従来、これらの機能層は真空成膜により作製されてきたが、近年は基板の大面積化や製品の低コスト化が求められているため、印刷による積層電子部品の製造法が注目されている。
 この積層電子部品を材料の面から大別すると、低分子系材料と、高分子系材料に分類できる。
 低分子系電子材料に関しては、従来用いられてきた真空成膜に加え、近年、インクジェットやノズルジェット、フレキソ印刷、転写法等の種々の塗布方法を用いて電子材料を含有する層を成膜する技術の研究開発が行われている。一方、高分子系電子材料については、分子量が大きいため真空成膜に不向きなことから、低分子系材料と同様に既述の塗布方法が主に用いられている。
 塗布成膜で得られる機能層からなる膜は、真空成膜に比べ平滑性が劣り、積層電子部品の特性を低下させることから、積層電子部品を構成する機能層、例えば発光層を平坦性高く形成することができるレベリング剤及びその使用方法、インク組成物、並びに、積層電子部品について検討されており、例えば、特許文献1では、ポリジメチルシロキサン構造を含有するラジカル重合性化合物と、芳香族ビニル化合物とを共重合せしめた、側鎖にポリジメチルシロキサン構造を含有するブロック共重合体をレベリング剤として用いることが提案されている。
WO2017/073650公報
 しかしながら、特許文献1に記載のレベリング剤によれば、レベリング効果として、得られる塗膜が一定の平坦性を有しうるが、高性能の積層電子部品を指向する観点からは、その平坦性が十分に確保できない。さらに、このレベリング剤は、それを構成するポリジメチルシロキサン構造がポリマーの分子側鎖に位置するため、適用した機能層表面において露出するポリジメチルシロキサン構造が相対的に減少する結果、塗膜の平坦性が不十分となり、うねりが生じることがあった。その結果、この様な機能層を含む積層電子部品を製造した際に発光効率や寿命などの駆動安定性の低下が懸念される。
 そこで、本発明は、塗布成膜に使用されるインク組成物に添加することにより、得られる塗膜の平滑性(レベリング性)を改善するとともに、積層電子部品の駆動安定性を低下することのない、レベリング剤および機能層形成用インク組成物、積層電子部品を提供することを目的とする。
 本発明者らは、上記課題を解決すべく、鋭意研究を行った結果、ポリジメチルシロキサン構造をポリマーの分子主鎖に位置させた共重合体をレベリング剤として用いることにより、所望の機能性材料を含む機能層の形成において、更に平滑な有機薄膜の作製が可能であり、このレベリング剤を含有するインク組成物から形成される機能層を有した積層電子部品は、更に駆動安定性が改善されることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、ポリ(芳香族ビニル)とオルガノポリ(シロキサン)を構造単位として含み、かつ主鎖にシロキサン結合が含まれる様に配置された直鎖ブロック共重合体を含有してなるレベリング剤に関する。
 また、本発明は、ポリ(芳香族ビニル)とオルガノポリ(シロキサン)を構造単位として含み、かつ主鎖にシロキサン結合が含まれる様に配置された直鎖ブロック共重合体と、機能性材料と、有機溶媒とを含有する、機能層形成用インク組成物に関する。
 更に、本発明は、ポリ(芳香族ビニル)とオルガノポリ(シロキサン)を構造単位として含み、かつ主鎖にシロキサン結合が含まれる様に配置された直鎖ブロック共重合体と、機能性材料とを含む皮膜を必須機能層として含有する積層電子部品に関する。
 本発明によれば、ポリジメチルシロキサン構造をポリマーの分子主鎖に位置させた共重合体をレベリング剤として用いるので、適用表面でのポリシロキサン構造の偏析が顕著であり、所望の機能性材料を含む機能層の形成において、更に平滑な有機薄膜の作製が可能であり、このレベリング剤を含有するインク組成物から形成される機能層を有した積層電子部品は、更に駆動安定性を改善させることができる、という格別顕著な技術的効果を奏する。
インクジェット印刷法により塗膜を形成する工程を模式的に示す部分断面図である。
 以下、本発明を実施するための形態について詳細に説明する。
 本発明は、ポリ(芳香族ビニル)とオルガノポリ(シロキサン)を構造単位として含み、かつ主鎖にシロキサン結合が含まれる様に配置された直鎖ブロック共重合体を含有してなるレベリング剤である。
 レベリング剤を構成する、この直鎖ブロック共重合体は、芳香族ビニルの重合単位であるポリ(芳香族ビニル)と、シロキサンの重合単位であるオルガノポリ(シロキサン)を構造単位として含むものである。
 直鎖ブロック共重合体を構成する、シロキサンの重合単位であるオルガノポリ(シロキサン)の構造単位は、重合体として見た際に、上記した本発明の技術的効果の発現に当たっては、重合体主鎖にシロキサン結合が含まれる様に配置される必要がある。
 このため、本発明においては、重合体の側鎖にシロキサン結合が含まれてしまうようなシロキサンモノマー、例えば下記一般式(1)で表されるモノマーの使用は、本発明の技術的効果の達成に当たっては適さない。
Figure JPOXMLDOC01-appb-C000001
(一般式(1)中、nは1~1000を表し、R及びRはエーテル結合を有してもよい炭化水素基を表す。また、Rは、ビニル基、またはビニル基を有する有機基を表す。)
 また、上記一般式(1)に相当するジメチルシロキサン鎖を有する化合物の市販品としては、JNC株式会社製の「サイラプレーン FM-0711」、「サイラプレーン FM-0721」及び「サイラプレーン FM-0725」;信越化学工業株式会社製の「X-22-2404」、「X-22-8201」、「X-22-174DX」、「X-22-2426」等が挙げられる。
 本発明における直鎖ブロック共重合体の調製に適するシロキサンモノマーとしては、特に限定されるものではないが、例えば、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、テトラデカメチルシクロヘプタシロキサン、ヘキサデカメチルシクロオクタシロキサン、オクタデカメチルシクロノナシロキサン等の環状シロキサンモノマーが挙げられる。
 環状シロキサンモノマーは、開環することにより、後記するポリ(芳香族ビニル)の構造単位の末端に結合する。
 直鎖ブロック共重合体を構成するもう一方の構成単位は、ポリ(芳香族ビニル)であるが、これは芳香族ビニルの重合単位である。この芳香族ビニルとしては、特に制限されないが、スチレン、スチレン誘導体(p-ジメチルシリルスチレン、(p-ビニルフェニル)メチルスルフィド、p-ヘキシニルスチレン、p-メトキシスチレン、p-tert-ブチルジメチルシロキシスチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、クロロスチレン等)、ビニルナフタレン、ビニルアントラセン、1,1-ジフェニルエチレン、ビニルカルバゾール等が挙げられる。
 得られる共重合体のレベリング性の向上効果がより高い、及び当該レベリング剤を電子素子の製造に用いた際の得られた電子素子の駆動安定性がより優れるとの観点から、種々の重合性モノマーの中でも、スチレン、α-メチルスチレン、α―エチルスチレン、α―ブチルスチレンまたは、4-メチルスチレン等のアルキル置換スチレン類などのスチレンおよびスチレン誘導体等の芳香族ビニルを用いることが好ましい。
[直鎖ブロック共重合体]
 本発明で用いる直鎖ブロック共重合体は、ポリ(芳香族ビニル)とオルガノポリ(シロキサン)を構造単位として含み、かつ主鎖にシロキサン結合が含まれる様に配置された直鎖ブロック共重合体であり、上記した様な芳香族ビニルとシロキサンモノマーとを共重合することに得ることが出来る。
 直鎖ブロック共重合体は、ブロック単位として、ポリ(芳香族ビニル)構造単位一つと、オルガノポリ(シロキサン)構造単位一つを含むジブロック共重合体であっても良いし、ポリ(芳香族ビニル)構造単位二つと、オルガノポリ(シロキサン)構造単位一つを含むトリブロック共重合体であっても良いし、ポリ(芳香族ビニル)構造単位二つと、オルガノポリ(シロキサン)構造単位二つを含むテトラブロック共重合体であっても良い。ポリスチレンとポリジメチルシロキサンの直鎖ブロック共重合体は製造が容易であり、上記した様な異なるブロック単位数のブロック共重合体の作り分けも容易であると共に、レベリング性の向上効果がより高い、及び当該レベリング剤を電子素子の製造に用いた際の得られた電子素子の駆動安定性がより優れる点で好ましい。
 尚、必要であれば、本発明の上記した技術的効果を損なわない範囲において、芳香族ビニルや上記シロキサンモノマー以外のその他の共重合可能なモノマーの重合単位からなる構造単位を含有するものであっても良い。この様なその他の共重合可能なモノマーとしては、例えば、公知慣用の(メタ)アクリレートモノマー、スチリルモノマー、ビニルエーテルモノマー、アリルモノマー等を使用することができる。
 直鎖ブロック共重合体中のケイ素含有率は、特に制限されないが、5質量%以上であることが好ましく、12質量%以上であることがより好ましく、14~25質量%であることがさらに好ましい。当該共重合体中のケイ素含有率が12質量%以上であると、表面調整能が高くなり、レベリング剤の機能(溶媒の優先的な蒸発の抑制または防止効果および/または層のうねりの発生の抑制または防止効果)を効果的に発揮しうることから好ましい。なお、当該共重合体のケイ素含有率は、シロキサンモノマーの添加量を適宜調整することで制御することができる。また、本明細書において、「ケイ素含有率」の値は、下記式で計算された値を採用するものとする。
Figure JPOXMLDOC01-appb-M000002
 また、直鎖ブロック共重合体は、どの様な分子量であっても良いが、例えば、ポリスチレン換算の重量平均分子量(Mw)は、500~100,000であることが好ましく、当該共重合体を含有させた塗膜の平滑性の観点から、5,000~50,000であることがより好ましい。なお、本明細書において、「重量平均分子量(Mw)」の値は、実施例の測定方法により測定された値を採用するものとする。
 本発明において、レベリング剤として用いる直鎖ブロック共重合体としては、例えば、次の様な構造のブロック共重合体が挙げられる。x、y、zはカッコ内の芳香族ビニル、またはシロキサンの繰り返し単位数を意味する。R4、R6は水素原子またはアルキル基を表す。R5、R7は水素原子、置換基を有していてもよいアルキル基、芳香族環、またはハロゲン原子を表わす。
[ジブロック共重合体]
Figure JPOXMLDOC01-appb-C000003
[トリブロック共重合体]
Figure JPOXMLDOC01-appb-C000004
 上記一般式(2)および(3)において、x、y、zは、共重合体の取り扱いが容易で、後記するレベリング効果が達成できれば、特段の制限は無いが、例えば、x、z=10~200、y=1~20であることが好ましい。x=zであっても良い。
 上記一般式(3)に表わすブロック共重合体の様な、芳香族ビニルの繰り返し単位x、zやシロキサンの繰り返し単位yが、複数存在する直鎖ブロック共重合体は、x、y、zの数値が大き過ぎると、それ自体が高粘度となりやすいので、x、y、zを適切に調整した直鎖ブロック共重合体を用いることが好ましい。
[直鎖ブロック共重合体の製造方法]
 本発明のレベリング剤を得るに当たっては、上記した様な、特定の直鎖ブロック共重合体を製造する必要がある。しかしながら、重合方法は特に制限されるものではない。重合方法としては、ラジカル重合、アニオン重合、カチオン重合等が挙げられる。重合方法の中でも、分子量制御の観点からラジカル重合、アニオン重合を利用することが好ましい。
 ラジカル重合としては、反応条件が特に限定されるものではないが、例えば、モノマーとラジカル重合開始剤を用いて、溶媒中で重合することができる。
 ラジカル重合開始剤として一般的に知られるものが使用でき、例えば2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)、ポリジメチルシロキサンユニット含有高分子アゾ重合開始剤等のアゾ化合物;ベンゾイルペルオキシド、ラウロイルペルオキシド、t-ブチルペルオキシピバレート、t-ブチルパーオキシエチルヘキサノエイト、1,1’-ビス-(t-ブチルペルオキシ)シクロヘキサン、t-アミルペルオキシ-2-エチルヘキサノエート、t-ヘキシルペルオキシ-2-エチルヘキサノエート等の有機過酸化物及び過酸化水素等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。
 また、ラジカル重合開始剤の使用量は、特に制限されず、一般的にはモノマー100質量部に対して、0.1~20質量部である。前述の好ましい重量平均分子量の範囲で本発明の重合体を得るためにはラジカル重合開始剤の使用量は、モノマー100質量部に対して、0.5~10質量部であることが好ましく、1~10質量部であることがさらに好ましい。
 ラジカル重合に用いることができる溶媒として代表的なものを挙げれば、例えば、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチルイソプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、メチル-n-アミルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、エチル-n-ブチルケトン、ジ-n-プロピルケトン、ジイソブチルケトン、シクロヘキサノン、ホロン等のケトン系溶媒;
 エチルエーテル、イソプロピルエーテル、n-ブチルエーテル、ジイソアミルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコール、ジオキサン、テトラヒドロフラン等のエーテル系溶媒;
 ギ酸エチル、ギ酸プロピル、ギ酸-n-ブチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-nーブチル、酢酸-n-アミル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチル-3-エトキシプロピオネート等のエステル系溶媒;
 メタノール、エタノール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、ジアセトンアルコール、3-メトキシ-1-プロパノール、3-メトキシ-1-ブタノール、3-メチル-3-メトキシブタノール等のアルコール系溶媒;
 トルエン、キシレン、ソルベッソ100、ソルベッソ150、スワゾール1800、スワゾール310、アイソパーE、アイソパーG、エクソンナフサ5号、エクソンナフサ6号等の炭化水素系溶媒が挙げられる。
 これらの溶媒は単独で用いても良いし、2種以上を併用しても良い。
 ラジカル重合反応における溶媒の使用量は、特に制限されないが、モノマーの仕込み量100質量部に対して、攪拌性の観点から、10~3,000質量部であることが好ましく、反応性の観点から、10~1,000質量部であることがより好ましく、分子量制御の観点から、10~500質量部であることがさらに好ましい。
 アニオン重合としては、反応条件が特に限定されるものではないが、例えば、モノマーとアニオン重合開始剤を用いて、溶媒中で重合することができる。
 アニオン重合開始剤としては一般的に知られるものが使用でき、例えば、メチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、イソプロピルリチウム、n-プロピルリチウム、イソプロピルリチウムフェニルリチウム、ベンジルリチウム、ヘキシルリチウム、ブチルナトリウム、ブチルカリウム等の有機アルカリ金属;メチルマグネシウムクロリド、メチルマグネシウムブロミド、メチルマグネシウムヨージド、エチルマグネシウムブロミド、プロピルマグネシウムブロミド、フェニルマグネシウムクロリド、フェニルマグネシウムブロミド、ジブチルマグネシウム等の有機アルカリ土類金属;リチウム、ナトリウム、カリウム等のアルカリ金属;ジエチル亜鉛、ジブチル亜鉛、エチルブチル亜鉛等の有機亜鉛;トリメチルアルミニウム、トリエチルアルミニウム、メチルビスフェノキシアルミニウム、イソプロピルビスフェノキシアルミニウム、ビス(2,6-ジ-t-ブチルフェノキシ)メチルアルミニウム、ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)メチルアルミニウム等の有機アルミニウム等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。
 また、アニオン重合開始剤の使用量は、特に制限されないが、モノマー100質量部に対して、0.001~3質量部であることが好ましく、0.005~2質量部であることがより好ましく、0.01~1質量部であることがさらに好ましい。
 アニオン重合に用いることができる溶媒としては、上記ラジカル重合に使用できる溶媒の中で、アニオンに対し不活性な溶媒が挙げられる。これらの有機溶剤は、単独で用いることも2種以上併用することもできる。
 アニオン重合反応における溶媒の使用量は、特に制限されないが、モノマーの仕込み量100質量部に対して、攪拌性の観点から、10~3,000質量部であることが好ましく、反応性の観点から、10~1,000質量部であることがより好ましく、分子量制御の観点から、10~500質量部であることがさらに好ましい。
 カチオン重合としては、反応条件が特に限定されるものではないが、例えば、モノマーとカチオン重合開始剤を用いて、溶媒中で重合することができる。
 カチオン重合開始剤としては一般的に知られるものが使用でき、例えば、塩酸、硫酸、過塩素酸、トリフルオロ酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、クロロスルホン酸、フルオロスルホン酸などのプロトン酸;三フッ化ホウ素、塩化アルミニウム、四塩化チタン、塩化第二スズ、塩化第二鉄などのルイス酸等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。
 また、カチオン重合開始剤の使用量は、特に制限されず、一般的には、モノマー100質量部に対して、0.001~1質量部である。前記の好ましい重量平均分子量の範囲で本発明の重合体を得るためには、カチオン重合開始剤の使用量はモノマー100質量部に対して、0.005~0.5質量部であることが好ましく、0.01~0.3質量部であることがさらに好ましい。
 カチオン重合に用いることができる溶媒としては、上記ラジカル重合に使用できる溶媒の中で、カチオンに対し不活性な溶媒が挙げられる。これらの有機溶剤は、単独で用いることも2種以上併用することもできる。
 カチオン重合反応における溶媒の使用量は、特に制限されないが、モノマーの仕込み量100質量部に対して、攪拌性の観点から、10~3000質量部であることが好ましく、反応性の観点から、10~1000質量部であることがより好ましく、分子量制御の観点から、10~500質量部であることがさらに好ましい。
 なお、上述のラジカル重合、アニオン重合、カチオン重合は、リビング重合でもよく、例えば、「季刊化学総説 No.18,1993 精密重合 日本化学会編(学会出版センター)」に記載の方法を用いることができる。
 本発明のレベリング剤として用いる直鎖ブロック共重合体は、例えば、有機溶媒中、開始剤(求核種)の存在下にて芳香族ビニルを重合し、芳香族ビニルの重合単位であるポリ(芳香族ビニル)の構造単位を得て、例えば環状シロキサンの様なシロキサンモノマーを開環重合させ、必要に応じてアルコール;トリメチルシリルクロライド;ハロゲン化アルキルなどの停止剤を併用するといった、リビングアニオン重合法により、より容易にそれを得ることが出来る。開始剤として、n-ブチルリチウムの存在下にて芳香族ビニルを重合すると、少なくとも一方の重合体末端がn-ブチル基で停止された共重合体となる。尚、当該共重合体の少量を精度高く得たい場合に、必要であれば、環状反応装置(チューブラー・リアクター)を用いることも出来る。
 また、本発明のレベリング剤として用いる直鎖ブロック共重合体は、有機溶媒中、ポリジメチルシロキサンユニット含有高分子アゾ重合開始剤の存在下、芳香族ビニルを重合し、ポリ(ジメチルシロキサン)構造単位とポリ(芳香族ビニル)の構造単位を得るといった、ラジカル重合法によっても、容易に得ることができる。
[組成物]
 本発明の直鎖ブロック共重合体を含有してなるレベリング剤は、機能性材料の成膜後のレベリング性を向上する機能を有することから、例えば、溶媒と併用して、各種の機能層形成のための組成物に適用することが出来る。具体的には、例えば、熱や光による硬化性組成物、インキ組成物、コーティング組成物、電子材料組成物などが挙げられる。また、本発明の直鎖ブロック共重合体を含有してなるレベリング剤は、インキ用、塗料用或いは成形用の各種バインダー樹脂と、溶媒と、必要に応じて着色剤と共に用いて、クリア又は有色の、印刷インキ、塗料及びプラスチック成形品を得るための樹脂組成物を調製することが出来る。
 本発明のインク組成物としては、例えば、ポリ(芳香族ビニル)とオルガノポリ(シロキサン)を構造単位として含み、かつ主鎖にシロキサン結合が含まれる様に配置された直鎖ブロック共重合体と、機能性材料と、有機溶媒とを含有する、機能層形成用インク組成物が挙げられる。
[機能層形成用インク組成物]
 本発明の機能層形成用インク組成物は、下記する様な機能性材料、上記した本発明の特定直鎖ブロック共重合体を含有してなるレベリング剤、および有機溶媒を含むものである。
<機能性材料>
 機能性材料としては、公知慣用にものをいずれも挙げることができ、特に制限されるものではないが、例えば、染料、顔料、半導体ナノ結晶、半導体材料、有機エレクトロルミネッセンス材料、導電性材料及び絶縁性材料等が挙げられる。
[染料]
 機能性材料としての染料は、4-ジシアンメチレン-2-メチル-6-(p-ジメチアミノスチリル(dimethyaminostyryl))-4H-ピラン(DCM)、クマリン、ピレン、ペリレン、ルブレン、それらの誘導体、またはそれらの任意の組合せが挙げられる。
[半導体ナノ結晶]
 機能性材料としての半導体ナノ結晶(以下、単に「ナノ結晶」と言うこともある。)は、励起光を吸収して蛍光または燐光を発光するナノサイズの結晶体(ナノ結晶粒子)であり、例えば、透過型電子顕微鏡または走査型電子顕微鏡によって測定される最大粒子径が100nm以下である結晶体である。
 ナノ結晶は、例えば、所定の波長の光エネルギーや電気エネルギーにより励起され、蛍光または燐光を発することができる。
 ナノ結晶は、605~665nmの波長範囲に発光ピークを有する光(赤色光)を発する赤色発光性の結晶であってよく、500~560nmの波長範囲に発光ピークを有する光(緑色光)を発する緑色発光性の結晶であってよく、420~480nmの波長範囲に発光ピークを有する光(青色光)を発する青色発光性の結晶であってもよい。また、一実施形態において、インクは、これらのナノ結晶のうちの少なくとも1種を含むことが好ましい。
 なお、ナノ結晶の発光ピークの波長は、例えば、紫外可視分光光度計を用いて測定される蛍光スペクトルまたは燐光スペクトルにおいて確認することできる。
 ナノ結晶は、半導体材料で構成されていればよく、各種構造とすることができる。例えば、ナノ結晶は、第1の半導体材料で構成されるコアのみから構成されてもよく、第1の半導体材料で構成されるコアと、このコアの少なくとも一部を被覆し、第1の半導体材料と異なる第2の半導体材料で構成されるシェルとを有する構成でもよい。換言すれば、ナノ結晶の構造は、コアのみからなる構造(コア構造)であってよく、コアとシェルとからなる構造(コア/シェル構造)であってもよい。
 また、ナノ結晶は、第2の半導体材料で構成されるシェル(第1のシェル)の他に、このシェルの少なくとも一部を被覆し、第1および第2の半導体材料と異なる第3の半導体材料で構成されるシェル(第2のシェル)をさらに有していてもよい。換言すれば、ナノ結晶の構造は、コアと第1のシェルと第2のシェルとからなる構造(コア/シェル/シェル構造)であってもよい。さらに、コアおよびシェルのそれぞれは、2種以上の半導体材料を含む混晶(例えば、CdSe+CdS、CIS+ZnS等)で構成されてもよい。
 ナノ結晶は、II-VI族半導体、III-V族半導体、I-III-VI族半導体、IV族半導体およびI-II-IV-VI族半導体からなる群より選択される少なくとも1種の半導体材料で構成されることが好ましい。
 半導体材料の具体例としては、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS、AgInSe、AgInTe、AgGaS、AgGaSe、AgGaTe、CuInS、CuInSe、CuInTe、CuGaS、CuGaSe、CuGaTe、Si、C、GeおよびCuZnSnS等が挙げられる。
これらの半導体材料で構成されるナノ結晶は、発光スペクトルの制御が容易であり、信頼性を確保しつつ、生産コストを低減し、量産性を向上させることができる。
 ナノ結晶の形状は、特に限定されず、任意の幾何学的形状であってもよく任意の不規則な形状であってもよい。ナノ結晶の形状としては、例えば、球状、正四面体状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状等が挙げられる。しかしながら、ナノ結晶の形状としては、方向性の少ない形状(例えば、球状、正四面体状等)が好ましい。かかる形状のナノ結晶を用いることにより、インクの均一性および流動性をより高めることができる。半導体ナノ結晶は、その形状により、上記した様に、量子ドット、量子ロッド等と呼ばれることもある。
[有機エレクトロルミネッセンス材料]
 有機エレクトロルミネッセンス材料としては、有機エレクトロルミネッセンス素子を構成する層に使用される材料であれば特に制限されない。一実施形態において、機能層形成用インク組成物が含有しうる有機エレクトロルミネッセンス材料としては、発光層に使用される発光材料、正孔注入層に使用される正孔注入材料、正孔輸送層に使用される正孔輸送材料、電子輸送層に使用される電子輸送材料、および電子注入層に使用される電子注入材料が挙げられる。
[発光材料]
 発光材料は、発光層において、正孔および電子を利用して行う発光に直接または間接に寄与する機能を有する。なお、本明細書において「発光」には、蛍光による発光および燐光による発光を含むものとする。
 一実施形態において、発光材料は、ドーパント材料およびホスト材料を含む。
[ドーパント材料]
 ドーパント材料は、輸送された正孔および電子を再結合することにより得られるエネルギーを利用して発光する機能を有する。
 前記ドーパント材料としては、上記機能を有するものであれば特に制限されない。ドーパント材料は、通常、赤色ドーパント材料、青色ドーパント材料、緑色ドーパント材料に分類される。
[赤色ドーパント材料]
 赤色ドーパント材料としては、特に限定されず、各種赤色蛍光材料、赤色燐光材料を1種または2種以上組み合わせて用いることができる。
 赤色蛍光材料としては、赤色の蛍光を発するものであれば特に限定されず、例えば、ペリレン誘導体、、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、ポルフィリン誘導体、ナイルレッド、2-(1,1-ジメチルエチル)-6-(2-(2,3,6,7-テトラヒドロ-1,1,7,7-テトラメチル-1H,5H-ベンゾ(ij)キノリジン-9-イル)エテニル)-4H-ピラン-4H-イリデン)プロパンジニトリル(DCJTB)、4-(ジシアノメチレン)-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピラン(DCM)、ポリ[2-メトキシ-5-(2-エチルヘキシロキシ)-1,4-(1-シアノビニレンフェニレン)]、ポリ[{9,9-ジヘキシル-2,7-ビス(1-シアノビニレン)フルオレニレン}オルト- コ- {2,5-ビス(N,N’-ジフェニルアミノ)-1,4-フェニレン}]、ポリ[{2-メトキシ-5-(2-エチルヘキシロキシ)-1,4-(1-シアノビニレンフェニレン)}-コ- {2,5-ビス(N,N’-ジフェニルアミノ)-1,4-フェニレン}]等を挙げられる。
 赤色燐光材料としては、赤色の燐光を発するものであれば特に限定されず、例えば、イリジウム、ルテニウム、白金、オスミウム、レニウム、パラジウム、ユーロピウム等の金属錯体が挙げられ、これら金属錯体の配位子の内の少なくとも1つがフェニルピリジン骨格、ビピリジル骨格、ポルフィリン骨格等を持つものも挙げられる。より具体的には、トリス(1-フェニルイソキノリン)イリジウム、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジネート-N,C3’]イリジウム(アセチルアセトネート)(btp2Ir(acac))、2,3,7,8,12,13,17,18-オクタエチル-12H,23H-ポルフィリン-白金(II)、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジネート-N,C3’]イリジウム、ビス(2-フェニルピリジン)イリジウム(アセチルアセトネート)が挙げられる。
[青色ドーパント材料]
 青色ドーパント材料としては、特に限定されず、例えば、各種青色蛍光材料および青色燐光材料が挙げられ、これらのうちの1種または2種以上組み合わせて用いることができる。
 青色蛍光材料としては、青色の蛍光を発するものであれば、特に限定されず、例えば、ジスチリルジアミン系化合物等のジスチリルアミン誘導体、フルオランテン誘導体、ピレン誘導体、ペリレンおよびペリレン誘導体、アントラセン誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、クリセン誘導体、フェナントレン誘導体、ジスチリルベンゼン誘導体、テトラフェニルブタジエン、4,4’-ビス(9-エチル-3-カルバゾビニレン)-1,1’-ビフェニル(BCzVBi)、ポリ[(9.9-ジオクチルフルオレン-2,7-ジイル)-コ-(2,5-ジメトキシベンゼン-1,4-ジイル)]、ポリ[(9,9-ジヘキシルオキシフルオレン-2,7-ジイル)-オルト-コ-(2-メトキシ-5-{2-エトキシヘキシルオキシ}フェニレン-1,4-ジイル)]、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-コ-(エチルニルベンゼン)]等が挙げられる。
 青色燐光材料としては、青色の燐光を発するものであれば、特に限定されず、例えば、イリジウム、ルテニウム、白金、オスミウム、レニウム、パラジウム等の金属錯体が挙げられ、具体的には、ビス[4,6-ジフルオロフェニルピリジネート-N,C2’]-ピコリネート-イリジウム、トリス[2-(2,4-ジフルオロフェニル)ピリジネート-N,C2’]イリジウム、ビス[2-(3,5-トリフルオロメチル)ピリジネート-N,C2’]-ピコリネート-イリジウム、ビス(4,6-ジフルオロフェニルピリジネート-N,C2’)イリジウム(アセチルアセトネート)等が挙げられる。
[緑色ドーパント材料]
 緑色ドーパント材料としては、特に限定されず、例えば、各種緑色蛍光材料および緑色燐光材料が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 緑色蛍光材料としては、緑色の蛍光を発するものであれば特に限定されず、例えば、クマリン誘導体、キナクリドン誘導体等のキナクリドンおよびその誘導体、9,10-ビス[(9-エチル-3-カルバゾール)-ビニレニル]-アントラセン、ポリ(9,9-ジヘキシル-2,7-ビニレンフルオレニレン)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-コ-(1,4-ジフェニレン-ビニレン-2-メトキシ-5-{2-エチルヘキシルオキシ}ベンゼン)]、ポリ[(9,9-ジオクチル-2,7-ジビニレンフルオレニレン)-オルト-コ-(2-メトキシ-5-(2-エトキシルヘキシルオキシ)-1,4-フェニレン)]等が挙げられる。
 緑色燐光材料としては、緑色の燐光を発するものであれば特に限定されず、例えば、イリジウム、ルテニウム、白金、オスミウム、レニウム、パラジウム等の金属錯体が挙げられ、具体的には、ファク-トリス(2-フェニルピリジン)イリジウム(Ir(ppy)3)、ビス(2-フェニルピリジネート-N,C2’)イリジウム(アセチルアセトネート)、ファク-トリス[5-フルオロ-2-(5-トリフルオロメチル-2-ピリジン)フェニル-C,N]イリジウム等が挙げられる。
[ホスト材料]
 ホスト材料は、正孔と電子とを再結合して励起子を生成するとともに、その励起子のエネルギーをドーパント材料に移動(フェルスター移動またはデクスター移動)させて、ドーパント材料を励起する機能を有する。このようなホスト材料を用いる場合、例えば、ドーパント材料をホスト材料にドープして用いることができる。
 このようなホスト材料としては、用いるドーパント材料に対して前述したような機能を発揮するものであれば、特に限定されないが、例えば、ナフタセン誘導体、ナフタレン誘導体、アントラセン誘導体のようなアセン誘導体(アセン系材料)、ジスチリルアリーレン誘導体、ペリレン誘導体、ジスチリルベンゼン誘導体、ジスチリルアミン誘導体、トリス(8-キノリノラト)アルミニウム錯体(Alq3)等のキノリノラト系金属錯体、トリフェニルアミンの4量体等のトリアリールアミン誘導体、オキサジアゾール誘導体、シロール誘導体、カルバゾール誘導体、ビスカルバゾール誘導体、インドロカルバゾール誘導体、オリゴチオフェン誘導体、ベンゾピラン誘導体、トリアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、4,4’-ビス(2,2’-ジフェニルビニル)ビフェニル(DPVBi)等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることもできる。
 上記、発光材料の分子量は、溶媒中に発光材料を容易に溶解できることから5,000g/mol以下であることが好ましく、2,000g/mol以下であることがより好ましく、300~2,000g/molであることがさらに好ましい。
 機能性材料としてのドーパント材料の含有率は、ホスト材料の質量に対して、0.1~50質量%であることが好ましく、0.1~20質量%であることがより好ましい。発光材料の含有率が0.1質量%以上であると、均一な膜を形成できることから好ましい。一方、発光材料の含有率が20質量%以下であると、発光材料の濃度消光による発光効率低下を抑制できることから好ましい。
 機能性材料としての発光材料を選択する場合、半導体ナノ結晶の一種である量子ドット発光ダイオード(QLED)は、有機発光ダイオード(OLED)に比べて発光スペクトル幅が狭く、OLEDを用いた有機EL素子に比べて、QLEDを用いた発光素子の方が、表示ディスプレイとした際の色再現域をより広くすることが出来るため好ましい。例えば、より広い色再現域の規格、例えば「BT2020」を基準とした場合、OLEDでは出せない色表示が、QLEDでは可能となる。
[正孔注入材料]
 正孔注入材料は、正孔注入層において、陽極から正孔を取り入れる機能を有する。通常、陽極から取り入れた正孔は、正孔輸送層または発光層に輸送される。
 正孔注入材料としては、特に制限されないが、銅フタロシアニン等のフタロシアニン化合物;4,4’,4”-トリス[フェニル(m-トリル)アミノ]トリフェニルアミン等のトリフェニルアミン誘導体;1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノ-キノジメタン等のシアノ化合物;酸化バナジウム、酸化モリブデン等の酸化物;アモルファスカーボン;ポリアニリン(エメラルディン)、ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)(PEDOT-PSS)、ポリピロール等の導電性高分子が挙げられる。これらのうち、正孔注入材料は、導電性高分子であることが好ましく、PEDOT-PSSであることがより好ましい。
 上述の正孔注入材料は、単独で用いても、2種以上を組み合わせて用いてもよい。
[正孔輸送材料]
 正孔輸送材料は、正孔輸送層において、正孔を効率的に輸送する機能を有する。また、正孔輸送層は、電子の輸送を防止する機能を有しうる。正孔輸送層は、通常、陽極または正孔注入層から正孔を取り入れ、発光層に正孔を輸送する。
 正孔輸送材料としては、特に制限されないが、TPD(N,N'-ジフェニル-N,N’-ジ(3-メチルフェニル)-1,1’-ビフェニル-4,4’ジアミン)、α-NPD(4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル)、m-MTDATA(4、4’,4”-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン)等の低分子トリフェニルアミン誘導体;ポリビニルカルバゾール、トリアリールアミン誘導体に置換基を導入して重合したジアミンポリマー等の高分子化合物が挙げられる。これらのうち、正孔輸送材料は、トリフェニルアミン誘導体、トリアリールアミン誘導体に置換基を導入して重合した高分子化合物であることが好ましく、フルオレン骨格を有するジアミンポリマーであることがより好ましい。
 上述の正孔輸送材料は、単独で用いても、2種以上を組み合わせて用いてもよい。
[電子輸送材料]
 電子輸送材料は、電子輸送層において、電子を効率的に輸送する機能を有する。また、電子輸送層は、正孔の輸送を防止する機能を有しうる。電子輸送層は、通常、陰極または電子注入層から電子を取り入れ、発光層に電子を輸送する。
 電子輸送材料としては、特に制限されないが、トリス(8-キノリラート)アルミニウム(Alq)、トリス(4-メチル-8-キノリノラート)アルミニウム(Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム(BeBq2)、ビス(2-メチル-8-キノリノラート)(p-フェニルフェノラート)アルミニウム(BAlq)、ビス(8-キノリノラート)亜鉛(Znq)、8-ヒドロキシキノリノラトリチウム(Liq)等のキノリン骨格またはベンゾキノリン骨格を有する金属錯体;ビス[2-(2’-ヒドロキシフェニル)ベンズオキサゾラート]亜鉛(Zn(BOX)2)等のベンズオキサゾリン骨格を有する金属錯体;ビス[2-(2’-ヒドロキシフェニル)ベンゾチアゾラート]亜鉛(Zn(BTZ)2)ベンゾチアゾリン骨格を有する金属錯体;2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(TAZ)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(OXD-7)、9-[4-(5-フェニル-1,3,4-オキサジアゾール-2-イル)フェニル]カルバゾール(CO11)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(TPBI)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]-1-フェニル-1H-ベンゾイミダゾール(mDBTBIm-II)等のポリアゾール誘導体;ベンゾイミダゾール誘導体;キノリン誘導体;ペリレン誘導体;ピリジン誘導体;ピリミジン誘導体;トリアジン誘導体;キノキサリン誘導体;ジフェニルキノン誘導体;ニトロ置換フルオレン誘導体等が挙げられる。これらのうち、電子輸送材料は、ベンゾイミダゾール誘導体、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、フェナントロリン誘導体であることが好ましい。
 上述の電子輸送材料は、単独で用いても、2種以上を組み合わせて用いてもよい。
[電子注入材料]
 電子注入材料は、電子輸送層において、陰極から電子を取り入れる機能を有する。通常、陰極から取り入れた電子は、電子輸送層または発光層に輸送される。
 電子注入層に用いられうる電子注入材料としては、特に制限されないが、リチウム、カルシウム等のアルカリ金属;ストロンチウム、アルミニウム等の金属;フッ化リチウム、フッ化ナトリウム等のアルカリ金属塩;8-ヒドロキシキノリラートリチウム等のアルカリ金属化合物;フッ化マグネシウム等のアルカリ土類金属塩;酸化アルミニウム等の酸化物等が挙げられる。これらのうち、電子注入材料は、アルカリ金属、アルカリ金属塩、アルカリ金属化合物であることが好ましく、アルカリ金属塩、アルカリ金属化合物であることがより好ましい。
 上述の電子注入材料は、単独で用いても、2種以上を組み合わせて用いてもよい。
 機能層形成用インク組成物中の、機能性材料としての有機エレクトロルミネッセンス材料の含有率は、機能層形成用インク組成物全量に対して、0.1~20質量%であることが好ましく、0.1~10質量%であることがより好ましい。発光材料の含有率が0.1質量%以上であると、欠陥の少ない均一な膜を形成できることから好ましい。一方、発光材料の含有率が20質量%以下であると、有機エレクトロルミネッセンス素子の駆動電圧上昇が抑制できることから好ましい。
 一実施形態において、本発明の機能層形成用インクに適用できる溶媒又は分散媒としては、公知慣用の有機溶媒が挙げられる。具体的には、芳香族系溶媒、アルカン系溶媒、脂肪族エステル系溶媒、脂肪族エーテル系溶媒、脂肪族ケトン系溶媒、アルコール系溶媒、アミド系溶媒、他の溶媒等が挙げられる。
 前記芳香族系溶媒としてはメシチレン、tert-ブチルベンゼン、インダン、ジエチルベンゼン、ペンチルベンゼン、1、2、3、4-テトラヒドロナフタレン、ナフタレン、ヘキシルベンゼン、ヘプチルベンゼン、シクロヘキシルベンゼン、1-メチルナフタレン、2-エチルナフタレン、1-エチルナフタレン、オクチルベンゼン、ジフェニルメタン、1,4-ジメチルナフタレン、ノニルベンゼン、3-エチルビフェニル、ドデシルベンゼン等の芳香族炭化水素溶媒;酢酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸イソプロピル、4-メチル安息香酸メチル、安息香酸プロピル、安息香酸ブチル、安息香酸イソペンチル、エチル p-アニセート、フタル酸ジメチル等の芳香族エステル溶媒;エチルフェニルエーテル、4-メチルアニソール、2,6-ジメチルアニソール、2,5-ジメチルアニソール、3,5-ジメチルアニソール、4-エチルアニソール、2,3-ジメチルアニソール、ブチルフェニルエーテル、p-ジメトキシベンゼン、p-プロピルアニソール、m-ジメトキシベンゼン、2-メトキシ安息香酸メチル、1,3-ジプロポキシベンゼン、ジフェニルエーテル、1-メトキシナフタレン、3-フェノキシトルエン、2-エトキシナフタレン、1-エトキシナフタレン等の芳香族エーテル溶媒;アセトフェノン、プロピオフェノン、4’-メチルアセトフェノン、4’-エチルアセトフェノン、ブチルフェニルケトン等の芳香族ケトン溶媒が挙げられる。
 前記脂肪族エステル系溶媒としては、酢酸ヘキシル、乳酸ブチル、乳酸イソアミル、アミルバレラート、エチルレブリレート、γ-バレロラクトン、オクタン酸エチル、γ-ヘキサラクトン、イソアミルヘキサネート、アミルヘキサネート、酢酸ノニル、デカン酸メチル、グルタル酸ジエチル、γ-ヘプタラクトン、ε-カプロラクトン、オクタラクトン、炭酸プロピレン、γ-ノナノラクトン、ヘキサン酸ヘキシル、アジピン酸ジイソプロピル、δ-ノナノラクトン、グリセロール三酢酸、δ-デカノラクトン、アジピン酸ジプロピル、δ-ウンデカラクトン等が挙げられる。
 前記脂肪族エーテル系溶媒としては、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジアセテート、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジヘキシルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジブチルエーテル、ジヘプチルエーテル、ジオクチルエーテル等が挙げられる。
 前記脂肪族ケトン系溶媒としては、ジイソブチルケトン、シクロヘプタノン、イソホロン、6-ウンデカノン等が挙げられる。
 前記アルコール系溶媒溶媒としては、1-ヘプタノール、2-エチル-1-ヘキサノール、プロピレングリコ-ル、エチレングリコール、ジエチレングリコールモノブチルエーテル、エチル3-ヒドロキシヘキサネート、トリプロピレングリコールモノメチルエーテル、ジエチレングリコール、シクロヘキサノール等が挙げられる。
 前記アミド系溶媒としてはN,N-ジメチルアセトアミド等が挙げられる。
 前記他の溶媒としては、水、ジメチルスルホキシド、アセトン、クロロホルム、塩化メチレン等が挙げられる。
 なお、上述の溶媒は単独で用いても、2種以上を組み合わせて用いてもよい。
 有機溶媒の含有量は、機能層形成用インク組成物全量に対して、90~99.5質量%であることが好ましく、成膜性の観点から、95~99.5質量%がより好ましい。
 本発明の機能層形成用インク組成物は、公知慣用の印刷方法や塗装方法に適用しうる。具体的には、例えば、オフセット印刷法、グラビア印刷法、フレキソ印刷法、スクリーン印刷法、反転印刷法、ディペンサ印刷法、インクジェット印刷法、マイクロコンタクト印刷法等が挙げられる。なかでも、微細領域に必要量のみインクを適用できインク無駄が無い点から、インクジェット印刷法に適用することが好ましい。
 有機溶媒の粘度は、特に制限されるものではないが、0.6~6.0mPa・sであることが好ましく、1.2~5.0mPa・sであることがさらに好ましく、1.5~4.5mPa・sであることが特に好ましい。有機溶媒の粘度が1.0mPa・s未満であると、本発明のインク組成物をインクジェット方式で吐出させて、インク液滴で塗膜を形成する場合に、インクジェットヘッドのノズルの詰まりが起こりやすくなるため、1.0mPa・s以上であることが好ましい。一方、有機溶媒の粘度が6.0mPa・sを超えると、得られるインク組成物の粘度が過度に高くなり、インクの微小液滴をインクジェットヘッドから吐出しにくくなることから、6.0mPa・s以下であることが好ましい。
 また上記有機溶媒の表面張力は、20~45mN/mであることが好ましく、25~43mN/mであることがさらに好ましく、28~40mN/mであることが特に好ましい。インクの表面張力が20mN/m以上であると、本発明のインク組成物をインクジェット方式で吐出させた際に、インク組成物のノズル表面上における濡れ性が過度に高くならず、インク組成物のノズルの周囲の付着による液滴の飛翔方向の曲がりが起こりにくくなることから好ましい。一方、インク組成物の表面張力が45mN/m以下であると、ノズル先端におけるメニスカスの形状が安定しやすくなり、インクの吐出量や吐出タイミングの制御が容易になりうることから好ましい。
 上記した最適な有機溶媒の選択の観点から、機能層形成用インク組成物を、上記した様なインクジェット印刷法に適合させる場合には、25℃における表面張力を25~40mN/mとして、かつ25℃における粘度を1~75mPa・sとすることが好ましい。
 機能層形成用インク組成物を調製する際の有機溶媒としては、シクロヘキシルベンゼンの様な、一分子中に芳香環構造を含有する有機溶剤を用いることが、得られる有機発光素子有機エレクトロルミネッセンス素子を長寿命とすることが出来るため好ましい。
 また、芳香環構造を有する有機溶剤と、その他の有機溶媒とを組み合わせることも出来るが、その場合は、ジエチレングリコールブチルメチルエーテルの様な、脂肪族エーテルとを併用することが、得られる有機エレクトロルミネッセンス素子等の有機発光素子を更に長寿命とすることが出来るためより好ましい。
 直鎖ブロック共重合体の含有量は、機能性材料を含む不揮発分に対して、0.0001~3.0質量%であることが好ましく、レベリング性の観点から、0.001~1.0質量%であることがより好ましい。
[添加剤]
 本発明の機能層形成用インク組成物には、必要に応じて公知慣用の添加剤を含有させることができる。有機エレクトロルミネッセンス素子用インク組成物を調製する場合は、インクジェット吐出性を改善させる目的、又はインクジェット吐出物乾燥時の平滑性を改善させる目的で、必要に応じて更に上記した直鎖ブロック共重合体以外のレベリング剤、粘度調整剤等の添加剤が含有されていてもよい。
[レベリング剤]
 レベリング剤としては、上記した直鎖ブロック共重合体以外のものとして特に制限されないが、シリコーン系化合物、フッ素系化合物、シロキサン系化合物、非イオン系界面活性剤、イオン系界面活性剤、チタネートカップリング剤などを用いることができる。これらのうち、シリコーン系化合物、フッ素系化合物が好ましい。
 前記シリコーン系化合物としては、特に制限されないが、ジメチルシリコーン、メチルシリコーン、フェニルシリコーン、メチルフェニルシリコーン、アルキル変性シリコーン、アルコキシ変性シリコーン、ポリエーテル変性シリコーンなどが挙げられる。これらのうち、ジメチルシリコーン、メチルフェニルシリコーンが好ましい。
 前記フッ素系化合物としては、特に制限されないが、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、フルオロアルキルメタクリレート、パーフルオロポリエーテル、パーフルオロアルキルエチレンオキシドなどが挙げられる。これらのうち、ポリテトラフルオロエチレンが好ましい。
 前記シロキサン系化合物としては、特に制限されないが、ジメチルシロキサン化合物(商品名:KF96L-1、KF96L-5、KF96L-10、KF96L-100、信越シリコーン株式会社製)が挙げられる。
 なお、上述のレベリング剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
 直鎖ブロック共重合体の不揮発分の添加率は、所望とする性能によっても異なるが、機能層形成用インク組成物として発光素子用インク組成物を想定する場合においては、それの全質量に対して、0.001~5質量%であることが好ましく、0.001~1質量%であることがより好ましい。当該共重合体の不揮発分の添加率が0.001質量%以上であると、塗膜の平滑性を改善できることから好ましい。一方、レベリング剤の添加率が5質量%以下であると、発光効率を向上できることから好ましい。
[粘度調整剤]
 粘度調整剤としては、特に制限されないが、ポリ(α-メチルスチレン)、ポリスチレン、スチレン・アクリロニトリル共重合体、スチレン・ブタジエン・アクリロニトリル共重合体、ポリメチルメタクリレート、メタクリル・スチレン共重合体、ポリカーボネート等の熱可塑性樹脂を用いることができる。これらのうち、ポリ(α-メチルスチレン)、ポリスチレン、スチレン・アクリロニトリル共重合体、スチレン・ブタジエン・アクリロニトリル共重合体、ポリメチルメタクリレートが好ましい。
 上述の粘度調整剤は単独で用いても、2種以上を組み合わせて用いてもよい。
 粘度調整剤の添加率は、所望とする性能によっても異なるが、有機エレクトルミネッセンス用インク組成物の全質量に対して、0.001~3質量%であることが好ましく、0.01~1質量%であることがより好ましい。粘度調整剤の添加率が0.001質量%以上であると、発光ホスト材料の凝集を抑制し、発光効率を向上できることから好ましい。一方、粘度調整剤の添加率が3質量%以下であると、インクジェット液滴の飛翔形状を改善できることから好ましい。
 本発明の機能層形成用インク組成物として、例えば、有機エレクトロルミネッセンス材料や半導体ナノ結晶の様な、機能性材料が酸素や水等により失活して、安定的に機能しない可能性があるときは、当該インク組成物の調製に当たり、溶存気体や水分を出来るだけ除去した有機溶媒を用いたり、インク組成物を調製した後に、インクに対して、脱気や不活性ガスを飽和または過飽和させたり、加熱したり乾燥剤を通して脱水させる等、溶存酸素や水分を出来るだけ除去することが好ましい。インク中の溶存酸素や水分は、200ppm以下にすることが好ましく、100ppm以下にすることがより好ましく、10ppm以下にすることがさらに好ましい。
 また、金属イオンやハロゲンイオン等は洗浄を繰り返したりイオン交換樹脂を通して除去したり、粒子径が大きい異物は濾過を行う等をすることは、例えば、本発明の機能層形成用インキ組成物をインクジェット印刷法に用いる場合は、ノズル目詰まりや長期連続印刷性の観点からも、より高い信頼性を確保できるので好ましい。
 上記の様にして、ポリ(芳香族ビニル)とオルガノポリ(シロキサン)を構造単位として含み、かつ主鎖にシロキサン結合が含まれる様に配置された直鎖ブロック共重合体と、任意の機能性材料とを含む皮膜を必須機能層として、必要に応じてその他の層を含有する様に積層することにより、目的とする電子部品を得ることが出来る。
[発光素子]
 本発明の機能層形成用インク組成物の一実施形態として発光素子用インク組成物を調製する場合は、それに基づき、例えば、OLED発光素子やQLED発光素子を提供することができる。この際、前記有機エレクトロルミネッセンス(発光)素子は、少なくとも陽極、発光層、および陰極を含む。なお、前記有機エレクトロルミネッセンス素子は、正孔注入層、正孔輸送層、電子輸送層、および電子注入層等の他の層を1以上含んでいてもよい。また、封止部材等の公知のものを含んでいてもよい。
 以下、有機エレクトロルミネッセンス素子の各構成について詳細に説明する。
[陽極]
 陽極としては、特に制限されないが、金(Au)等の金属、ヨウ化銅(CuI)、インジウムスズ酸化物(ITO)、酸化スズ(SnO)、酸化亜鉛(ZnO)等が用いられうる。これらの材料は、単独で用いても、2種以上を組み合わせて用いてもよい。
 陽極の膜厚としては、特に制限されないが、10~1000nmであることが好ましく、10~200nmであることがより好ましい。
 陽極は、蒸着やスパッタリング等の方法により形成されうる。この際、フォトリソグラフィー法やマスクを用いた方法によりパターン形成を行ってもよい。
[正孔注入層]
 正孔注入層は、有機エレクトロルミネッセンス素子において任意の構成要素であり、陽極から正孔を取り入れる機能を有する。通常、陽極から取り入れた正孔は、正孔輸送層または発光層に輸送される。
 正孔注入層に用いられうる材料は、上述したものと同様のものが用いられうることからここでは説明を省略する。
 正孔注入層の膜厚としては、特に制限されないが、0.1nm~5μmであることが好ましい。
 正孔注入層は、単層であっても、2以上が積層されたものであってもよい。
 正孔注入層は、湿式成膜法および乾式成膜法により形成することができる。
 正孔注入層を湿式成膜法で形成する場合には、通常、上述の公知慣用の正孔注入材料を含むインク組成物、または本発明の前記機能層形成用インク組成物を塗布し、得られた塗膜を乾燥する工程を含む。この際、塗布の方式としては、特に制限されないが、インクジェット印刷法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。
 また、正孔注入層を乾式成膜法で形成する場合には、真空蒸着法等が適用されうる。
[正孔輸送層]
 正孔輸送層は、有機エレクトロルミネッセンス素子において任意の構成要素であり、正孔を効率的に輸送する機能を有する。また、正孔輸送層は、電子の輸送を防止する機能を有しうる。正孔輸送層は、通常、陽極または正孔注入層から正孔を取り入れ、発光層に正孔を輸送する。
 正孔輸送層に用いられうる材料は、上述したものと同様のものが用いられうることからここでは説明を省略する。
 正孔輸送層の膜厚としては、特に制限されないが、1nm~5μmであることが好ましく、5nm~1μmであることがより好ましく、10~500nmであることがさらに好ましい。
 正孔輸送層は、湿式成膜法および乾式成膜法により形成することができる。
 正孔輸送層を湿式成膜法で形成する場合には、通常、上述の公知慣用の正孔輸送材料を含むインク組成物、または本発明の前記機能層形成用インク組成物を塗布し、得られた塗膜を乾燥する工程を含む。この際、塗布の方式としては、特に制限されないが、インクジェット印刷法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。
 また、正孔輸送層を乾式成膜法で形成する場合には、真空蒸着法等が適用されうる。
[発光層]
 発光層は、発光層に注入された正孔および電子の再結合により生じるエネルギーを利用して発光を生じさせる機能を有する。
 発光層に用いられうる材料は、上述したものと同様のものが用いられうることからここでは説明を省略する。
 発光層の膜厚としては、特に制限されないが、2nm~30μmであることが好ましく、10nm~20μmであることがより好ましく、15nm~15μmであることがさらに好ましく、15~200nmであることが特に好ましい。上記範囲であると、高精度に膜厚を制御しうることから好ましい。
 発光層は湿式成膜法および乾式成膜法により形成することができる。
 発光層を湿式成膜法で形成する場合には、上述の公知慣用の発光材料を含むインク組成物、または本発明の前記機能層形成用インク組成物を塗布し、得られた塗膜を乾燥する工程を含む。この際、塗布の方式としては、特に制限されないが、インクジェット印刷法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。
 また、発光層を乾式成膜法で形成する場合には、真空蒸着法等が適用されうる。
[電子輸送層]
 電子輸送層は、有機エレクトロルミネッセンス素子において任意の構成要素であり、電子を効率的に輸送する機能を有する。また、電子輸送層は、正孔の輸送を防止する機能を有しうる。電子輸送層は、通常、陰極または電子注入層から電子を取り入れ、発光層に電子を輸送する。
 電子輸送層に用いられうる材料は、上述したものと同様のものが用いられうることからここでは説明を省略する。
 上述の電子輸送材料は、単独で用いても、2種以上を組み合わせて用いてもよい。
 電子輸送層の膜厚としては、特に制限されないが、5nm~5μmであることが好ましく、5~200nmであることがより好ましい。
 電子輸送層は、単層であっても、2以上が積層されたものであってもよい。
 電子輸送層は、湿式成膜法および乾式成膜法により形成することができる。
 電子輸送層を湿式成膜法で形成する場合には、上述の公知慣用の電子輸送材料を含むインク組成物、または本発明の前記機能層形成用インク組成物を塗布し、得られた塗膜を乾燥する工程を含む。この際、塗布の方式としては、特に制限されないが、インクジェット印刷法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。
 また、電子輸送層を乾式成膜法で形成する場合には、真空蒸着法等が適用されうる。
[電子注入層]
 電子注入層は、有機発光素子において任意の構成要素であり、陰極から電子を取り入れる機能を有する。通常、陰極から取り入れた電子は、電子輸送層または発光層に輸送される。
 電子注入層に用いられうる材料は、上述したものと同様のものが用いられうることからここでは説明を省略する。
 上述の電子注入材料は、単独で用いても、2種以上を組み合わせて用いてもよい。
 電子注入層の膜厚としては、特に制限されないが、0.1nm~5μmであることが好ましい。
 電子注入層は、単層であっても、2以上が積層されたものであってもよい。
 電子注入層は、湿式成膜法および乾式成膜法により形成することができる。
 電子注入層を湿式成膜法で形成する場合には、上述の公知慣用の電子注入材料を含むインク組成物、または本発明の前記機能層形成用インク組成物を塗布し、得られた塗膜を乾燥する工程を含む。この際、塗布の方式としては、特に制限されないが、インクジェット印刷法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。
 また、電子注入層を乾式成膜法で形成する場合には、真空蒸着法等が適用されうる。
[陰極]
 陰極としては、特に制限されないが、リチウム、ナトリウム、マグネシウム、アルミニウム、ナトリウム-カリウム合金、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、希土類金属等が挙げられる。これらの材料は、単独で用いても、2種以上を組み合わせて用いてもよい。
 陰極は、通常、蒸着やスパッタリング等の方法により形成されうる。
 陰極の膜厚としては、特に制限されないが、10~1000nmであることが好ましく、10~200nmであることがより好ましい。
<有機エレクトロルミネッセンス素子の製造方法>
 本発明の一実施形態によれば、有機エレクトロルミネッセンス素子の製造方法が提供される。前記有機エレクトロルミネッセンス素子の製造方法は、機能性材料として正孔注入材料、正孔輸送材料、発光材料等を用いて、上記したインクジェット印刷法に好適な粘度や表面張力になる様に調製した機能層形成用インク組成物を、有機エレクトロルミネッセンス素子用インク組成物として用い、それを、支持体上にインクジェット印刷法により塗布して機能層を形成する工程(以下、「機能層形成工程」とも称する)を含む。
[機能層形成工程]
 機能層形成工程は、有機エレクトロルミネッセンス素子用インク組成物を、支持体または下層上にインクジェット法により塗布して機能層を形成する工程である。
 以下、図面を参照しながら、一実施形態における発光層を形成する工程について説明する。
 より詳細には、図1は、インクジェット法により塗布膜を形成する工程を模式的に示す部分断面図である。図1には、基板1と、前記基板上に配置された陽極2と、前記陽極上に配置された正孔輸送層4とを有する。この際、基板上に複数有する前記陽極2および正孔輸送層4の積層体は、バンク3により離隔されている。有機エレクトロルミネッセンス素子用インク組成物をインクジェットヘッド7のノズル6から吐出すると、前記正孔輸送層4上に有機エレクトロルミネッセンス素子用インク組成物の塗膜5が形成される。得られた塗膜を乾燥することで、発光層を形成することができる。
<有機エレクトロルミネッセンス素子用インク組成物>
 有機エレクトロルミネッセンス素子用インク組成物としては、上述したものが用いられうることからここでは説明を省略する。
[支持体]
 支持体としては、発光層と隣接する有機エレクトロルミネッセンス素子の構成層であり、製造しようとする有機エレクトロルミネッセンス素子によって異なる。例えば、陽極、発光層、および陰極からなる有機エレクトロルミネッセンス素子を製造する場合には、支持体は陽極または陰極である。また、陽極、正孔注入層、発光層、電子注入層、陰極からなる有機エレクトロルミネッセンス素子を製造する場合には、支持体は正孔注入層または電子輸送層である。このように、支持体としては、陽極、正孔注入層、正孔輸送層、電子輸送層、電子注入層、または陰極であり、好ましくは陽極、正孔注入層、正孔輸送層であり、より好ましくは正孔注入層または正孔輸送層であり、さらに好ましくは正孔輸送層である。
 なお、支持体には、バンクが形成されていてもよい。バンクを有することにより、所望の箇所にのみ発光層を形成することができる。
 前記バンクの高さは、0.1~5.0μmであることが好ましく、0.2~3.0μmであることがより好ましく、0.2~2.0μmであることがさらに好ましい。
 また、前記バンク開口部の幅は、10~200μmであることが好ましく、30~200μmであることがより好ましく、50~100μmであることがさらに好ましい。
 さらに、前記バンク開口部の長さは、10~400μmであることが好ましく、20~200μmであることがより好ましく、50~200μmであることがさらに好ましい。
 また、前記バンクのテーパ角度は10~100度であることが好ましく、10~90度であることがより好ましく、10~80度であることがさらに好ましい。
[塗布]
 塗布は、例えばインクジェット印刷法により行われる。より詳細には、有機エレクトロルミネッセンス素子用インク組成物をインクジェットヘッドのノズルから支持体に対して吐出する。
 この際、有機エレクトロルミネッセンス素子用インク組成物の吐出量は、1~50pL/回であることが好ましく、1~30pL/回であることがより好ましく、1~20pL/回であることがさらに好ましい。
 インクジェットヘッドの開口径は、ノズルの詰まりや吐出精度の観点から、5~50μmであることが好ましく、10~30μmであることがより好ましい。
 塗膜を形成する際の温度は特に限定されないが、安定した乾燥速度や印刷特性が得られる観点から、10~50℃であることが好ましく、15~40℃であることがよりに好ましく、15~30℃であることがさらに好ましい。
 塗膜を形成する際の相対湿度は特に限定されないが、0.01ppm~80%であることが好ましく、0.05ppm~60%であることがより好ましく、0.1ppm~15%であることがさらに好ましく、1ppm~1%であることが特に好ましく、5~100ppmであることが最も好ましい。相対湿度が0.01ppm以上であると、塗膜を形成する条件の制御が容易となることから好ましい。一方、相対湿度が80%以下であると、得られる発光層に影響を及ぼし得る塗膜吸着水分量が低減できることから好ましい。
[乾燥]
 得られた塗膜を乾燥することにより、発光層が形成されうる。
 乾燥温度は特に限定されないが、室温(25℃)で放置して行っても、加熱して行ってもよい。加熱して行う場合には、40~200℃であることが好ましく、40~150℃であることがより好ましい。
 また、乾燥時の圧力は減圧下で行うことが好ましく、0.001~100Paの減圧下で行うことがより好ましい。
 さらに、乾燥時間は、1~90分であることが好ましく、1~30分であることがより好ましい。
 本発明のレベリング剤は、発光素子の上記した各層の少なくとも一層に含有させることで、上記した様な効果を発現する。隣接又は離れた二層に含有させることもできる。発光層を必須に含有させ隣接する層にも含有させることが好ましい。
 以下、実施例を挙げて本発明を具体的に説明する。
<ジブロック共重合体の合成>
[実施例1]
 アルゴン雰囲気下、-78℃に冷却したスチレン(1.8g、17mmol)のTHF(7mL)溶液に、n-ブチルリチウム(1.6Mヘキサン溶液、0.1mL、0.16mmol)を加え、-78℃で撹拌することにより、赤色を呈した溶液が得られた。0℃に昇温し、ヘキサメチルシクロトリシロキサン(2.3g、10mmol)のTHF(10mL)溶液を加えた。0℃で2時間撹拌した後、メタノール(0.5mL)を加え、反応溶液を0℃のメタノール(200mL)に注いだ。析出物をろ過することにより、ポリスチレン-ジメチルポリシロキサンのジブロック構造を有するジブロック共重合体1(2.2g、収率53%、重量平均分子量12,000、ケイ素含有率6%)を白色固体として得た。
[実施例2~5]
 スチレンとヘキサメチルシクロトリシロキサンの仕込みモル数等を調製する以外は上記実施例と同様にして、重量平均分子量とケイ素含有率が異なる、表1に示す各種の直鎖状ジブロック共重合体2~5を得た。
<トリブロック共重合体の合成>
[実施例6]
 アルゴン雰囲気下、-78℃に冷却したスチレン(1.8g、17mmol)のTHF(7mL)溶液に、n-ブチルリチウム(1.6Mヘキサン溶液、0.1mL、0.16mmol)を加え、-78℃で撹拌することにより、赤色を呈した溶液が得られた。0℃に昇温し、ヘキサメチルシクロトリシロキサン(2.3g、10mmol)のTHF(10mL)溶液を加えた。0℃で2時間撹拌した後、ジクロロジメチルシラン(0.08mmol)を加え、反応溶液を0℃のメタノール(200mL)に注いだ。析出物をろ過することにより、ポリスチレン-ジメチルポリシロキサン-ポリスチレンのトリブロック構造を有するトリブロック重合体1(1.6g、収率39%、重量平均分子量13,000、ケイ素含有率10%)を白色固体として得た。
[実施例7、8]
 スチレンとヘキサメチルシクロトリシロキサンの仕込みモル数等を調製する以外は上記実施例と同様にして、重量平均分子量とケイ素含有率が異なる、表1に示す各種の直鎖状トリブロック共重合体2、3を得た。
 なお、上記実施例で得た直鎖ブロック共重合体の重量平均分子量は、高速GPC装置(東ソー株式会社製)を用いてポリスチレンを標準物質として測定した。
 また、ケイ素含有率はNMRにおける全体のプロトンに対するシロキサンのプロトンの割合から求めた。
[ブロック共重合体の特性]
Figure JPOXMLDOC01-appb-T000005
<有機エレクトロルミネッセンス素子用インク組成物の製造>
 機能性材料である、有機エレクトロルミネッセンス素子材料として発光材料を用いた有機エレクトロルミネッセンス素子用インク組成物を製造した。
[発光層用インクの作製]
[実施例9]
 0.01gのトリス[2-(p-トリル)ピリジン]イリジウム(Ir(mppy))(Lumtec社製)と、0.09gの9,9’-(p-tert-ブチルフェニル)-1,3-ビスカルバゾール(H-1;DIC株式会社製)とを、9gのシクロヘキシルベンゼンに混合して加熱溶解させた。得られた溶液を室温まで冷却し、実施例1で調製したジブロック共重合体1を0.0005g添加した。次いで、全質量が10gとなるようにシクロヘキシルベンゼンをさらに添加して、十分に撹拌した。最後に、0.45μmフィルターであるマイショリディスク(東ソー株式会社製)を用いて異物を除去し、有機エレクトロルミネッセンス素子用インク組成物を製造した。
[実施例10~16]
 それぞれ実施例2~8で調製した直鎖ブロック共重合体を、不揮発分の質量換算でジブロック共重合体1と同量用いたことを除いては、実施例9と同様の方法で各々有機エレクトロルミネッセンス素子用インク組成物を製造した。
[正孔輸送層用インクの作製]
[実施例17]
 Ir(mppy)3)と、H-1の代わりに下記式で表されるHT-2を用いた以外は、実施例9と同様の方法で有機エレクトロルミネッセンス素子用インク組成物を製造した。
Figure JPOXMLDOC01-appb-C000006
[実施例18~24]
 それぞれ実施例2~8で調製した直鎖ブロック共重合体を、不揮発分の質量換算でジブロック共重合体1と同量用いたことを除いては、実施例17と同様の方法で各々有機エレクトロルミネッセンス素子用インク組成物を製造した。
[実施例25]
 溶媒としてシクロヘキシルベンゼンの替わりに、ジエチレングリコールブチルメチルエーテルを用いたことを除いては、実施例9と同様の方法で有機エレクトロルミネッセンス素子用インク組成物を製造した。
[実施例26]
 溶媒としてシクロヘキシルベンゼンの替わりに、シクロヘキシルベンゼン/ジエチレングリコールブチルメチルエーテル(質量比1:1)を用いたことを除いては、実施例9と同様の方法で有機エレクトロルミネッセンス素子用インク組成物を製造した。
 上記各実施例のそれぞれの有機エレクトロルミネッセンス素子用インク組成物は、いずれも、25℃における表面張力が25~40mN/m、かつ25℃における粘度を1~75mPa・sの範囲内にあり、インクジェット印刷法に適したインク組成物であった。
[比較例1]
 実施例で用いた直鎖ブロック共重合体の代わりに、アラルキル変性ジメチルシロキサン(ビックケミー(株)製「BYK-322」)の不揮発分の質量換算でジブロック共重合体1と同量を添加することを除いては、実施例9と同様の方法で有機エレクトロルミネッセンス素子用インク組成物を製造した。
[比較例2]
 実施例に用いた直鎖ブロック共重合体の代わりにWO2017/073650公報の実施例4に記載のシロキサンポリマーの不揮発分の質量換算でジブロック共重合体1と同量を添加することを除いては、実施例9と同様の方法で有機エレクトロルミネッセンス素子用インク組成物を製造した。
[比較例3]
 実施例で用いた直鎖ブロック共重合体の代わりに、アラルキル変性ジメチルシロキサン(ビックケミー(株)製「BYK-322」)の不揮発分の質量換算でジブロック共重合体1と同量を添加することを除いては、実施例17と同様の方法で有機エレクトロルミネッセンス素子用インク組成物を製造した。
[比較例4]
 実施例に用いた直鎖ブロック共重合体の代わりにWO2017/073650公報の実施例4に記載のシロキサンポリマーを用いた以外は、実施例17と同様の方法で有機エレクトロルミネッセンス素子用インク組成物を製造した。
<有機エレクトロルミネッセンス素子用インク組成物の評価>
 上記実施例9~26および比較例1~4で製造した有機エレクトロルミネッセンス素子用インク組成物について各種評価した。
[1.膜質]
 インジウムスズ酸化物(ITO)基板上に、0.1μLの有機エレクトロルミネッセンス素子用インク組成物を滴下し、25℃、1Torrで減圧乾燥した。得られた有機薄膜の凸部および凹部の差(凹凸差)を、光干渉表面形状計測装置(株式会社菱化システム製)を用いて測定し、以下の基準に従って評価した。なお、前記凸部とは有機薄膜表面のうち最も高いものを意味し、前記凹部とは有機薄膜表面のうち最も低いものを意味する。
<評価基準>
 比較例1で得られた膜において、凹凸差が0nm以内の面積を1.00とした時の相対値を求め、これを膜質評価の尺度とした。数値が大きいほど膜質が優れることを表す。
 1.06以上:◎
 1.00以上1.06未満:○
 1.00未満:△
<有機エレクトロルミネッセンス素子の作製>
 上記有機エレクトロルミネッセンス素子用インク組成物を用いて有機エレクトロルミネッセンス素子を作製した。
<バンク形成支持基板の作製>
 ITOがストライプ状にパターニングされたガラス基板(40mm×70mm)上に、フッ素界面活性剤を添加したポジ型フォトレジストをスピンコートし、フォトリソグラフィーによるパターニングにより、縦300μm、横100μm(縦ピッチ350μm、横ピッチ150μm)のピクセルを付帯するバンク形成支持基板を作製した。バンクの膜厚を光干渉表面形状計測装置(株式会社菱化システム製)を用いて測定し、2.0μm厚のバンクが形成されていることを確認した。
[実施例9~16、25、26、比較例1,2]
 インクジェットプリンター(DMP2831、カートリッジボックスDMC-11610、富士フイルム株式会社製)を用いて、バンク形成支持基板内にポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)(PEDOT-PSS)を45nm成膜し、大気中で180℃、15分間加熱し、正孔注入層を形成した。次いで、HT-2の0.3重量%キシレン溶液を、正孔注入層上にインキジェット吐出により10nm成膜し、窒素雰囲気下にて200℃で30分間乾燥させることで、正孔輸送層を形成した。
 次に、上記各実施例9~16、25、26、および各比較例1,2の、機能性材料として発光材料を含む有機エレクトロルミネッセンス素子用インク組成物を、正孔輸送層上にインクジェットにより30nm成膜し、窒素雰囲気下にて110℃で15分間乾燥させることで、発光層を形成した。そして、5×10-3Paの真空条件下で、電子輸送層として下記式で表されるET-1を45nm、電子注入層としてフッ化リチウムを0.5nm、陰極としてアルミニウムを100nm順次成膜した。最後に、グローブボックスに基板を搬送し、ガラス基板にて封止することで、積層電子部品である、有機エレクトロルミネッセンス素子を作製した。
Figure JPOXMLDOC01-appb-C000007
[実施例17~24、比較例3、4]
 前記インクジェットプリンターを用いて、バンク形成支持基板内にポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)(PEDOT-PSS)を45nm成膜し、大気中で180℃、15分間加熱し正孔注入層を形成した。
 上記各実施例17~24および比較例3、4の、機能性材料として正孔輸送材料であるHT-2を含む有機エレクトロルミネッセンス素子用インク組成物をインクジェットにより10nm成膜し、窒素雰囲気下にて200℃で30分間乾燥させることで、正孔輸送層を形成した。
 次に、5×10-3Paの真空条件下で、Ir(mppy)と、H-1を重量比で10:90となるように、30nm成膜し、発光層を形成した。そして、電子輸送層としてET-1を45nm、電子注入層としてフッ化リチウムを0.5nm、陰極としてアルミニウムを100nm順次成膜した。最後に、グローブボックスに基板を搬送し、ガラス基板にて封止することで、積層電子部品である、有機エレクトロルミネッセンス素子を作製した。
<有機エレクトロルミネッセンス素子の評価>
 上記実施例9~26および比較例1~4を用いて作製した有機エレクトロルミネッセンス素子について評価した。
[2.素子寿命]
 作製した各有機エレクトロルミネッセンス素子を用い、発光寿命を測定した。作製した有機エレクトロルミネッセンス素子に対し、10mA/cmの電流を印加し、フォトダイオード式寿命測定装置(システム技研株式会社製)にて、評価初期の輝度を100%としたとき、輝度が50%に減ずるまでの寿命(輝度半減寿命)を測定した。
<評価基準>
 比較例1で得られた素子において、輝度半減寿命を1.00とした時の相対値を求め、これを素子寿命の尺度とした。数値が大きいほど素子寿命が優れることを表す。
 2.0以上:◎
 1.0以上1.5未満:○
 1.0未満:×
 それぞれの有機エレクトロルミネッセンス素子の上記膜質と輝度半減寿命を、用いた各実施例の直鎖ブロック共重合体及び各比較例のシロキサン化合物の重量平均分子量、ケイ素含有率(質量%)、インク組成物の調製に用いた有機溶媒種と共に、下表に示した。
[発光層用インクにおける評価]
Figure JPOXMLDOC01-appb-T000008
[正孔輸送層用インクにおける評価]
Figure JPOXMLDOC01-appb-T000009
[発光層用インクにおける評価]
Figure JPOXMLDOC01-appb-T000010
 表2、3の結果から、各実施例で製造した有機エレクトロルミネッセンス素子用インク組成物は、直鎖ブロック共重合体中のケイ素含有率が10%以上かつ重量平均分子量5,000から50,000の直鎖ブロック共重合体からなるレベリング剤を含んでおり、それがメチル基以外の有機修飾基をオルガノポリ(シロキサン)中に含有しないことから、表面偏析能により優れ、シロキサン構造が塗膜内に埋没すること無く表面に露出することで、より良好なレベリング性が発現し、平滑性に優れた塗膜が得られていることがわかる。
 さらに、直鎖ブロック共重合体間での比較を行うと、ケイ素含有率が12%以上のものはレベリング性がより優れる。また、分子量が18,000以下のものは発光寿命がより優れる。
 また、表4の結果から、有機溶媒として、芳香環構造を有する有機溶剤のみを用いた実施例9の有機エレクトロルミネッセンス素子用インク組成物(有機エレクトロルミネッセンス素子)に比べて、芳香環構造を有する有機溶剤と、脂肪族エーテルとを併用した実施例26の有機エレクトロルミネッセンス素子用インク組成物(有機エレクトロルミネッセンス素子)は、平滑性により優れた塗膜が得られているだけでなく、発光寿命が向上している。
 本発明のレベリング剤は、インク組成物に含めることで、得られる塗膜の平滑性だけでなく、例えば、積層電子部品の駆動安定性を低下できるので、得られる塗膜の平滑性を改善した、積層電子部品の駆動安定性に優れた機能層形成用インク組成物、積層電子部品を提供することができる。
 1:基板
 2:陽極
 3:バンク
 4:正孔輸送層
 5:塗膜
 6:ノズル
 7:インクジェットヘッド

Claims (10)

  1.  ポリ(芳香族ビニル)とオルガノポリ(シロキサン)を構造単位として含み、かつ主鎖にシロキサン結合が含まれる様に配置された直鎖ブロック共重合体を含有してなるレベリング剤。
  2.  前記ブロック共重合体が、ポリスチレンとジメチルポリシロキサンを構造単位として含み、かつ主鎖にシロキサン結合が含まれる様に配置された直鎖ブロック共重合体である、請求項1記載のレベリング剤。
  3.  前記ブロック共重合体が、ポリスチレン換算の重量平均分子量5千~5万のブロック共重合体である、請求項1記載のレベリング剤。
  4.  ポリ(芳香族ビニル)とオルガノポリ(シロキサン)を構造単位として含み、かつ主鎖にシロキサン結合が含まれる様に配置された直鎖ブロック共重合体と、機能性材料と、有機溶媒とを含有する、機能層形成用インク組成物。
  5.  質量換算で、不揮発分に対する直鎖ブロック共重合体の含有量が0.0001~3%である請求項4記載の機能層形成用インク組成物。
  6.  機能性材料が、半導体ナノ結晶または有機発光ダイオードである、請求項4記載の機能層形成用インク組成物。
  7.  25℃における表面張力が25~40mN/mであり、25℃における粘度が1~75mPaであり、インクジェット用である請求項4記載の機能層形成用インク組成物。
  8.  有機溶剤として、一分子中に芳香環構造と脂環構造との両方を含有する有機溶剤を用いる請求項4~7のいずれか一項記載の機能層形成用インク組成物。
  9.  有機溶剤として、一分子中に芳香環構造と脂環構造との両方を含有する有機溶剤と、脂肪族グリコールエーテルとを併用する請求項4~7のいずれか一項記載の機能層形成用インク組成物。
  10.  ポリ(芳香族ビニル)とオルガノポリ(シロキサン)を構造単位として含み、かつ主鎖にシロキサン結合が含まれる様に配置された直鎖ブロック共重合体と、機能性材料とを含む皮膜を必須機能層として含有する積層電子部品。
PCT/JP2018/037872 2017-10-20 2018-10-11 レベリング剤、機能層形成用インク組成物及び積層電子部品 WO2019078080A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-203543 2017-10-20
JP2017203543 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019078080A1 true WO2019078080A1 (ja) 2019-04-25

Family

ID=66173655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037872 WO2019078080A1 (ja) 2017-10-20 2018-10-11 レベリング剤、機能層形成用インク組成物及び積層電子部品

Country Status (1)

Country Link
WO (1) WO2019078080A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045930A (zh) * 2019-12-28 2021-06-29 Tcl集团股份有限公司 油墨及量子点薄膜和量子点发光二极管
JP7348417B1 (ja) 2022-03-25 2023-09-20 住友化学株式会社 組成物及びそれを用いた発光素子の製造方法
WO2023181737A1 (ja) * 2022-03-25 2023-09-28 住友化学株式会社 組成物及びそれを用いた発光素子の製造方法
WO2023181738A1 (ja) * 2022-03-25 2023-09-28 住友化学株式会社 組成物及びそれを用いた発光素子の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691257A (en) * 1968-03-29 1972-09-12 Midland Silicones Ltd Organic polymers containing siloxane-organic block copolymers
JPH0728255A (ja) * 1993-07-12 1995-01-31 Fuji Xerox Co Ltd 電子写真感光体
JP2015103522A (ja) * 2013-11-26 2015-06-04 エルジー ディスプレイ カンパニー リミテッド 有機発光表示装置及びその製造方法
WO2016093111A1 (ja) * 2014-12-10 2016-06-16 Dic株式会社 有機発光素子用インク組成物およびこれを用いた有機発光素子
WO2017033828A1 (ja) * 2015-08-24 2017-03-02 Dic株式会社 有機半導体素子用インク組成物およびこれを用いた有機半導体素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691257A (en) * 1968-03-29 1972-09-12 Midland Silicones Ltd Organic polymers containing siloxane-organic block copolymers
JPH0728255A (ja) * 1993-07-12 1995-01-31 Fuji Xerox Co Ltd 電子写真感光体
JP2015103522A (ja) * 2013-11-26 2015-06-04 エルジー ディスプレイ カンパニー リミテッド 有機発光表示装置及びその製造方法
WO2016093111A1 (ja) * 2014-12-10 2016-06-16 Dic株式会社 有機発光素子用インク組成物およびこれを用いた有機発光素子
WO2017033828A1 (ja) * 2015-08-24 2017-03-02 Dic株式会社 有機半導体素子用インク組成物およびこれを用いた有機半導体素子

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN, X. ET AL.: "Fourier transform infrared and electron spectroscopy for chemical analysis studies of block copolymers of styrene and dimethylsiloxane", MACROMOLECULES, vol. 25, no. 24, 1992, pages 6621 - 6630, XP055597363, ISSN: 0024-9297, DOI: 10.1021/ma00050a035 *
GAINES, G. L. ET AL.: "Surface concentration of a Styrene- dimethylsiloxane block copolymer in mixtures with polystyrene", MACROMOLECULES, vol. 5, no. 1, 1 January 1972 (1972-01-01), pages 82 - 86, XP055597366, ISSN: 0024-9297, DOI: 10.1021/ma60025a019 *
OWEN, M. J. ET AL.: "Surface activity of polystyrene- polysiloxane-polystyrene ABA block copolymers", MACROMOLECULES, vol. 3, no. 4, 1 July 1970 (1970-07-01), pages 458 - 461, XP055597362, ISSN: 0024-9297, DOI: 10.1021/ma60016a016 *
PETITJEAN, S. ET AL.: "Investigation of the surface activity of a poly(styrene-b-dimethylsiloxane) copolymer blended within a polystyrene matrix", MACROMOLECULES, vol. 27, no. 15, 1994, pages 4127 - 4133, XP000456654, DOI: doi:10.1021/ma00093a014 *
WU, N. ET AL.: "Surface properties of block and graft polystyrene-polydimethylsiloxane copolymers", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 99, no. 6, 11 January 2006 (2006-01-11) - 15 March 2006 (2006-03-15), pages 2936 - 2942, XP055597360, ISSN: 0021-8995, DOI: 10.1002/app.22978 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045930A (zh) * 2019-12-28 2021-06-29 Tcl集团股份有限公司 油墨及量子点薄膜和量子点发光二极管
CN113045930B (zh) * 2019-12-28 2023-04-18 Tcl科技集团股份有限公司 油墨及量子点薄膜和量子点发光二极管
JP7348417B1 (ja) 2022-03-25 2023-09-20 住友化学株式会社 組成物及びそれを用いた発光素子の製造方法
WO2023181736A1 (ja) * 2022-03-25 2023-09-28 住友化学株式会社 組成物及びそれを用いた発光素子の製造方法
WO2023181737A1 (ja) * 2022-03-25 2023-09-28 住友化学株式会社 組成物及びそれを用いた発光素子の製造方法
WO2023181738A1 (ja) * 2022-03-25 2023-09-28 住友化学株式会社 組成物及びそれを用いた発光素子の製造方法
JP7439312B2 (ja) 2022-03-25 2024-02-27 住友化学株式会社 組成物及びそれを用いた発光素子の製造方法

Similar Documents

Publication Publication Date Title
TWI669832B (zh) 發光二極體及包含該發光二極體的發光顯示裝置
WO2019078080A1 (ja) レベリング剤、機能層形成用インク組成物及び積層電子部品
GB2465731A (en) Light-emitting device
KR102581601B1 (ko) 발광 특성이 향상된 양자 발광다이오드 및 이를 포함하는 양자 발광 장치
US11711971B2 (en) Ink composition and method for manufacturing organic light emitting device
CN112051709B (zh) 量子点光刻胶、由其获得的量子点发光层、包含该量子点发光层的qled及其制备和应用
JP2009087754A (ja) 発光素子
CN109796466B (zh) 有机化合物以及包含该有机化合物的发光二极管和发光装置
TWI421273B (zh) 聚合物、包括該聚合物之有機光電裝置與顯示器
WO2010104183A1 (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
TW201627427A (zh) 有機發光元件用墨水組成物及使用其之有機發光元件
KR20160064956A (ko) 지연 형광 화합물, 이를 포함하는 유기발광다이오드소자 및 표시장치
JP2009087756A (ja) 発光素子
JP5375593B2 (ja) デバイス、及びその製造方法
CN111406440A (zh) 粒子、油墨和发光元件
TW201714986A (zh) 有機半導體元件用油墨組成物及使用其之有機半導體元件
WO2018230548A1 (ja) 機能層形成用インク
Chao et al. Cross-linkable hole transporting layers boost operational stability of high-performance quantum dot light-emitting device
US20130277662A1 (en) Organic light-emitting device, light source device using same, organic light-emitting layer material, coating liquid for forming organic light-emitting layer, and method for producing organic light-emitting device
JP2010108927A (ja) 有機電界発光素子、該有機電界発光素子の製造方法、有機el表示装置および有機el照明
JP2009087755A (ja) 発光素子
WO2022190191A1 (ja) 量子ドット含有膜、発光素子、波長変換部材、表示装置
KR102515818B1 (ko) 유기 화합물, 이를 포함하는 발광다이오드 및 발광장치
JP6753538B2 (ja) 発光層の形成方法および発光素子の製造方法
WO2019069780A1 (ja) インクおよび発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP