WO2019078021A1 - Soldering apparatus and soldering method - Google Patents

Soldering apparatus and soldering method Download PDF

Info

Publication number
WO2019078021A1
WO2019078021A1 PCT/JP2018/037201 JP2018037201W WO2019078021A1 WO 2019078021 A1 WO2019078021 A1 WO 2019078021A1 JP 2018037201 W JP2018037201 W JP 2018037201W WO 2019078021 A1 WO2019078021 A1 WO 2019078021A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuse reflection
reflection area
nozzle
molten solder
solder
Prior art date
Application number
PCT/JP2018/037201
Other languages
French (fr)
Japanese (ja)
Inventor
浩儀 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019549199A priority Critical patent/JP6844021B2/en
Priority to CN201880065443.5A priority patent/CN111201104B/en
Publication of WO2019078021A1 publication Critical patent/WO2019078021A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention relates to a soldering apparatus and a soldering method.
  • Patent Document 1 discloses a method of measuring the height of molten solder jetted from a nozzle.
  • the height of molten solder jetted from a nozzle is measured using a conductive gauge member.
  • An object of the present invention is to provide a soldering apparatus and a soldering method that enable more appropriate soldering.
  • the soldering apparatus of the present invention comprises a jet part and a measuring part.
  • the jet part includes a nozzle.
  • the measurement unit is configured to measure a first surface shape of the diffuse reflection area formed on the surface of the molten solder jetted from the nozzle.
  • the soldering method of the present invention comprises forming a diffuse reflection area on the surface of molten solder jetted from a nozzle, and measuring the first surface shape of the diffuse reflection area by a measurement unit.
  • the first surface shape of the diffuse reflection area follows the surface shape of the molten solder jetted from the nozzle.
  • the surface shape of the molten solder jetted from the nozzle can be measured.
  • the soldering apparatus and the soldering method of the present invention enable more appropriate soldering by using the measurement result of the first surface shape of the diffuse reflection area corresponding to the surface shape of the molten solder jetted from the nozzle.
  • FIG. 1 is a schematic perspective view of a soldering apparatus according to Embodiment 1;
  • FIG. 1 is a schematic cross-sectional view of a soldering apparatus according to Embodiment 1;
  • FIG. 1 is a schematic cross-sectional view of a soldering apparatus according to Embodiment 1;
  • FIG. 8 is a schematic cross-sectional view of a soldering apparatus according to a modification of the first embodiment.
  • FIG. 1 is a schematic partial enlarged perspective view of a soldering apparatus according to Embodiment 1;
  • FIG. 7 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the first embodiment.
  • FIG. 1 is a schematic perspective view of a soldering apparatus according to Embodiment 1;
  • FIG. 1 is a schematic cross-sectional view of a soldering apparatus according to Embodiment 1;
  • FIG. 7 is a schematic partial enlarged cross-sectional
  • FIG. 7 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the first embodiment.
  • FIG. 2 is a schematic partial enlarged cross-sectional view of the soldering apparatus according to the first embodiment.
  • FIG. 6 is a schematic partial enlarged perspective view showing a step of measuring a second surface shape of a nozzle using the soldering apparatus according to Embodiment 1.
  • FIG. 2 is a control block diagram of the soldering apparatus according to the first embodiment.
  • FIG. 8 is a diagram showing a flowchart of a soldering method according to Embodiments 1 to 5, 7 and 8;
  • FIG. 7 is a schematic partial enlarged perspective view of a soldering apparatus according to Embodiment 2;
  • FIG. 7 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to Embodiment 2;
  • FIG. 10 is a schematic partial enlarged perspective view of a soldering apparatus according to Embodiment 3;
  • FIG. 10 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to Embodiment 3;
  • FIG. 16 is a schematic partial enlarged perspective view of a soldering apparatus according to a fourth embodiment.
  • FIG. 18 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the fourth embodiment.
  • FIG. 18 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the fourth embodiment.
  • FIG. 18 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the fourth embodiment.
  • FIG. 18 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the fourth embodiment.
  • FIG. 18 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the fourth embodiment.
  • FIG. 16 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to Embodiment 4;
  • FIG. 18 is a schematic partial enlarged perspective view of a soldering apparatus according to Embodiment 5;
  • FIG. 18 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to Embodiment 5;
  • FIG. 16 is a schematic partial enlarged plan view of the soldering apparatus according to the fifth embodiment.
  • FIG. 18 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to Embodiment 5;
  • FIG. 21 is a schematic partial enlarged perspective view of a soldering apparatus according to a first modified example of the fifth embodiment.
  • FIG. 21 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to a second modification of the fifth embodiment.
  • FIG. 18 is a schematic partial enlarged perspective view of a soldering apparatus according to Embodiment 6;
  • FIG. 21 is a schematic partial enlarged perspective view showing a process of forming a diffuse reflection area using the soldering apparatus according to the sixth embodiment.
  • FIG. 21 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the sixth embodiment.
  • FIG. 21 is a schematic partial enlarged perspective view showing a process of forming a diffuse reflection area using the soldering apparatus according to the sixth embodiment.
  • FIG. 21 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the sixth embodiment.
  • FIG. 16 is a diagram showing a flowchart of a soldering method according to Embodiment 6;
  • FIG. 18 is a schematic partial enlarged perspective view of a soldering apparatus according to a seventh embodiment.
  • FIG. 18 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to a seventh embodiment.
  • FIG. 21 is a schematic partial enlarged cross-sectional view of a diffuse reflection area forming portion included in a soldering apparatus according to a seventh embodiment.
  • FIG. 21 is a schematic partial bottom view of a diffuse reflection area forming portion included in the soldering apparatus according to the seventh embodiment.
  • FIG. 21 is a schematic partial enlarged cross-sectional view of a diffuse reflection area forming portion included in a soldering apparatus according to a seventh embodiment.
  • FIG. 21 is a schematic partial bottom view of a diffuse reflection area forming portion included in the soldering apparatus according to the seventh embodiment.
  • FIG. 21 is a schematic partial enlarged perspective view of a soldering apparatus according to Embodiment 8;
  • Embodiment 1 The soldering apparatus 1 according to the first embodiment will be described with reference to FIGS. 1 to 10.
  • the soldering apparatus 1 mainly includes a jet portion 10 including a nozzle 12a, a diffuse reflection area forming portion 30 (see FIG. 5), and a measuring portion 20.
  • the soldering apparatus 1 further includes the transport unit 4, the preheating unit 9, the housing 3, the display unit 41, the control unit 40 (see FIG. 10), and the memory 43 (see FIG. 10). Good.
  • the transport unit 4 transports the wiring board 6 above the nozzles 12 a.
  • the transport unit 4 may be, for example, a transport conveyor.
  • the soldering apparatus 1 brings the molten solder 14 jetted from the nozzle 12 a into contact with the back surface 6 b of the wiring substrate 6 to make the component 7 mounted on the front surface 6 a of the wiring substrate 6 the back surface 6 b of the wiring substrate 6 It may be soldered to the electrical wiring provided above.
  • the component 7 may be, for example, an electronic component such as a capacitor or a resistor.
  • the wiring substrate 6 may be a printed circuit board.
  • the molten solder 14 may be made of, for example, a tin-based solder alloy such as tin-lead or tin-silver-copper.
  • the molten solder 14 may be made of, for example, a tin-copper alloy, a tin-silver alloy, or a solder alloy obtained by adding antimony, bismuth, nickel, germanium, or the like to these alloys.
  • the jet flow portion 10 includes a solder bath 10 s in which the molten solder 14 is stored, a duct 11, a nozzle portion 12, and a pump 13 p.
  • the duct 11 is locked or fixed to the solder bath 10s.
  • the duct 11 includes a top 11t and a bottom 11b.
  • the duct 11 has an opening 11a at the bottom 11b.
  • the duct 11 communicates with the solder bath 10s through the opening 11a.
  • the pump 13p pumps the molten solder 14 stored in the solder tank 10s to the duct 11 and the nozzle 12a.
  • the pump 13p may include an impeller 13n and a motor 13m connected to the impeller 13n.
  • the impeller 13 n is disposed in the duct 11.
  • the impeller 13 n may be disposed to face the opening 11 a. As the motor 13m rotates the impeller 13n, the molten solder 14 is sent out from the solder tank 10s to the duct 11 and the
  • the nozzle unit 12 includes a nozzle 12a.
  • the nozzle 12a protrudes in the height direction (z direction).
  • the height direction (z direction) is a direction in which the molten solder 14 is jetted from the nozzle 12 a toward the wiring substrate 6.
  • the molten solder 14 jets from the opening 12 b of the nozzle 12 a.
  • the opening 12b of the nozzle 12a may have the shape of an elongated rectangle or a slit.
  • the openings 12 b of the nozzles 12 a may extend along the width direction (y direction) intersecting with the transport direction (x direction) and the height direction (z direction) of the wiring substrate 6.
  • the molten solder 14 flows out from the nozzle 12 a toward the upstream side ( ⁇ x direction) and the downstream side (+ x direction) in the transport direction of the wiring substrate 6.
  • the opening 12b of the nozzle 12a may have a circular shape.
  • the nozzle 12a is covered by molten solder 14 jetted from the nozzle 12a.
  • the nozzle 12 a may be configured to change the relative height d of the nozzle 12 a with respect to the wiring substrate 6.
  • the nozzle 12 a may be configured to change the relative height of the nozzle 12 a with respect to the transport unit 4.
  • the nozzle 12 a may be configured to change the relative height of the nozzle 12 a with respect to the duct 11.
  • the nozzle 12 a may be provided at the top 11 t of the duct 11 to move relative to the duct 11.
  • the duct 11 may include a support 11 f extending in the height direction (z direction) and a bolt 11 h provided at an end of the support 11 f.
  • the nozzle portion 12 includes a plate portion 12d having a hole 12e.
  • the plate portion 12 d extends in a width direction (y direction) intersecting the height direction (z direction) and the transfer direction (x direction) of the wiring board 6.
  • the bolt 11 h is inserted into the hole 12 e.
  • the nozzle 12a (nozzle portion 12) can move in the height direction (z direction) together with the bolt 11h.
  • the relative height d of the nozzle 12a (nozzle portion 12) to the wiring board 6 can be changed.
  • the elevating part 18 may be provided below the jet flow part 10.
  • the elevating unit 18 moves the jet unit 10 in the height direction (z direction).
  • the relative height d of the nozzle 12a to the wiring substrate 6 may be changed.
  • the nozzle unit 12 may include a guide plate 12 c.
  • the guide plate 12 c extends from the nozzle 12 a along the transport direction (x direction) of the wiring board 6.
  • the guide plate 12 c guides the molten solder 14 jetted from the nozzle 12 a along the transport direction (x direction) of the wiring board 6.
  • the guide plate 12c may be configured to change the mounting position (relative height to the top of the nozzle 12a) with respect to the nozzle 12a.
  • the guide plate 12 c may be configured to change the length of the wiring substrate 6 in the transport direction (x direction).
  • the jet portion 10 may further include a first heater 13 h in the solder bath 10 s.
  • the first heater 13 h heats the molten solder 14 to keep the solder in a molten state.
  • the molten solder 14 jetted from the nozzle 12a is exposed to a gas containing oxygen (for example, air). Therefore, as shown in FIG. 6, the solder oxide film 15 is formed on the surface of the molten solder 14 jetted from the nozzle 12a.
  • the solder oxide film 15 is a natural oxide film of solder formed by the molten solder 14 jetted from the nozzle 12 a coming into contact with this gas.
  • the native oxide of the solder may have a thickness of about 2 nm to about 3 nm.
  • the solder oxide film 15 may be, for example, a tin oxide film.
  • the diffuse reflection area forming unit 30 is configured to form the diffuse reflection area 16 on the surface of the molten solder 14 jetted from the nozzle 12 a.
  • the diffuse reflection area forming unit 30 may be configured to selectively form the diffuse reflection area 16 on a part of the surface of the molten solder 14 jetted from the nozzle 12a.
  • the diffuse reflection area forming unit 30 may include a member 31 and a driving unit 32 configured to move the member 31.
  • the member 31 is configured to move relative to the nozzle 12a.
  • the member 31 may be connected to the drive unit 32 via the connection unit 33.
  • the member 31 may be, for example, a plate member.
  • the drive unit 32 may be, for example, a motor.
  • the driving unit 32 is configured to move the member 31 in one direction along the surface of the molten solder 14 while immersing at least a part of the member 31 in the molten solder 14. Specifically, the drive unit 32 moves the member 31 in the height direction (z direction). As shown in FIG. 6, the member 31 penetrates the solder oxide film 15 formed on the surface of the molten solder 14, and a part of the member 31 is immersed in the molten solder 14. Subsequently, as illustrated in FIG. 7, the driving unit 32 moves the member 31 in one direction along the surface of the molten solder 14 while immersing at least a part of the member 31 in the molten solder 14. .
  • the drive unit 32 has a width crossing in the height direction (z direction) and the direction in which the molten solder 14 flows out from the nozzle 12 a (x direction) while immersing at least a part of the member 31 in the molten solder 14
  • the member 31 may be moved along the direction (y direction).
  • the solder oxide film 15 is folded and a diffuse reflection area 16 is formed on the surface of the molten solder 14 jetted from the nozzle 12a.
  • the diffuse reflection area 16 includes a diffuse reflection film 15 a made of a solder oxide film, and the diffuse reflection area forming portion 30 is a diffuse reflection film forming portion.
  • the diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15.
  • the diffuse reflection area 16 may extend in a straight line or a curve on the surface of the molten solder 14. In particular, the diffuse reflection area 16 may extend along the direction in which the molten solder 14 flows out of the nozzle 12a. The diffuse reflection area 16 may extend from the nozzle 12 a toward at least one of the upstream direction ( ⁇ x direction) and the downstream direction (+ x direction) of the transport direction of the wiring substrate 6.
  • the measurement unit 20 is configured to measure the first surface shape of the diffuse reflection area 16.
  • the surface shape also includes the position of the surface.
  • the measuring unit 20 may be an optical measuring unit. Specifically, the measurement unit 20 is configured to detect the light source unit 21 configured to irradiate the light 22 to the diffuse reflection area 16 and the light 22 diffusely reflected by the diffuse reflection area 16. And the light detection unit 23 may be included.
  • the measuring unit 20 may be, for example, a laser displacement meter, or specifically, a two-dimensional laser displacement meter.
  • the light source unit 21 may be, for example, a semiconductor laser.
  • the light source unit 21 may emit the light 22 to be scanned. Specifically, the light 22 emitted from the light source unit 21 may be scanned along the transport direction (x direction) and the width direction (y direction) of the wiring board 6.
  • the light 22 emitted from the light source unit 21 is diffusely reflected in the diffuse reflection area 16.
  • the diffuse reflection region 16 has a larger ratio of diffuse reflection and a smaller ratio of specular reflection than the solder oxide film 15 in the region adjacent to the diffuse reflection region 16.
  • the ratio of diffuse reflection on the surface means the ratio of light reflected in a direction different from the incident direction to the light incident perpendicularly on the surface.
  • the ratio of specular reflection on the surface means the ratio of light reflected in the incident direction of the light to light incident perpendicularly on the surface.
  • the light detection unit 23 detects the light 22 diffusely reflected in the diffuse reflection area 16.
  • the measurement unit 20 can measure the first surface shape of the diffuse reflection area 16.
  • the light detection unit 23 may be, for example, a CMOS position sensor.
  • the measurement unit 20 may measure the first surface shape of the diffuse reflection area 16 by triangulation. Specifically, information on the surface angle and distance of the diffuse reflection area 16 with respect to the light detection unit 23 can be obtained by detecting the light 22 diffusely reflected by the diffuse reflection area 16 by the light detection unit 23. Based on this information, the first surface shape of the diffuse reflection area 16 can be measured.
  • the diffuse reflection area 16 (diffuse reflection film 15 a) floats on the surface of the molten solder 14.
  • the first surface shape of the diffuse reflection area 16 (diffuse reflection film 15 a) follows the surface shape of the molten solder 14.
  • the first surface shape of the diffuse reflection area 16 (diffuse reflection film 15 a) can be regarded as substantially equivalent to the surface shape of the molten solder 14.
  • the surface shape of the molten solder 14 can be measured by measuring the first surface shape of the diffuse reflection area 16 (diffuse reflection film 15 a) using the measurement unit 20.
  • the surface of the molten solder 14 jetted from the nozzle 12a is constantly fluctuating. Therefore, it is difficult to accurately measure the surface shape of the molten solder 14 jetted from the nozzle 12 a by receiving light specularly reflected by the solder oxide film 15 not including the diffuse reflection area 16 by the light detection unit 23. is there.
  • the measurement unit 20 detects the light 22 diffusely reflected by the diffuse reflection area 16 (diffuse reflection film 15a). Even if the surface of the molten solder 14 jetted from the nozzle 12 a shakes, the light 22 diffusely reflected by the diffuse reflection area 16 can be stably received by the light detection unit 23. With the light 22 diffusely reflected in the diffuse reflection area 16, the shape of the surface of the molten solder 14 jetted can be measured accurately and easily.
  • the measurement unit 20 can be easily positioned with respect to the molten solder 14 jetted from the nozzle 12a. Even if the molten solder 14 is jetted, the diffuse reflection area 16 (diffuse reflection film 15a) hardly moves.
  • the solder oxide film 15 functions as a wall for the molten solder 14 which can be regarded as a viscous fluid, since the viscous fluid generally has a substantially zero flow rate in the vicinity of the wall. Therefore, the first surface shape of the diffuse reflection area 16 corresponding to the shape of the surface of the molten solder 14 can be measured accurately and easily.
  • the drive unit 32 pulls up the member 31 from the molten solder 14 before, for example, the first surface shape of the diffuse reflection area 16 is measured by the measurement unit 20.
  • the driving unit 32 may pull up the member 31 from the molten solder 14 after the first surface shape of the diffuse reflection area 16 is measured.
  • the measurement unit 20 may be configured to further measure the second surface shape of the nozzle 12a.
  • the position and shape of the nozzle 12a may be measured by the measuring unit 20 before the molten solder 14 jets from the nozzle 12a. Therefore, the nozzle 12a having an appropriate shape can be accurately positioned with respect to the wiring substrate 6.
  • controlling the jet flow portion 10 includes the number of rotations of the motor 13m connected to the pump 13p, the temperature of the first heater 13h, the relative height of the nozzle 12a with respect to the wiring board 6, and the nozzle 12a. This means adjusting at least one of the relative height of the guide plate 12c to the top and the length of the guide plate 12c.
  • the memory 43 stores first shape reference data on a first target surface shape of the molten solder 14 jetted from the nozzle 12a.
  • the control unit 40 is configured to compare the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 with the first shape reference data.
  • the control unit 40 is configured to control the jet flow unit 10 based on the comparison result between the first surface shape of the diffuse reflection area 16 and the first shape reference data.
  • Control part 40 may control jet part 10 so that the 1st surface shape of diffuse reflection field 16 obtained by measurement part 20 may be in agreement with the 1st shape standard data.
  • the control unit 40 may be configured to control the nozzle 12 a based on the second surface shape of the nozzle 12 a obtained by the measurement unit 20.
  • controlling the nozzle 12a is at least one of the relative height of the nozzle 12a to the wiring substrate 6, the relative height of the guide plate 12c to the top of the nozzle 12a, and the length of the guide plate 12c. Means to adjust one.
  • the memory 43 stores second shape reference data on a second target surface shape of the nozzle 12a.
  • the control unit 40 is configured to compare the second surface shape of the nozzle 12 a obtained by the measurement unit 20 with the second shape reference data.
  • the control unit 40 is configured to control the nozzle 12 a based on the comparison result between the second surface shape of the nozzle 12 a and the second shape reference data.
  • Control part 40 may control nozzle 12a so that the 2nd surface shape of nozzle 12a obtained by measurement part 20 may be in agreement with the 2nd shape standard data of nozzle 12a.
  • the memory 43 may further store data on the type of the wiring board 6.
  • the preheating unit 9 is disposed on the upstream side ( ⁇ x direction) in the transport direction (x direction) of the wiring board 6 with respect to the nozzle 12a. Prior to the soldering in the jet portion 10, the preheating unit 9 heats the wiring substrate 6.
  • the preheating unit 9 includes a second heater 9 h and a temperature sensor 9 s.
  • the wiring substrate 6 is heated in the preliminary heating unit 9 while being conveyed by the conveyance unit 4 in the preliminary heating unit 9.
  • the second heater 9 h heats the wiring board 6 transported into the preheating unit 9.
  • the temperature sensor 9 s detects the temperature in the preheating unit 9.
  • the preheating unit 9 may be connected to the control unit 40.
  • the control unit 40 may control the preheating unit 9.
  • the control unit 40 may receive the output of the temperature sensor 9s and control the second heater 9h based on the output of the temperature sensor 9s.
  • the housing 3 accommodates the jet flow portion 10, the measurement portion 20, and the preheating portion 9.
  • a part of the transport unit 4 and the control unit 40 are also accommodated in the housing 3.
  • the control unit 40 may control the transport unit 4.
  • the control unit 40 may control the transfer speed of the wiring board 6 by the transfer unit 4.
  • the display unit 41 is provided on the housing 3. As shown in FIG. 10, the display unit 41 is connected to the control unit 40.
  • the control unit 40 controls the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20, the second surface shape of the nozzle 12a, the number of rotations of the motor 13m connected to the pump 13p, and the first heater 13h. Temperature, temperature of second heater 9 h, relative height of nozzle 12 a to wiring board 6, relative height of guide plate 12 c to top of nozzle 12 a, length of guide plate 12 c, type of wiring board 6 And, data including the transport speed of the wiring board 6 in the transport unit 4 is output to the display unit 41. The display unit 41 displays these data.
  • the soldering method of the present embodiment will be described with reference to FIGS. 5 to 11.
  • the soldering method of the present embodiment includes forming a diffuse reflection area 16 on the surface of the molten solder 14 jetted from the nozzle 12a (S11).
  • the diffuse reflection area 16 may be selectively formed on a part of the surface of the molten solder 14 jetted from the nozzle 12a.
  • forming the diffuse reflection area 16 involves immersing the member 31 along the surface of the molten solder 14 while immersing at least a part of the member 31 in the molten solder 14 It may include moving in one direction.
  • the drive unit 32 moves the member 31 in the height direction (z direction).
  • the member 31 penetrates the solder oxide film 15 formed on the surface of the molten solder 14, and a part of the member 31 is immersed in the molten solder 14.
  • the driving unit 32 moves the member 31 in one direction along the surface of the molten solder 14 while immersing at least a part of the member 31 in the molten solder 14.
  • the drive unit 32 may move the member 31 along the width direction (y direction) while immersing at least a part of the member 31 in the molten solder 14.
  • the solder oxide film 15 is folded and a diffuse reflection area 16 is formed on the surface of the molten solder 14 jetted from the nozzle 12a.
  • the diffuse reflection area 16 may include a diffuse reflection film 15a composed of a solder oxide film.
  • the diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15.
  • the soldering method of the present embodiment includes measuring the first surface shape of the diffuse reflection area 16 by the measuring unit 20 (S12). As shown in FIG. 8, in the measurement of the first surface shape of the diffuse reflection area 16 (S 12), the diffuse reflection area 16 is irradiated with light 22 and the light diffusely reflected by the diffuse reflection area 16 And C. 22 may be included.
  • the diffuse reflection area 16 (diffuse reflection film 15 a) floats on the surface of the molten solder 14.
  • the first surface shape of the diffuse reflection area 16 follows the surface shape of the molten solder 14.
  • the first surface shape of the diffuse reflection area 16 (diffuse reflection film 15 a) can be regarded as substantially equivalent to the surface shape of the molten solder 14.
  • the surface shape of the molten solder 14 jetted from the nozzle 12a can be measured.
  • the drive unit 32 may pull up the member 31 from the molten solder 14.
  • the soldering method of the present embodiment further includes controlling the jet portion 10 including the nozzle 12 a based on the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 (S 13, S 14). It is also good. Controlling the jet portion 10 (S13, S14) compares the first surface shape of the diffuse reflection area 16 with the first shape reference data on the first target surface shape of the molten solder 14 jetted from the nozzle 12a. (S13), and controlling the jet part 10 based on the comparison result between the first surface shape of the diffuse reflection area 16 and the first shape reference data (S14).
  • the first shape reference data on the first target surface shape of the molten solder 14 jetted from the nozzle 12a is, for example, past data on the surface shape of the molten solder 14 jetted from the nozzle 12a immediately after cleaning the nozzle 12a described later. It may be
  • the memory 43 stores first shape reference data on a first target surface shape of the molten solder 14 jetted from the nozzle 12a.
  • the control unit 40 compares the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 with the first shape reference data stored in the memory 43.
  • the control unit 40 controls the jet unit 10 based on the comparison result between the first surface shape of the diffuse reflection area 16 and the first shape reference data.
  • the control unit 40 controls the jetted portion so that the first surface shape of the diffuse reflection area 16 obtained by the measuring unit 20 matches the first shape reference data of the molten solder 14 jetted from the nozzle 12a. 10 may be controlled. If the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 does not match the first shape reference data of the molten solder 14 jetted from the nozzle 12a (in the case of NG1 in FIG. 11), the jetted portion 10 Are controlled (S14), and then it is confirmed whether the first surface shape of the diffuse reflection area 16 matches the first shape reference data by the steps (S11) to (S13). Steps (S11) to (S14) are repeated until the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 matches the first shape reference data of the molten solder 14 jetted from the nozzle 12a.
  • the component 7 is soldered to the wiring substrate 6 by the molten solder 14 jetted from the nozzle 12 a ( S30). Specifically, the wiring board 6 is transported by the transport unit 4 to the upper side of the nozzle 12 a. The component 7 mounted on the front surface 6 a of the wiring substrate 6 is provided on the back surface 6 b of the wiring substrate 6 by bringing the molten solder 14 jetted from the nozzle 12 a into contact with the back surface 6 b of the wiring substrate 6. Soldered to electrical wiring.
  • solder oxide is deposited in the opening 12b of the nozzle 12a.
  • the deposited solder oxide inhibits the flow of the molten solder 14 in the opening 12b of the nozzle 12a and causes a soldering failure.
  • the nozzle 12 a is removed from the soldering apparatus 1 and disassembled and cleaned. After cleaning the nozzle 12 a, the nozzle 12 a is assembled again and attached to the soldering apparatus 1.
  • an assembly error may occur.
  • an attachment error may occur.
  • the surface shape of the molten solder 14 jetted from the nozzle 12a after cleaning may differ from the surface shape of the molten solder 14 jetted from the nozzle 12a before cleaning. These errors can cause solder defects after cleaning the nozzle 12a.
  • the second surface shape of the nozzle 12 a is measured by the measuring unit 20 (S 21) so that these errors do not occur (S 21), and the measuring unit And controlling the nozzle 12a based on the second surface shape of the nozzle 12a obtained by the step S20 (S22, S23).
  • the second surface shape of the nozzle 12a is not jetted from the nozzle 12a. It may be measured by the measurement unit 20.
  • the nozzle 12a is made of, for example, stainless steel whose surface is nitrided.
  • the nozzle 12 a has a larger percentage of diffuse reflection on the surface and a smaller percentage of specular reflection on the surface than the solder oxide film 15. Therefore, the second surface shape of the nozzle 12a can be measured directly by the measuring unit 20.
  • Controlling the nozzle 12a compares the second surface shape of the nozzle 12a with second shape reference data on the second target surface shape of the nozzle 12a (S22), and Controlling the nozzle 12a based on a comparison result between the second surface shape of the second surface 12a and the second shape reference data (S23).
  • the second shape reference data regarding the second target surface shape of the nozzle 12a may be, for example, past data regarding the second surface shape of the nozzle 12a immediately after cleaning the nozzle 12a.
  • the memory 43 stores second shape reference data on a second target surface shape of the nozzle 12a.
  • the control unit 40 compares the second surface shape of the nozzle 12 a obtained by the measurement unit 20 with the second shape reference data stored in the memory 43.
  • the control unit 40 controls the nozzle 12a based on the comparison result between the second surface shape of the nozzle 12a and the second shape reference data.
  • control unit 40 may control the nozzle 12a such that the second surface shape of the nozzle 12a obtained by the measurement unit 20 matches the second shape reference data of the nozzle 12a. If the second surface shape of the nozzle 12a obtained by the measurement unit 20 does not match the second shape reference data of the nozzle 12a (in the case of NG3 in FIG. 11), the nozzle 12a is controlled (S23), and Whether or not the second surface shape of the nozzle 12a matches the second shape reference data is confirmed by the step (S21) and the step (S22). Steps (S21) to (S23) are repeated until the second surface shape of the nozzle 12a obtained by the measurement unit 20 matches the second shape reference data of the nozzle 12a.
  • the molten solder 14 is jetted from the nozzle 12a to diffuse reflection on the surface of the molten solder 14 A region 16 is formed (S11).
  • the case where the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 can not be matched with the first shape reference data only by the steps (S11) to (S14)
  • the nozzle 12a is controlled again from step (S21) to step (S23), and then the first surface of the diffuse reflection area 16 from step (S11) to step (S14)
  • the shape may be matched to the first shape reference data.
  • the same process as in the case of disassembling and cleaning the nozzle 12a may be performed. Specifically, when the type of wiring board 6 is changed, the steps (S21) to (S23) are performed. The nozzle 12 a is controlled such that the second surface shape of the nozzle 12 a obtained by the measurement unit 20 matches the second shape reference data corresponding to the different types of wiring boards 6. Subsequently, steps (S11) to (S14) are performed. The nozzle 12 a is controlled such that the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 matches the first shape reference data corresponding to the different types of wiring boards 6.
  • the control unit 40 reads out the type of the wiring board 6 from the memory 43, and the first shape reference data and the second shape reference data corresponding to the different types of wiring board 6 are read. It may be replaced by shape reference data of Thus, even if the type of wiring board 6 is changed, the occurrence of soldering defects can be suppressed.
  • the step (S13) of comparing the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 with the first shape reference data may be performed by the method exemplified below.
  • data of the first surface shape of the diffuse reflection area 16 is used to generate characteristic part data (for example, the highest position of the first surface shape of the diffuse reflection area 16) using an electronic computer. Extract data etc.)
  • the data of the characteristic portion may be compared with the first shape reference data of the characteristic portion using a computer.
  • the first surface shape of the diffuse reflection area 16 and the first shape reference data may be displayed on the display unit 41, and these may be visually compared.
  • step (S22) of comparing the second surface shape of the nozzle 12a obtained by the measuring unit 20 with the second shape reference data these may be compared by an electric computer or visually.
  • the diffuse reflection area 16 (diffuse reflection film according to the present embodiment) (diffuse reflection film according to the third embodiment) 15a) may be formed.
  • the soldering apparatus 1 of the present embodiment includes a jet portion 10 and a measuring portion 20.
  • the jet part 10 includes a nozzle 12a.
  • the measurement unit 20 is configured to measure a first surface shape of the diffuse reflection area 16 formed on the surface of the molten solder 14 jetted from the nozzle 12a.
  • the first surface shape of the diffuse reflection area 16 follows the surface shape of the molten solder 14 jetted from the nozzle 12a.
  • the soldering apparatus 1 of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
  • the soldering apparatus 1 of the present embodiment may further include a diffuse reflection area forming unit 30 configured to form the diffuse reflection area 16 on the surface of the molten solder 14. Therefore, the diffuse reflection area 16 can be easily formed on the surface of the molten solder 14.
  • the soldering apparatus 1 of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
  • the diffuse reflection area forming unit 30 may include a member 31 and a drive unit 32.
  • the driving unit 32 may be configured to move the member 31 in one direction along the surface of the molten solder 14 while immersing at least a part of the member 31 in the molten solder 14.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. Therefore, the diffuse reflection area 16 can be easily formed on the surface of the molten solder 14.
  • the soldering apparatus 1 of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
  • the soldering apparatus 1 of the present embodiment may further include a control unit 40.
  • the control unit 40 may be configured to control the jet unit 10 based on the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20.
  • the soldering apparatus 1 of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
  • the soldering apparatus 1 of the present embodiment may further include a memory 43 in which first shape reference data on a first target surface shape of the molten solder 14 jetted from the nozzle 12 a is stored.
  • the control unit 40 may be configured to compare the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 with the first shape reference data.
  • the control unit 40 may be configured to control the jet unit 10 based on the comparison result between the first surface shape of the diffuse reflection area 16 and the first shape reference data.
  • the soldering apparatus 1 of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
  • the measuring unit 20 may be configured to further measure the second surface shape of the nozzle 12a.
  • the control unit 40 may be configured to control the nozzle 12 a based on the second surface shape of the nozzle 12 a obtained by the measurement unit 20.
  • the soldering apparatus 1 of the present embodiment enables more appropriate (better) soldering using the measurement result of the second surface shape of the nozzle 12 a.
  • the diffuse reflection area 16 is formed on the surface of the molten solder 14 jetted from the nozzle 12 a (S 11), and the first surface shape of the diffuse reflection area 16 is measured by the measuring unit 20. And (S12) measuring.
  • the first surface shape of the diffuse reflection area 16 follows the surface shape of the molten solder 14 jetted from the nozzle 12a.
  • the soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
  • forming the diffuse reflection area 16 moves the member 31 along the surface of the molten solder 14 while immersing at least a part of the member 31 in the molten solder 14. May be included.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. Therefore, the diffuse reflection area 16 can be easily formed on the surface of the molten solder 14.
  • the soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
  • the soldering method of the present embodiment further includes controlling the jet portion 10 including the nozzle 12 a (S 13, S 14) based on the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20. It is also good.
  • the soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
  • controlling the jet portion 10 includes the first surface shape of the diffuse reflection area 16 and the first target surface shape of the molten solder 14 jetted from the nozzle 12a. Comparing the first shape reference data with respect to (S13), and controlling the jet portion 10 based on the comparison result between the first surface shape of the diffuse reflection area 16 and the first shape reference data And (S14) may be included.
  • the soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
  • the measurement unit 20 measures the second surface shape of the nozzle 12a (S21), and the nozzle based on the second surface shape of the nozzle 12a obtained by the measurement unit 20. And 12a may be further included (S22, S23).
  • the soldering method of the present embodiment enables more appropriate (better) soldering using the measurement result of the second surface shape of the nozzle 12a.
  • soldering apparatus 1b according to a second embodiment will be described with reference to FIGS. 12 and 13.
  • the soldering apparatus 1b of the present embodiment has the same configuration as the soldering apparatus 1 of the first embodiment, but differs mainly in the following points.
  • the soldering apparatus 1 b includes a measuring unit 20 b in place of the measuring unit 20 of the first embodiment.
  • the measurement unit 20b includes a light source unit 21b and a light detection unit 23b.
  • the light source unit 21 b is configured to irradiate the diffuse reflection area 16 with the light 22 b.
  • the light source unit 21 b may emit light 22 b having an elongated rectangular shape or a cross-sectional shape of a slit.
  • the light source unit 21 b may be, for example, a laser marker.
  • the light detection unit 23 b is configured to detect the light 22 b diffusely reflected by the diffuse reflection area 16.
  • the light detection unit 23 b is an imaging unit configured to acquire an image of the first surface shape of the diffuse reflection area 16.
  • the imaging unit may be, for example, a CCD camera.
  • the first surface shape of the diffuse reflection area 16 can be easily measured by detecting the light 22 b diffused and reflected by the diffuse reflection area 16 by the light detection unit 23
  • the soldering method of the present embodiment will be described with reference to FIGS. 11 to 13.
  • the soldering method of the present embodiment includes the same steps as the soldering method of the first embodiment, but differs in the following points.
  • the soldering method of the present embodiment includes measuring the first surface shape of the diffuse reflection area 16 by the measuring unit 20b (S12). Measuring the first surface shape of the diffuse reflection area 16 (S12) includes irradiating the diffuse reflection area 16 with the light 22b and detecting the light 22b diffusely reflected by the diffuse reflection area 16. .
  • the measurement unit 20b includes a light detection unit 23b.
  • the light detection unit 23 b is an imaging unit configured to acquire an image of the first surface shape of the diffuse reflection area 16. Detecting the diffusely reflected light 22 b includes acquiring an image of the first surface shape of the diffuse reflection area 16 by the imaging unit.
  • the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 b and the first shape reference data on the first target surface shape of the molten solder 14 jetted from the nozzle 12 a (S13).
  • the control unit 40 stores, in the memory 43, an image of a first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. It may be compared with data (first reference image).
  • the image of the first surface shape of the diffuse reflection area 16 and the first shape reference data (first reference image) are superimposed to calculate the area corresponding to the difference between these images. Based on this area, the image of the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20b may be compared with the first shape reference data (first reference image).
  • the soldering method of the present embodiment may include measuring the second surface shape of the nozzle 12a by the measuring unit 20b (S21).
  • the measurement unit 20b includes a light detection unit 23b that is an imaging unit configured to acquire an image of a second surface shape of the nozzle 12a.
  • the soldering method of the present embodiment is to compare the second surface shape of the nozzle 12a obtained by the measurement unit 20b with the second shape reference data on the second target surface shape of the nozzle 12a (S22). Equipped with Specifically, the control unit 40 may compare the image of the second surface shape of the nozzle 12a with the second shape reference data (second reference image) stored in the memory 43. Specifically, the image of the second surface shape of the nozzle 12a and the second shape reference data (second reference image) are superimposed to calculate the area corresponding to the difference between these images. Based on this area, the image of the second surface shape of the nozzle 12a obtained by the measurement unit 20b may be compared with the second shape reference data (second reference image).
  • soldering apparatus 1b and the soldering method of the present embodiment have the following effects similar to the soldering apparatus 1 and the soldering method of the first embodiment.
  • the measurement unit 20b detects the light source unit 21b configured to irradiate the diffuse reflection area 16 with the light 22b and the light 22b diffused and reflected by the diffuse reflection area 16 And a light detection unit 23 b configured to The light detection unit 23 b is an imaging unit configured to acquire an image of the first surface shape of the diffuse reflection area 16.
  • measuring the first surface shape of the diffuse reflection area 16 (S12) comprises irradiating the diffuse reflection area 16 with the light 22b, and diffuse reflection by the diffuse reflection area 16. And detecting the light 22b. Detecting the diffusely reflected light 22 b includes acquiring an image of the first surface shape of the diffuse reflection area 16 by the imaging unit.
  • the soldering apparatus 1b and the soldering method of the present embodiment are more appropriate using the measurement results of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a ( Enable better soldering.
  • soldering apparatus 1c according to the third embodiment will be described with reference to FIGS. 14 and 15.
  • the soldering apparatus 1c of the present embodiment has the same configuration as the soldering apparatus 1 of the first embodiment, but differs mainly in the following points.
  • the soldering apparatus 1 c includes a diffuse reflection area forming unit 30 c instead of the diffuse reflection area forming unit 30 of the first embodiment.
  • the diffuse reflection area forming unit 30 c includes a gas spraying unit 35 configured to spray the gas 34 containing oxygen toward the surface of the molten solder 14.
  • the gas spray unit 35 may be configured to selectively spray a gas 34 containing oxygen onto a part of the surface of the molten solder 14.
  • the gas 34 containing oxygen may be, for example, air.
  • the jet nozzle of the gas spray unit 35 may have, for example, an elongated shape extending along the direction (x direction) in which the molten solder 14 flows out from the nozzle 12a, or may have a circular shape.
  • the gas spray unit 35 is configured to move relative to the nozzle 12a.
  • the portion of the surface of the molten solder 14 to which the gas 34 is blown is oxidized more preferentially than the other portions.
  • the gas 34 promotes the oxidation of the molten solder 14.
  • a diffuse reflection area 16 is selectively formed on a portion of the surface of the molten solder 14 to which the gas 34 is blown.
  • the diffuse reflection area 16 may include a diffuse reflection film 15 c made of a solder oxide film, and the diffuse reflection area formation portion 30 c may be a diffuse reflection film formation portion.
  • the diffuse reflection film 15 c is a thick solder oxide film thicker than the solder oxide film 15 in the area adjacent to the diffuse reflection area 16 (diffuse reflection film 15 c).
  • the solder oxide thick film When the solder oxide thick film is irradiated with the light 22 emitted from the light source unit 21b, interference fringes of the light 22 are formed in the solder oxide thick film, and a larger proportion of the light 22 is diffusely reflected.
  • the solder oxide thick film functions as the diffuse reflection film 15c.
  • the thickness of the diffuse reflection film 15c may be twice or more of the thickness of the solder oxide film 15 adjacent to the diffuse reflection film 15c (solder oxide thick film), or three times or more. It may be five times or more, or ten times or more.
  • the thickness of the diffuse reflection film 15c (solder oxide thick film) may be 0.10 times or more of the wavelength of the light 22, may be 0.12 times or more, and is 0.15 times or more. It may be 0.18 times or more, or 0.20 times or more.
  • the soldering method of the present embodiment will be described with reference to FIGS. 11, 14 and 15.
  • the soldering method of the present embodiment includes the same steps as the soldering method of the first embodiment, but differs in the following points.
  • forming the diffuse reflection area 16 on the surface of the molten solder 14 jetted from the nozzle 12a (S11) is one of the surfaces of the molten solder 14 as shown in FIG.
  • the gas 34 promotes the oxidation of the molten solder 14.
  • a diffuse reflection area 16 is selectively formed on a portion of the surface of the molten solder 14 to which the gas 34 is blown.
  • the diffuse reflection area 16 includes a diffuse reflection film 15 c composed of a solder oxide film.
  • the diffuse reflection film 15 c is a thick solder oxide film thicker than the solder oxide film 15 in the area adjacent to the diffuse reflection area 16. In the solder oxide thick film, interference fringes of the light 22 are formed, and a larger proportion of the light 22 is diffused and reflected, so the solder oxide thick film functions as the diffuse reflection film 15 c.
  • the measuring unit 20 may be replaced with the measuring unit 20b according to the second embodiment.
  • the diffuse reflection area 16 (the diffuse reflection area according to the present embodiment (diffuse reflection) using the diffuse reflection area forming portion 30 disclosed in the first embodiment.
  • a membrane 15c may be formed.
  • soldering apparatus 1c and the soldering method of the present embodiment have the following effects similar to the soldering apparatus 1 and the soldering method of the first embodiment.
  • the diffuse reflection area forming unit 30c includes a gas spraying unit 35 configured to spray a gas 34 containing oxygen toward the surface of the molten solder 14.
  • forming the diffuse reflection area 16 includes spraying a gas 34 containing oxygen selectively on a part of the surface of the molten solder 14.
  • the diffuse reflection area 16 includes a diffuse reflection film 15 c composed of a solder oxide film (solder oxide thick film). Therefore, the diffuse reflection area 16 can be easily formed.
  • the soldering apparatus 1c and the soldering method of the present embodiment are more appropriate by using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a ( Enable better soldering.
  • soldering apparatus 1 d according to a fourth embodiment will be described with reference to FIGS. 16 to 21.
  • the soldering apparatus 1d of the present embodiment has the same configuration as the soldering apparatus 1 of the first embodiment, but differs mainly in the following points.
  • the soldering apparatus 1 d includes a diffuse reflection area formation part 30 d in place of the diffuse reflection area formation part 30 of the first embodiment.
  • the diffuse reflection area forming unit 30 d includes a member 31 d and a vibrator 32 d.
  • the vibrator 32 d is configured to vibrate the member 31 d along the surface of the molten solder 14 while immersing at least a part of the member 31 d in the molten solder 14.
  • the vibrator 32d vibrates the member 31d, for example, in the width direction (y direction).
  • the vibrator 32d may be, for example, a piezoelectric element made of a ceramic material such as zirconate titanate, barium titanate or titanate, or may be formed of an electromagnetic motor, an electrostatic motor or an ultrasonic motor. It may be a vibrating motor.
  • the molten solder 14 jetted from the nozzle 12a is exposed to a gas containing oxygen (for example, air). Therefore, as shown in FIGS. 16 and 17, the solder oxide film 15 is formed on the surface of the molten solder 14 jetted from the nozzle 12a.
  • the solder oxide film 15 is a natural oxide film of solder formed by the molten solder 14 jetted from the nozzle 12 a coming into contact with this gas.
  • the member 32 d while immersing at least a part of the member 31 d in the molten solder 14, the member 32 d is vibrated along the surface of the molten solder 14 using the vibrator 32 d.
  • the solder oxide film 15 is folded and a diffuse reflection area 16 is formed on the surface of the molten solder 14 jetted from the nozzle 12a.
  • the diffuse reflection area 16 is formed on both sides in the width direction (y direction) of the member 31 d.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film, and the diffuse reflection area formation portion 30d is a diffuse reflection film formation portion.
  • the diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15. Therefore, the diffuse reflection film 15 a is likely to diffuse and reflect more light 22 (see FIG. 16) than the solder oxide film 15.
  • the measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16. Thus, the measurement unit 20 can measure the first surface shape of the diffuse reflection area 16.
  • the width of the diffuse reflection film 15a is the length of the diffuse reflection film 15a in the width direction (y direction).
  • the diffuse reflection film 15a having a wide area can be obtained without the diffuse reflection film 15a being formed into small pieces.
  • the first surface shape (surface shape of the molten solder 14) of the diffuse reflection area 16 can be stably measured over a wide area.
  • the member 31 d is made of a material that is difficult to melt in the molten solder 14 such as SUS316 or titanium.
  • the member 31 d may be a bar member extending along the transport direction (x direction) of the wiring substrate 6.
  • the member 31 d is configured to be in contact with the back surface 6 b of the wiring substrate 6 when the wiring substrate 6 is transported above the nozzle 12 a.
  • the back surface 6 b is the surface of the wiring substrate 6 facing the molten solder 14.
  • the member 31 d extends above the nozzle 12 a.
  • the member 31 d is disposed in the transport path of the wiring substrate 6 in a plan view from the direction (z direction) in which the nozzle 12 a protrudes toward the wiring substrate 6.
  • the width of the transport path of the wiring substrate 6 is the same as the width of the wiring substrate 6.
  • the width of the wiring substrate 6 is the length of the wiring substrate 6 in the width direction (y direction).
  • the width of the transport path of the wiring substrate 6 is the length of the transport path of the wiring substrate 6 in the width direction (y direction).
  • the side surface 6 c of the wiring substrate 6 is gripped by the arm 4 a of the transport unit 4, but the front surface 6 a and the back surface 6 b of the wiring substrate 6 are not gripped by the arm 4 a of the transport unit 4.
  • the back surface 6 b of the wiring substrate 6 is in contact with the molten solder 14, whereas the front surface 6 a of the wiring substrate 6 is not in contact with the molten solder 14.
  • the temperature of the back surface 6 b of the wiring substrate 6 is higher than the temperature of the front surface 6 a of the wiring substrate 6. Due to the temperature difference between the front surface 6a and the back surface 6b of the wiring board 6, the wiring board 6 tries to warp so as to protrude toward the nozzle 12a.
  • the member 31 d can be in contact with the back surface 6 b of the wiring substrate 6 to prevent the wiring substrate 6 from warping.
  • the soldering method of the present embodiment will be described with reference to FIGS. 11 and 16 to 21.
  • FIG. The soldering method of the present embodiment includes the same steps as the soldering method of the first embodiment, but differs in the following points.
  • forming the diffuse reflection area 16 on the surface of the molten solder 14 jetted from the nozzle 12a (S11) is, as shown in FIG. 16 to FIG. While immersing a part in the molten solder 14, vibrating the member 31d along the surface of the molten solder 14 is included.
  • a solder oxide film 15 (solder natural oxide film) is formed on the surface of the molten solder 14.
  • the solder oxide film 15 folds over and is jetted from the nozzle 12a on the surface of the molten solder 14 , And the diffuse reflection area 16 is formed.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
  • the diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15. Therefore, the diffuse reflection film 15 a is likely to diffuse and reflect more light 22 (see FIG. 16) than the solder oxide film 15.
  • the measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16. Thus, the measurement unit 20 measures the first surface shape of the diffuse reflection area 16 (S12). When the wiring board 6 is not in contact with the member 31d, the diffuse reflection area 16 is formed (S11), and the first surface shape of the diffuse reflection area 16 is measured (S12).
  • soldering method of the present embodiment in the step of soldering component 7 to wiring board 6 by molten solder 14 jetted from nozzle 12a (S30), wiring 6 is performed while the back surface 6b of wiring board 6 is in contact with member 31d. The substrate 6 is transported. The member 31 d can prevent the wiring board 6 from warping.
  • the effects of the soldering apparatus 1 d and the soldering method of the present embodiment will be described.
  • the soldering apparatus 1 d and the soldering method of the present embodiment have the following effects similar to those of the soldering apparatus 1 and the soldering method of the first embodiment.
  • the diffuse reflection area forming unit 30 d includes a member 31 d and a vibrator 32 d.
  • the vibrator 32 d is configured to vibrate the member 31 d along the surface of the molten solder 14 while immersing at least a part of the member 31 d in the molten solder 14.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
  • the soldering apparatus 1d of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
  • the member 31d extends along the transport direction (x direction) of the object (wiring substrate 6) to be soldered.
  • the member 31 d is configured to be in contact with the back surface 6 b of the object (wiring substrate 6).
  • the back surface 6 b is a surface of the target (wiring substrate 6) to be soldered that faces the molten solder 14.
  • the member 31 d can be in contact with the back surface 6 b of the object to be soldered (wiring substrate 6) to prevent the object to be soldered (wiring substrate 6) from warping.
  • the soldering apparatus 1d of the present embodiment enables more appropriate (better) soldering.
  • forming the diffuse reflection area 16 vibrates the member 31 d along the surface of the molten solder 14 while immersing at least a part of the member 31 d in the molten solder 14.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
  • the soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
  • the member 31 d extends along the transport direction (x direction) of the object (wiring substrate 6) to be soldered.
  • the object (wiring substrate 6) to be soldered is transported while the back surface 6b of the object (wiring substrate 6) to be soldered contacts the member 31d.
  • the back surface 6 b is a surface of the target (wiring substrate 6) to be soldered that faces the molten solder 14.
  • the member 31 d can prevent the object to be soldered (wiring board 6) from warping.
  • the soldering method of the present embodiment enables more appropriate (better) soldering.
  • Embodiment 5 A soldering apparatus 1e according to the fifth embodiment will be described with reference to FIGS. 22 to 27.
  • the soldering apparatus 1e of the present embodiment has the same configuration as the soldering apparatus 1 of the first embodiment, but differs mainly in the following points.
  • the soldering apparatus 1 e includes a diffuse reflection area forming unit 30 e in place of the diffuse reflection area forming unit 30 of the first embodiment.
  • the diffuse reflection area forming unit 30 e includes two stationary members 36.
  • the stationary member 36 is attached to, for example, the transport unit 4.
  • One stationary member 36 is located downstream of the center line 12m (see FIG. 23) of the opening 12b of the nozzle 12a in the transfer direction (x direction) of the wiring board 6 in the transfer direction (x direction) of the wiring board 6 Is located in
  • the other stationary member 36 is disposed upstream of the center line 12m of the opening 12b of the nozzle 12a in the transport direction (x direction) of the wiring board 6.
  • the stationary member 36 is disposed above the nozzle 12 a such that a portion of the stationary member 36 is immersed in the molten solder 14. The remaining portion of the stationary member 36 is exposed from the molten solder 14.
  • the stationary member 36 is disposed outside the transport path of the wiring substrate 6 in a plan view from the direction (z direction) in which the nozzle 12 a protrudes toward the wiring substrate 6. Therefore, the stationary member 36 is prevented from interfering with the soldering.
  • the stationary member 36 is made of a material that does not easily dissolve in the molten solder 14 such as SUS316 or titanium.
  • the stationary member 36 has, for example, a rectangular shape in a plan view from the direction (z direction) in which the nozzle 12 a protrudes toward the wiring substrate 6.
  • the stationary member 36 may have a polygonal shape or a circular shape in a plan view from the direction (z direction) in which the nozzle 12 a protrudes toward the wiring substrate 6. It may have a streamlined shape.
  • the molten solder 14 jetted from the nozzle 12a is exposed to a gas containing oxygen (for example, air). Therefore, as shown in FIGS. 22 to 25, a solder oxide film 15 is formed on the surface of the molten solder 14 jetted from the nozzle 12a.
  • the solder oxide film 15 is a natural oxide film of solder formed by the molten solder 14 contacting the gas.
  • the solder oxide film 15 is folded around the stationary member 36 to form the diffuse reflection area 16 on the surface of the molten solder 14 jetted from the nozzle 12a.
  • the reason that the diffuse reflection area 16 is formed is that when the molten solder 14 flows along the stationary member 36, the molten solder 14 contacts the stationary member 36, and the flow of the molten solder 14 is disturbed around the stationary member 36 and is stationary. It is presumed that the flow velocity of the molten solder 14 is reduced around the member 36.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film, and the diffuse reflection area formation portion 30e is a diffuse reflection film formation portion.
  • the diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15. Therefore, the diffuse reflection film 15a is likely to diffuse and reflect more light 22 (see FIG. 22) than the solder oxide film 15.
  • the measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16. Thus, the measurement unit 20 can measure the first surface shape of the diffuse reflection area 16.
  • the soldering method of the present embodiment will be described with reference to FIGS. 11 and 22 to 27.
  • the soldering method of the present embodiment includes the same steps as the soldering method of the first embodiment, but differs in the following points.
  • forming the diffuse reflection area 16 (S11) on the surface of the molten solder 14 jetted from the nozzle 12a is performed along the stationary member 36 disposed above the nozzle 12a. Including flowing molten solder 14. A part of the stationary member 36 is immersed in the molten solder 14. By flowing the molten solder 14 along the stationary member 36, the solder oxide film 15 is folded around the stationary member 36, and the diffuse reflection area 16 is formed on the surface of the molten solder 14 spouted from the nozzle 12a. .
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
  • the diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15. Therefore, the diffuse reflection film 15 a is likely to diffuse and reflect more light 22 (see FIG. 16) than the solder oxide film 15.
  • the measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16. Thus, the measurement unit 20 measures the first surface shape of the diffuse reflection area 16 (S12).
  • the stationary member 36 is disposed outside the transport path of the wiring substrate 6 in a plan view from the direction (z direction) in which the nozzle 12 a protrudes toward the wiring substrate 6. . Therefore, the stationary member 36 is prevented from interfering with the soldering.
  • the diffuse reflection area forming portion 30e may include one stationary member 36.
  • the diffuse reflection area forming unit 30 e may include three or more stationary members 36.
  • stationary member 36 has a shape that is bent so that the central portion of stationary member 36 protrudes toward nozzle 12a. Since the surface of the molten solder 14 can be kept in contact with the stationary member 36 even if the height (position in the z direction) of the surface of the molten solder 14 changes, the diffuse reflection area 16 is stabilized around the stationary member 36 Can be formed.
  • a diffuse reflection film 15c which is a solder oxide thick film may be formed around the stationary member 36, and the diffuse reflection region 16 is a solder oxide thick film.
  • a certain diffuse reflection film 15c may be included.
  • the effects of the soldering apparatus 1 e and the soldering method of the present embodiment will be described.
  • the soldering apparatus 1 e and the soldering method of the present embodiment have the following effects similar to the soldering apparatus 1 and the soldering method of the first embodiment.
  • the diffuse reflection area forming unit 30 e includes a stationary member 36.
  • the stationary member 36 is disposed above the nozzle 12 a so that a part of the stationary member 36 is immersed in the molten solder 14.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
  • the soldering apparatus 1e of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
  • forming the diffuse reflection area 16 (S11) includes flowing the molten solder 14 along the stationary member 36 disposed above the nozzle 12a. A part of the stationary member 36 is immersed in the molten solder 14.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
  • the soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
  • the stationary member 36 is a plan view from the direction (z direction) in which the nozzle 12a protrudes toward the object (wiring substrate 6) to be soldered. It is arrange
  • the soldering apparatus 1e and the soldering method of the present embodiment are more appropriate by using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a ( Enable better soldering.
  • the stationary member 36 has a shape bent so that the central portion of the stationary member 36 protrudes toward the nozzle 12a. Since the surface of the molten solder 14 can be kept in contact with the stationary member 36 even if the height (position in the z direction) of the surface of the molten solder 14 changes, the diffuse reflection area 16 is stabilized around the stationary member 36 Can be formed.
  • the soldering apparatus 1e and the soldering method of the present embodiment are more appropriate by using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a ( Enable better soldering.
  • soldering apparatus 1f according to a sixth embodiment will be described with reference to FIGS. 28 to 32.
  • the soldering apparatus 1f of the present embodiment has the same configuration as the soldering apparatus 1 of the first embodiment, but differs mainly in the following points.
  • the diffuse reflection area forming unit 30 of the first embodiment is omitted.
  • the measurement unit 20 is disposed on the downstream side (+ x direction) of the transport direction (x direction) of the wiring substrate 6 with respect to the nozzle 12 a.
  • diffuse reflection region 16 is formed by contact of a portion of wiring substrate 6 (for example, back surface 6b or front side surface 6f of wiring substrate 6) with molten solder 14 jetted from nozzle 12a. It is formed.
  • the front side surface 6 f of the wiring substrate 6 is a side surface of the wiring substrate 6 on the side of the wiring substrate 6 in the transport direction.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
  • the molten solder 14 jetted from the nozzle 12a is exposed to a gas containing oxygen (for example, air). Therefore, the solder oxide film 15 is formed on the surface of the molten solder 14 jetted from the nozzle 12a.
  • the solder oxide film 15 is a natural oxide film of solder formed by the molten solder 14 contacting the gas.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
  • the diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15.
  • the diffuse reflection film 15 a diffuses and reflects more light 22 (see FIG. 22) more easily than the solder oxide film 15.
  • the measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16.
  • the measurement unit 20 can measure the first surface shape of the diffuse reflection area 16. Since the measurement unit 20 is disposed downstream of the nozzle 12 a in the transport direction (x direction) of the wiring board 6, the first surface shape of the diffuse reflection area 16 is not disturbed by the wiring board 6. It can be measured.
  • the diffuse reflection area 16s includes a diffuse reflection film 46 constituted by the residue of the flux adhering to the wiring substrate 6.
  • the back surface 6 b or the front side surface 6 f of the wiring substrate 6 comes in contact with the front surface of the molten solder 14 while the wiring substrate 6 is transported by the transport unit 4.
  • the residue of the flux adhering to the wiring substrate 6 dissolves a part of the solder oxide film 15 and remains on the surface of the molten solder 14.
  • a diffuse reflection area 16s is formed on the surface of the molten solder 14 jetted from the nozzle 12a.
  • the diffuse reflection area 16 s includes a diffuse reflection film 46 constituted by the residue of the flux adhering to the wiring substrate 6. Since the diffuse reflection film 46 formed of the residue of the flux is thicker than the solder oxide film 15, the diffuse reflection film 46 diffuses and reflects more light 22 (see FIG. 31) more easily than the solder oxide film 15.
  • the measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16s.
  • the measurement unit 20 can measure the first surface shape of the diffuse reflection area 16s.
  • another wiring board 6s (consecutively carried by the carrying portion 4 following the wiring board 6s ( The parts 7 mounted in FIG. 31) are soldered better (better).
  • the soldering method of this embodiment will be described with reference to FIGS. 28 to 33.
  • the soldering method of the present embodiment includes the same steps as the soldering method of the first embodiment, but differs in the following points.
  • forming the diffuse reflection area 16 is a part of the wiring board 6 on the molten solder 14 jetted from the nozzle 12a (for example, the back surface 6b or front side of the wiring substrate 6). 6f) contacting.
  • the measurement unit 20 is disposed downstream of the nozzle 12 a in the conveyance direction (x direction) of the wiring substrate 6.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
  • a solder oxide film 15 (solder natural oxide film) is formed on the surface of the molten solder 14. A part of the wiring substrate 6 contacts the surface of the molten solder 14 while the wiring substrate 6 is transferred by the transfer unit 4. Therefore, the solder oxide film 15 is folded and a diffuse reflection area 16 is formed on the surface of the molten solder 14 jetted from the nozzle 12a.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
  • the diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15.
  • the diffuse reflection film 15 a diffuses and reflects more light 22 (see FIG. 22) more easily than the solder oxide film 15.
  • the measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16. Thus, the measurement unit 20 measures the first surface shape of the diffuse reflection area 16 (S12). Since the measurement unit 20 is disposed downstream of the nozzle 12 a in the transport direction (x direction) of the wiring board 6, the first surface shape of the diffuse reflection area 16 is not disturbed by the wiring board 6. It can be measured.
  • the diffuse reflection area 16s is formed on the surface of the molten solder 14 jetted from the nozzle 12a (S31), and the first surface shape of the diffuse reflection area 16s is measured by the measuring unit 20.
  • the method further comprises measuring (S32) and controlling the jet part 10 including the nozzle 12a (S33, S34). Controlling the jet portion 10 (S33, S34) compares the first surface shape of the diffuse reflection area 16s with the first shape reference data on the first target surface shape of the molten solder 14 jetted from the nozzle 12a. And (S34) controlling the jet portion 10 based on the comparison result between the first surface shape of the diffuse reflection area 16s and the first shape reference data.
  • the wiring board 6 is transported by the transport unit 4, and a part of the wiring board 6 (for example, the back surface 6 b or the front side surface 6 f of the wiring substrate 6) Contact As shown in FIGS. 31 and 32, the residue of the flux adhering to the wiring substrate 6 dissolves a part of the solder oxide film 15 and remains on the surface of the molten solder 14.
  • a diffuse reflection area 16s is formed on the surface of the molten solder 14 jetted from the nozzle 12a (S31). That is, forming the diffuse reflection area 16s (S31) includes bringing at least a part of the wiring board 6 into contact with the molten solder 14 jetted from the nozzle 12a.
  • the diffuse reflection area 16 s includes a diffuse reflection film 46 constituted by the residue of the flux adhering to the wiring substrate 6. Since the diffuse reflection film 46 formed of the residue of the flux is thicker than the solder oxide film 15, the diffuse reflection film 46 diffuses and reflects more light 22 (see FIG. 31) more easily than the solder oxide film 15.
  • the measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16s. Thus, the measurement unit 20 measures the first surface shape of the diffuse reflection area 16s (S32).
  • Another wiring board 6s is carried by the carrying unit 4 subsequently to the wiring board 6s.
  • the component 7 mounted on another wiring board 6s is more appropriately (better To be soldered).
  • the first surface shape of the diffuse reflection area 16 and the first surface shape of the diffuse reflection area 16s are measured using the same measurement unit 20, but the first surface of the diffuse reflection area 16s
  • the shape may be measured using a measuring unit (not shown) other than the measuring unit 20.
  • This other measurement unit has the same configuration as the measurement unit 20, but may not be disposed downstream of the nozzle 12a in the conveyance direction (x direction) of the wiring substrate 6.
  • the effects of the soldering apparatus 1 f and the soldering method of the present embodiment will be described.
  • the soldering apparatus 1 f and the soldering method of the present embodiment have the following effects similar to the soldering apparatus 1 and the soldering method of the first embodiment.
  • the diffuse reflection area 16 is a part of the object to be soldered to the molten solder 14 jetted from the nozzle 12a (for example, the back surface 6b or the front surface 6f of the wiring board 6). It is formed by contacting.
  • the measurement unit 20 is disposed downstream of the nozzle 12 a in the transport direction (x direction) of the target (wiring substrate 6) to be soldered.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
  • the soldering apparatus 1f of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
  • the diffuse reflection area 16s is at least a part of an object to be soldered to the molten solder 14 jetted from the nozzle 12a (for example, the back surface 6b or the front side surface 6f of the wiring substrate 6) Are formed by contact.
  • the diffuse reflection area 16s includes a diffuse reflection film 46 constituted by the residue of the flux adhering to the object to be soldered (wiring substrate 6).
  • the soldering apparatus 1f of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16s corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
  • forming the diffuse reflection area 16 (S11) is a part of the object to be soldered to the molten solder 14 jetted from the nozzle 12a (for example, the back surface 6b of the wiring substrate 6) Or including contacting the front side 6f).
  • the measurement unit 20 is disposed downstream of the nozzle 12 a in the transport direction (x direction) of the target (wiring substrate 6) to be soldered.
  • the diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
  • the soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
  • forming the diffuse reflection area 16s (S31) is performed by at least a part of the object to be soldered to the molten solder 14 jetted from the nozzle 12a (for example, the back surface of the wiring substrate 6) 6b) or contacting the front side 6f).
  • the diffuse reflection area 16s includes a diffuse reflection film 46 constituted by the residue of the flux adhering to the object to be soldered (wiring substrate 6).
  • the soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16s corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
  • Embodiment 7 A soldering apparatus 1g according to a seventh embodiment will be described with reference to FIGS. 34 to 39.
  • the soldering apparatus 1g of the present embodiment has the same configuration as the soldering apparatus 1 of the first embodiment, but differs mainly in the following points.
  • the diffuse reflection area forming unit 30g includes a cylindrical member 37 provided in the nozzle 12a.
  • the cylindrical member 37 is disposed such that the diffuse reflection area 16 is formed inside the cylindrical member 37.
  • the cylindrical member 37 has an inflow port 37i and an upper end opening 37j.
  • the molten solder 14 jetted from the nozzle 12 a flows from the inflow port 37 i to the inside of the cylindrical member 37.
  • the molten solder 14 jetted from the nozzle 12 a also flows to the outside of the cylindrical member 37.
  • the upper end opening 37 j of the cylindrical member 37 is exposed from the molten solder 14.
  • the cylindrical member 37 is made of a material that does not easily dissolve in the molten solder 14 such as SUS316 or titanium.
  • the surface of the molten solder 14 jetted from the nozzle 12a is constantly fluctuating.
  • the inside of the cylindrical member 37 is surrounded by the cylindrical member 37. Therefore, the fluctuation of the surface of the molten solder 14 inside the cylindrical member 37 is smaller than the fluctuation of the surface of the molten solder 14 outside the cylindrical member 37.
  • the molten solder 14 jetted from the nozzle 12a is exposed to a gas containing oxygen (for example, air). Therefore, the solder oxide film 15 is formed on the surface of the molten solder 14 outside the cylindrical member 37, but the solder oxide film is thicker than the solder oxide film 15 on the surface of the molten solder 14 inside the cylindrical member 37. A film is formed.
  • the diffuse reflection area 16 includes a diffuse reflection film 15 c which is a solder oxide thick film.
  • the measuring unit 20 causes the light 22 to be incident from the upper end opening 37 j of the cylindrical member 37 and detects the light 22 diffused and reflected in the diffuse reflection area 16. Thus, the measurement unit 20 can measure the first surface shape of the diffuse reflection area 16.
  • the cylindrical member 37 is disposed outside the transport path of the wiring substrate 6 in a plan view from the direction (z direction) in which the nozzle 12a protrudes toward the wiring substrate 6. Therefore, the cylindrical member 37 is prevented from interfering with the soldering.
  • the cylindrical member 37 is disposed, for example, in the opening 12 b of the nozzle 12 a.
  • a plurality of cylindrical members 37 may be provided in the soldering apparatus 1g.
  • the plurality of cylindrical members 37 may be disposed along the direction (x direction) in which the molten solder 14 flows out of the nozzle 12 a.
  • the plurality of cylindrical members 37 may be disposed along the width direction (y direction) intersecting the direction (x direction) in which the molten solder 14 flows out from the nozzle 12 a.
  • the cylindrical member 37 is, for example, a cylindrical member.
  • the cylindrical member 37 may be a rectangular cylindrical member or an elliptical cylindrical member.
  • the diffuse reflection area forming unit 30 g may further include a flow pressure reducing member 38 that reduces the flow pressure of the molten solder 14.
  • the flow pressure reducing member 38 is provided at the inlet 37 i of the cylindrical member 37.
  • the flow pressure reducing member 38 is configured to apply a pressure loss to the molten solder 14 flowing into the inside of the cylindrical member 37 to reduce the flow pressure of the molten solder 14. Therefore, the flow pressure reducing member 38 reduces the fluctuation of the surface of the molten solder 14 inside the cylindrical member 37.
  • Diffuse reflection film 15c which is a solder oxide thick film can be formed in a shorter time and more reliably.
  • the flow pressure reducing member 38 is made of a material that does not easily dissolve in the molten solder 14 such as SUS316 or titanium.
  • the flow pressure reducing member 38 may be formed of a plate member 39b (for example, a plate member having a punching metal structure) having a plurality of micro through holes 39a through which the molten solder 14 flows. Good.
  • the flow pressure reducing member 38 may be composed of a plurality of plate members 39d. The plurality of plate members 39 d are arranged in a staggered manner along the longitudinal direction (z direction) of the cylindrical member 37 inside the cylindrical member 37.
  • Each of the plurality of plate members 39d has a size smaller than the inner diameter of the cylindrical member 37, and a gap through which the molten solder 14 flows is formed between each of the plurality of plate members 39d and the inner wall of the cylindrical member 37. It is done.
  • the soldering method of the present embodiment will be described with reference to FIGS. 11 and 34 to 39.
  • the soldering method of the present embodiment includes the same steps as the soldering method of the first embodiment, but differs in the following points.
  • forming the diffuse reflection area 16 (S11) includes flowing the molten solder 14 into the inside of the cylindrical member 37 provided in the nozzle 12a.
  • the cylindrical member 37 is disposed such that the diffuse reflection area 16 is formed inside the cylindrical member 37.
  • the cylindrical member 37 has an inflow port 37i and an upper end opening 37j.
  • the molten solder 14 jetted from the nozzle 12 a flows from the inflow port 37 i to the inside of the cylindrical member 37.
  • the molten solder 14 jetted from the nozzle 12 a also flows to the outside of the cylindrical member 37.
  • the upper end opening 37 j of the cylindrical member 37 is exposed from the molten solder 14.
  • the surface of the molten solder 14 jetted from the nozzle 12a is constantly fluctuating.
  • the inside of the cylindrical member 37 is surrounded by the cylindrical member 37. Therefore, the fluctuation of the surface of the molten solder 14 inside the cylindrical member 37 is smaller than the fluctuation of the surface of the molten solder 14 outside the cylindrical member 37.
  • the molten solder 14 jetted from the nozzle 12a is exposed to a gas (for example, air) containing oxygen. Therefore, the solder oxide film 15 is formed on the surface of the molten solder 14 outside the cylindrical member 37, but the solder oxide film is thicker than the solder oxide film 15 on the surface of the molten solder 14 inside the cylindrical member 37.
  • a film is formed.
  • the diffuse reflection area 16 includes a diffuse reflection film 15 c which is a solder oxide thick film.
  • the cylindrical member 37 is disposed outside the transport path of the wiring substrate 6 in a plan view from the direction (z direction) in which the nozzle 12 a protrudes toward the wiring substrate 6. Therefore, the cylindrical member 37 is prevented from interfering with the soldering.
  • forming the diffuse reflection area 16 (S11) further reduces the flow pressure of the molten solder 14 flowing into the cylindrical member 37 using the flow pressure reduction member 38.
  • the flow pressure reducing member 38 reduces the flow pressure of the molten solder 14 flowing into the inside of the cylindrical member 37.
  • the flow pressure reducing member 38 reduces the fluctuation of the surface of the molten solder 14 inside the cylindrical member 37.
  • Diffuse reflection film 15c which is a solder oxide thick film can be formed in a shorter time and more reliably.
  • soldering apparatus 1g and the soldering method of the present embodiment have the following effects similar to the soldering apparatus 1 and the soldering method of the first embodiment.
  • the diffuse reflection area forming unit 30g includes a cylindrical member 37 provided in the nozzle 12a.
  • the cylindrical member 37 is disposed such that the diffuse reflection area 16 is formed inside the cylindrical member 37.
  • the diffuse reflection area 16 includes a diffuse reflection film 15 c composed of a solder oxide film (solder oxide thick film).
  • the soldering apparatus 1g of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
  • the cylindrical member 37 is an object to be soldered in a plan view from the direction (z direction) in which the nozzle 12a protrudes toward the object to be soldered (wiring substrate 6) It is arrange
  • the soldering apparatus 1g of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
  • the diffuse reflection area forming unit 30g further includes a flow pressure reducing member 38 that reduces the flow pressure of the molten solder 14.
  • the cylindrical member 37 has an inlet 37i into which the molten solder 14 flows.
  • the flow pressure reducing member 38 is provided at the inlet 37i. Therefore, the diffuse reflection film 15c can be formed in a shorter time and more reliably.
  • the soldering apparatus 1g of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
  • forming the diffuse reflection area 16 (S11) includes flowing the molten solder 14 into the inside of the cylindrical member 37 provided in the nozzle 12a.
  • the cylindrical member 37 is disposed such that the diffuse reflection area 16 is formed inside the cylindrical member 37.
  • the diffuse reflection area 16 includes a diffuse reflection film 15 c composed of a solder oxide film (solder oxide thick film).
  • the soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
  • the cylindrical member 37 is an object to be soldered in a plan view from the direction (z direction) in which the nozzle 12a protrudes toward the object to be soldered (wiring substrate 6) It is arrange
  • the soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
  • forming the diffuse reflection area 16 (S11) further includes reducing the flow pressure of the molten solder 14 flowing into the cylindrical member 37. Therefore, the diffuse reflection film 15c can be formed in a shorter time and more reliably.
  • the soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
  • soldering apparatus 1h according to an eighth embodiment will be described with reference to FIG.
  • the soldering apparatus 1h of the present embodiment has the same configuration as that of the soldering apparatus 1 of the first embodiment, and exhibits the same effect, but mainly differs in the following points.
  • the soldering apparatus 1 h further includes a blower 50.
  • the blower unit 50 is configured to blow air toward the measurement unit 20.
  • the blower 50 may blow air in parallel with the transport path of the wiring substrate 6.
  • the blower unit 50 is, for example, an axial flow fan, a centrifugal fan, a mixed flow fan, or a cross flow fan. Due to the radiant heat from the molten solder 14, the temperature of the measurement unit 20 may rise excessively, and the measurement unit 20 may fail or malfunction.
  • the blower unit 50 cools the measurement unit 20 by blowing air toward the measurement unit 20 to prevent the measurement unit 20 from malfunctioning or malfunctioning.
  • the blower unit 50 prevents the dust of the residue of the flux and the dust of the solder oxide that are scattered in the housing 3 from adhering to the measurement unit 20. Therefore, the first surface shape of the diffuse reflection area 16 can be accurately and stably measured using the measurement unit 20.
  • the soldering apparatus 1h of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
  • the soldering method of this embodiment will be described with reference to FIGS. 11 and 40.
  • the soldering method of the present embodiment includes the same steps as those of the soldering method of the first embodiment, and exhibits the same effect, but differs in the following points.
  • the soldering method of the present embodiment further includes blowing air toward the measuring unit 20 using the air blowing unit 50.
  • the first surface shape of the diffuse reflection area 16 may be measured (S12) using the measuring unit 20 while blowing air toward the measuring unit 20.
  • the measurement unit 20 is cooled, and the measurement unit 20 is prevented from malfunctioning or malfunctioning. It is possible to prevent the dust of the residue of the flux and the dust of the solder oxide which are scattered in the housing 3 from adhering to the measurement unit 20. Therefore, the first surface shape of the diffuse reflection area 16 can be accurately and stably measured using the measurement unit 20.
  • the soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
  • Embodiment 1-8 disclosed this time is illustrative in all points and not restrictive. As long as there is no contradiction, at least two of the embodiments 1-8 disclosed herein may be combined.
  • the blower 50 of the eighth embodiment may be further provided to the soldering apparatus 1b-1g of the second embodiment.
  • the measurement unit 20 of Embodiment 3-8 may be replaced with the measurement unit 20b of Embodiment 2.
  • the scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
  • Soldering device 3 housings, 4 transport parts, 4a arms, 6, 6s wiring board, 6a front side, 6b back side, 6c side, 6f Front side, 7 parts, 9 preheating unit, 9h second heater, 9s temperature sensor, 10 jets, 10s solder tank, 11 duct, 11a opening, 11b bottom, 11f post, 11h bolt, 11t top, 12 nozzle , 12a nozzle, 12b opening, 12c guide plate, 12d plate portion, 12m center line, 12e hole, 13h first heater, 13m motor, 13n impeller, 13p pump, 14 molten solder, 15 solder oxide film, 15a, 15c, 46 Diffuse reflective film, 16, 16s diffuse reflective area, 18 lifter, 20, 20b measuring part 21 and 21b Light source unit 22, 22b light, 23, 23b Light detection unit 30, 30c, 30d, 30e and 30g Diffuse reflection area forming unit 31, 31d member, 32 driving unit, 32d

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Molten Solder (AREA)

Abstract

A soldering apparatus (1) is provided with a jetting unit (12) and a measuring unit (20). The jetting unit (12) includes a nozzle (12a). The measuring unit (20) is configured so as to measure a first surface shape of a diffuse reflection region (16) formed as a part of the surface of a molten solder (14) jetted from the nozzle (12a). Consequently, more suitable soldering can be performed using measurement results of the first surface shape of the diffuse reflection region (16), said first surface shape corresponding to the surface shape of the molten solder (14).

Description

はんだ付け装置及びはんだ付け方法Soldering apparatus and method
 本発明は、はんだ付け装置及びはんだ付け方法に関する。 The present invention relates to a soldering apparatus and a soldering method.
 国際公開第2013/111651号(特許文献1)は、ノズルから噴流する溶融はんだの高さを測定する方法を開示している。特許文献1では、導電性のゲージ部材を用いて、ノズルから噴流する溶融はんだの高さが測定されている。 WO 2013/111651 (patent document 1) discloses a method of measuring the height of molten solder jetted from a nozzle. In Patent Document 1, the height of molten solder jetted from a nozzle is measured using a conductive gauge member.
国際公開第2013/111651号International Publication No. 2013/111651
 しかしながら、ノズルから噴流する溶融はんだの高さを同じであっても、ノズルから噴流する溶融はんだの表面形状が変化すると、溶融はんだとプリント基板のようなはんだ付けされる対象物との間の接触の態様が変化する。そのため、はんだ付け不良が発生し得る。本発明の目的は、より適切なはんだ付けを可能にするはんだ付け装置及びはんだ付け方法を提供することである。 However, even if the height of the molten solder jetted from the nozzle is the same, if the surface shape of the molten solder jetted from the nozzle changes, the contact between the molten solder and the object to be soldered such as a printed circuit board The aspect of is changed. Therefore, soldering failure may occur. An object of the present invention is to provide a soldering apparatus and a soldering method that enable more appropriate soldering.
 本発明のはんだ付け装置は、噴流部と、測定部とを備える。噴流部は、ノズルを含む。測定部は、ノズルから噴流する溶融はんだの表面上に形成される拡散反射領域の第1の表面形状を測定するように構成されている。 The soldering apparatus of the present invention comprises a jet part and a measuring part. The jet part includes a nozzle. The measurement unit is configured to measure a first surface shape of the diffuse reflection area formed on the surface of the molten solder jetted from the nozzle.
 本発明のはんだ付け方法は、ノズルから噴流する溶融はんだの表面上に拡散反射領域を形成することと、測定部によって拡散反射領域の第1の表面形状を測定することとを備える。 The soldering method of the present invention comprises forming a diffuse reflection area on the surface of molten solder jetted from a nozzle, and measuring the first surface shape of the diffuse reflection area by a measurement unit.
 拡散反射領域の第1の表面形状は、ノズルから噴流する溶融はんだの表面形状に追従する。測定部によって拡散反射領域の第1の表面形状を測定することにより、ノズルから噴流する溶融はんだの表面形状が測定され得る。本発明のはんだ付け装置及びはんだ付け方法は、ノズルから噴流する溶融はんだの表面形状に対応する拡散反射領域の第1の表面形状の測定結果を用いて、より適切なはんだ付けを可能にする。 The first surface shape of the diffuse reflection area follows the surface shape of the molten solder jetted from the nozzle. By measuring the first surface shape of the diffuse reflection area by the measuring unit, the surface shape of the molten solder jetted from the nozzle can be measured. The soldering apparatus and the soldering method of the present invention enable more appropriate soldering by using the measurement result of the first surface shape of the diffuse reflection area corresponding to the surface shape of the molten solder jetted from the nozzle.
実施の形態1に係るはんだ付け装置の概略斜視図である。1 is a schematic perspective view of a soldering apparatus according to Embodiment 1; 実施の形態1に係るはんだ付け装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a soldering apparatus according to Embodiment 1; 実施の形態1に係るはんだ付け装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a soldering apparatus according to Embodiment 1; 実施の形態1の一変形例に係るはんだ付け装置の概略断面図である。FIG. 8 is a schematic cross-sectional view of a soldering apparatus according to a modification of the first embodiment. 実施の形態1に係るはんだ付け装置の概略部分拡大斜視図である。FIG. 1 is a schematic partial enlarged perspective view of a soldering apparatus according to Embodiment 1; 実施の形態1に係るはんだ付け装置を用いて拡散反射領域を形成する工程を示す概略部分拡大断面図である。FIG. 7 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the first embodiment. 実施の形態1に係るはんだ付け装置を用いて拡散反射領域を形成する工程を示す概略部分拡大断面図である。FIG. 7 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the first embodiment. 実施の形態1に係るはんだ付け装置の概略部分拡大断面図である。FIG. 2 is a schematic partial enlarged cross-sectional view of the soldering apparatus according to the first embodiment. 実施の形態1に係るはんだ付け装置を用いてノズルの第2の表面形状を測定する工程を示す概略部分拡大斜視図である。FIG. 6 is a schematic partial enlarged perspective view showing a step of measuring a second surface shape of a nozzle using the soldering apparatus according to Embodiment 1. 実施の形態1に係るはんだ付け装置の制御ブロック図である。FIG. 2 is a control block diagram of the soldering apparatus according to the first embodiment. 実施の形態1から実施の形態5、実施の形態7及び実施の形態8に係るはんだ付け方法のフローチャートを示す図である。FIG. 8 is a diagram showing a flowchart of a soldering method according to Embodiments 1 to 5, 7 and 8; 実施の形態2に係るはんだ付け装置の概略部分拡大斜視図である。FIG. 7 is a schematic partial enlarged perspective view of a soldering apparatus according to Embodiment 2; 実施の形態2に係るはんだ付け装置の概略部分拡大断面図である。FIG. 7 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to Embodiment 2; 実施の形態3に係るはんだ付け装置の概略部分拡大斜視図である。FIG. 10 is a schematic partial enlarged perspective view of a soldering apparatus according to Embodiment 3; 実施の形態3に係るはんだ付け装置の概略部分拡大断面図である。FIG. 10 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to Embodiment 3; 実施の形態4に係るはんだ付け装置の概略部分拡大斜視図である。FIG. 16 is a schematic partial enlarged perspective view of a soldering apparatus according to a fourth embodiment. 実施の形態4に係るはんだ付け装置を用いて拡散反射領域を形成する工程を示す概略部分拡大断面図である。FIG. 18 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the fourth embodiment. 実施の形態4に係るはんだ付け装置を用いて拡散反射領域を形成する工程を示す概略部分拡大断面図である。FIG. 18 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the fourth embodiment. 実施の形態4に係るはんだ付け装置を用いて拡散反射領域を形成する工程を示す概略部分拡大断面図である。FIG. 18 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the fourth embodiment. 実施の形態4に係るはんだ付け装置を用いて拡散反射領域を形成する工程を示す概略部分拡大断面図である。FIG. 18 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the fourth embodiment. 実施の形態4に係るはんだ付け装置の概略部分拡大断面図である。FIG. 16 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to Embodiment 4; 実施の形態5に係るはんだ付け装置の概略部分拡大斜視図である。FIG. 18 is a schematic partial enlarged perspective view of a soldering apparatus according to Embodiment 5; 実施の形態5に係るはんだ付け装置の概略部分拡大断面図である。FIG. 18 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to Embodiment 5; 実施の形態5に係るはんだ付け装置の概略部分拡大平面図である。FIG. 16 is a schematic partial enlarged plan view of the soldering apparatus according to the fifth embodiment. 実施の形態5に係るはんだ付け装置の概略部分拡大断面図である。FIG. 18 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to Embodiment 5; 実施の形態5の第1変形例に係るはんだ付け装置の概略部分拡大斜視図である。FIG. 21 is a schematic partial enlarged perspective view of a soldering apparatus according to a first modified example of the fifth embodiment. 実施の形態5の第2変形例に係るはんだ付け装置の概略部分拡大断面図である。FIG. 21 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to a second modification of the fifth embodiment. 実施の形態6に係るはんだ付け装置の概略部分拡大斜視図である。FIG. 18 is a schematic partial enlarged perspective view of a soldering apparatus according to Embodiment 6; 実施の形態6に係るはんだ付け装置を用いて拡散反射領域を形成する工程を示す概略部分拡大斜視図である。FIG. 21 is a schematic partial enlarged perspective view showing a process of forming a diffuse reflection area using the soldering apparatus according to the sixth embodiment. 実施の形態6に係るはんだ付け装置を用いて拡散反射領域を形成する工程を示す概略部分拡大断面図である。FIG. 21 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the sixth embodiment. 実施の形態6に係るはんだ付け装置を用いて拡散反射領域を形成する工程を示す概略部分拡大斜視図である。FIG. 21 is a schematic partial enlarged perspective view showing a process of forming a diffuse reflection area using the soldering apparatus according to the sixth embodiment. 実施の形態6に係るはんだ付け装置を用いて拡散反射領域を形成する工程を示す概略部分拡大断面図である。FIG. 21 is a schematic partial enlarged cross-sectional view showing a step of forming a diffuse reflection area using the soldering apparatus according to the sixth embodiment. 実施の形態6に係るはんだ付け方法のフローチャートを示す図である。FIG. 16 is a diagram showing a flowchart of a soldering method according to Embodiment 6; 実施の形態7に係るはんだ付け装置の概略部分拡大斜視図である。FIG. 18 is a schematic partial enlarged perspective view of a soldering apparatus according to a seventh embodiment. 実施の形態7に係るはんだ付け装置の概略部分拡大断面図である。FIG. 18 is a schematic partial enlarged cross-sectional view of a soldering apparatus according to a seventh embodiment. 実施の形態7に係るはんだ付け装置に含まれる拡散反射領域形成部の概略部分拡大断面図である。FIG. 21 is a schematic partial enlarged cross-sectional view of a diffuse reflection area forming portion included in a soldering apparatus according to a seventh embodiment. 実施の形態7に係るはんだ付け装置に含まれる拡散反射領域形成部の概略部分拡大底面図である。FIG. 21 is a schematic partial bottom view of a diffuse reflection area forming portion included in the soldering apparatus according to the seventh embodiment. 実施の形態7に係るはんだ付け装置に含まれる拡散反射領域形成部の概略部分拡大断面図である。FIG. 21 is a schematic partial enlarged cross-sectional view of a diffuse reflection area forming portion included in a soldering apparatus according to a seventh embodiment. 実施の形態7に係るはんだ付け装置に含まれる拡散反射領域形成部の概略部分拡大底面図である。FIG. 21 is a schematic partial bottom view of a diffuse reflection area forming portion included in the soldering apparatus according to the seventh embodiment. 実施の形態8に係るはんだ付け装置の概略部分拡大斜視図である。FIG. 21 is a schematic partial enlarged perspective view of a soldering apparatus according to Embodiment 8;
 以下、本発明の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described. The same reference numerals are given to the same components, and the description will not be repeated.
 実施の形態1.
 図1から図10を参照して、実施の形態1に係るはんだ付け装置1を説明する。
Embodiment 1
The soldering apparatus 1 according to the first embodiment will be described with reference to FIGS. 1 to 10.
 はんだ付け装置1は、ノズル12aを含む噴流部10と、拡散反射領域形成部30(図5参照)と、測定部20とを主に備える。はんだ付け装置1は、搬送部4と、予備加熱部9と、筐体3と、表示部41と、制御部40(図10参照)と、メモリ43(図10参照)とをさらに備えてもよい。 The soldering apparatus 1 mainly includes a jet portion 10 including a nozzle 12a, a diffuse reflection area forming portion 30 (see FIG. 5), and a measuring portion 20. The soldering apparatus 1 further includes the transport unit 4, the preheating unit 9, the housing 3, the display unit 41, the control unit 40 (see FIG. 10), and the memory 43 (see FIG. 10). Good.
 搬送部4は、ノズル12aの上方へ配線基板6を搬送する。搬送部4は、例えば、搬送コンベアであってもよい。はんだ付け装置1は、配線基板6の裏面6bにノズル12aから噴流する溶融はんだ14を接触させて、配線基板6のおもて面6aに搭載されている部品7を、配線基板6の裏面6b上に設けられている電気配線にはんだ付けしてもよい。部品7は、例えば、コンデンサまたは抵抗のような電子部品であってもよい。配線基板6は、プリント基板であってもよい。 The transport unit 4 transports the wiring board 6 above the nozzles 12 a. The transport unit 4 may be, for example, a transport conveyor. The soldering apparatus 1 brings the molten solder 14 jetted from the nozzle 12 a into contact with the back surface 6 b of the wiring substrate 6 to make the component 7 mounted on the front surface 6 a of the wiring substrate 6 the back surface 6 b of the wiring substrate 6 It may be soldered to the electrical wiring provided above. The component 7 may be, for example, an electronic component such as a capacitor or a resistor. The wiring substrate 6 may be a printed circuit board.
 溶融はんだ14は、例えば、錫-鉛または錫-銀-銅のような錫を主成分とするはんだ合金で構成されてもよい。溶融はんだ14は、例えば、錫-銅系合金、錫-銀系合金、またはこれらの合金にアンチモン、ビスマス、ニッケルもしくはゲルマニウムなどを添加したはんだ合金で構成されてもよい。 The molten solder 14 may be made of, for example, a tin-based solder alloy such as tin-lead or tin-silver-copper. The molten solder 14 may be made of, for example, a tin-copper alloy, a tin-silver alloy, or a solder alloy obtained by adding antimony, bismuth, nickel, germanium, or the like to these alloys.
 図1から図3に示されるように、噴流部10は、溶融はんだ14が貯留されているはんだ槽10sと、ダクト11と、ノズル部12と、ポンプ13pとを含む。ダクト11は、はんだ槽10sに係止または固定されている。ダクト11は、頂部11tと底部11bとを含む。ダクト11は、底部11bに開口11aを有する。ダクト11は、開口11aを通じて、はんだ槽10sに連通している。ポンプ13pは、はんだ槽10s内に貯留されている溶融はんだ14を、ダクト11及びノズル12aに送り出す。ポンプ13pは、インペラ13nと、インペラ13nに接続されているモータ13mとを含んでもよい。インペラ13nは、ダクト11内に配置されている。インペラ13nは、開口11aに面するように配置されてもよい。モータ13mがインペラ13nを回転させることによって、溶融はんだ14がはんだ槽10sからダクト11及びノズル12aに送り出される。 As shown in FIGS. 1 to 3, the jet flow portion 10 includes a solder bath 10 s in which the molten solder 14 is stored, a duct 11, a nozzle portion 12, and a pump 13 p. The duct 11 is locked or fixed to the solder bath 10s. The duct 11 includes a top 11t and a bottom 11b. The duct 11 has an opening 11a at the bottom 11b. The duct 11 communicates with the solder bath 10s through the opening 11a. The pump 13p pumps the molten solder 14 stored in the solder tank 10s to the duct 11 and the nozzle 12a. The pump 13p may include an impeller 13n and a motor 13m connected to the impeller 13n. The impeller 13 n is disposed in the duct 11. The impeller 13 n may be disposed to face the opening 11 a. As the motor 13m rotates the impeller 13n, the molten solder 14 is sent out from the solder tank 10s to the duct 11 and the nozzle 12a.
 図5に示されるように、ノズル部12は、ノズル12aを含む。ノズル12aは、高さ方向(z方向)に突出している。高さ方向(z方向)は、ノズル12aから配線基板6に向かって溶融はんだ14が噴出する方向である。ノズル12aの開口12bから、溶融はんだ14が噴流する。ノズル12aの開口12bは、細長い矩形またはスリットの形状を有してもよい。ノズル12aの開口12bは、配線基板6の搬送方向(x方向)及び高さ方向(z方向)に交差する幅方向(y方向)に沿って延在してもよい。溶融はんだ14は、ノズル12aから、配線基板6の搬送方向の上流側(-x方向)と下流側(+x方向)とに向けて流出する。ノズル12aの開口12bは、円形の形状を有してもよい。ノズル12aは、ノズル12aから噴流する溶融はんだ14によって覆われる。 As shown in FIG. 5, the nozzle unit 12 includes a nozzle 12a. The nozzle 12a protrudes in the height direction (z direction). The height direction (z direction) is a direction in which the molten solder 14 is jetted from the nozzle 12 a toward the wiring substrate 6. The molten solder 14 jets from the opening 12 b of the nozzle 12 a. The opening 12b of the nozzle 12a may have the shape of an elongated rectangle or a slit. The openings 12 b of the nozzles 12 a may extend along the width direction (y direction) intersecting with the transport direction (x direction) and the height direction (z direction) of the wiring substrate 6. The molten solder 14 flows out from the nozzle 12 a toward the upstream side (−x direction) and the downstream side (+ x direction) in the transport direction of the wiring substrate 6. The opening 12b of the nozzle 12a may have a circular shape. The nozzle 12a is covered by molten solder 14 jetted from the nozzle 12a.
 図2及び図3に示されるように、ノズル12aは、配線基板6に対するノズル12aの相対的な高さdが変化するように構成されてもよい。ノズル12aは、搬送部4に対するノズル12aの相対的な高さが変化するように構成されてもよい。ノズル12aは、ダクト11に対するノズル12aの相対的な高さが変化するように構成されてもよい。ノズル12aは、ダクト11に対して移動するようにダクト11の頂部11tに設けられてもよい。 As shown in FIGS. 2 and 3, the nozzle 12 a may be configured to change the relative height d of the nozzle 12 a with respect to the wiring substrate 6. The nozzle 12 a may be configured to change the relative height of the nozzle 12 a with respect to the transport unit 4. The nozzle 12 a may be configured to change the relative height of the nozzle 12 a with respect to the duct 11. The nozzle 12 a may be provided at the top 11 t of the duct 11 to move relative to the duct 11.
 具体的には、ダクト11は、高さ方向(z方向)に延在する支柱11fと、支柱11fの端部に設けられているボルト11hとを含んでもよい。ノズル部12は、孔12eを有する板部12dを含む。板部12dは、高さ方向(z方向)と配線基板6の搬送方向(x方向)とに交差する幅方向(y方向)に延在している。ボルト11hは孔12eに挿入されている。ボルト11hを回転させることによって、ボルト11hは支柱11fに対して高さ方向(z方向)に移動することができる。ノズル12a(ノズル部12)は、ボルト11hとともに高さ方向(z方向)に移動することができる。こうして、配線基板6に対するノズル12a(ノズル部12)の相対的な高さdを変化させ得る。 Specifically, the duct 11 may include a support 11 f extending in the height direction (z direction) and a bolt 11 h provided at an end of the support 11 f. The nozzle portion 12 includes a plate portion 12d having a hole 12e. The plate portion 12 d extends in a width direction (y direction) intersecting the height direction (z direction) and the transfer direction (x direction) of the wiring board 6. The bolt 11 h is inserted into the hole 12 e. By rotating the bolt 11 h, the bolt 11 h can move in the height direction (z direction) with respect to the support 11 f. The nozzle 12a (nozzle portion 12) can move in the height direction (z direction) together with the bolt 11h. Thus, the relative height d of the nozzle 12a (nozzle portion 12) to the wiring board 6 can be changed.
 図4に示されるように、本実施の形態の一変形例では、噴流部10の下方に、昇降部18が設けられてもよい。昇降部18は、噴流部10を高さ方向(z方向)に移動させる。こうして、配線基板6に対するノズル12aの相対的な高さdを変化させてもよい。 As shown in FIG. 4, in one modified example of the present embodiment, the elevating part 18 may be provided below the jet flow part 10. The elevating unit 18 moves the jet unit 10 in the height direction (z direction). Thus, the relative height d of the nozzle 12a to the wiring substrate 6 may be changed.
 図5に示されるように、ノズル部12はガイド板12cを含んでもよい。ガイド板12cは、ノズル12aから配線基板6の搬送方向(x方向)に沿って延在している。ガイド板12cは、ノズル12aから噴流する溶融はんだ14を配線基板6の搬送方向(x方向)に沿ってガイドする。ガイド板12cは、ノズル12aに対する取り付け位置(ノズル12aの頂部に対する相対的な高さ)が変化するように構成されてもよい。ガイド板12cは、配線基板6の搬送方向(x方向)における長さが変化するように構成されてもよい。 As shown in FIG. 5, the nozzle unit 12 may include a guide plate 12 c. The guide plate 12 c extends from the nozzle 12 a along the transport direction (x direction) of the wiring board 6. The guide plate 12 c guides the molten solder 14 jetted from the nozzle 12 a along the transport direction (x direction) of the wiring board 6. The guide plate 12c may be configured to change the mounting position (relative height to the top of the nozzle 12a) with respect to the nozzle 12a. The guide plate 12 c may be configured to change the length of the wiring substrate 6 in the transport direction (x direction).
 図2及び図3に示されるように、噴流部10は、はんだ槽10s内に第1のヒータ13hをさらに含んでもよい。第1のヒータ13hは、溶融はんだ14を加熱して、はんだを溶融状態に保つ。 As shown in FIGS. 2 and 3, the jet portion 10 may further include a first heater 13 h in the solder bath 10 s. The first heater 13 h heats the molten solder 14 to keep the solder in a molten state.
 ノズル12aから噴流する溶融はんだ14は、酸素を含むガス(例えば、空気)に曝されている。そのため、図6に示されるように、ノズル12aから噴流する溶融はんだ14の表面上に、はんだ酸化膜15が形成されている。はんだ酸化膜15は、ノズル12aから噴流する溶融はんだ14がこのガスに接触することによって形成される、はんだの自然酸化膜である。はんだの自然酸化膜は、約2nmから約3nmの厚さを有してもよい。はんだ酸化膜15は、例えば、酸化錫膜であってもよい。 The molten solder 14 jetted from the nozzle 12a is exposed to a gas containing oxygen (for example, air). Therefore, as shown in FIG. 6, the solder oxide film 15 is formed on the surface of the molten solder 14 jetted from the nozzle 12a. The solder oxide film 15 is a natural oxide film of solder formed by the molten solder 14 jetted from the nozzle 12 a coming into contact with this gas. The native oxide of the solder may have a thickness of about 2 nm to about 3 nm. The solder oxide film 15 may be, for example, a tin oxide film.
 図5から図7に示されるように、拡散反射領域形成部30は、ノズル12aから噴流する溶融はんだ14の表面上に拡散反射領域16を形成するように構成されている。拡散反射領域形成部30は、ノズル12aから噴流する溶融はんだ14の表面の一部上に選択的に拡散反射領域16を形成するように構成されてもよい。 As shown in FIGS. 5 to 7, the diffuse reflection area forming unit 30 is configured to form the diffuse reflection area 16 on the surface of the molten solder 14 jetted from the nozzle 12 a. The diffuse reflection area forming unit 30 may be configured to selectively form the diffuse reflection area 16 on a part of the surface of the molten solder 14 jetted from the nozzle 12a.
 拡散反射領域形成部30は、部材31と、部材31を移動させるように構成されている駆動部32とを含んでもよい。部材31は、ノズル12aに対して移動するように構成されている。部材31は、連結部33を介して駆動部32に接続されてもよい。部材31は、例えば、板部材であってもよい。駆動部32は、例えば、モータであってもよい。 The diffuse reflection area forming unit 30 may include a member 31 and a driving unit 32 configured to move the member 31. The member 31 is configured to move relative to the nozzle 12a. The member 31 may be connected to the drive unit 32 via the connection unit 33. The member 31 may be, for example, a plate member. The drive unit 32 may be, for example, a motor.
 駆動部32は、部材31の少なくとも一部を溶融はんだ14に浸漬させながら、溶融はんだ14の表面に沿って部材31を一方向に移動させるように構成されている。具体的には、駆動部32は、部材31を高さ方向(z方向)に移動させる。図6に示されるように、部材31は、溶融はんだ14の表面に形成されているはんだ酸化膜15を貫通して、部材31の一部が溶融はんだ14に浸漬される。続いて、図7に示されるように、駆動部32は、部材31の少なくとも一部を溶融はんだ14に浸漬させながら、部材31を溶融はんだ14の表面に沿って部材31を一方向に移動させる。特定的には、駆動部32は、部材31の少なくとも一部を溶融はんだ14に浸漬させながら、高さ方向(z方向)及び溶融はんだ14がノズル12aから流れ出す方向(x方向)に交差する幅方向(y方向)に沿って、部材31を移動させてもよい。 The driving unit 32 is configured to move the member 31 in one direction along the surface of the molten solder 14 while immersing at least a part of the member 31 in the molten solder 14. Specifically, the drive unit 32 moves the member 31 in the height direction (z direction). As shown in FIG. 6, the member 31 penetrates the solder oxide film 15 formed on the surface of the molten solder 14, and a part of the member 31 is immersed in the molten solder 14. Subsequently, as illustrated in FIG. 7, the driving unit 32 moves the member 31 in one direction along the surface of the molten solder 14 while immersing at least a part of the member 31 in the molten solder 14. . Specifically, the drive unit 32 has a width crossing in the height direction (z direction) and the direction in which the molten solder 14 flows out from the nozzle 12 a (x direction) while immersing at least a part of the member 31 in the molten solder 14 The member 31 may be moved along the direction (y direction).
 はんだ酸化膜15が折り重なって、ノズル12aから噴流する溶融はんだ14の表面上に、拡散反射領域16が形成される。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含み、拡散反射領域形成部30は拡散反射膜形成部である。拡散反射膜15aは、例えば、はんだ酸化膜15の一部が寄せ集められて形成された、しわ状のはんだ酸化膜である。 The solder oxide film 15 is folded and a diffuse reflection area 16 is formed on the surface of the molten solder 14 jetted from the nozzle 12a. The diffuse reflection area 16 includes a diffuse reflection film 15 a made of a solder oxide film, and the diffuse reflection area forming portion 30 is a diffuse reflection film forming portion. The diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15.
 拡散反射領域16は、溶融はんだ14の表面上に直線状または曲線状に延在してもよい。特定的には、拡散反射領域16は、ノズル12aから溶融はんだ14が流出する方向に沿って延在してもよい。拡散反射領域16は、ノズル12aから、配線基板6の搬送方向の上流方向(-x方向)及び下流方向(+x方向)の少なくとも一つに向かって延在してもよい。 The diffuse reflection area 16 may extend in a straight line or a curve on the surface of the molten solder 14. In particular, the diffuse reflection area 16 may extend along the direction in which the molten solder 14 flows out of the nozzle 12a. The diffuse reflection area 16 may extend from the nozzle 12 a toward at least one of the upstream direction (−x direction) and the downstream direction (+ x direction) of the transport direction of the wiring substrate 6.
 図8に示されるように、測定部20は、拡散反射領域16の第1の表面形状を測定するように構成されている。本明細書において、表面形状は、表面の位置も含む。測定部20は、光学的測定部であってもよい。具体的には、測定部20は、拡散反射領域16に光22を照射するように構成されている光源部21と、拡散反射領域16によって拡散反射される光22を検出するように構成されている光検出部23とを含んでもよい。測定部20は、例えば、レーザ変位計であってもよく、特定的には二次元レーザ変位計であってもよい。 As shown in FIG. 8, the measurement unit 20 is configured to measure the first surface shape of the diffuse reflection area 16. In the present specification, the surface shape also includes the position of the surface. The measuring unit 20 may be an optical measuring unit. Specifically, the measurement unit 20 is configured to detect the light source unit 21 configured to irradiate the light 22 to the diffuse reflection area 16 and the light 22 diffusely reflected by the diffuse reflection area 16. And the light detection unit 23 may be included. The measuring unit 20 may be, for example, a laser displacement meter, or specifically, a two-dimensional laser displacement meter.
 光源部21は、例えば、半導体レーザであってもよい。光源部21は、走査される光22を出射してもよい。特定的には、光源部21から出射される光22は、配線基板6の搬送方向(x方向)と幅方向(y方向)とに沿って走査されてもよい。 The light source unit 21 may be, for example, a semiconductor laser. The light source unit 21 may emit the light 22 to be scanned. Specifically, the light 22 emitted from the light source unit 21 may be scanned along the transport direction (x direction) and the width direction (y direction) of the wiring board 6.
 光源部21から出射された光22は、拡散反射領域16において拡散反射される。拡散反射領域16は、拡散反射領域16に隣接する領域におけるはんだ酸化膜15と比べて、拡散反射の割合が大きく、鏡面反射の割合が小さい。なお、表面の拡散反射の割合は、当該表面に垂直に入射する光に対する、当該入射方向と異なる方向へ反射される光の割合を意味する。表面の鏡面反射の割合は、当該表面に垂直に入射する光に対する、当該光の入射方向に反射される光の割合を意味する。 The light 22 emitted from the light source unit 21 is diffusely reflected in the diffuse reflection area 16. The diffuse reflection region 16 has a larger ratio of diffuse reflection and a smaller ratio of specular reflection than the solder oxide film 15 in the region adjacent to the diffuse reflection region 16. The ratio of diffuse reflection on the surface means the ratio of light reflected in a direction different from the incident direction to the light incident perpendicularly on the surface. The ratio of specular reflection on the surface means the ratio of light reflected in the incident direction of the light to light incident perpendicularly on the surface.
 光検出部23は、拡散反射領域16において拡散反射された光22を検出する。こうして、測定部20は、拡散反射領域16の第1の表面形状を測定することができる。光検出部23は、例えば、CMOS位置センサであってもよい。測定部20は、三角測量方式によって、拡散反射領域16の第1の表面形状を測定してもよい。具体的には、拡散反射領域16で拡散反射された光22を光検出部23で検出することにより、光検出部23に対する拡散反射領域16の表面の角度及び距離の情報が得られる。この情報に基づいて、拡散反射領域16の第1の表面形状が測定され得る。 The light detection unit 23 detects the light 22 diffusely reflected in the diffuse reflection area 16. Thus, the measurement unit 20 can measure the first surface shape of the diffuse reflection area 16. The light detection unit 23 may be, for example, a CMOS position sensor. The measurement unit 20 may measure the first surface shape of the diffuse reflection area 16 by triangulation. Specifically, information on the surface angle and distance of the diffuse reflection area 16 with respect to the light detection unit 23 can be obtained by detecting the light 22 diffusely reflected by the diffuse reflection area 16 by the light detection unit 23. Based on this information, the first surface shape of the diffuse reflection area 16 can be measured.
 拡散反射領域16(拡散反射膜15a)は、溶融はんだ14の表面上に浮遊している。拡散反射領域16(拡散反射膜15a)の第1の表面形状は、溶融はんだ14の表面形状に追従している。拡散反射領域16(拡散反射膜15a)の第1の表面形状は、溶融はんだ14の表面形状と実質的に等価であると見なされ得る。測定部20を用いて拡散反射領域16(拡散反射膜15a)の第1の表面形状を測定することによって、溶融はんだ14の表面形状が測定され得る。 The diffuse reflection area 16 (diffuse reflection film 15 a) floats on the surface of the molten solder 14. The first surface shape of the diffuse reflection area 16 (diffuse reflection film 15 a) follows the surface shape of the molten solder 14. The first surface shape of the diffuse reflection area 16 (diffuse reflection film 15 a) can be regarded as substantially equivalent to the surface shape of the molten solder 14. The surface shape of the molten solder 14 can be measured by measuring the first surface shape of the diffuse reflection area 16 (diffuse reflection film 15 a) using the measurement unit 20.
 ノズル12aから噴流する溶融はんだ14の表面は、絶えず揺らいでいる。そのため、拡散反射領域16を含まないはんだ酸化膜15で鏡面反射される光を光検出部23によって受光して、ノズル12aから噴流する溶融はんだ14の表面の形状を正確に測定することは困難である。これに対し、本実施の形態では、測定部20は、拡散反射領域16(拡散反射膜15a)で拡散反射される光22を検出する。ノズル12aから噴流する溶融はんだ14の表面が揺らいでも、拡散反射領域16で拡散反射される光22は、光検出部23によって安定的に受光され得る。拡散反射領域16において拡散反射された光22によって、噴流する溶融はんだ14の表面の形状は正確かつ容易に測定され得る。 The surface of the molten solder 14 jetted from the nozzle 12a is constantly fluctuating. Therefore, it is difficult to accurately measure the surface shape of the molten solder 14 jetted from the nozzle 12 a by receiving light specularly reflected by the solder oxide film 15 not including the diffuse reflection area 16 by the light detection unit 23. is there. On the other hand, in the present embodiment, the measurement unit 20 detects the light 22 diffusely reflected by the diffuse reflection area 16 (diffuse reflection film 15a). Even if the surface of the molten solder 14 jetted from the nozzle 12 a shakes, the light 22 diffusely reflected by the diffuse reflection area 16 can be stably received by the light detection unit 23. With the light 22 diffusely reflected in the diffuse reflection area 16, the shape of the surface of the molten solder 14 jetted can be measured accurately and easily.
 拡散反射領域16(拡散反射膜15a)を観察することにより、測定部20はノズル12aから噴流する溶融はんだ14に対して容易に位置決めされ得る。溶融はんだ14が噴流していても、拡散反射領域16(拡散反射膜15a)はほとんど移動しない。なぜなら、はんだ酸化膜15は、粘性流体とみなすことができる溶融はんだ14に対して壁として機能し、粘性流体は、一般に、壁の近傍において実質的にゼロの流速を有するからである。そのため、溶融はんだ14の表面の形状に対応する拡散反射領域16の第1の表面形状は、正確かつ容易に測定され得る。 By observing the diffuse reflection area 16 (diffuse reflection film 15a), the measurement unit 20 can be easily positioned with respect to the molten solder 14 jetted from the nozzle 12a. Even if the molten solder 14 is jetted, the diffuse reflection area 16 (diffuse reflection film 15a) hardly moves. The reason is that the solder oxide film 15 functions as a wall for the molten solder 14 which can be regarded as a viscous fluid, since the viscous fluid generally has a substantially zero flow rate in the vicinity of the wall. Therefore, the first surface shape of the diffuse reflection area 16 corresponding to the shape of the surface of the molten solder 14 can be measured accurately and easily.
 部品7を配線基板6にはんだ付けするために配線基板6をノズル12aの上方に搬送すると、拡散反射膜15aは、配線基板6に押し流される。そのため、拡散反射膜15aは、配線基板6に対する部品7のはんだ付けに悪影響を及ぼさない。駆動部32は、例えば、測定部20によって拡散反射領域16の第1の表面形状が測定する前に、部材31を溶融はんだ14から引き上げる。駆動部32は、拡散反射領域16の第1の表面形状が計測された後に、部材31を溶融はんだ14から引き上げてもよい。 When the wiring substrate 6 is conveyed above the nozzles 12 a to solder the component 7 to the wiring substrate 6, the diffuse reflection film 15 a is pushed to the wiring substrate 6. Therefore, the diffuse reflection film 15 a does not adversely affect the soldering of the component 7 to the wiring substrate 6. The drive unit 32 pulls up the member 31 from the molten solder 14 before, for example, the first surface shape of the diffuse reflection area 16 is measured by the measurement unit 20. The driving unit 32 may pull up the member 31 from the molten solder 14 after the first surface shape of the diffuse reflection area 16 is measured.
 図9に示されるように、測定部20は、ノズル12aの第2の表面形状をさらに測定するように構成されてもよい。溶融はんだ14がノズル12aから噴流する前に、測定部20によって、ノズル12aの位置及び形状が測定され得る。そのため、適切な形状を有するノズル12aが、配線基板6に対して正確に位置決めされ得る。 As shown in FIG. 9, the measurement unit 20 may be configured to further measure the second surface shape of the nozzle 12a. The position and shape of the nozzle 12a may be measured by the measuring unit 20 before the molten solder 14 jets from the nozzle 12a. Therefore, the nozzle 12a having an appropriate shape can be accurately positioned with respect to the wiring substrate 6.
 図10に示されるように、制御部40は、測定部20によって得られる拡散反射領域16の第1の表面形状に基づいて、噴流部10を制御するように構成されている。本明細書において、噴流部10を制御することは、ポンプ13pに接続されるモータ13mの回転数、第1のヒータ13hの温度、配線基板6に対するノズル12aの相対的な高さ、ノズル12aの頂部に対するガイド板12cの相対的な高さ及びガイド板12cの長さの少なくとも一つを調整することを意味する。 As shown in FIG. 10, the control unit 40 is configured to control the jet unit 10 based on the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20. In the present specification, controlling the jet flow portion 10 includes the number of rotations of the motor 13m connected to the pump 13p, the temperature of the first heater 13h, the relative height of the nozzle 12a with respect to the wiring board 6, and the nozzle 12a. This means adjusting at least one of the relative height of the guide plate 12c to the top and the length of the guide plate 12c.
 具体的には、メモリ43には、ノズル12aから噴流する溶融はんだ14の第1の目標表面形状に関する第1の形状基準データが格納されている。制御部40は、測定部20によって得られる拡散反射領域16の第1の表面形状と第1の形状基準データとを比較するように構成されている。制御部40は、拡散反射領域16の第1の表面形状と第1の形状基準データとの間の比較結果に基づいて噴流部10を制御するように構成されている。制御部40は、測定部20によって得られる拡散反射領域16の第1の表面形状が第1の形状基準データに一致するように、噴流部10を制御してもよい。 Specifically, the memory 43 stores first shape reference data on a first target surface shape of the molten solder 14 jetted from the nozzle 12a. The control unit 40 is configured to compare the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 with the first shape reference data. The control unit 40 is configured to control the jet flow unit 10 based on the comparison result between the first surface shape of the diffuse reflection area 16 and the first shape reference data. Control part 40 may control jet part 10 so that the 1st surface shape of diffuse reflection field 16 obtained by measurement part 20 may be in agreement with the 1st shape standard data.
 制御部40は、測定部20によって得られるノズル12aの第2の表面形状に基づいて、ノズル12aを制御するように構成されてもよい。本明細書において、ノズル12aを制御することは、配線基板6に対するノズル12aの相対的な高さ、ノズル12aの頂部に対するガイド板12cの相対的な高さ及びガイド板12cの長さの少なくとも一つを調整することを意味する。 The control unit 40 may be configured to control the nozzle 12 a based on the second surface shape of the nozzle 12 a obtained by the measurement unit 20. In the present specification, controlling the nozzle 12a is at least one of the relative height of the nozzle 12a to the wiring substrate 6, the relative height of the guide plate 12c to the top of the nozzle 12a, and the length of the guide plate 12c. Means to adjust one.
 具体的には、メモリ43には、ノズル12aの第2の目標表面形状に関する第2の形状基準データが格納されている。制御部40は、測定部20によって得られるノズル12aの第2の表面形状と第2の形状基準データとを比較するように構成されている。制御部40は、ノズル12aの第2の表面形状と第2の形状基準データとの間の比較結果に基づいてノズル12aを制御するように構成されている。制御部40は、測定部20によって得られるノズル12aの第2の表面形状がノズル12aの第2の形状基準データに一致するように、ノズル12aを制御してもよい。メモリ43には、配線基板6の種類に関するデータがさらに格納されてもよい。 Specifically, the memory 43 stores second shape reference data on a second target surface shape of the nozzle 12a. The control unit 40 is configured to compare the second surface shape of the nozzle 12 a obtained by the measurement unit 20 with the second shape reference data. The control unit 40 is configured to control the nozzle 12 a based on the comparison result between the second surface shape of the nozzle 12 a and the second shape reference data. Control part 40 may control nozzle 12a so that the 2nd surface shape of nozzle 12a obtained by measurement part 20 may be in agreement with the 2nd shape standard data of nozzle 12a. The memory 43 may further store data on the type of the wiring board 6.
 図1及び図4に示されるように、予備加熱部9は、ノズル12aに対して、配線基板6の搬送方向(x方向)における上流側(-x方向)に配置されている。噴流部10におけるはんだ付けに先立って、予備加熱部9は、配線基板6を加熱する。予備加熱部9は、第2のヒータ9hと、温度センサ9sとを含む。配線基板6は、予備加熱部9内を搬送部4によって搬送されながら、予備加熱部9において加熱される。第2のヒータ9hは、予備加熱部9内に搬送される配線基板6を加熱する。温度センサ9sは、予備加熱部9内の温度を検出する。図10に示されるように、予備加熱部9は、制御部40に接続されてもよい。制御部40は、予備加熱部9を制御してもよい。制御部40は、温度センサ9sの出力を受信して、温度センサ9sの出力に基づいて第2のヒータ9hを制御してもよい。 As shown in FIGS. 1 and 4, the preheating unit 9 is disposed on the upstream side (−x direction) in the transport direction (x direction) of the wiring board 6 with respect to the nozzle 12a. Prior to the soldering in the jet portion 10, the preheating unit 9 heats the wiring substrate 6. The preheating unit 9 includes a second heater 9 h and a temperature sensor 9 s. The wiring substrate 6 is heated in the preliminary heating unit 9 while being conveyed by the conveyance unit 4 in the preliminary heating unit 9. The second heater 9 h heats the wiring board 6 transported into the preheating unit 9. The temperature sensor 9 s detects the temperature in the preheating unit 9. As shown in FIG. 10, the preheating unit 9 may be connected to the control unit 40. The control unit 40 may control the preheating unit 9. The control unit 40 may receive the output of the temperature sensor 9s and control the second heater 9h based on the output of the temperature sensor 9s.
 図1に示されるように、筐体3は、噴流部10と、測定部20と、予備加熱部9とを収容している。搬送部4の一部及び制御部40もまた、筐体3内に収容されている。制御部40は、搬送部4を制御してもよい。例えば、制御部40は、搬送部4による配線基板6の搬送速度を制御してもよい。 As shown in FIG. 1, the housing 3 accommodates the jet flow portion 10, the measurement portion 20, and the preheating portion 9. A part of the transport unit 4 and the control unit 40 are also accommodated in the housing 3. The control unit 40 may control the transport unit 4. For example, the control unit 40 may control the transfer speed of the wiring board 6 by the transfer unit 4.
 図1に示されるように、表示部41は、筐体3上に設けられている。図10に示されるように、表示部41は、制御部40に接続されている。制御部40は、測定部20によって得られた拡散反射領域16の第1の表面形状、ノズル12aの第2の表面形状、ポンプ13pに接続されるモータ13mの回転数、第1のヒータ13hの温度、第2のヒータ9hの温度、配線基板6に対するノズル12aの相対的な高さ、ノズル12aの頂部に対するガイド板12cの相対的な高さ、ガイド板12cの長さ、配線基板6の種類及び搬送部4における配線基板6の搬送速度などを含むデータを、表示部41に出力する。表示部41は、これらデータを表示する。 As shown in FIG. 1, the display unit 41 is provided on the housing 3. As shown in FIG. 10, the display unit 41 is connected to the control unit 40. The control unit 40 controls the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20, the second surface shape of the nozzle 12a, the number of rotations of the motor 13m connected to the pump 13p, and the first heater 13h. Temperature, temperature of second heater 9 h, relative height of nozzle 12 a to wiring board 6, relative height of guide plate 12 c to top of nozzle 12 a, length of guide plate 12 c, type of wiring board 6 And, data including the transport speed of the wiring board 6 in the transport unit 4 is output to the display unit 41. The display unit 41 displays these data.
 図5から図11を参照して、本実施の形態のはんだ付け方法を説明する。
 本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面上に拡散反射領域16を形成すること(S11)を備える。拡散反射領域16は、ノズル12aから噴流する溶融はんだ14の表面の一部上に選択的に形成されてもよい。
The soldering method of the present embodiment will be described with reference to FIGS. 5 to 11.
The soldering method of the present embodiment includes forming a diffuse reflection area 16 on the surface of the molten solder 14 jetted from the nozzle 12a (S11). The diffuse reflection area 16 may be selectively formed on a part of the surface of the molten solder 14 jetted from the nozzle 12a.
 図5から図7に示されるように、拡散反射領域16を形成すること(S11)は、部材31の少なくとも一部を溶融はんだ14に浸漬させながら、溶融はんだ14の表面に沿って部材31を一方向に移動させることを含んでもよい。具体的には、駆動部32は、部材31を高さ方向(z方向)に移動させる。図6に示されるように、部材31は、溶融はんだ14の表面に形成されているはんだ酸化膜15を貫通して、部材31の一部が溶融はんだ14に浸漬される。続いて、図7に示されるように、駆動部32は、部材31の少なくとも一部を溶融はんだ14に浸漬させながら、部材31を溶融はんだ14の表面に沿って部材31を一方向に移動させる。特定的には、駆動部32は、部材31の少なくとも一部を溶融はんだ14に浸漬させながら、幅方向(y方向)に沿って、部材31を移動させてもよい。 As shown in FIG. 5 to FIG. 7, forming the diffuse reflection area 16 (S11) involves immersing the member 31 along the surface of the molten solder 14 while immersing at least a part of the member 31 in the molten solder 14 It may include moving in one direction. Specifically, the drive unit 32 moves the member 31 in the height direction (z direction). As shown in FIG. 6, the member 31 penetrates the solder oxide film 15 formed on the surface of the molten solder 14, and a part of the member 31 is immersed in the molten solder 14. Subsequently, as illustrated in FIG. 7, the driving unit 32 moves the member 31 in one direction along the surface of the molten solder 14 while immersing at least a part of the member 31 in the molten solder 14. . Specifically, the drive unit 32 may move the member 31 along the width direction (y direction) while immersing at least a part of the member 31 in the molten solder 14.
 はんだ酸化膜15が折り重なって、ノズル12aから噴流する溶融はんだ14の表面上に、拡散反射領域16が形成される。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含んでもよい。拡散反射膜15aは、例えば、はんだ酸化膜15の一部が寄せ集められて形成された、しわ状のはんだ酸化膜である。 The solder oxide film 15 is folded and a diffuse reflection area 16 is formed on the surface of the molten solder 14 jetted from the nozzle 12a. The diffuse reflection area 16 may include a diffuse reflection film 15a composed of a solder oxide film. The diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15.
 本実施の形態のはんだ付け方法は、測定部20によって拡散反射領域16の第1の表面形状を測定すること(S12)を備える。図8に示されるように、拡散反射領域16の第1の表面形状を測定すること(S12)は、拡散反射領域16に光22を照射することと、拡散反射領域16によって拡散反射された光22を検出することとを含んでもよい。 The soldering method of the present embodiment includes measuring the first surface shape of the diffuse reflection area 16 by the measuring unit 20 (S12). As shown in FIG. 8, in the measurement of the first surface shape of the diffuse reflection area 16 (S 12), the diffuse reflection area 16 is irradiated with light 22 and the light diffusely reflected by the diffuse reflection area 16 And C. 22 may be included.
 拡散反射領域16(拡散反射膜15a)は、溶融はんだ14の表面上に浮遊している。拡散反射領域16の第1の表面形状は、溶融はんだ14の表面形状に追従している。拡散反射領域16(拡散反射膜15a)の第1の表面形状は、溶融はんだ14の表面形状と実質的に等価であると見なされ得る。測定部20を用いて拡散反射領域16(拡散反射膜15a)の第1の表面形状を測定することによって、ノズル12aから噴流する溶融はんだ14の表面形状が測定され得る。測定部20によって拡散反射領域16の第1の表面形状が測定された後に、駆動部32は、部材31を、溶融はんだ14から引き上げてもよい。 The diffuse reflection area 16 (diffuse reflection film 15 a) floats on the surface of the molten solder 14. The first surface shape of the diffuse reflection area 16 follows the surface shape of the molten solder 14. The first surface shape of the diffuse reflection area 16 (diffuse reflection film 15 a) can be regarded as substantially equivalent to the surface shape of the molten solder 14. By measuring the first surface shape of the diffuse reflection area 16 (diffuse reflection film 15a) using the measurement unit 20, the surface shape of the molten solder 14 jetted from the nozzle 12a can be measured. After the measurement unit 20 measures the first surface shape of the diffuse reflection area 16, the drive unit 32 may pull up the member 31 from the molten solder 14.
 本実施の形態のはんだ付け方法は、測定部20によって得られる拡散反射領域16の第1の表面形状に基づいて、ノズル12aを含む噴流部10を制御すること(S13、S14)をさらに備えてもよい。噴流部10を制御すること(S13、S14)は、拡散反射領域16の第1の表面形状とノズル12aから噴流する溶融はんだ14の第1の目標表面形状に関する第1の形状基準データとを比較すること(S13)と、拡散反射領域16の第1の表面形状と第1の形状基準データとの間の比較結果に基づいて噴流部10を制御すること(S14)とを含んでもよい。ノズル12aから噴流する溶融はんだ14の第1の目標表面形状に関する第1の形状基準データは、例えば、後述するノズル12aをクリーニングした直後にノズル12aから噴流する溶融はんだ14の表面形状に関する過去のデータであってもよい。 The soldering method of the present embodiment further includes controlling the jet portion 10 including the nozzle 12 a based on the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 (S 13, S 14). It is also good. Controlling the jet portion 10 (S13, S14) compares the first surface shape of the diffuse reflection area 16 with the first shape reference data on the first target surface shape of the molten solder 14 jetted from the nozzle 12a. (S13), and controlling the jet part 10 based on the comparison result between the first surface shape of the diffuse reflection area 16 and the first shape reference data (S14). The first shape reference data on the first target surface shape of the molten solder 14 jetted from the nozzle 12a is, for example, past data on the surface shape of the molten solder 14 jetted from the nozzle 12a immediately after cleaning the nozzle 12a described later. It may be
 具体的には、メモリ43には、ノズル12aから噴流する溶融はんだ14の第1の目標表面形状に関する第1の形状基準データが格納されている。制御部40は、測定部20によって得られる拡散反射領域16の第1の表面形状とメモリ43に格納されている第1の形状基準データとを比較する。制御部40は、拡散反射領域16の第1の表面形状と第1の形状基準データとの間の比較結果に基づいて噴流部10を制御する。 Specifically, the memory 43 stores first shape reference data on a first target surface shape of the molten solder 14 jetted from the nozzle 12a. The control unit 40 compares the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 with the first shape reference data stored in the memory 43. The control unit 40 controls the jet unit 10 based on the comparison result between the first surface shape of the diffuse reflection area 16 and the first shape reference data.
 特定的には、制御部40は、測定部20によって得られる拡散反射領域16の第1の表面形状がノズル12aから噴流する溶融はんだ14の第1の形状基準データに一致するように、噴流部10を制御してもよい。測定部20によって得られる拡散反射領域16の第1の表面形状がノズル12aから噴流する溶融はんだ14の第1の形状基準データに一致しない場合(図11のNG1の場合)には、噴流部10を制御し(S14)、それから、工程(S11)から工程(S13)によって、拡散反射領域16の第1の表面形状が第1の形状基準データに一致しているか否かを確認する。測定部20によって得られる拡散反射領域16の第1の表面形状がノズル12aから噴流する溶融はんだ14の第1の形状基準データに一致するまで、工程(S11)から工程(S14)を繰り返す。 Specifically, the control unit 40 controls the jetted portion so that the first surface shape of the diffuse reflection area 16 obtained by the measuring unit 20 matches the first shape reference data of the molten solder 14 jetted from the nozzle 12a. 10 may be controlled. If the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 does not match the first shape reference data of the molten solder 14 jetted from the nozzle 12a (in the case of NG1 in FIG. 11), the jetted portion 10 Are controlled (S14), and then it is confirmed whether the first surface shape of the diffuse reflection area 16 matches the first shape reference data by the steps (S11) to (S13). Steps (S11) to (S14) are repeated until the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 matches the first shape reference data of the molten solder 14 jetted from the nozzle 12a.
 測定部20によって得られる拡散反射領域16の第1の表面形状を第1の形状基準データに一致させた後に、ノズル12aから噴流する溶融はんだ14によって、部品7を配線基板6にはんだ付けする(S30)。具体的には、配線基板6は、搬送部4によって、ノズル12aの上方へ搬送される。配線基板6の裏面6bにノズル12aから噴流する溶融はんだ14を接触させて、配線基板6のおもて面6aに搭載されている部品7は、配線基板6の裏面6b上に設けられている電気配線にはんだ付けされる。 After matching the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 to the first shape reference data, the component 7 is soldered to the wiring substrate 6 by the molten solder 14 jetted from the nozzle 12 a ( S30). Specifically, the wiring board 6 is transported by the transport unit 4 to the upper side of the nozzle 12 a. The component 7 mounted on the front surface 6 a of the wiring substrate 6 is provided on the back surface 6 b of the wiring substrate 6 by bringing the molten solder 14 jetted from the nozzle 12 a into contact with the back surface 6 b of the wiring substrate 6. Soldered to electrical wiring.
 はんだ付け装置1を何度も使用すると、ノズル12aの開口12b内にはんだ酸化物が堆積する。この堆積されたはんだ酸化物は、ノズル12aの開口12b内の溶融はんだ14の流れを阻害し、はんだ付け不良を引き起こす。堆積されたはんだ酸化物を除去するために、ノズル12aがはんだ付け装置1から取り外されて、分解及びクリーニングされる。ノズル12aをクリーニングし終えた後、ノズル12aを再び組み立てて、はんだ付け装置1に取り付ける。ノズル12aを組み立てる時に、組立誤差が発生することがある。ノズル12aをはんだ付け装置1に取り付ける際に、取り付け誤差が発生することがある。これらの誤差により、クリーニング後のノズル12aから噴流する溶融はんだ14の表面形状は、クリーニング前のノズル12aから噴流する溶融はんだ14の表面形状と異なり得る。これらの誤差は、ノズル12aをクリーニングした後に、はんだ不良を引き起こし得る。 When the soldering apparatus 1 is used many times, solder oxide is deposited in the opening 12b of the nozzle 12a. The deposited solder oxide inhibits the flow of the molten solder 14 in the opening 12b of the nozzle 12a and causes a soldering failure. In order to remove the deposited solder oxide, the nozzle 12 a is removed from the soldering apparatus 1 and disassembled and cleaned. After cleaning the nozzle 12 a, the nozzle 12 a is assembled again and attached to the soldering apparatus 1. When assembling the nozzle 12a, an assembly error may occur. When the nozzle 12 a is attached to the soldering apparatus 1, an attachment error may occur. Due to these errors, the surface shape of the molten solder 14 jetted from the nozzle 12a after cleaning may differ from the surface shape of the molten solder 14 jetted from the nozzle 12a before cleaning. These errors can cause solder defects after cleaning the nozzle 12a.
 図11に示されるように、これらの誤差が発生しないように、本実施の形態のはんだ付け方法は、測定部20によってノズル12aの第2の表面形状を測定すること(S21)と、測定部20によって得られるノズル12aの第2の表面形状に基づいて、ノズル12aを制御すること(S22,S23)とをさらに備えてもよい。 As shown in FIG. 11, in the soldering method of the present embodiment, the second surface shape of the nozzle 12 a is measured by the measuring unit 20 (S 21) so that these errors do not occur (S 21), and the measuring unit And controlling the nozzle 12a based on the second surface shape of the nozzle 12a obtained by the step S20 (S22, S23).
 測定部20によってノズル12aの第2の表面形状を測定する工程(S21)では、図9に示されるように、ノズル12aから溶融はんだ14を噴流させずに、ノズル12aの第2の表面形状が測定部20によって測定されてもよい。ノズル12aは、例えば、表面が窒化処理されたステンレス鋼によって構成されている。ノズル12aは、はんだ酸化膜15よりも、表面における拡散反射の割合が大きく、かつ、表面における鏡面反射の割合が小さい。そのため、ノズル12aの第2の表面形状は、測定部20によって直接測定され得る。 In the step (S21) of measuring the second surface shape of the nozzle 12a by the measuring unit 20, as shown in FIG. 9, the second surface shape of the nozzle 12a is not jetted from the nozzle 12a. It may be measured by the measurement unit 20. The nozzle 12a is made of, for example, stainless steel whose surface is nitrided. The nozzle 12 a has a larger percentage of diffuse reflection on the surface and a smaller percentage of specular reflection on the surface than the solder oxide film 15. Therefore, the second surface shape of the nozzle 12a can be measured directly by the measuring unit 20.
 ノズル12aを制御すること(S22,S23)は、ノズル12aの第2の表面形状と、ノズル12aの第2の目標表面形状に関する第2の形状基準データとを比較すること(S22)と、ノズル12aの第2の表面形状と第2の形状基準データとの間の比較結果に基づいてノズル12aを制御すること(S23)とを含んでもよい。ノズル12aの第2の目標表面形状に関する第2の形状基準データは、例えば、ノズル12aをクリーニングした直後におけるノズル12aの第2の表面形状に関する過去のデータであってもよい。 Controlling the nozzle 12a (S22, S23) compares the second surface shape of the nozzle 12a with second shape reference data on the second target surface shape of the nozzle 12a (S22), and Controlling the nozzle 12a based on a comparison result between the second surface shape of the second surface 12a and the second shape reference data (S23). The second shape reference data regarding the second target surface shape of the nozzle 12a may be, for example, past data regarding the second surface shape of the nozzle 12a immediately after cleaning the nozzle 12a.
 具体的には、メモリ43には、ノズル12aの第2の目標表面形状に関する第2の形状基準データが格納されている。制御部40は、測定部20によって得られるノズル12aの第2の表面形状とメモリ43に格納されている第2の形状基準データとを比較する。制御部40は、ノズル12aの第2の表面形状と第2の形状基準データとの間の比較結果に基づいてノズル12aを制御する。 Specifically, the memory 43 stores second shape reference data on a second target surface shape of the nozzle 12a. The control unit 40 compares the second surface shape of the nozzle 12 a obtained by the measurement unit 20 with the second shape reference data stored in the memory 43. The control unit 40 controls the nozzle 12a based on the comparison result between the second surface shape of the nozzle 12a and the second shape reference data.
 特定的には、制御部40は、測定部20によって得られるノズル12aの第2の表面形状がノズル12aの第2の形状基準データに一致するように、ノズル12aを制御してもよい。測定部20によって得られるノズル12aの第2の表面形状がノズル12aの第2の形状基準データに一致しない場合(図11のNG3の場合)には、ノズル12aを制御し(S23)、それから、工程(S21)及び工程(S22)によって、ノズル12aの第2の表面形状が第2の形状基準データに一致しているか否かを確認する。測定部20によって得られるノズル12aの第2の表面形状がノズル12aの第2の形状基準データに一致するまで、工程(S21)から工程(S23)を繰り返す。測定部20によって得られるノズル12aの第2の表面形状をノズル12aの第2の形状基準データに一致させた後に、ノズル12aから溶融はんだ14を噴流させて、溶融はんだ14の表面上に拡散反射領域16を形成する(S11)。 Specifically, the control unit 40 may control the nozzle 12a such that the second surface shape of the nozzle 12a obtained by the measurement unit 20 matches the second shape reference data of the nozzle 12a. If the second surface shape of the nozzle 12a obtained by the measurement unit 20 does not match the second shape reference data of the nozzle 12a (in the case of NG3 in FIG. 11), the nozzle 12a is controlled (S23), and Whether or not the second surface shape of the nozzle 12a matches the second shape reference data is confirmed by the step (S21) and the step (S22). Steps (S21) to (S23) are repeated until the second surface shape of the nozzle 12a obtained by the measurement unit 20 matches the second shape reference data of the nozzle 12a. After matching the second surface shape of the nozzle 12a obtained by the measurement unit 20 with the second shape reference data of the nozzle 12a, the molten solder 14 is jetted from the nozzle 12a to diffuse reflection on the surface of the molten solder 14 A region 16 is formed (S11).
 図11に示されるように、工程(S11)から工程(S14)のみでは測定部20によって得られる拡散反射領域16の第1の表面形状を第1の形状基準データに一致させることができない場合(図11のNG2の場合)には、工程(S21)から工程(S23)によって、ノズル12aを再び制御し、それから、工程(S11)から工程(S14)によって、拡散反射領域16の第1の表面形状を第1の形状基準データに一致させてもよい。 As shown in FIG. 11, the case where the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 can not be matched with the first shape reference data only by the steps (S11) to (S14) In the case of NG2 of FIG. 11), the nozzle 12a is controlled again from step (S21) to step (S23), and then the first surface of the diffuse reflection area 16 from step (S11) to step (S14) The shape may be matched to the first shape reference data.
 配線基板6の種類が変更される場合も、ノズル12aを分解及びクリーニングする場合と同様の工程が行われてもよい。具体的には、配線基板6の種類が変更される時、工程(S21)から工程(S23)を行う。測定部20によって得られるノズル12aの第2の表面形状が、異なる種類の配線基板6に対応する第2の形状基準データに一致するように、ノズル12aが制御される。続いて、工程(S11)から工程(S14)を行う。測定部20によって得られる拡散反射領域16の第1の表面形状が、異なる種類の配線基板6に対応する第1の形状基準データに一致するように、ノズル12aが制御される。制御部40は、配線基板6の種類をメモリ43から読み出して、第1の形状基準データ及び第2の形状基準データを、異なる種類の配線基板6に対応する第1の形状基準データ及び第2の形状基準データに置き換えてもよい。こうして、配線基板6の種類が変更されても、はんだ付け不良の発生が抑制され得る。 Also when the type of the wiring board 6 is changed, the same process as in the case of disassembling and cleaning the nozzle 12a may be performed. Specifically, when the type of wiring board 6 is changed, the steps (S21) to (S23) are performed. The nozzle 12 a is controlled such that the second surface shape of the nozzle 12 a obtained by the measurement unit 20 matches the second shape reference data corresponding to the different types of wiring boards 6. Subsequently, steps (S11) to (S14) are performed. The nozzle 12 a is controlled such that the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 matches the first shape reference data corresponding to the different types of wiring boards 6. The control unit 40 reads out the type of the wiring board 6 from the memory 43, and the first shape reference data and the second shape reference data corresponding to the different types of wiring board 6 are read. It may be replaced by shape reference data of Thus, even if the type of wiring board 6 is changed, the occurrence of soldering defects can be suppressed.
 測定部20によって得られた拡散反射領域16の第1の表面形状と第1の形状基準データとを比較する工程(S13)は、以下に例示する方法によって行われてもよい。第1の例では、電子計算機を用いて、拡散反射領域16の第1の表面形状のデータから、特徴的な部分のデータ(例えば、拡散反射領域16の第1の表面形状の最も高い位置のデータなど)を抽出する。電子計算機を用いて、当該特徴的な部分のデータが、当該特徴的な部分の第1の形状基準データと比較されてもよい。第2の例では、工程(S13)において、拡散反射領域16の第1の表面形状と第1の形状基準データとが表示部41に表示され、これらが目視によって比較されてもよい。同様に、測定部20によって得られたノズル12aの第2の表面形状と第2の形状基準データとを比較する工程(S22)においても、電気計算機または目視によって、これらが比較されてもよい。 The step (S13) of comparing the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 with the first shape reference data may be performed by the method exemplified below. In the first example, data of the first surface shape of the diffuse reflection area 16 is used to generate characteristic part data (for example, the highest position of the first surface shape of the diffuse reflection area 16) using an electronic computer. Extract data etc.) The data of the characteristic portion may be compared with the first shape reference data of the characteristic portion using a computer. In the second example, in step (S13), the first surface shape of the diffuse reflection area 16 and the first shape reference data may be displayed on the display unit 41, and these may be visually compared. Similarly, also in the step (S22) of comparing the second surface shape of the nozzle 12a obtained by the measuring unit 20 with the second shape reference data, these may be compared by an electric computer or visually.
 本実施の形態の一変形例のはんだ付け装置1及びはんだ付け方法では、実施の形態3に開示された拡散反射領域形成部30cを用いて、本実施の形態の拡散反射領域16(拡散反射膜15a)が形成されてもよい。 In the soldering apparatus 1 and the soldering method according to one modification of the present embodiment, the diffuse reflection area 16 (diffuse reflection film according to the present embodiment) (diffuse reflection film according to the third embodiment) 15a) may be formed.
 本実施の形態のはんだ付け装置1及びはんだ付け方法の効果を説明する。
 本実施の形態のはんだ付け装置1は、噴流部10と、測定部20とを備える。噴流部10は、ノズル12aを含む。測定部20は、ノズル12aから噴流する溶融はんだ14の表面上に形成される拡散反射領域16の第1の表面形状を測定するように構成されている。拡散反射領域16の第1の表面形状は、ノズル12aから噴流する溶融はんだ14の表面形状に追従する。測定部20によって拡散反射領域16の第1の表面形状を測定することにより、ノズル12aから噴流する溶融はんだ14の表面形状が容易に測定され得る。本実施の形態のはんだ付け装置1は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。
The effects of the soldering apparatus 1 and the soldering method of the present embodiment will be described.
The soldering apparatus 1 of the present embodiment includes a jet portion 10 and a measuring portion 20. The jet part 10 includes a nozzle 12a. The measurement unit 20 is configured to measure a first surface shape of the diffuse reflection area 16 formed on the surface of the molten solder 14 jetted from the nozzle 12a. The first surface shape of the diffuse reflection area 16 follows the surface shape of the molten solder 14 jetted from the nozzle 12a. By measuring the first surface shape of the diffuse reflection area 16 by the measuring unit 20, the surface shape of the molten solder 14 jetted from the nozzle 12a can be easily measured. The soldering apparatus 1 of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
 本実施の形態のはんだ付け装置1は、溶融はんだ14の表面上に拡散反射領域16を形成するように構成されている拡散反射領域形成部30をさらに備えてもよい。そのため、拡散反射領域16が溶融はんだ14の表面上に容易に形成され得る。本実施の形態のはんだ付け装置1は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 The soldering apparatus 1 of the present embodiment may further include a diffuse reflection area forming unit 30 configured to form the diffuse reflection area 16 on the surface of the molten solder 14. Therefore, the diffuse reflection area 16 can be easily formed on the surface of the molten solder 14. The soldering apparatus 1 of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
 本実施の形態のはんだ付け装置1では、拡散反射領域形成部30は、部材31と、駆動部32とを含んでもよい。駆動部32は、部材31の少なくとも一部を溶融はんだ14に浸漬させながら、溶融はんだ14の表面に沿って部材31を一方向に移動させるように構成されてもよい。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。そのため、拡散反射領域16が溶融はんだ14の表面上に容易に形成され得る。本実施の形態のはんだ付け装置1は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1 of the present embodiment, the diffuse reflection area forming unit 30 may include a member 31 and a drive unit 32. The driving unit 32 may be configured to move the member 31 in one direction along the surface of the molten solder 14 while immersing at least a part of the member 31 in the molten solder 14. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. Therefore, the diffuse reflection area 16 can be easily formed on the surface of the molten solder 14. The soldering apparatus 1 of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
 本実施の形態のはんだ付け装置1は、制御部40をさらに備えてもよい。制御部40は、測定部20によって得られる拡散反射領域16の第1の表面形状に基づいて、噴流部10を制するように構成されてもよい。本実施の形態のはんだ付け装置1は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 The soldering apparatus 1 of the present embodiment may further include a control unit 40. The control unit 40 may be configured to control the jet unit 10 based on the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20. The soldering apparatus 1 of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
 本実施の形態のはんだ付け装置1は、ノズル12aから噴流する溶融はんだ14の第1の目標表面形状に関する第1の形状基準データが格納されているメモリ43をさらに備えてもよい。制御部40は、測定部20によって得られる拡散反射領域16の第1の表面形状と第1の形状基準データとを比較するように構成されてもよい。制御部40は、拡散反射領域16の第1の表面形状と第1の形状基準データとの間の比較結果に基づいて噴流部10を制御するように構成されてもよい。本実施の形態のはんだ付け装置1は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 The soldering apparatus 1 of the present embodiment may further include a memory 43 in which first shape reference data on a first target surface shape of the molten solder 14 jetted from the nozzle 12 a is stored. The control unit 40 may be configured to compare the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 with the first shape reference data. The control unit 40 may be configured to control the jet unit 10 based on the comparison result between the first surface shape of the diffuse reflection area 16 and the first shape reference data. The soldering apparatus 1 of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
 本実施の形態のはんだ付け装置1では、測定部20は、ノズル12aの第2の表面形状をさらに測定するように構成されてもよい。制御部40は、測定部20によって得られるノズル12aの第2の表面形状に基づいて、ノズル12aを制御するように構成されてもよい。本実施の形態のはんだ付け装置1は、ノズル12aの第2の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1 of the present embodiment, the measuring unit 20 may be configured to further measure the second surface shape of the nozzle 12a. The control unit 40 may be configured to control the nozzle 12 a based on the second surface shape of the nozzle 12 a obtained by the measurement unit 20. The soldering apparatus 1 of the present embodiment enables more appropriate (better) soldering using the measurement result of the second surface shape of the nozzle 12 a.
 本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面上に拡散反射領域16を形成すること(S11)と、測定部20によって拡散反射領域16の第1の表面形状を測定すること(S12)とを備える。拡散反射領域16の第1の表面形状は、ノズル12aから噴流する溶融はんだ14の表面形状に追従する。測定部20によって拡散反射領域16の第1の表面形状を測定することにより、ノズル12aから噴流する溶融はんだ14の表面形状が測定され得る。本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering method of the present embodiment, the diffuse reflection area 16 is formed on the surface of the molten solder 14 jetted from the nozzle 12 a (S 11), and the first surface shape of the diffuse reflection area 16 is measured by the measuring unit 20. And (S12) measuring. The first surface shape of the diffuse reflection area 16 follows the surface shape of the molten solder 14 jetted from the nozzle 12a. By measuring the first surface shape of the diffuse reflection area 16 by the measurement unit 20, the surface shape of the molten solder 14 jetted from the nozzle 12a can be measured. The soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
 本実施の形態のはんだ付け方法では、拡散反射領域16を形成すること(S12)は、部材31の少なくとも一部を溶融はんだ14に浸漬させながら、溶融はんだ14の表面に沿って部材31を移動させることを含んでもよい。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。そのため、拡散反射領域16が溶融はんだ14の表面上に容易に形成され得る。本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering method of the present embodiment, forming the diffuse reflection area 16 (S12) moves the member 31 along the surface of the molten solder 14 while immersing at least a part of the member 31 in the molten solder 14. May be included. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. Therefore, the diffuse reflection area 16 can be easily formed on the surface of the molten solder 14. The soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
 本実施の形態のはんだ付け方法は、測定部20によって得られる拡散反射領域16の第1の表面形状に基づいて、ノズル12aを含む噴流部10を制御すること(S13,S14)をさらに備えてもよい。本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 The soldering method of the present embodiment further includes controlling the jet portion 10 including the nozzle 12 a (S 13, S 14) based on the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20. It is also good. The soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
 本実施の形態のはんだ付け方法では、噴流部10を制御すること(S13,S14)は、拡散反射領域16の第1の表面形状とノズル12aから噴流する溶融はんだ14の第1の目標表面形状に関する第1の形状基準データとを比較すること(S13)と、拡散反射領域16の第1の表面形状と第1の形状基準データとの間の比較結果に基づいて噴流部10を制御すること(S14)とを含んでもよい。本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering method according to the present embodiment, controlling the jet portion 10 (S13, S14) includes the first surface shape of the diffuse reflection area 16 and the first target surface shape of the molten solder 14 jetted from the nozzle 12a. Comparing the first shape reference data with respect to (S13), and controlling the jet portion 10 based on the comparison result between the first surface shape of the diffuse reflection area 16 and the first shape reference data And (S14) may be included. The soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
 本実施の形態のはんだ付け方法は、測定部20によってノズル12aの第2の表面形状を測定すること(S21)と、測定部20によって得られるノズル12aの第2の表面形状に基づいて、ノズル12aを制御すること(S22,S23)とをさらに備えてもよい。本実施の形態のはんだ付け方法は、ノズル12aの第2の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering method of the present embodiment, the measurement unit 20 measures the second surface shape of the nozzle 12a (S21), and the nozzle based on the second surface shape of the nozzle 12a obtained by the measurement unit 20. And 12a may be further included (S22, S23). The soldering method of the present embodiment enables more appropriate (better) soldering using the measurement result of the second surface shape of the nozzle 12a.
 実施の形態2.
 図12及び図13を参照して、実施の形態2に係るはんだ付け装置1bを説明する。本実施の形態のはんだ付け装置1bは、実施の形態1のはんだ付け装置1と同様の構成を備えるが、主に以下の点で異なる。
Second Embodiment
A soldering apparatus 1b according to a second embodiment will be described with reference to FIGS. 12 and 13. The soldering apparatus 1b of the present embodiment has the same configuration as the soldering apparatus 1 of the first embodiment, but differs mainly in the following points.
 はんだ付け装置1bは、実施の形態1の測定部20に代えて、測定部20bを備えている。測定部20bは、光源部21bと、光検出部23bとを含む。光源部21bは、拡散反射領域16に光22bを照射するように構成されている。光源部21bは、細長い矩形またはスリットの断面形状を有する光22bを出射してもよい。光源部21bは、例えば、レーザ墨出し器であってもよい。光検出部23bは、拡散反射領域16によって拡散反射される光22bを検出するように構成されている。光検出部23bは、拡散反射領域16の第1の表面形状の画像を取得するように構成されている撮像部である。撮像部は、例えば、CCDカメラであってもよい。拡散反射領域16で拡散反射される光22bを光検出部23bで検出することにより、拡散反射領域16の第1の表面形状が容易に測定され得る。 The soldering apparatus 1 b includes a measuring unit 20 b in place of the measuring unit 20 of the first embodiment. The measurement unit 20b includes a light source unit 21b and a light detection unit 23b. The light source unit 21 b is configured to irradiate the diffuse reflection area 16 with the light 22 b. The light source unit 21 b may emit light 22 b having an elongated rectangular shape or a cross-sectional shape of a slit. The light source unit 21 b may be, for example, a laser marker. The light detection unit 23 b is configured to detect the light 22 b diffusely reflected by the diffuse reflection area 16. The light detection unit 23 b is an imaging unit configured to acquire an image of the first surface shape of the diffuse reflection area 16. The imaging unit may be, for example, a CCD camera. The first surface shape of the diffuse reflection area 16 can be easily measured by detecting the light 22 b diffused and reflected by the diffuse reflection area 16 by the light detection unit 23 b.
 図11から図13を参照して、本実施の形態のはんだ付け方法を説明する。本実施の形態のはんだ付け方法は、実施の形態1のはんだ付け方法と同様の工程を備えるが、以下の点で異なる。 The soldering method of the present embodiment will be described with reference to FIGS. 11 to 13. The soldering method of the present embodiment includes the same steps as the soldering method of the first embodiment, but differs in the following points.
 本実施の形態のはんだ付け方法は、測定部20bによって拡散反射領域16の第1の表面形状を測定すること(S12)を備える。拡散反射領域16の第1の表面形状を測定すること(S12)は、拡散反射領域16に光22bを照射することと、拡散反射領域16によって拡散反射される光22bを検出することとを含む。測定部20bは、光検出部23bを含む。光検出部23bは、拡散反射領域16の第1の表面形状の画像を取得するように構成されている撮像部である。拡散反射された光22bを検出することは、撮像部によって拡散反射領域16の第1の表面形状の画像を取得することを含む。 The soldering method of the present embodiment includes measuring the first surface shape of the diffuse reflection area 16 by the measuring unit 20b (S12). Measuring the first surface shape of the diffuse reflection area 16 (S12) includes irradiating the diffuse reflection area 16 with the light 22b and detecting the light 22b diffusely reflected by the diffuse reflection area 16. . The measurement unit 20b includes a light detection unit 23b. The light detection unit 23 b is an imaging unit configured to acquire an image of the first surface shape of the diffuse reflection area 16. Detecting the diffusely reflected light 22 b includes acquiring an image of the first surface shape of the diffuse reflection area 16 by the imaging unit.
 本実施の形態のはんだ付け方法は、測定部20bによって得られる拡散反射領域16の第1の表面形状とノズル12aから噴流する溶融はんだ14の第1の目標表面形状に関する第1の形状基準データとを比較すること(S13)を備える。具体的には、制御部40は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の画像を、メモリ43に格納されている第1の形状基準データ(第1の基準画像)と比較してもよい。特定的には、拡散反射領域16の第1の表面形状の画像と第1の形状基準データ(第1の基準画像)とを重ね合わせて、これら画像の差分に相当する面積を算出する。この面積に基づいて、測定部20bによって得られた拡散反射領域16の第1の表面形状の画像が、第1の形状基準データ(第1の基準画像)と比較されてもよい。 According to the soldering method of the present embodiment, the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20 b and the first shape reference data on the first target surface shape of the molten solder 14 jetted from the nozzle 12 a (S13). Specifically, the control unit 40 stores, in the memory 43, an image of a first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. It may be compared with data (first reference image). Specifically, the image of the first surface shape of the diffuse reflection area 16 and the first shape reference data (first reference image) are superimposed to calculate the area corresponding to the difference between these images. Based on this area, the image of the first surface shape of the diffuse reflection area 16 obtained by the measurement unit 20b may be compared with the first shape reference data (first reference image).
 本実施の形態のはんだ付け方法は、測定部20bによってノズル12aの第2の表面形状を測定すること(S21)を備えてもよい。測定部20bは、ノズル12aの第2の表面形状の画像を取得するように構成されている撮像部である光検出部23bを含む。 The soldering method of the present embodiment may include measuring the second surface shape of the nozzle 12a by the measuring unit 20b (S21). The measurement unit 20b includes a light detection unit 23b that is an imaging unit configured to acquire an image of a second surface shape of the nozzle 12a.
 本実施の形態のはんだ付け方法は、測定部20bによって得られるノズル12aの第2の表面形状と、ノズル12aの第2の目標表面形状に関する第2の形状基準データとを比較すること(S22)を備える。具体的には、制御部40は、ノズル12aの第2の表面形状の画像を、メモリ43に格納されている第2の形状基準データ(第2の基準画像)と比較してもよい。特定的には、ノズル12aの第2の表面形状の画像と、第2の形状基準データ(第2の基準画像)とを重ね合わせて、これら画像の差分に相当する面積を算出する。この面積に基づいて、測定部20bによって得られたノズル12aの第2の表面形状の画像が、第2の形状基準データ(第2の基準画像)と比較されてもよい。 The soldering method of the present embodiment is to compare the second surface shape of the nozzle 12a obtained by the measurement unit 20b with the second shape reference data on the second target surface shape of the nozzle 12a (S22). Equipped with Specifically, the control unit 40 may compare the image of the second surface shape of the nozzle 12a with the second shape reference data (second reference image) stored in the memory 43. Specifically, the image of the second surface shape of the nozzle 12a and the second shape reference data (second reference image) are superimposed to calculate the area corresponding to the difference between these images. Based on this area, the image of the second surface shape of the nozzle 12a obtained by the measurement unit 20b may be compared with the second shape reference data (second reference image).
 本実施の形態のはんだ付け装置1b及びはんだ付け方法の効果を説明する。本実施の形態のはんだ付け装置1b及びはんだ付け方法は、実施の形態1のはんだ付け装置1及びはんだ付け方法と同様の以下の効果を奏する。 The effects of the soldering apparatus 1b and the soldering method of the present embodiment will be described. The soldering apparatus 1b and the soldering method of the present embodiment have the following effects similar to the soldering apparatus 1 and the soldering method of the first embodiment.
 本実施の形態のはんだ付け装置1bでは、測定部20bは、拡散反射領域16に光22bを照射するように構成されている光源部21bと、拡散反射領域16によって拡散反射される光22bを検出するように構成されている光検出部23bとを含む。光検出部23bは、拡散反射領域16の第1の表面形状の画像を取得するように構成されている撮像部である。本実施の形態のはんだ付け方法では、拡散反射領域16の第1の表面形状を測定すること(S12)は、拡散反射領域16に光22bを照射することと、拡散反射領域16によって拡散反射される光22bを検出することとを含む。拡散反射された光22bを検出することは、撮像部によって拡散反射領域16の第1の表面形状の画像を取得することを含む。本実施の形態のはんだ付け装置1b及びはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1b according to the present embodiment, the measurement unit 20b detects the light source unit 21b configured to irradiate the diffuse reflection area 16 with the light 22b and the light 22b diffused and reflected by the diffuse reflection area 16 And a light detection unit 23 b configured to The light detection unit 23 b is an imaging unit configured to acquire an image of the first surface shape of the diffuse reflection area 16. In the soldering method of the present embodiment, measuring the first surface shape of the diffuse reflection area 16 (S12) comprises irradiating the diffuse reflection area 16 with the light 22b, and diffuse reflection by the diffuse reflection area 16. And detecting the light 22b. Detecting the diffusely reflected light 22 b includes acquiring an image of the first surface shape of the diffuse reflection area 16 by the imaging unit. The soldering apparatus 1b and the soldering method of the present embodiment are more appropriate using the measurement results of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a ( Enable better soldering.
 実施の形態3.
 図14及び図15を参照して、実施の形態3に係るはんだ付け装置1cを説明する。本実施の形態のはんだ付け装置1cは、実施の形態1のはんだ付け装置1と同様の構成を備えるが、主に以下の点で異なる。
Third Embodiment
A soldering apparatus 1c according to the third embodiment will be described with reference to FIGS. 14 and 15. The soldering apparatus 1c of the present embodiment has the same configuration as the soldering apparatus 1 of the first embodiment, but differs mainly in the following points.
 図14に示されるように、はんだ付け装置1cは、実施の形態1の拡散反射領域形成部30に代えて、拡散反射領域形成部30cを備えている。拡散反射領域形成部30cは、溶融はんだ14の表面に向けて酸素を含むガス34を吹き付けるように構成されているガス吹き付け部35を含む。ガス吹き付け部35は、溶融はんだ14の表面の一部に選択的に酸素を含むガス34を吹き付けるように構成されてもよい。酸素を含むガス34は、例えば、空気であってもよい。ガス吹き付け部35の噴出口は、例えば、溶融はんだ14がノズル12aから流れ出す方向(x方向)に沿って延在する細長い形状を有してもよいし、円の形状を有してもよい。ガス吹き付け部35は、ノズル12aに対して移動するように構成されている。 As shown in FIG. 14, the soldering apparatus 1 c includes a diffuse reflection area forming unit 30 c instead of the diffuse reflection area forming unit 30 of the first embodiment. The diffuse reflection area forming unit 30 c includes a gas spraying unit 35 configured to spray the gas 34 containing oxygen toward the surface of the molten solder 14. The gas spray unit 35 may be configured to selectively spray a gas 34 containing oxygen onto a part of the surface of the molten solder 14. The gas 34 containing oxygen may be, for example, air. The jet nozzle of the gas spray unit 35 may have, for example, an elongated shape extending along the direction (x direction) in which the molten solder 14 flows out from the nozzle 12a, or may have a circular shape. The gas spray unit 35 is configured to move relative to the nozzle 12a.
 溶融はんだ14の表面のうちガス34が吹き付けられた部分は、他の部分よりも優先的に酸化される。ガス34は、溶融はんだ14の酸化を促進する。図15に示されるように、溶融はんだ14の表面のうちガス34が吹き付けられた部分に、選択的に、拡散反射領域16が形成される。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15cを含んでもよく、拡散反射領域形成部30cは拡散反射膜形成部であってもよい。拡散反射膜15cは、拡散反射領域16(拡散反射膜15c)に隣接する領域におけるはんだ酸化膜15よりも厚いはんだ酸化厚膜である。 The portion of the surface of the molten solder 14 to which the gas 34 is blown is oxidized more preferentially than the other portions. The gas 34 promotes the oxidation of the molten solder 14. As shown in FIG. 15, a diffuse reflection area 16 is selectively formed on a portion of the surface of the molten solder 14 to which the gas 34 is blown. The diffuse reflection area 16 may include a diffuse reflection film 15 c made of a solder oxide film, and the diffuse reflection area formation portion 30 c may be a diffuse reflection film formation portion. The diffuse reflection film 15 c is a thick solder oxide film thicker than the solder oxide film 15 in the area adjacent to the diffuse reflection area 16 (diffuse reflection film 15 c).
 光源部21bから出射される光22をはんだ酸化厚膜に照射すると、はんだ酸化厚膜において、光22の干渉縞が形成されて、より多くの割合の光22が拡散反射する。こうして、はんだ酸化厚膜は、拡散反射膜15cとして機能する。拡散反射膜15c(はんだ酸化厚膜)の厚さは、拡散反射膜15c(はんだ酸化厚膜)に隣接するはんだ酸化膜15の厚さの2倍以上であってもよく、3倍以上であってもよく、5倍以上であってもよく、10倍以上であってもよい。拡散反射膜15c(はんだ酸化厚膜)の厚さは、光22の波長の0.10倍以上であってもよく、0.12倍以上であってもよく、0.15倍以上であってもよく、0.18倍以上であってもよく、0.20倍以上であってもよい。 When the solder oxide thick film is irradiated with the light 22 emitted from the light source unit 21b, interference fringes of the light 22 are formed in the solder oxide thick film, and a larger proportion of the light 22 is diffusely reflected. Thus, the solder oxide thick film functions as the diffuse reflection film 15c. The thickness of the diffuse reflection film 15c (solder oxide thick film) may be twice or more of the thickness of the solder oxide film 15 adjacent to the diffuse reflection film 15c (solder oxide thick film), or three times or more. It may be five times or more, or ten times or more. The thickness of the diffuse reflection film 15c (solder oxide thick film) may be 0.10 times or more of the wavelength of the light 22, may be 0.12 times or more, and is 0.15 times or more. It may be 0.18 times or more, or 0.20 times or more.
 図11、図14及び図15を参照して、本実施の形態のはんだ付け方法を説明する。本実施の形態のはんだ付け方法は、実施の形態1のはんだ付け方法と同様の工程を備えるが、以下の点で異なる。 The soldering method of the present embodiment will be described with reference to FIGS. 11, 14 and 15. The soldering method of the present embodiment includes the same steps as the soldering method of the first embodiment, but differs in the following points.
 本実施の形態のはんだ付け方法では、ノズル12aから噴流する溶融はんだ14の表面上に拡散反射領域16を形成すること(S11)は、図14に示されるように、溶融はんだ14の表面の一部に選択的に酸素を含むガス34を吹き付けることを含む。ガス34は、溶融はんだ14の酸化を促進する。図15に示されるように、溶融はんだ14の表面のうちガス34が吹き付けられた部分に、選択的に、拡散反射領域16が形成される。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15cを含む。拡散反射膜15cは、拡散反射領域16に隣接する領域におけるはんだ酸化膜15よりも厚いはんだ酸化厚膜である。はんだ酸化厚膜において、光22の干渉縞が形成されて、より多くの割合の光22が拡散反射するため、はんだ酸化厚膜は、拡散反射膜15cとして機能する。 In the soldering method of the present embodiment, forming the diffuse reflection area 16 on the surface of the molten solder 14 jetted from the nozzle 12a (S11) is one of the surfaces of the molten solder 14 as shown in FIG. Selectively blowing a gas 34 containing oxygen into the part. The gas 34 promotes the oxidation of the molten solder 14. As shown in FIG. 15, a diffuse reflection area 16 is selectively formed on a portion of the surface of the molten solder 14 to which the gas 34 is blown. The diffuse reflection area 16 includes a diffuse reflection film 15 c composed of a solder oxide film. The diffuse reflection film 15 c is a thick solder oxide film thicker than the solder oxide film 15 in the area adjacent to the diffuse reflection area 16. In the solder oxide thick film, interference fringes of the light 22 are formed, and a larger proportion of the light 22 is diffused and reflected, so the solder oxide thick film functions as the diffuse reflection film 15 c.
 本実施の形態の一変形例のはんだ付け装置1c及びはんだ付け方法では、測定部20は実施の形態2の測定部20bに置き換えられてもよい。本実施の形態の別の変形例のはんだ付け装置1c及びはんだ付け方法では、実施の形態1に開示された拡散反射領域形成部30を用いて、本実施の形態の拡散反射領域16(拡散反射膜15c)が形成されてもよい。 In the soldering apparatus 1c and the soldering method according to a modification of the present embodiment, the measuring unit 20 may be replaced with the measuring unit 20b according to the second embodiment. In a soldering apparatus 1c and a soldering method according to another modification of the present embodiment, the diffuse reflection area 16 (the diffuse reflection area according to the present embodiment (diffuse reflection) using the diffuse reflection area forming portion 30 disclosed in the first embodiment. A membrane 15c) may be formed.
 本実施の形態のはんだ付け装置1c及びはんだ付け方法の効果を説明する。本実施の形態のはんだ付け装置1c及びはんだ付け方法は、実施の形態1のはんだ付け装置1及びはんだ付け方法と同様の以下の効果を奏する。 The effects of the soldering apparatus 1c and the soldering method of the present embodiment will be described. The soldering apparatus 1c and the soldering method of the present embodiment have the following effects similar to the soldering apparatus 1 and the soldering method of the first embodiment.
 本実施の形態のはんだ付け装置1cでは、拡散反射領域形成部30cは、溶融はんだ14の表面に向けて酸素を含むガス34を吹き付けるように構成されているガス吹き付け部35を含む。本実施の形態のはんだ付け方法では、拡散反射領域16を形成することは、溶融はんだ14の表面の一部に選択的に酸素を含むガス34を吹き付けることを含む。拡散反射領域16は、はんだ酸化膜(はんだ酸化厚膜)によって構成される拡散反射膜15cを含む。そのため、拡散反射領域16が容易に形成され得る。本実施の形態のはんだ付け装置1c及びはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1c of the present embodiment, the diffuse reflection area forming unit 30c includes a gas spraying unit 35 configured to spray a gas 34 containing oxygen toward the surface of the molten solder 14. In the soldering method of the present embodiment, forming the diffuse reflection area 16 includes spraying a gas 34 containing oxygen selectively on a part of the surface of the molten solder 14. The diffuse reflection area 16 includes a diffuse reflection film 15 c composed of a solder oxide film (solder oxide thick film). Therefore, the diffuse reflection area 16 can be easily formed. The soldering apparatus 1c and the soldering method of the present embodiment are more appropriate by using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a ( Enable better soldering.
 実施の形態4.
 図16から図21を参照して、実施の形態4に係るはんだ付け装置1dを説明する。本実施の形態のはんだ付け装置1dは、実施の形態1のはんだ付け装置1と同様の構成を備えるが、主に以下の点で異なる。
Fourth Embodiment
A soldering apparatus 1 d according to a fourth embodiment will be described with reference to FIGS. 16 to 21. The soldering apparatus 1d of the present embodiment has the same configuration as the soldering apparatus 1 of the first embodiment, but differs mainly in the following points.
 はんだ付け装置1dは、実施の形態1の拡散反射領域形成部30に代えて、拡散反射領域形成部30dを備えている。拡散反射領域形成部30dは、部材31dと、振動子32dとを含む。振動子32dは、部材31dの少なくとも一部を溶融はんだ14に浸漬させながら、溶融はんだ14の表面に沿って部材31dを振動させるように構成されている。振動子32dは、部材31dを、例えば、幅方向(y方向)に振動させる。振動子32dは、例えば、チタン酸ジルコン酸塩、チタン酸バリウムまたはチタン酸塩などのセラミックス材料で構成された圧電素子であってもよいし、電磁モータ、静電モータまたは超音波モータで構成された振動モータであってもよい。 The soldering apparatus 1 d includes a diffuse reflection area formation part 30 d in place of the diffuse reflection area formation part 30 of the first embodiment. The diffuse reflection area forming unit 30 d includes a member 31 d and a vibrator 32 d. The vibrator 32 d is configured to vibrate the member 31 d along the surface of the molten solder 14 while immersing at least a part of the member 31 d in the molten solder 14. The vibrator 32d vibrates the member 31d, for example, in the width direction (y direction). The vibrator 32d may be, for example, a piezoelectric element made of a ceramic material such as zirconate titanate, barium titanate or titanate, or may be formed of an electromagnetic motor, an electrostatic motor or an ultrasonic motor. It may be a vibrating motor.
 ノズル12aから噴流する溶融はんだ14は、酸素を含むガス(例えば、空気)に曝されている。そのため、図16及び図17に示されるように、ノズル12aから噴流する溶融はんだ14の表面上に、はんだ酸化膜15が形成されている。はんだ酸化膜15は、ノズル12aから噴流する溶融はんだ14がこのガスに接触することによって形成される、はんだの自然酸化膜である。 The molten solder 14 jetted from the nozzle 12a is exposed to a gas containing oxygen (for example, air). Therefore, as shown in FIGS. 16 and 17, the solder oxide film 15 is formed on the surface of the molten solder 14 jetted from the nozzle 12a. The solder oxide film 15 is a natural oxide film of solder formed by the molten solder 14 jetted from the nozzle 12 a coming into contact with this gas.
 図18から図20に示されるように、部材31dの少なくとも一部を溶融はんだ14に浸漬させながら、振動子32dを用いて、部材31dを溶融はんだ14の表面に沿って振動させる。はんだ酸化膜15が折り重なって、ノズル12aから噴流する溶融はんだ14の表面上に、拡散反射領域16が形成される。拡散反射領域16は、部材31dの幅方向(y方向)の両側に形成される。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含み、拡散反射領域形成部30dは拡散反射膜形成部である。拡散反射膜15aは、例えば、はんだ酸化膜15の一部が寄せ集められて形成された、しわ状のはんだ酸化膜である。そのため、拡散反射膜15aは、はんだ酸化膜15よりも、光22(図16を参照)をより多く拡散反射しやすい。測定部20は、拡散反射領域16において拡散反射された光22を検出する。こうして、測定部20は、拡散反射領域16の第1の表面形状を測定することができる。 As shown in FIG. 18 to FIG. 20, while immersing at least a part of the member 31 d in the molten solder 14, the member 32 d is vibrated along the surface of the molten solder 14 using the vibrator 32 d. The solder oxide film 15 is folded and a diffuse reflection area 16 is formed on the surface of the molten solder 14 jetted from the nozzle 12a. The diffuse reflection area 16 is formed on both sides in the width direction (y direction) of the member 31 d. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film, and the diffuse reflection area formation portion 30d is a diffuse reflection film formation portion. The diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15. Therefore, the diffuse reflection film 15 a is likely to diffuse and reflect more light 22 (see FIG. 16) than the solder oxide film 15. The measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16. Thus, the measurement unit 20 can measure the first surface shape of the diffuse reflection area 16.
 図18から図20に示されるように、部材31dの振動回数が増加するにつれて、拡散反射膜15aの幅も増加する。拡散反射膜15aの幅は、幅方向(y方向)における拡散反射膜15aの長さである。拡散反射膜15aが細切れに形成されることなく、広い面積を有する拡散反射膜15aが得られる。広い面積にわたって、拡散反射領域16の第1の表面形状(溶融はんだ14の表面形状)が安定的に測定され得る。 As shown in FIGS. 18 to 20, as the number of vibrations of the member 31d increases, the width of the diffuse reflection film 15a also increases. The width of the diffuse reflection film 15a is the length of the diffuse reflection film 15a in the width direction (y direction). The diffuse reflection film 15a having a wide area can be obtained without the diffuse reflection film 15a being formed into small pieces. The first surface shape (surface shape of the molten solder 14) of the diffuse reflection area 16 can be stably measured over a wide area.
 部材31dは、SUS316またはチタンのような溶融はんだ14に溶けにくい材料で構成されている。部材31dは、配線基板6の搬送方向(x方向)に沿って延在している棒部材であってもよい。部材31dは、配線基板6がノズル12aの上方を搬送される際、配線基板6の裏面6bに接触するように構成されている。裏面6bは、溶融はんだ14に対向する配線基板6の面である。具体的には、部材31dは、ノズル12aの上方に延在している。配線基板6に向けてノズル12aが突出する方向(z方向)からの平面視において、部材31dは、配線基板6の搬送経路内に配置されている。配線基板6の搬送経路の幅は、配線基板6の幅と同じ幅を有している。配線基板6の幅は、幅方向(y方向)における配線基板6の長さである。配線基板6の搬送経路の幅は、幅方向(y方向)における配線基板6の搬送経路の長さである。 The member 31 d is made of a material that is difficult to melt in the molten solder 14 such as SUS316 or titanium. The member 31 d may be a bar member extending along the transport direction (x direction) of the wiring substrate 6. The member 31 d is configured to be in contact with the back surface 6 b of the wiring substrate 6 when the wiring substrate 6 is transported above the nozzle 12 a. The back surface 6 b is the surface of the wiring substrate 6 facing the molten solder 14. Specifically, the member 31 d extends above the nozzle 12 a. The member 31 d is disposed in the transport path of the wiring substrate 6 in a plan view from the direction (z direction) in which the nozzle 12 a protrudes toward the wiring substrate 6. The width of the transport path of the wiring substrate 6 is the same as the width of the wiring substrate 6. The width of the wiring substrate 6 is the length of the wiring substrate 6 in the width direction (y direction). The width of the transport path of the wiring substrate 6 is the length of the transport path of the wiring substrate 6 in the width direction (y direction).
 配線基板6の側面6cは、搬送部4の腕部4aによって把持されているが、配線基板6のおもて面6aと裏面6bとは、搬送部4の腕部4aによって把持されていない。配線基板6の裏面6bは、溶融はんだ14に接触しているのに対し、配線基板6のおもて面6aは、溶融はんだ14に接触していない。配線基板6の裏面6bの温度は、配線基板6のおもて面6aの温度よりも高い。配線基板6のおもて面6aと裏面6bとの間の温度差に起因して、配線基板6は、ノズル12aに向けて突出するように反ろうとする。部材31dは、配線基板6の裏面6bに接触して、配線基板6が反ることを防止し得る。 The side surface 6 c of the wiring substrate 6 is gripped by the arm 4 a of the transport unit 4, but the front surface 6 a and the back surface 6 b of the wiring substrate 6 are not gripped by the arm 4 a of the transport unit 4. The back surface 6 b of the wiring substrate 6 is in contact with the molten solder 14, whereas the front surface 6 a of the wiring substrate 6 is not in contact with the molten solder 14. The temperature of the back surface 6 b of the wiring substrate 6 is higher than the temperature of the front surface 6 a of the wiring substrate 6. Due to the temperature difference between the front surface 6a and the back surface 6b of the wiring board 6, the wiring board 6 tries to warp so as to protrude toward the nozzle 12a. The member 31 d can be in contact with the back surface 6 b of the wiring substrate 6 to prevent the wiring substrate 6 from warping.
 図11及び図16から図21を参照して、本実施の形態のはんだ付け方法を説明する。本実施の形態のはんだ付け方法は、実施の形態1のはんだ付け方法と同様の工程を備えるが、以下の点で異なる。 The soldering method of the present embodiment will be described with reference to FIGS. 11 and 16 to 21. FIG. The soldering method of the present embodiment includes the same steps as the soldering method of the first embodiment, but differs in the following points.
 本実施の形態のはんだ付け方法では、ノズル12aから噴流する溶融はんだ14の表面上に拡散反射領域16を形成すること(S11)は、図16から図20に示されるように、部材31dの少なくとも一部を溶融はんだ14に浸漬させながら、溶融はんだ14の表面に沿って部材31dを振動させることを含む。 In the soldering method of the present embodiment, forming the diffuse reflection area 16 on the surface of the molten solder 14 jetted from the nozzle 12a (S11) is, as shown in FIG. 16 to FIG. While immersing a part in the molten solder 14, vibrating the member 31d along the surface of the molten solder 14 is included.
 溶融はんだ14の表面上に、はんだ酸化膜15(はんだ自然酸化膜)が形成されている。部材31dの少なくとも一部を溶融はんだ14に浸漬させながら、溶融はんだ14の表面に沿って部材31dを振動させると、はんだ酸化膜15が折り重なって、ノズル12aから噴流する溶融はんだ14の表面上に、拡散反射領域16が形成される。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。拡散反射膜15aは、例えば、はんだ酸化膜15の一部が寄せ集められて形成された、しわ状のはんだ酸化膜である。そのため、拡散反射膜15aは、はんだ酸化膜15よりも、光22(図16を参照)をより多く拡散反射しやすい。 A solder oxide film 15 (solder natural oxide film) is formed on the surface of the molten solder 14. When the member 31d is vibrated along the surface of the molten solder 14 while immersing at least a part of the member 31d in the molten solder 14, the solder oxide film 15 folds over and is jetted from the nozzle 12a on the surface of the molten solder 14 , And the diffuse reflection area 16 is formed. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. The diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15. Therefore, the diffuse reflection film 15 a is likely to diffuse and reflect more light 22 (see FIG. 16) than the solder oxide film 15.
 測定部20は、拡散反射領域16において拡散反射された光22を検出する。こうして、測定部20は、拡散反射領域16の第1の表面形状を測定する(S12)。配線基板6が部材31dに接触していないときに、拡散反射領域16を形成し(S11)、かつ、拡散反射領域16の第1の表面形状を測定する(S12)。 The measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16. Thus, the measurement unit 20 measures the first surface shape of the diffuse reflection area 16 (S12). When the wiring board 6 is not in contact with the member 31d, the diffuse reflection area 16 is formed (S11), and the first surface shape of the diffuse reflection area 16 is measured (S12).
 本実施の形態のはんだ付け方法では、ノズル12aから噴流する溶融はんだ14によって部品7を配線基板6にはんだ付けする(S30)工程において、配線基板6の裏面6bが部材31dに接触しながら、配線基板6は搬送される。部材31dは、配線基板6が反ることを防止し得る。 In the soldering method of the present embodiment, in the step of soldering component 7 to wiring board 6 by molten solder 14 jetted from nozzle 12a (S30), wiring 6 is performed while the back surface 6b of wiring board 6 is in contact with member 31d. The substrate 6 is transported. The member 31 d can prevent the wiring board 6 from warping.
 本実施の形態のはんだ付け装置1d及びはんだ付け方法の効果を説明する。本実施の形態のはんだ付け装置1d及びはんだ付け方法は、実施の形態1のはんだ付け装置1及びはんだ付け方法と同様の以下の効果を奏する。 The effects of the soldering apparatus 1 d and the soldering method of the present embodiment will be described. The soldering apparatus 1 d and the soldering method of the present embodiment have the following effects similar to those of the soldering apparatus 1 and the soldering method of the first embodiment.
 本実施の形態のはんだ付け装置1dでは、拡散反射領域形成部30dは、部材31dと、振動子32dとを含む。振動子32dは、部材31dの少なくとも一部を溶融はんだ14に浸漬させながら、溶融はんだ14の表面に沿って部材31dを振動させるように構成されている。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。本実施の形態のはんだ付け装置1dは、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1 d of the present embodiment, the diffuse reflection area forming unit 30 d includes a member 31 d and a vibrator 32 d. The vibrator 32 d is configured to vibrate the member 31 d along the surface of the molten solder 14 while immersing at least a part of the member 31 d in the molten solder 14. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. The soldering apparatus 1d of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
 本実施の形態のはんだ付け装置1dでは、部材31dは、はんだ付けされる対象物(配線基板6)の搬送方向(x方向)に沿って延在している。部材31dは、対象物(配線基板6)の裏面6bに接触するように構成されている。裏面6bは、溶融はんだ14に対向するはんだ付けされる対象物(配線基板6)の面である。部材31dは、はんだ付けされる対象物(配線基板6)の裏面6bに接触して、はんだ付けされる対象物(配線基板6)が反ることを防止し得る。本実施の形態のはんだ付け装置1dは、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1d of the present embodiment, the member 31d extends along the transport direction (x direction) of the object (wiring substrate 6) to be soldered. The member 31 d is configured to be in contact with the back surface 6 b of the object (wiring substrate 6). The back surface 6 b is a surface of the target (wiring substrate 6) to be soldered that faces the molten solder 14. The member 31 d can be in contact with the back surface 6 b of the object to be soldered (wiring substrate 6) to prevent the object to be soldered (wiring substrate 6) from warping. The soldering apparatus 1d of the present embodiment enables more appropriate (better) soldering.
 本実施の形態のはんだ付け方法では、拡散反射領域16を形成することは、部材31dの少なくとも一部を溶融はんだ14に浸漬させながら、溶融はんだ14の表面に沿って部材31dを振動させることを含む。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering method of the present embodiment, forming the diffuse reflection area 16 vibrates the member 31 d along the surface of the molten solder 14 while immersing at least a part of the member 31 d in the molten solder 14. Including. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. The soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
 本実施の形態のはんだ付け方法では、部材31dは、はんだ付けされる対象物(配線基板6)の搬送方向(x方向)に沿って延在している。はんだ付けされる対象物(配線基板6)の裏面6bが部材31dに接触しながら、はんだ付けされる対象物(配線基板6)は搬送される。裏面6bは、溶融はんだ14に対向するはんだ付けされる対象物(配線基板6)の面である。部材31dは、はんだ付けされる対象物(配線基板6)が反ることを防止し得る。本実施の形態のはんだ付け方法は、より適切な(より良好な)はんだ付けを可能にする。 In the soldering method of the present embodiment, the member 31 d extends along the transport direction (x direction) of the object (wiring substrate 6) to be soldered. The object (wiring substrate 6) to be soldered is transported while the back surface 6b of the object (wiring substrate 6) to be soldered contacts the member 31d. The back surface 6 b is a surface of the target (wiring substrate 6) to be soldered that faces the molten solder 14. The member 31 d can prevent the object to be soldered (wiring board 6) from warping. The soldering method of the present embodiment enables more appropriate (better) soldering.
 実施の形態5.
 図22から図27を参照して、実施の形態5に係るはんだ付け装置1eを説明する。本実施の形態のはんだ付け装置1eは、実施の形態1のはんだ付け装置1と同様の構成を備えるが、主に以下の点で異なる。
Embodiment 5
A soldering apparatus 1e according to the fifth embodiment will be described with reference to FIGS. 22 to 27. The soldering apparatus 1e of the present embodiment has the same configuration as the soldering apparatus 1 of the first embodiment, but differs mainly in the following points.
 はんだ付け装置1eは、実施の形態1の拡散反射領域形成部30に代えて、拡散反射領域形成部30eを備えている。拡散反射領域形成部30eは、2つの静止部材36を含む。静止部材36は、例えば、搬送部4に取り付けられている。一方の静止部材36は、配線基板6の搬送方向(x方向)におけるノズル12aの開口12bの中心線12m(図23を参照)に対して、配線基板6の搬送方向(x方向)の下流側に配置されている。他方の静止部材36は、ノズル12aの開口12bの中心線12mに対して、配線基板6の搬送方向(x方向)の上流側に配置されている。静止部材36の一部が溶融はんだ14に浸漬されるように、静止部材36はノズル12aの上方に配置されている。静止部材36の残部は、溶融はんだ14から露出している。 The soldering apparatus 1 e includes a diffuse reflection area forming unit 30 e in place of the diffuse reflection area forming unit 30 of the first embodiment. The diffuse reflection area forming unit 30 e includes two stationary members 36. The stationary member 36 is attached to, for example, the transport unit 4. One stationary member 36 is located downstream of the center line 12m (see FIG. 23) of the opening 12b of the nozzle 12a in the transfer direction (x direction) of the wiring board 6 in the transfer direction (x direction) of the wiring board 6 Is located in The other stationary member 36 is disposed upstream of the center line 12m of the opening 12b of the nozzle 12a in the transport direction (x direction) of the wiring board 6. The stationary member 36 is disposed above the nozzle 12 a such that a portion of the stationary member 36 is immersed in the molten solder 14. The remaining portion of the stationary member 36 is exposed from the molten solder 14.
 配線基板6に向けてノズル12aが突出する方向(z方向)からの平面視において、静止部材36は配線基板6の搬送経路の外側に配置されている。そのため、静止部材36がはんだ付けを妨げることが防止される。静止部材36は、SUS316またはチタンのような溶融はんだ14に溶けにくい材料で構成されている。配線基板6に向けてノズル12aが突出する方向(z方向)からの平面視において、静止部材36は、例えば、長方形の形状を有している。配線基板6に向けてノズル12aが突出する方向(z方向)からの平面視において、静止部材36は、多角形の形状を有してもよいし、円形の形状を有してもよいし、流線形の形状を有してもよい。 The stationary member 36 is disposed outside the transport path of the wiring substrate 6 in a plan view from the direction (z direction) in which the nozzle 12 a protrudes toward the wiring substrate 6. Therefore, the stationary member 36 is prevented from interfering with the soldering. The stationary member 36 is made of a material that does not easily dissolve in the molten solder 14 such as SUS316 or titanium. The stationary member 36 has, for example, a rectangular shape in a plan view from the direction (z direction) in which the nozzle 12 a protrudes toward the wiring substrate 6. The stationary member 36 may have a polygonal shape or a circular shape in a plan view from the direction (z direction) in which the nozzle 12 a protrudes toward the wiring substrate 6. It may have a streamlined shape.
 ノズル12aから噴流する溶融はんだ14は、酸素を含むガス(例えば、空気)に曝されている。そのため、図22から図25に示されるように、ノズル12aから噴流する溶融はんだ14の表面上に、はんだ酸化膜15が形成されている。はんだ酸化膜15は、溶融はんだ14が、このガスに接触することによって形成される、はんだの自然酸化膜である。 The molten solder 14 jetted from the nozzle 12a is exposed to a gas containing oxygen (for example, air). Therefore, as shown in FIGS. 22 to 25, a solder oxide film 15 is formed on the surface of the molten solder 14 jetted from the nozzle 12a. The solder oxide film 15 is a natural oxide film of solder formed by the molten solder 14 contacting the gas.
 静止部材36の周りで、はんだ酸化膜15が折り重なって、ノズル12aから噴流する溶融はんだ14の表面上に、拡散反射領域16が形成される。拡散反射領域16が形成される理由は、溶融はんだ14が静止部材36に沿って流れる際、溶融はんだ14は静止部材36に接触し、溶融はんだ14の流れは静止部材36の周りで乱れ、静止部材36の周りで溶融はんだ14の流速が減少するためであると推測される。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含み、拡散反射領域形成部30eは拡散反射膜形成部である。拡散反射膜15aは、例えば、はんだ酸化膜15の一部が寄せ集められて形成された、しわ状のはんだ酸化膜である。そのため、拡散反射膜15aは、はんだ酸化膜15よりも、光22(図22を参照)をより多く拡散反射しやすい。測定部20は、拡散反射領域16において拡散反射された光22を検出する。こうして、測定部20は、拡散反射領域16の第1の表面形状を測定することができる。 The solder oxide film 15 is folded around the stationary member 36 to form the diffuse reflection area 16 on the surface of the molten solder 14 jetted from the nozzle 12a. The reason that the diffuse reflection area 16 is formed is that when the molten solder 14 flows along the stationary member 36, the molten solder 14 contacts the stationary member 36, and the flow of the molten solder 14 is disturbed around the stationary member 36 and is stationary. It is presumed that the flow velocity of the molten solder 14 is reduced around the member 36. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film, and the diffuse reflection area formation portion 30e is a diffuse reflection film formation portion. The diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15. Therefore, the diffuse reflection film 15a is likely to diffuse and reflect more light 22 (see FIG. 22) than the solder oxide film 15. The measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16. Thus, the measurement unit 20 can measure the first surface shape of the diffuse reflection area 16.
 図11及び図22から図27を参照して、本実施の形態のはんだ付け方法を説明する。本実施の形態のはんだ付け方法は、実施の形態1のはんだ付け方法と同様の工程を備えるが、以下の点で異なる。 The soldering method of the present embodiment will be described with reference to FIGS. 11 and 22 to 27. The soldering method of the present embodiment includes the same steps as the soldering method of the first embodiment, but differs in the following points.
 本実施の形態に係るはんだ付け方法では、ノズル12aから噴流する溶融はんだ14の表面上に拡散反射領域16を形成すること(S11)は、ノズル12aの上方に配置された静止部材36に沿って溶融はんだ14を流すことを含む。静止部材36の一部が溶融はんだ14に浸漬されている。静止部材36に沿って溶融はんだ14を流すことによって、静止部材36の周りで、はんだ酸化膜15が折り重なって、ノズル12aから噴流する溶融はんだ14の表面上に、拡散反射領域16が形成される。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。拡散反射膜15aは、例えば、はんだ酸化膜15の一部が寄せ集められて形成された、しわ状のはんだ酸化膜である。そのため、拡散反射膜15aは、はんだ酸化膜15よりも、光22(図16を参照)をより多く拡散反射しやすい。 In the soldering method according to the present embodiment, forming the diffuse reflection area 16 (S11) on the surface of the molten solder 14 jetted from the nozzle 12a is performed along the stationary member 36 disposed above the nozzle 12a. Including flowing molten solder 14. A part of the stationary member 36 is immersed in the molten solder 14. By flowing the molten solder 14 along the stationary member 36, the solder oxide film 15 is folded around the stationary member 36, and the diffuse reflection area 16 is formed on the surface of the molten solder 14 spouted from the nozzle 12a. . The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. The diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15. Therefore, the diffuse reflection film 15 a is likely to diffuse and reflect more light 22 (see FIG. 16) than the solder oxide film 15.
 測定部20は、拡散反射領域16において拡散反射された光22を検出する。こうして、測定部20は、拡散反射領域16の第1の表面形状を測定する(S12)。 The measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16. Thus, the measurement unit 20 measures the first surface shape of the diffuse reflection area 16 (S12).
 本実施の形態に係るはんだ付け方法では、配線基板6に向けてノズル12aが突出する方向(z方向)からの平面視において、静止部材36は配線基板6の搬送経路の外側に配置されている。そのため、静止部材36がはんだ付けを妨げることが防止される。 In the soldering method according to the present embodiment, the stationary member 36 is disposed outside the transport path of the wiring substrate 6 in a plan view from the direction (z direction) in which the nozzle 12 a protrudes toward the wiring substrate 6. . Therefore, the stationary member 36 is prevented from interfering with the soldering.
 図26を参照して、本実施の形態の第1変形例では、拡散反射領域形成部30eは、1つの静止部材36を含んでもよい。拡散反射領域形成部30eは、3つ以上の静止部材36を含んでもよい。 Referring to FIG. 26, in the first modification of the present embodiment, the diffuse reflection area forming portion 30e may include one stationary member 36. The diffuse reflection area forming unit 30 e may include three or more stationary members 36.
 図27を参照して、本実施の形態の第2変形例では、静止部材36は、静止部材36の中央部がノズル12aに向かって突出するように曲げられた形状を有している。溶融はんだ14の表面の高さ(z方向の位置)が変化しても、溶融はんだ14の表面が静止部材36に接触し続けることができるため、静止部材36の周りに拡散反射領域16が安定的に形成され得る。 Referring to FIG. 27, in the second modified example of the present embodiment, stationary member 36 has a shape that is bent so that the central portion of stationary member 36 protrudes toward nozzle 12a. Since the surface of the molten solder 14 can be kept in contact with the stationary member 36 even if the height (position in the z direction) of the surface of the molten solder 14 changes, the diffuse reflection area 16 is stabilized around the stationary member 36 Can be formed.
 本実施の形態の第3変形例では、静止部材36の周りに、はんだ酸化厚膜である拡散反射膜15c(図15)が形成されてもよく、拡散反射領域16は、はんだ酸化厚膜である拡散反射膜15c(図15)を含んでもよい。 In the third modification of the present embodiment, a diffuse reflection film 15c (FIG. 15) which is a solder oxide thick film may be formed around the stationary member 36, and the diffuse reflection region 16 is a solder oxide thick film. A certain diffuse reflection film 15c (FIG. 15) may be included.
 本実施の形態のはんだ付け装置1e及びはんだ付け方法の効果を説明する。本実施の形態のはんだ付け装置1e及びはんだ付け方法は、実施の形態1のはんだ付け装置1及びはんだ付け方法と同様の以下の効果を奏する。 The effects of the soldering apparatus 1 e and the soldering method of the present embodiment will be described. The soldering apparatus 1 e and the soldering method of the present embodiment have the following effects similar to the soldering apparatus 1 and the soldering method of the first embodiment.
 本実施の形態に係るはんだ付け装置1eでは、拡散反射領域形成部30eは、静止部材36を含む。静止部材36の一部が溶融はんだ14に浸漬されるように静止部材36はノズル12aの上方に配置されている。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。本実施の形態のはんだ付け装置1eは、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1 e according to the present embodiment, the diffuse reflection area forming unit 30 e includes a stationary member 36. The stationary member 36 is disposed above the nozzle 12 a so that a part of the stationary member 36 is immersed in the molten solder 14. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. The soldering apparatus 1e of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
 本実施の形態に係るはんだ付け方法では、拡散反射領域16を形成すること(S11)は、ノズル12aの上方に配置された静止部材36に沿って溶融はんだ14を流すことを含む。静止部材36の一部が溶融はんだ14に浸漬されている。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering method according to the present embodiment, forming the diffuse reflection area 16 (S11) includes flowing the molten solder 14 along the stationary member 36 disposed above the nozzle 12a. A part of the stationary member 36 is immersed in the molten solder 14. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. The soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
 本実施の形態に係るはんだ付け装置1e及びはんだ付け方法では、はんだ付けされる対象物(配線基板6)に向けてノズル12aが突出する方向(z方向)からの平面視において、静止部材36は対象物(配線基板6)の搬送経路の外側に配置されている。そのため、静止部材36がはんだ付けを妨げることが防止される。本実施の形態のはんだ付け装置1e及びはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1e and the soldering method according to the present embodiment, the stationary member 36 is a plan view from the direction (z direction) in which the nozzle 12a protrudes toward the object (wiring substrate 6) to be soldered. It is arrange | positioned on the outer side of the conveyance path of a target object (wiring board 6). Therefore, the stationary member 36 is prevented from interfering with the soldering. The soldering apparatus 1e and the soldering method of the present embodiment are more appropriate by using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a ( Enable better soldering.
 本実施の形態に係るはんだ付け装置1e及びはんだ付け方法では、静止部材36は、静止部材36の中央部がノズル12aに向かって突出するように曲げられた形状を有している。溶融はんだ14の表面の高さ(z方向の位置)が変化しても、溶融はんだ14の表面が静止部材36に接触し続けることができるため、静止部材36の周りに拡散反射領域16が安定的に形成され得る。本実施の形態のはんだ付け装置1e及びはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1e and the soldering method according to the present embodiment, the stationary member 36 has a shape bent so that the central portion of the stationary member 36 protrudes toward the nozzle 12a. Since the surface of the molten solder 14 can be kept in contact with the stationary member 36 even if the height (position in the z direction) of the surface of the molten solder 14 changes, the diffuse reflection area 16 is stabilized around the stationary member 36 Can be formed. The soldering apparatus 1e and the soldering method of the present embodiment are more appropriate by using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a ( Enable better soldering.
 実施の形態6.
 図28から図32を参照して、実施の形態6に係るはんだ付け装置1fを説明する。本実施の形態のはんだ付け装置1fは、実施の形態1のはんだ付け装置1と同様の構成を備えるが、主に以下の点で異なる。
Sixth Embodiment
A soldering apparatus 1f according to a sixth embodiment will be described with reference to FIGS. 28 to 32. The soldering apparatus 1f of the present embodiment has the same configuration as the soldering apparatus 1 of the first embodiment, but differs mainly in the following points.
 はんだ付け装置1fでは、実施の形態1の拡散反射領域形成部30が省略されている。測定部20は、ノズル12aよりも、配線基板6の搬送方向(x方向)の下流側(+x方向)に配置されている。 In the soldering apparatus 1 f, the diffuse reflection area forming unit 30 of the first embodiment is omitted. The measurement unit 20 is disposed on the downstream side (+ x direction) of the transport direction (x direction) of the wiring substrate 6 with respect to the nozzle 12 a.
 図28から図30を参照して、拡散反射領域16は、ノズル12aから噴流する溶融はんだ14に配線基板6の一部(例えば、配線基板6の裏面6bまたは前側面6f)が接触することによって形成されている。配線基板6の前側面6fは、配線基板6の搬送方向側にある配線基板6の側面である。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。 Referring to FIGS. 28 to 30, diffuse reflection region 16 is formed by contact of a portion of wiring substrate 6 (for example, back surface 6b or front side surface 6f of wiring substrate 6) with molten solder 14 jetted from nozzle 12a. It is formed. The front side surface 6 f of the wiring substrate 6 is a side surface of the wiring substrate 6 on the side of the wiring substrate 6 in the transport direction. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
 具体的には、ノズル12aから噴流する溶融はんだ14は、酸素を含むガス(例えば、空気)に曝されている。そのため、ノズル12aから噴流する溶融はんだ14の表面上に、はんだ酸化膜15が形成されている。はんだ酸化膜15は、溶融はんだ14が、このガスに接触することによって形成される、はんだの自然酸化膜である。 Specifically, the molten solder 14 jetted from the nozzle 12a is exposed to a gas containing oxygen (for example, air). Therefore, the solder oxide film 15 is formed on the surface of the molten solder 14 jetted from the nozzle 12a. The solder oxide film 15 is a natural oxide film of solder formed by the molten solder 14 contacting the gas.
 搬送部4によって配線基板6が搬送されながら、配線基板6の一部が溶融はんだ14の表面に接触する。そのため、はんだ酸化膜15が折り重なって、ノズル12aから噴流する溶融はんだ14の表面上に、拡散反射領域16が形成される。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。拡散反射膜15aは、例えば、はんだ酸化膜15の一部が寄せ集められて形成された、しわ状のはんだ酸化膜である。拡散反射膜15aは、はんだ酸化膜15よりも、光22(図22を参照)をより多く拡散反射しやすい。測定部20は、拡散反射領域16において拡散反射された光22を検出する。こうして、測定部20は、拡散反射領域16の第1の表面形状を測定することができる。測定部20は、ノズル12aよりも、配線基板6の搬送方向(x方向)の下流側に配置されているため、配線基板6に妨げられることなく、拡散反射領域16の第1の表面形状を測定することができる。 A part of the wiring substrate 6 contacts the surface of the molten solder 14 while the wiring substrate 6 is transferred by the transfer unit 4. Therefore, the solder oxide film 15 is folded and a diffuse reflection area 16 is formed on the surface of the molten solder 14 jetted from the nozzle 12a. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. The diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15. The diffuse reflection film 15 a diffuses and reflects more light 22 (see FIG. 22) more easily than the solder oxide film 15. The measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16. Thus, the measurement unit 20 can measure the first surface shape of the diffuse reflection area 16. Since the measurement unit 20 is disposed downstream of the nozzle 12 a in the transport direction (x direction) of the wiring board 6, the first surface shape of the diffuse reflection area 16 is not disturbed by the wiring board 6. It can be measured.
 図29、図31及び図32を参照して、拡散反射領域16sは、ノズル12aから噴流する溶融はんだ14に配線基板6の少なくとも一部(例えば、配線基板6の裏面6bまたは前側面6f)が接触することによって形成されている。拡散反射領域16sは、配線基板6に付着していたフラックスの残渣によって構成される拡散反射膜46を含む。 Referring to FIGS. 29, 31 and 32, in the diffuse reflection area 16s, at least a part of the wiring board 6 (for example, the back surface 6b or the front side surface 6f of the wiring substrate 6) It is formed by contacting. The diffuse reflection area 16 s includes a diffuse reflection film 46 constituted by the residue of the flux adhering to the wiring substrate 6.
 具体的には、図29に示されるように、搬送部4によって配線基板6が搬送されながら、配線基板6の裏面6bまたは前側面6fが溶融はんだ14の表面に接触する。図31及び図32に示されるように、配線基板6に付着していたフラックスの残渣が、はんだ酸化膜15の一部を溶かして、溶融はんだ14の表面に残留する。ノズル12aから噴流する溶融はんだ14の表面上に、拡散反射領域16sが形成される。拡散反射領域16sは、配線基板6に付着していたフラックスの残渣によって構成される拡散反射膜46を含む。フラックスの残渣によって構成される拡散反射膜46ははんだ酸化膜15よりも厚いため、拡散反射膜46は、はんだ酸化膜15よりも、光22(図31を参照)をより多く拡散反射しやすい。 Specifically, as shown in FIG. 29, the back surface 6 b or the front side surface 6 f of the wiring substrate 6 comes in contact with the front surface of the molten solder 14 while the wiring substrate 6 is transported by the transport unit 4. As shown in FIGS. 31 and 32, the residue of the flux adhering to the wiring substrate 6 dissolves a part of the solder oxide film 15 and remains on the surface of the molten solder 14. A diffuse reflection area 16s is formed on the surface of the molten solder 14 jetted from the nozzle 12a. The diffuse reflection area 16 s includes a diffuse reflection film 46 constituted by the residue of the flux adhering to the wiring substrate 6. Since the diffuse reflection film 46 formed of the residue of the flux is thicker than the solder oxide film 15, the diffuse reflection film 46 diffuses and reflects more light 22 (see FIG. 31) more easily than the solder oxide film 15.
 測定部20は、拡散反射領域16sにおいて拡散反射された光22を検出する。こうして、測定部20は、拡散反射領域16sの第1の表面形状を測定することができる。ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16sの第1の表面形状の測定結果を用いて、配線基板6sに続いて搬送部4によって搬送される別の配線基板6s(図31を参照)に搭載されている部品7がより適切に(より良好に)はんだ付けされる。 The measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16s. Thus, the measurement unit 20 can measure the first surface shape of the diffuse reflection area 16s. Using the measurement result of the first surface shape of the diffuse reflection area 16s corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, another wiring board 6s (consecutively carried by the carrying portion 4 following the wiring board 6s ( The parts 7 mounted in FIG. 31) are soldered better (better).
 図28から図33を参照して、本実施の形態のはんだ付け方法を説明する。本実施の形態のはんだ付け方法は、実施の形態1のはんだ付け方法と同様の工程を備えるが、以下の点で異なる。 The soldering method of this embodiment will be described with reference to FIGS. 28 to 33. The soldering method of the present embodiment includes the same steps as the soldering method of the first embodiment, but differs in the following points.
 本実施の形態のはんだ付け方法では、拡散反射領域16を形成すること(S11)は、ノズル12aから噴流する溶融はんだ14に配線基板6の一部(例えば、配線基板6の裏面6bまたは前側面6f)を接触させることを含む。測定部20は、ノズル12aよりも、配線基板6の搬送方向(x方向)の下流側に配置されている。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。 In the soldering method according to the present embodiment, forming the diffuse reflection area 16 (S11) is a part of the wiring board 6 on the molten solder 14 jetted from the nozzle 12a (for example, the back surface 6b or front side of the wiring substrate 6). 6f) contacting. The measurement unit 20 is disposed downstream of the nozzle 12 a in the conveyance direction (x direction) of the wiring substrate 6. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film.
 溶融はんだ14の表面上に、はんだ酸化膜15(はんだ自然酸化膜)が形成されている。搬送部4によって配線基板6が搬送されながら、配線基板6の一部が溶融はんだ14の表面に接触する。そのため、はんだ酸化膜15が折り重なって、ノズル12aから噴流する溶融はんだ14の表面上に、拡散反射領域16が形成される。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。拡散反射膜15aは、例えば、はんだ酸化膜15の一部が寄せ集められて形成された、しわ状のはんだ酸化膜である。拡散反射膜15aは、はんだ酸化膜15よりも、光22(図22を参照)をより多く拡散反射しやすい。 A solder oxide film 15 (solder natural oxide film) is formed on the surface of the molten solder 14. A part of the wiring substrate 6 contacts the surface of the molten solder 14 while the wiring substrate 6 is transferred by the transfer unit 4. Therefore, the solder oxide film 15 is folded and a diffuse reflection area 16 is formed on the surface of the molten solder 14 jetted from the nozzle 12a. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. The diffuse reflection film 15 a is, for example, a wrinkled solder oxide film formed by gathering together a part of the solder oxide film 15. The diffuse reflection film 15 a diffuses and reflects more light 22 (see FIG. 22) more easily than the solder oxide film 15.
 測定部20は、拡散反射領域16において拡散反射された光22を検出する。こうして、測定部20は、拡散反射領域16の第1の表面形状を測定する(S12)。測定部20は、ノズル12aよりも、配線基板6の搬送方向(x方向)の下流側に配置されているため、配線基板6に妨げられることなく、拡散反射領域16の第1の表面形状を測定することができる。 The measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16. Thus, the measurement unit 20 measures the first surface shape of the diffuse reflection area 16 (S12). Since the measurement unit 20 is disposed downstream of the nozzle 12 a in the transport direction (x direction) of the wiring board 6, the first surface shape of the diffuse reflection area 16 is not disturbed by the wiring board 6. It can be measured.
 本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面上に拡散反射領域16sを形成すること(S31)と、測定部20によって拡散反射領域16sの第1の表面形状を測定すること(S32)と、ノズル12aを含む噴流部10を制御すること(S33、S34)をさらに備える。噴流部10を制御すること(S33、S34)は、拡散反射領域16sの第1の表面形状とノズル12aから噴流する溶融はんだ14の第1の目標表面形状に関する第1の形状基準データとを比較すること(S33)と、拡散反射領域16sの第1の表面形状と第1の形状基準データとの間の比較結果に基づいて噴流部10を制御すること(S34)とを含む。 In the soldering method according to the present embodiment, the diffuse reflection area 16s is formed on the surface of the molten solder 14 jetted from the nozzle 12a (S31), and the first surface shape of the diffuse reflection area 16s is measured by the measuring unit 20. The method further comprises measuring (S32) and controlling the jet part 10 including the nozzle 12a (S33, S34). Controlling the jet portion 10 (S33, S34) compares the first surface shape of the diffuse reflection area 16s with the first shape reference data on the first target surface shape of the molten solder 14 jetted from the nozzle 12a. And (S34) controlling the jet portion 10 based on the comparison result between the first surface shape of the diffuse reflection area 16s and the first shape reference data.
 具体的には、図29に示されるように、搬送部4によって配線基板6が搬送されながら、配線基板6一部(例えば、配線基板6の裏面6bまたは前側面6f)が溶融はんだ14の表面に接触する。図31及び図32に示されるように、配線基板6に付着していたフラックスの残渣が、はんだ酸化膜15の一部を溶かして、溶融はんだ14の表面に残留する。ノズル12aから噴流する溶融はんだ14の表面上に、拡散反射領域16sが形成される(S31)。すなわち、拡散反射領域16sを形成すること(S31)は、ノズル12aから噴流する溶融はんだ14に配線基板6の少なくとも一部を接触させることを含む。拡散反射領域16sは、配線基板6に付着していたフラックスの残渣によって構成される拡散反射膜46を含む。フラックスの残渣によって構成される拡散反射膜46ははんだ酸化膜15よりも厚いため、拡散反射膜46は、はんだ酸化膜15よりも、光22(図31を参照)をより多く拡散反射しやすい。 Specifically, as shown in FIG. 29, the wiring board 6 is transported by the transport unit 4, and a part of the wiring board 6 (for example, the back surface 6 b or the front side surface 6 f of the wiring substrate 6) Contact As shown in FIGS. 31 and 32, the residue of the flux adhering to the wiring substrate 6 dissolves a part of the solder oxide film 15 and remains on the surface of the molten solder 14. A diffuse reflection area 16s is formed on the surface of the molten solder 14 jetted from the nozzle 12a (S31). That is, forming the diffuse reflection area 16s (S31) includes bringing at least a part of the wiring board 6 into contact with the molten solder 14 jetted from the nozzle 12a. The diffuse reflection area 16 s includes a diffuse reflection film 46 constituted by the residue of the flux adhering to the wiring substrate 6. Since the diffuse reflection film 46 formed of the residue of the flux is thicker than the solder oxide film 15, the diffuse reflection film 46 diffuses and reflects more light 22 (see FIG. 31) more easily than the solder oxide film 15.
 測定部20は、拡散反射領域16sにおいて拡散反射された光22を検出する。こうして、測定部20は、拡散反射領域16sの第1の表面形状を測定する(S32)。 The measurement unit 20 detects the light 22 diffusely reflected in the diffuse reflection area 16s. Thus, the measurement unit 20 measures the first surface shape of the diffuse reflection area 16s (S32).
 拡散反射領域16sの第1の表面形状とノズル12aから噴流する溶融はんだ14の第1の目標表面形状に関する第1の形状基準データとを比較すること(S33)は、拡散反射領域16の第1の表面形状とノズル12aから噴流する溶融はんだ14の第1の目標表面形状に関する第1の形状基準データとを比較すること(S13)と同様である。拡散反射領域16sの第1の表面形状と第1の形状基準データとの間の比較結果に基づいて噴流部10を制御すること(S34)は、拡散反射領域16の第1の表面形状と第1の形状基準データとの間の比較結果に基づいて噴流部10を制御すること(S14)と同様である。 Comparing the first surface shape of the diffuse reflection area 16 s with the first shape reference data on the first target surface shape of the molten solder jetted from the nozzle 12 a (S 33) And the first shape reference data relating to the first target surface shape of the molten solder 14 jetted from the nozzle 12a (S13). The control of the jet portion 10 based on the comparison result between the first surface shape of the diffuse reflection area 16s and the first shape reference data (S34) corresponds to the first surface shape of the diffuse reflection area 16 and the first surface shape It is the same as controlling the jet part 10 based on the comparison result with the shape reference data of 1 (S14).
 ノズル12aから噴流する溶融はんだ14によって、部品7を別の配線基板6sにはんだ付けすること(S40)は、ノズル12aから噴流する溶融はんだ14によって、部品7を配線基板6にはんだ付けすること(S30)と同様である。別の配線基板6sは、配線基板6sに続いて搬送部4によって搬送される。ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16sの第1の表面形状の測定結果を用いて、別の配線基板6sに搭載されている部品7がより適切に(より良好に)はんだ付けされる。 Soldering the component 7 to another wiring substrate 6s by the molten solder 14 jetted from the nozzle 12a (S40) solders the component 7 to the wiring substrate 6 by the molten solder 14 jetted from the nozzle 12a (S40) The same as S30). Another wiring board 6s is carried by the carrying unit 4 subsequently to the wiring board 6s. Using the measurement result of the first surface shape of the diffuse reflection area 16s corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, the component 7 mounted on another wiring board 6s is more appropriately (better To be soldered).
 本実施の形態では、拡散反射領域16の第1表面形状と拡散反射領域16sの第1表面形状とは、同一の測定部20を用いて測定されているが、拡散反射領域16sの第1表面形状は、測定部20とは別の測定部(図示せず)を用いて測定されてもよい。この別の測定部は、測定部20と同じ構成を有しているが、ノズル12aよりも、配線基板6の搬送方向(x方向)の下流側に配置されていなくてもよい。 In the present embodiment, the first surface shape of the diffuse reflection area 16 and the first surface shape of the diffuse reflection area 16s are measured using the same measurement unit 20, but the first surface of the diffuse reflection area 16s The shape may be measured using a measuring unit (not shown) other than the measuring unit 20. This other measurement unit has the same configuration as the measurement unit 20, but may not be disposed downstream of the nozzle 12a in the conveyance direction (x direction) of the wiring substrate 6.
 本実施の形態のはんだ付け装置1f及びはんだ付け方法の効果を説明する。本実施の形態のはんだ付け装置1f及びはんだ付け方法は、実施の形態1のはんだ付け装置1及びはんだ付け方法と同様の以下の効果を奏する。 The effects of the soldering apparatus 1 f and the soldering method of the present embodiment will be described. The soldering apparatus 1 f and the soldering method of the present embodiment have the following effects similar to the soldering apparatus 1 and the soldering method of the first embodiment.
 本実施の形態のはんだ付け装置1fでは、拡散反射領域16は、ノズル12aから噴流する溶融はんだ14にはんだ付けされる対象物の一部(例えば、配線基板6の裏面6bまたは前側面6f)が接触することによって形成されている。測定部20は、ノズル12aよりも、はんだ付けされる対象物(配線基板6)の搬送方向(x方向)の下流側に配置されている。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。本実施の形態のはんだ付け装置1fは、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1f according to the present embodiment, the diffuse reflection area 16 is a part of the object to be soldered to the molten solder 14 jetted from the nozzle 12a (for example, the back surface 6b or the front surface 6f of the wiring board 6). It is formed by contacting. The measurement unit 20 is disposed downstream of the nozzle 12 a in the transport direction (x direction) of the target (wiring substrate 6) to be soldered. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. The soldering apparatus 1f of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
 本実施の形態のはんだ付け装置1fでは、拡散反射領域16sは、ノズル12aから噴流する溶融はんだ14にはんだ付けされる対象物の少なくとも一部(例えば、配線基板6の裏面6bまたは前側面6f)が接触することによって形成されている。拡散反射領域16sは、はんだ付けされる対象物(配線基板6)に付着していたフラックスの残渣によって構成される拡散反射膜46を含む。本実施の形態のはんだ付け装置1fは、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16sの第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1f of the present embodiment, the diffuse reflection area 16s is at least a part of an object to be soldered to the molten solder 14 jetted from the nozzle 12a (for example, the back surface 6b or the front side surface 6f of the wiring substrate 6) Are formed by contact. The diffuse reflection area 16s includes a diffuse reflection film 46 constituted by the residue of the flux adhering to the object to be soldered (wiring substrate 6). The soldering apparatus 1f of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16s corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
 本実施の形態のはんだ付け方法では、拡散反射領域16を形成すること(S11)は、ノズル12aから噴流する溶融はんだ14にはんだ付けされる対象物の一部(例えば、配線基板6の裏面6bまたは前側面6f)を接触させることを含む。測定部20は、ノズル12aよりも、はんだ付けされる対象物(配線基板6)の搬送方向(x方向)の下流側に配置されている。拡散反射領域16は、はんだ酸化膜によって構成される拡散反射膜15aを含む。本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering method of the present embodiment, forming the diffuse reflection area 16 (S11) is a part of the object to be soldered to the molten solder 14 jetted from the nozzle 12a (for example, the back surface 6b of the wiring substrate 6) Or including contacting the front side 6f). The measurement unit 20 is disposed downstream of the nozzle 12 a in the transport direction (x direction) of the target (wiring substrate 6) to be soldered. The diffuse reflection area 16 includes a diffuse reflection film 15a formed of a solder oxide film. The soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
 本実施の形態のはんだ付け方法では、拡散反射領域16sを形成すること(S31)は、ノズル12aから噴流する溶融はんだ14にはんだ付けされる対象物の少なくとも一部(例えば、配線基板6の裏面6bまたは前側面6f)を接触させることを含む。拡散反射領域16sは、はんだ付けされる対象物(配線基板6)に付着していたフラックスの残渣によって構成される拡散反射膜46を含む。本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16sの第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering method of the present embodiment, forming the diffuse reflection area 16s (S31) is performed by at least a part of the object to be soldered to the molten solder 14 jetted from the nozzle 12a (for example, the back surface of the wiring substrate 6) 6b) or contacting the front side 6f). The diffuse reflection area 16s includes a diffuse reflection film 46 constituted by the residue of the flux adhering to the object to be soldered (wiring substrate 6). The soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16s corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
 実施の形態7.
 図34から図39を参照して、実施の形態7に係るはんだ付け装置1gを説明する。本実施の形態のはんだ付け装置1gは、実施の形態1のはんだ付け装置1と同様の構成を備えるが、主に以下の点で異なる。
Embodiment 7
A soldering apparatus 1g according to a seventh embodiment will be described with reference to FIGS. 34 to 39. The soldering apparatus 1g of the present embodiment has the same configuration as the soldering apparatus 1 of the first embodiment, but differs mainly in the following points.
 はんだ付け装置1gでは、拡散反射領域形成部30gは、ノズル12a内に設けられた筒部材37を含む。筒部材37の内部に拡散反射領域16が形成されるように、筒部材37は配置されている。具体的には、筒部材37は、流入口37iと、上端開口37jとを有している。ノズル12aから噴流する溶融はんだ14は、流入口37iから筒部材37の内部に流れる。ノズル12aから噴流する溶融はんだ14は、筒部材37の外部にも流れる。筒部材37の上端開口37jは、溶融はんだ14から露出している。筒部材37は、SUS316またはチタンのような溶融はんだ14に溶けにくい材料で構成されている。 In the soldering apparatus 1g, the diffuse reflection area forming unit 30g includes a cylindrical member 37 provided in the nozzle 12a. The cylindrical member 37 is disposed such that the diffuse reflection area 16 is formed inside the cylindrical member 37. Specifically, the cylindrical member 37 has an inflow port 37i and an upper end opening 37j. The molten solder 14 jetted from the nozzle 12 a flows from the inflow port 37 i to the inside of the cylindrical member 37. The molten solder 14 jetted from the nozzle 12 a also flows to the outside of the cylindrical member 37. The upper end opening 37 j of the cylindrical member 37 is exposed from the molten solder 14. The cylindrical member 37 is made of a material that does not easily dissolve in the molten solder 14 such as SUS316 or titanium.
 ノズル12aから噴流する溶融はんだ14の表面は、絶えず揺らいでいる。筒部材37の内部は、筒部材37によって取り囲まれている。そのため、筒部材37の内部における溶融はんだ14の表面の揺らぎは、筒部材37の外部における溶融はんだ14の表面の揺らぎよりも小さくなる。また、ノズル12aから噴流する溶融はんだ14は、酸素を含むガス(例えば、空気)に曝されている。そのため、筒部材37の外部では、溶融はんだ14の表面上にはんだ酸化膜15が形成されるが、筒部材37の内部では、溶融はんだ14の表面上にはんだ酸化膜15よりも厚いはんだ酸化厚膜が形成される。測定部20から出射される光22をはんだ酸化厚膜に照射すると、はんだ酸化厚膜において、光22の干渉縞が形成されて、より多くの割合の光22が拡散反射する。こうして、はんだ酸化厚膜は、拡散反射膜15cとして機能する。拡散反射領域16は、はんだ酸化厚膜である拡散反射膜15cを含む。 The surface of the molten solder 14 jetted from the nozzle 12a is constantly fluctuating. The inside of the cylindrical member 37 is surrounded by the cylindrical member 37. Therefore, the fluctuation of the surface of the molten solder 14 inside the cylindrical member 37 is smaller than the fluctuation of the surface of the molten solder 14 outside the cylindrical member 37. Further, the molten solder 14 jetted from the nozzle 12a is exposed to a gas containing oxygen (for example, air). Therefore, the solder oxide film 15 is formed on the surface of the molten solder 14 outside the cylindrical member 37, but the solder oxide film is thicker than the solder oxide film 15 on the surface of the molten solder 14 inside the cylindrical member 37. A film is formed. When the solder oxide thick film is irradiated with the light 22 emitted from the measurement unit 20, interference fringes of the light 22 are formed in the solder oxide thick film, and a larger proportion of the light 22 is diffusely reflected. Thus, the solder oxide thick film functions as the diffuse reflection film 15c. The diffuse reflection area 16 includes a diffuse reflection film 15 c which is a solder oxide thick film.
 測定部20は、筒部材37の上端開口37jから光22を入射させて、拡散反射領域16において拡散反射された光22を検出する。こうして、測定部20は、拡散反射領域16の第1の表面形状を測定することができる。 The measuring unit 20 causes the light 22 to be incident from the upper end opening 37 j of the cylindrical member 37 and detects the light 22 diffused and reflected in the diffuse reflection area 16. Thus, the measurement unit 20 can measure the first surface shape of the diffuse reflection area 16.
 はんだ付け装置1gでは、配線基板6に向けてノズル12aが突出する方向(z方向)からの平面視において、筒部材37は配線基板6の搬送経路の外側に配置されている。そのため、筒部材37がはんだ付けを妨げることが防止される。筒部材37は、例えば、ノズル12aの開口12bの中に配置されている。複数の筒部材37が、はんだ付け装置1gに設けられてもよい。複数の筒部材37は、溶融はんだ14がノズル12aから流れ出す方向(x方向)に沿って配置されてもよい。複数の筒部材37は、溶融はんだ14がノズル12aから流れ出す方向(x方向)に交差する幅方向(y方向)に沿って配置されてもよい。筒部材37は、例えば、円筒部材である。筒部材37は、角筒部材であってもよいし、楕円筒部材であってもよい。 In the soldering apparatus 1g, the cylindrical member 37 is disposed outside the transport path of the wiring substrate 6 in a plan view from the direction (z direction) in which the nozzle 12a protrudes toward the wiring substrate 6. Therefore, the cylindrical member 37 is prevented from interfering with the soldering. The cylindrical member 37 is disposed, for example, in the opening 12 b of the nozzle 12 a. A plurality of cylindrical members 37 may be provided in the soldering apparatus 1g. The plurality of cylindrical members 37 may be disposed along the direction (x direction) in which the molten solder 14 flows out of the nozzle 12 a. The plurality of cylindrical members 37 may be disposed along the width direction (y direction) intersecting the direction (x direction) in which the molten solder 14 flows out from the nozzle 12 a. The cylindrical member 37 is, for example, a cylindrical member. The cylindrical member 37 may be a rectangular cylindrical member or an elliptical cylindrical member.
 図36及び図37を参照して、拡散反射領域形成部30gは、溶融はんだ14の流れ圧力を低減させる流れ圧力低減部材38をさらに含んでもよい。流れ圧力低減部材38は、筒部材37の流入口37iに設けられている。流れ圧力低減部材38は、筒部材37の内部に流れ込む溶融はんだ14に圧力損失を与えて、溶融はんだ14の流れ圧力を低減させるように構成されている。そのため、流れ圧力低減部材38は、筒部材37の内部における溶融はんだ14の表面の揺らぎを減少させる。はんだ酸化厚膜である拡散反射膜15cがより短時間でかつより確実に形成され得る。流れ圧力低減部材38は、SUS316またはチタンのような溶融はんだ14に溶けにくい材料で構成されている。 Referring to FIGS. 36 and 37, the diffuse reflection area forming unit 30 g may further include a flow pressure reducing member 38 that reduces the flow pressure of the molten solder 14. The flow pressure reducing member 38 is provided at the inlet 37 i of the cylindrical member 37. The flow pressure reducing member 38 is configured to apply a pressure loss to the molten solder 14 flowing into the inside of the cylindrical member 37 to reduce the flow pressure of the molten solder 14. Therefore, the flow pressure reducing member 38 reduces the fluctuation of the surface of the molten solder 14 inside the cylindrical member 37. Diffuse reflection film 15c which is a solder oxide thick film can be formed in a shorter time and more reliably. The flow pressure reducing member 38 is made of a material that does not easily dissolve in the molten solder 14 such as SUS316 or titanium.
 図36及び図37に示されるように、流れ圧力低減部材38は、溶融はんだ14が流れる複数の微小貫通穴39aを有する板部材39b(例えば、パンチングメタル構造を有する板部材)で構成されてもよい。図38及び図39に示されるように、流れ圧力低減部材38は、複数の板部材39dで構成されてもよい。複数の板部材39dは、筒部材37の内部に、筒部材37の長手方向(z方向)に沿って千鳥状に配置されている。複数の板部材39dの各々は、筒部材37の内径よりも小さなサイズを有しており、複数の板部材39dの各々と筒部材37の内壁との間に、溶融はんだ14が流れる隙間が形成されている。 As shown in FIGS. 36 and 37, the flow pressure reducing member 38 may be formed of a plate member 39b (for example, a plate member having a punching metal structure) having a plurality of micro through holes 39a through which the molten solder 14 flows. Good. As shown in FIGS. 38 and 39, the flow pressure reducing member 38 may be composed of a plurality of plate members 39d. The plurality of plate members 39 d are arranged in a staggered manner along the longitudinal direction (z direction) of the cylindrical member 37 inside the cylindrical member 37. Each of the plurality of plate members 39d has a size smaller than the inner diameter of the cylindrical member 37, and a gap through which the molten solder 14 flows is formed between each of the plurality of plate members 39d and the inner wall of the cylindrical member 37. It is done.
 図11及び図34から図39を参照して、本実施の形態のはんだ付け方法を説明する。本実施の形態のはんだ付け方法は、実施の形態1のはんだ付け方法と同様の工程を備えるが、以下の点で異なる。 The soldering method of the present embodiment will be described with reference to FIGS. 11 and 34 to 39. The soldering method of the present embodiment includes the same steps as the soldering method of the first embodiment, but differs in the following points.
 本実施の形態のはんだ付け方法では、拡散反射領域16を形成すること(S11)は、ノズル12a内に設けられた筒部材37の内部に溶融はんだ14を流すことを含む。筒部材37の内部に拡散反射領域16が形成されるように、筒部材37は配置されている。具体的には、筒部材37は、流入口37iと、上端開口37jとを有している。ノズル12aから噴流する溶融はんだ14は、流入口37iから筒部材37の内部に流れる。ノズル12aから噴流する溶融はんだ14は、筒部材37の外部にも流れる。筒部材37の上端開口37jは、溶融はんだ14から露出している。 In the soldering method of the present embodiment, forming the diffuse reflection area 16 (S11) includes flowing the molten solder 14 into the inside of the cylindrical member 37 provided in the nozzle 12a. The cylindrical member 37 is disposed such that the diffuse reflection area 16 is formed inside the cylindrical member 37. Specifically, the cylindrical member 37 has an inflow port 37i and an upper end opening 37j. The molten solder 14 jetted from the nozzle 12 a flows from the inflow port 37 i to the inside of the cylindrical member 37. The molten solder 14 jetted from the nozzle 12 a also flows to the outside of the cylindrical member 37. The upper end opening 37 j of the cylindrical member 37 is exposed from the molten solder 14.
 ノズル12aから噴流する溶融はんだ14の表面は、絶えず揺らいでいる。筒部材37の内部は、筒部材37によって取り囲まれている。そのため、筒部材37の内部における溶融はんだ14の表面の揺らぎは、筒部材37の外部における溶融はんだ14の表面の揺らぎよりも小さくなる。そして、ノズル12aから噴流する溶融はんだ14は、酸素を含むガス(例えば、空気)に曝されている。そのため、筒部材37の外部では、溶融はんだ14の表面上にはんだ酸化膜15が形成されるが、筒部材37の内部では、溶融はんだ14の表面上にはんだ酸化膜15よりも厚いはんだ酸化厚膜が形成される。拡散反射領域16は、はんだ酸化厚膜である拡散反射膜15cを含む。 The surface of the molten solder 14 jetted from the nozzle 12a is constantly fluctuating. The inside of the cylindrical member 37 is surrounded by the cylindrical member 37. Therefore, the fluctuation of the surface of the molten solder 14 inside the cylindrical member 37 is smaller than the fluctuation of the surface of the molten solder 14 outside the cylindrical member 37. The molten solder 14 jetted from the nozzle 12a is exposed to a gas (for example, air) containing oxygen. Therefore, the solder oxide film 15 is formed on the surface of the molten solder 14 outside the cylindrical member 37, but the solder oxide film is thicker than the solder oxide film 15 on the surface of the molten solder 14 inside the cylindrical member 37. A film is formed. The diffuse reflection area 16 includes a diffuse reflection film 15 c which is a solder oxide thick film.
 本実施の形態のはんだ付け方法では、配線基板6に向けてノズル12aが突出する方向(z方向)からの平面視において、筒部材37は配線基板6の搬送経路の外側に配置されている。そのため、筒部材37がはんだ付けを妨げることが防止される。 In the soldering method of the present embodiment, the cylindrical member 37 is disposed outside the transport path of the wiring substrate 6 in a plan view from the direction (z direction) in which the nozzle 12 a protrudes toward the wiring substrate 6. Therefore, the cylindrical member 37 is prevented from interfering with the soldering.
 本実施の形態のはんだ付け方法では、拡散反射領域16を形成すること(S11)は、流れ圧力低減部材38を用いて、筒部材37に流入する溶融はんだ14の流れ圧力を低減させることをさらに含む。流れ圧力低減部材38は、筒部材37の内部に流れ込む溶融はんだ14の流れ圧力を低減させる。流れ圧力低減部材38は、筒部材37の内部における溶融はんだ14の表面の揺らぎを減少させる。はんだ酸化厚膜である拡散反射膜15cがより短時間でかつより確実に形成され得る。 In the soldering method of the present embodiment, forming the diffuse reflection area 16 (S11) further reduces the flow pressure of the molten solder 14 flowing into the cylindrical member 37 using the flow pressure reduction member 38. Including. The flow pressure reducing member 38 reduces the flow pressure of the molten solder 14 flowing into the inside of the cylindrical member 37. The flow pressure reducing member 38 reduces the fluctuation of the surface of the molten solder 14 inside the cylindrical member 37. Diffuse reflection film 15c which is a solder oxide thick film can be formed in a shorter time and more reliably.
 本実施の形態のはんだ付け装置1g及びはんだ付け方法の効果を説明する。本実施の形態のはんだ付け装置1g及びはんだ付け方法は、実施の形態1のはんだ付け装置1及びはんだ付け方法と同様の以下の効果を奏する。 The effects of the soldering apparatus 1g and the soldering method of the present embodiment will be described. The soldering apparatus 1g and the soldering method of the present embodiment have the following effects similar to the soldering apparatus 1 and the soldering method of the first embodiment.
 本実施の形態のはんだ付け装置1gでは、拡散反射領域形成部30gは、ノズル12a内に設けられた筒部材37を含む。筒部材37の内部に拡散反射領域16が形成されるように、筒部材37は配置されている。拡散反射領域16は、はんだ酸化膜(はんだ酸化厚膜)によって構成される拡散反射膜15cを含む。本実施の形態のはんだ付け装置1gは、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1g of the present embodiment, the diffuse reflection area forming unit 30g includes a cylindrical member 37 provided in the nozzle 12a. The cylindrical member 37 is disposed such that the diffuse reflection area 16 is formed inside the cylindrical member 37. The diffuse reflection area 16 includes a diffuse reflection film 15 c composed of a solder oxide film (solder oxide thick film). The soldering apparatus 1g of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
 本実施の形態のはんだ付け装置1gでは、はんだ付けされる対象物(配線基板6)に向けてノズル12aが突出する方向(z方向)からの平面視において、筒部材37ははんだ付けされる対象物(配線基板6)の搬送経路の外側に配置されている。そのため、筒部材37がはんだ付けを妨げることが防止される。本実施の形態のはんだ付け装置1gは、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1g of the present embodiment, the cylindrical member 37 is an object to be soldered in a plan view from the direction (z direction) in which the nozzle 12a protrudes toward the object to be soldered (wiring substrate 6) It is arrange | positioned on the outer side of the conveyance path of a thing (wiring board 6). Therefore, the cylindrical member 37 is prevented from interfering with the soldering. The soldering apparatus 1g of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
 本実施の形態のはんだ付け装置1gでは、拡散反射領域形成部30gは、溶融はんだ14の流れ圧力を低減させる流れ圧力低減部材38をさらに含む。筒部材37は、溶融はんだ14が流入する流入口37iを有している。流れ圧力低減部材38は、流入口37iに設けられている。そのため、拡散反射膜15cがより短時間でかつより確実に形成され得る。本実施の形態のはんだ付け装置1gは、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering apparatus 1g of the present embodiment, the diffuse reflection area forming unit 30g further includes a flow pressure reducing member 38 that reduces the flow pressure of the molten solder 14. The cylindrical member 37 has an inlet 37i into which the molten solder 14 flows. The flow pressure reducing member 38 is provided at the inlet 37i. Therefore, the diffuse reflection film 15c can be formed in a shorter time and more reliably. The soldering apparatus 1g of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
 本実施の形態のはんだ付け方法では、拡散反射領域16を形成すること(S11)は、ノズル12a内に設けられた筒部材37の内部に溶融はんだ14を流すことを含む。筒部材37の内部に拡散反射領域16が形成されるように、筒部材37は配置されている。拡散反射領域16は、はんだ酸化膜(はんだ酸化厚膜)によって構成される拡散反射膜15cを含む。本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering method of the present embodiment, forming the diffuse reflection area 16 (S11) includes flowing the molten solder 14 into the inside of the cylindrical member 37 provided in the nozzle 12a. The cylindrical member 37 is disposed such that the diffuse reflection area 16 is formed inside the cylindrical member 37. The diffuse reflection area 16 includes a diffuse reflection film 15 c composed of a solder oxide film (solder oxide thick film). The soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
 本実施の形態のはんだ付け方法では、はんだ付けされる対象物(配線基板6)に向けてノズル12aが突出する方向(z方向)からの平面視において、筒部材37ははんだ付けされる対象物(配線基板6)の搬送経路の外側に配置されている。そのため、筒部材37がはんだ付けを妨げることが防止される。本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering method of the present embodiment, the cylindrical member 37 is an object to be soldered in a plan view from the direction (z direction) in which the nozzle 12a protrudes toward the object to be soldered (wiring substrate 6) It is arrange | positioned on the outer side of the conveyance path of (wiring board 6). Therefore, the cylindrical member 37 is prevented from interfering with the soldering. The soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
 本実施の形態のはんだ付け方法では、拡散反射領域16を形成すること(S11)は、筒部材37に流入する溶融はんだ14の流れ圧力を低減させることをさらに含む。そのため、拡散反射膜15cがより短時間でかつより確実に形成され得る。本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 In the soldering method of the present embodiment, forming the diffuse reflection area 16 (S11) further includes reducing the flow pressure of the molten solder 14 flowing into the cylindrical member 37. Therefore, the diffuse reflection film 15c can be formed in a shorter time and more reliably. The soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
 実施の形態8.
 図40を参照して、実施の形態8に係るはんだ付け装置1hを説明する。本実施の形態のはんだ付け装置1hは、実施の形態1のはんだ付け装置1と同様の構成を備え、同様の効果を奏するが、主に以下の点で異なる。
Eighth Embodiment
A soldering apparatus 1h according to an eighth embodiment will be described with reference to FIG. The soldering apparatus 1h of the present embodiment has the same configuration as that of the soldering apparatus 1 of the first embodiment, and exhibits the same effect, but mainly differs in the following points.
 はんだ付け装置1hは、送風部50をさらに備える。送風部50は、測定部20に向けて送風するように構成されている。送風部50は、配線基板6の搬送経路に平行に送風してもよい。送風部50は、例えば、軸流ファン、遠心ファン、斜流ファンまたは横流ファンである。溶融はんだ14からの輻射熱に起因して、測定部20の温度が過度に上昇して、測定部20が故障または誤動作することがある。送風部50は、測定部20に向けて送風することによって、測定部20を冷却して、測定部20が故障または誤動作することを防止する。さらに、送風部50は、筐体3内に舞っているフラックスの残渣の粉じん及びはんだ酸化物の粉じんが測定部20に付着することを防止する。そのため、測定部20を用いて、拡散反射領域16の第1の表面形状が正確にかつ安定的に測定され得る。本実施の形態のはんだ付け装置1hは、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 The soldering apparatus 1 h further includes a blower 50. The blower unit 50 is configured to blow air toward the measurement unit 20. The blower 50 may blow air in parallel with the transport path of the wiring substrate 6. The blower unit 50 is, for example, an axial flow fan, a centrifugal fan, a mixed flow fan, or a cross flow fan. Due to the radiant heat from the molten solder 14, the temperature of the measurement unit 20 may rise excessively, and the measurement unit 20 may fail or malfunction. The blower unit 50 cools the measurement unit 20 by blowing air toward the measurement unit 20 to prevent the measurement unit 20 from malfunctioning or malfunctioning. Furthermore, the blower unit 50 prevents the dust of the residue of the flux and the dust of the solder oxide that are scattered in the housing 3 from adhering to the measurement unit 20. Therefore, the first surface shape of the diffuse reflection area 16 can be accurately and stably measured using the measurement unit 20. The soldering apparatus 1h of the present embodiment is more appropriate (better) using the measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a. Enable soldering.
 図11及び図40を参照して、本実施の形態のはんだ付け方法を説明する。本実施の形態のはんだ付け方法は、実施の形態1のはんだ付け方法と同様の工程を備え、同様の効果を奏するが、以下の点で異なる。 The soldering method of this embodiment will be described with reference to FIGS. 11 and 40. The soldering method of the present embodiment includes the same steps as those of the soldering method of the first embodiment, and exhibits the same effect, but differs in the following points.
 本実施の形態のはんだ付け方法は、送風部50を用いて、測定部20に向けて送風することをさらに備える。測定部20に向けて送風しながら、測定部20を用いて、拡散反射領域16の第1の表面形状を測定(S12)してもよい。測定部20に向けて送風することによって、測定部20が冷却されて、測定部20が故障または誤動作することを防止する。筐体3内に舞っているフラックスの残渣の粉じん及びはんだ酸化物の粉じんが測定部20に付着することが防止される。そのため、測定部20を用いて、拡散反射領域16の第1の表面形状が正確にかつ安定的に測定され得る。本実施の形態のはんだ付け方法は、ノズル12aから噴流する溶融はんだ14の表面形状に対応する拡散反射領域16の第1の表面形状の測定結果を用いて、より適切な(より良好な)はんだ付けを可能にする。 The soldering method of the present embodiment further includes blowing air toward the measuring unit 20 using the air blowing unit 50. The first surface shape of the diffuse reflection area 16 may be measured (S12) using the measuring unit 20 while blowing air toward the measuring unit 20. By blowing air toward the measurement unit 20, the measurement unit 20 is cooled, and the measurement unit 20 is prevented from malfunctioning or malfunctioning. It is possible to prevent the dust of the residue of the flux and the dust of the solder oxide which are scattered in the housing 3 from adhering to the measurement unit 20. Therefore, the first surface shape of the diffuse reflection area 16 can be accurately and stably measured using the measurement unit 20. The soldering method of the present embodiment uses a measurement result of the first surface shape of the diffuse reflection area 16 corresponding to the surface shape of the molten solder 14 jetted from the nozzle 12a, and more appropriate (better) solder Make it possible.
 今回開示された実施の形態1-8はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態1-8の少なくとも2つを組み合わせてもよい。例えば、実施の形態2-7のはんだ付け装置1b-1gに、実施の形態8の送風部50をさらに設けてもよい。実施の形態3-8の測定部20を、実施の形態2の測定部20bに置き換えてもよい。本発明の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 It should be understood that Embodiment 1-8 disclosed this time is illustrative in all points and not restrictive. As long as there is no contradiction, at least two of the embodiments 1-8 disclosed herein may be combined. For example, the blower 50 of the eighth embodiment may be further provided to the soldering apparatus 1b-1g of the second embodiment. The measurement unit 20 of Embodiment 3-8 may be replaced with the measurement unit 20b of Embodiment 2. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
 1,1b,1c,1d,1e,1f,1g,1h はんだ付け装置、3 筐体、4 搬送部、4a 腕部、6,6s 配線基板、6a おもて面、6b 裏面、6c 側面、6f 前側面、7 部品、9 予備加熱部、9h 第2のヒータ、9s 温度センサ、10 噴流部、10s はんだ槽、11 ダクト、11a 開口、11b 底部、11f 支柱、11h ボルト、11t 頂部、12 ノズル部、12a ノズル、12b 開口、12c ガイド板、12d 板部、12m 中心線、12e 孔、13h 第1のヒータ、13m モータ、13n インペラ、13p ポンプ、14 溶融はんだ、15 はんだ酸化膜、15a,15c,46 拡散反射膜、16,16s 拡散反射領域、18 昇降部、20,20b 測定部、21,21b 光源部、22,22b 光、23,23b 光検出部、30,30c,30d,30e,30g 拡散反射領域形成部、31,31d 部材、32 駆動部、32d 振動子、33 連結部、34 ガス、35 ガス吹き付け部、36 静止部材、37 筒部材、37i 流入口、37j 上端開口、38 流れ圧力低減部材、39a 微小貫通穴、39b,39d 板部材、40 制御部、41 表示部、43 メモリ、50 送風部。 1, 1b, 1c, 1d, 1e, 1f, 1h Soldering device, 3 housings, 4 transport parts, 4a arms, 6, 6s wiring board, 6a front side, 6b back side, 6c side, 6f Front side, 7 parts, 9 preheating unit, 9h second heater, 9s temperature sensor, 10 jets, 10s solder tank, 11 duct, 11a opening, 11b bottom, 11f post, 11h bolt, 11t top, 12 nozzle , 12a nozzle, 12b opening, 12c guide plate, 12d plate portion, 12m center line, 12e hole, 13h first heater, 13m motor, 13n impeller, 13p pump, 14 molten solder, 15 solder oxide film, 15a, 15c, 46 Diffuse reflective film, 16, 16s diffuse reflective area, 18 lifter, 20, 20b measuring part 21 and 21b Light source unit 22, 22b light, 23, 23b Light detection unit 30, 30c, 30d, 30e and 30g Diffuse reflection area forming unit 31, 31d member, 32 driving unit, 32d vibrator, 33 connection unit, 34 gas, 35 gas spraying unit, 36 stationary member, 37 cylindrical member, 37i inlet, 37j upper end opening, 38 flow pressure reducing member, 39a minute through hole, 39b, 39d plate member, 40 control unit, 41 display unit, 43 Memory, 50 blowers.

Claims (37)

  1.  ノズルを含む噴流部と、
     前記ノズルから噴流する溶融はんだの表面上に形成される拡散反射領域の第1の表面形状を測定するように構成されている測定部とを備える、はんだ付け装置。
    A jet part including a nozzle,
    A measuring unit configured to measure a first surface shape of a diffuse reflection area formed on a surface of molten solder jetted from the nozzle.
  2.  前記溶融はんだの前記表面上に前記拡散反射領域を形成するように構成されている拡散反射領域形成部をさらに備える、請求項1に記載のはんだ付け装置。 The soldering apparatus according to claim 1, further comprising a diffuse reflection area forming unit configured to form the diffuse reflection area on the surface of the molten solder.
  3.  前記拡散反射領域形成部は、部材と、駆動部とを含み、
     前記駆動部は、前記部材の少なくとも一部を前記溶融はんだに浸漬させながら、前記溶融はんだの前記表面に沿って前記部材を一方向に移動させるように構成されており、
     前記拡散反射領域は、はんだ酸化膜によって構成される拡散反射膜を含む、請求項2に記載のはんだ付け装置。
    The diffuse reflection area forming unit includes a member and a driving unit,
    The driving unit is configured to move the member in one direction along the surface of the molten solder while immersing at least a part of the member in the molten solder,
    The soldering apparatus according to claim 2, wherein the diffuse reflection area includes a diffuse reflection film formed of a solder oxide film.
  4.  前記拡散反射領域形成部は、部材と、振動子とを含み、
     前記振動子は、前記部材の少なくとも一部を前記溶融はんだに浸漬させながら、前記溶融はんだの前記表面に沿って前記部材を振動させるように構成されており、
     前記拡散反射領域は、はんだ酸化膜によって構成される拡散反射膜を含む、請求項2に記載のはんだ付け装置。
    The diffuse reflection area forming portion includes a member and a vibrator,
    The vibrator is configured to vibrate the member along the surface of the molten solder while immersing at least a part of the member in the molten solder,
    The soldering apparatus according to claim 2, wherein the diffuse reflection area includes a diffuse reflection film formed of a solder oxide film.
  5.  前記部材は、はんだ付けされる対象物の搬送方向に沿って延在しており、
     前記部材は、前記はんだ付けされる対象物の裏面に接触するように構成されており、前記裏面は、前記溶融はんだに対向する前記はんだ付けされる対象物の面である、請求項4に記載のはんだ付け装置。
    The member extends along the transport direction of the object to be soldered,
    The said member is comprised so that the back surface of the said object to be soldered may be contacted, The said back surface is a surface of the said object to be soldered which opposes the said molten solder. Soldering equipment.
  6.  前記拡散反射領域形成部は、前記溶融はんだの前記表面の一部に選択的に酸素を含むガスを吹き付けるように構成されているガス吹き付け部を含み、
     前記拡散反射領域は、はんだ酸化膜によって構成される拡散反射膜を含む、請求項2に記載のはんだ付け装置。
    The diffuse reflection area forming portion includes a gas spraying portion configured to selectively spray a gas containing oxygen onto a part of the surface of the molten solder,
    The soldering apparatus according to claim 2, wherein the diffuse reflection area includes a diffuse reflection film formed of a solder oxide film.
  7.  前記拡散反射領域形成部は、静止部材を含み、
     前記静止部材の一部が前記溶融はんだに浸漬されるように前記静止部材は前記ノズルの上方に配置されており、
     前記拡散反射領域は、はんだ酸化膜によって構成される拡散反射膜を含む、請求項2に記載のはんだ付け装置。
    The diffuse reflection area forming unit includes a stationary member,
    The stationary member is disposed above the nozzle such that a portion of the stationary member is immersed in the molten solder;
    The soldering apparatus according to claim 2, wherein the diffuse reflection area includes a diffuse reflection film formed of a solder oxide film.
  8.  はんだ付けされる対象物に向けて前記ノズルが突出する方向からの平面視において、前記静止部材は前記はんだ付けされる対象物の搬送経路の外側に配置されている、請求項7に記載のはんだ付け装置。 The solder according to claim 7, wherein the stationary member is disposed outside the transport path of the object to be soldered in a plan view from a direction in which the nozzle protrudes toward the object to be soldered. Attachment device.
  9.  前記静止部材は、前記静止部材の中央部が前記ノズルに向かって突出するように曲げられた形状を有している、請求項7または請求項8に記載のはんだ付け装置。 The soldering apparatus according to claim 7 or 8, wherein the stationary member has a bent shape such that a central portion of the stationary member protrudes toward the nozzle.
  10.  前記拡散反射領域形成部は、前記ノズル内に設けられた筒部材を含み、
     前記筒部材の内部に前記拡散反射領域が形成されるように、前記筒部材は配置されており、
     前記拡散反射領域は、はんだ酸化膜によって構成される拡散反射膜を含む、請求項2に記載のはんだ付け装置。
    The diffuse reflection area forming unit includes a cylindrical member provided in the nozzle,
    The cylinder member is disposed such that the diffuse reflection area is formed inside the cylinder member,
    The soldering apparatus according to claim 2, wherein the diffuse reflection area includes a diffuse reflection film formed of a solder oxide film.
  11.  はんだ付けされる対象物に向けて前記ノズルが突出する方向からの平面視において、前記筒部材は前記はんだ付けされる対象物の搬送経路の外側に配置されている、請求項10に記載のはんだ付け装置。 The solder according to claim 10, wherein the cylindrical member is disposed outside the transport path of the object to be soldered in a plan view from a direction in which the nozzle projects toward the object to be soldered. Attachment device.
  12.  前記拡散反射領域形成部は、前記溶融はんだの流れ圧力を低減させる流れ圧力低減部材をさらに含み、
     前記筒部材は、前記溶融はんだが流入する流入口を有し、
     前記流れ圧力低減部材は前記流入口に設けられている、請求項10または請求項11に記載のはんだ付け装置。
    The diffuse reflection area forming unit further includes a flow pressure reducing member for reducing the flow pressure of the molten solder,
    The cylindrical member has an inlet through which the molten solder flows,
    The soldering apparatus according to claim 10, wherein the flow pressure reducing member is provided at the inlet.
  13.  前記拡散反射領域は、前記ノズルから噴流する前記溶融はんだにはんだ付けされる対象物の一部が接触することによって形成され、
     前記測定部は、前記ノズルよりも、前記はんだ付けされる対象物の搬送方向の下流側に配置されており、
     前記拡散反射領域は、はんだ酸化膜によって構成される拡散反射膜を含む、請求項1に記載のはんだ付け装置。
    The diffuse reflection area is formed by contact of a part of an object to be soldered to the molten solder jetted from the nozzle;
    The measurement unit is disposed downstream of the nozzle in the transport direction of the object to be soldered,
    The soldering apparatus according to claim 1, wherein the diffuse reflection area includes a diffuse reflection film formed of a solder oxide film.
  14.  前記拡散反射領域は、前記ノズルから噴流する前記溶融はんだにはんだ付けされる対象物の少なくとも一部が接触することによって形成され、
     前記拡散反射領域は、前記はんだ付けされる対象物に付着していたフラックスの残渣によって構成される拡散反射膜を含む、請求項1に記載のはんだ付け装置。
    The diffuse reflection area is formed by contacting at least a part of an object to be soldered to the molten solder jetted from the nozzle,
    The soldering apparatus according to claim 1, wherein the diffusive reflection area includes a diffusive reflection film constituted by a residue of flux adhering to the object to be soldered.
  15.  前記測定部は、前記拡散反射領域に光を照射するように構成されている光源部と、前記拡散反射領域で拡散反射される前記光を検出するように構成されている光検出部とを含み、
     前記光検出部は、前記拡散反射領域の前記第1の表面形状の画像を取得するように構成されている撮像部である、請求項1から請求項14のいずれか1項に記載のはんだ付け装置。
    The measurement unit includes a light source unit configured to irradiate light to the diffuse reflection area, and a light detection unit configured to detect the light diffusely reflected by the diffuse reflection area. ,
    The soldering according to any one of claims 1 to 14, wherein the light detection unit is an imaging unit configured to acquire an image of the first surface shape of the diffuse reflection area. apparatus.
  16.  前記測定部に向けて送風するように構成されている送風部をさらに備える、請求項1から請求項15のいずれか1項に記載のはんだ付け装置。 The soldering apparatus according to any one of claims 1 to 15, further comprising a blower configured to blow air toward the measurement unit.
  17.  制御部をさらに備え、
     前記制御部は、前記測定部によって得られる前記拡散反射領域の前記第1の表面形状に基づいて、前記噴流部を制御するように構成されている、請求項1から請求項16のいずれか1項に記載のはんだ付け装置。
    Further comprising a control unit,
    The said control part is comprised so that the said jet-stream part may be controlled based on the said 1st surface shape of the said diffuse reflection area | region obtained by the said measurement part. The soldering apparatus described in the paragraph.
  18.  前記ノズルから噴流する前記溶融はんだの第1の目標表面形状に関する第1の形状基準データが格納されているメモリをさらに備え、
     前記制御部は、前記測定部によって得られる前記拡散反射領域の前記第1の表面形状と前記第1の形状基準データとを比較するように構成されており、
     前記制御部は、前記拡散反射領域の前記第1の表面形状と前記第1の形状基準データとの間の比較結果に基づいて前記噴流部を制御するように構成されている、請求項17に記載のはんだ付け装置。
    The memory further includes first shape reference data related to a first target surface shape of the molten solder jetted from the nozzle.
    The control unit is configured to compare the first surface shape of the diffuse reflection area obtained by the measurement unit with the first shape reference data.
    The control unit is configured to control the jet flow portion based on a comparison result between the first surface shape of the diffuse reflection area and the first shape reference data. Soldering device as described.
  19.  前記測定部は、前記ノズルの第2の表面形状をさらに測定するように構成されており、
     前記制御部は、前記測定部によって得られる前記ノズルの前記第2の表面形状に基づいて、前記ノズルを制御するように構成されている、請求項17または請求項18に記載のはんだ付け装置。
    The measuring unit is configured to further measure a second surface shape of the nozzle;
    The soldering apparatus according to claim 17, wherein the control unit is configured to control the nozzle based on the second surface shape of the nozzle obtained by the measurement unit.
  20.  ノズルから噴流する溶融はんだの表面上に拡散反射領域を形成することと、
     測定部によって前記拡散反射領域の第1の表面形状を測定することとを備える、はんだ付け方法。
    Forming a diffuse reflection area on the surface of the molten solder jetted from the nozzle;
    Measuring the first surface shape of the diffuse reflection area by a measurement unit.
  21.  前記拡散反射領域を形成することは、部材の少なくとも一部を前記溶融はんだに浸漬させながら、前記溶融はんだの前記表面に沿って前記部材を一方向に移動させることを含み、
     前記拡散反射領域は、はんだ酸化膜によって構成される拡散反射膜を含む、請求項20に記載のはんだ付け方法。
    Forming the diffusive reflection area includes moving the member in one direction along the surface of the molten solder while immersing at least a portion of the member in the molten solder,
    The soldering method according to claim 20, wherein the diffuse reflection area includes a diffuse reflection film formed of a solder oxide film.
  22.  前記拡散反射領域を形成することは、部材の少なくとも一部を前記溶融はんだに浸漬させながら、前記溶融はんだの前記表面に沿って前記部材を振動させることを含み、
     前記拡散反射領域は、はんだ酸化膜によって構成される拡散反射膜を含む、請求項20に記載のはんだ付け方法。
    Forming the diffuse reflection area includes vibrating the member along the surface of the molten solder while immersing at least a portion of the member in the molten solder,
    The soldering method according to claim 20, wherein the diffuse reflection area includes a diffuse reflection film formed of a solder oxide film.
  23.  前記部材は、はんだ付けされる対象物の搬送方向に沿って延在しており、
     前記はんだ付けされる対象物の裏面が前記部材に接触しながら、前記はんだ付けされる対象物は搬送され、前記裏面は、前記溶融はんだに対向する前記はんだ付けされる対象物の面である、請求項22に記載のはんだ付け方法。
    The member extends along the transport direction of the object to be soldered,
    The object to be soldered is transported while the back surface of the object to be soldered is in contact with the member, and the back surface is the surface of the object to be soldered that faces the molten solder. The soldering method according to claim 22.
  24.  前記拡散反射領域を形成することは、前記溶融はんだの前記表面の一部に選択的に酸素を含むガスを吹き付けることを含み、
     前記拡散反射領域は、はんだ酸化膜によって構成される拡散反射膜を含む、請求項20に記載のはんだ付け方法。
    Forming the diffusive reflection area includes spraying a gas containing oxygen selectively on a part of the surface of the molten solder,
    The soldering method according to claim 20, wherein the diffuse reflection area includes a diffuse reflection film formed of a solder oxide film.
  25.  前記拡散反射領域を形成することは、前記ノズルの上方に配置された静止部材に沿って前記溶融はんだを流すことを含み、
     前記静止部材の一部が前記溶融はんだに浸漬されており、
     前記拡散反射領域は、はんだ酸化膜によって構成される拡散反射膜を含む、請求項20に記載のはんだ付け方法。
    Forming the diffuse reflection area may include flowing the molten solder along a stationary member disposed above the nozzle,
    A part of the stationary member is immersed in the molten solder;
    The soldering method according to claim 20, wherein the diffuse reflection area includes a diffuse reflection film formed of a solder oxide film.
  26.  はんだ付けされる対象物に向けて前記ノズルが突出する方向からの平面視において、前記静止部材は前記はんだ付けされる対象物の搬送経路の外側に配置されている、請求項25に記載のはんだ付け方法。 The solder according to claim 25, wherein the stationary member is disposed outside the transport path of the object to be soldered in a plan view from a direction in which the nozzle projects toward the object to be soldered. How to attach.
  27.  前記静止部材は、前記静止部材の中央部が前記ノズルに向かって突出するように曲げられた形状を有している、請求項25または請求項26に記載のはんだ付け方法。 The soldering method according to claim 25 or 26, wherein the stationary member has a bent shape such that a central portion of the stationary member protrudes toward the nozzle.
  28.  前記拡散反射領域を形成することは、前記ノズル内に設けられた筒部材の内部に前記溶融はんだを流すことを含み、
     前記筒部材の内部に前記拡散反射領域が形成されるように、前記筒部材は配置されており、
     前記拡散反射領域は、はんだ酸化膜によって構成される拡散反射膜を含む、請求項20に記載のはんだ付け方法。
    Forming the diffusive reflection area includes flowing the molten solder into a cylindrical member provided in the nozzle,
    The cylinder member is disposed such that the diffuse reflection area is formed inside the cylinder member,
    The soldering method according to claim 20, wherein the diffuse reflection area includes a diffuse reflection film formed of a solder oxide film.
  29.  はんだ付けされる対象物に向けて前記ノズルが突出する方向からの平面視において、前記筒部材は前記はんだ付けされる対象物の搬送経路の外側に配置されている、請求項28に記載のはんだ付け方法。 The solder according to claim 28, wherein the cylindrical member is disposed outside the transport path of the object to be soldered in a plan view from the direction in which the nozzle projects toward the object to be soldered. How to attach.
  30.  前記拡散反射領域を形成することは、前記筒部材に流入する前記溶融はんだの流れ圧力を低減させることをさらに含む、請求項28または請求項29に記載のはんだ付け方法。 30. The soldering method according to claim 28, wherein forming the diffuse reflection area further includes reducing flow pressure of the molten solder flowing into the cylindrical member.
  31.  前記拡散反射領域を形成することは、前記ノズルから噴流する前記溶融はんだにはんだ付けされる対象物の一部を接触させることを含み、
     前記測定部は、前記ノズルよりも、前記はんだ付けされる対象物の搬送方向の下流側に配置されており、
     前記拡散反射領域は、はんだ酸化膜によって構成される拡散反射膜を含む、請求項20に記載のはんだ付け方法。
    Forming the diffuse reflection area includes contacting a part of an object to be soldered to the molten solder jetted from the nozzle;
    The measurement unit is disposed downstream of the nozzle in the transport direction of the object to be soldered,
    The soldering method according to claim 20, wherein the diffuse reflection area includes a diffuse reflection film formed of a solder oxide film.
  32.  前記拡散反射領域を形成することは、前記ノズルから噴流する前記溶融はんだにはんだ付けされる対象物の少なくとも一部を接触させることを含み、
     前記拡散反射領域は、前記はんだ付けされる対象物に付着していたフラックスの残渣によって構成される拡散反射膜を含む、請求項20に記載のはんだ付け方法。
    Forming the diffuse reflection area includes contacting at least a part of an object to be soldered to the molten solder jetted from the nozzle;
    21. The soldering method according to claim 20, wherein the diffusive reflection area includes a diffusive reflection film constituted by a residue of flux adhering to the object to be soldered.
  33.  前記拡散反射領域の前記第1の表面形状を測定することは、前記拡散反射領域に光を照射することと、前記拡散反射領域によって拡散反射される前記光を検出することとを含み、
     拡散反射される前記光を検出することは、撮像部によって前記拡散反射領域の前記第1の表面形状の画像することを含む、請求項20から請求項32のいずれか1項に記載のはんだ付け方法。
    Measuring the first surface shape of the diffuse reflection area includes irradiating the diffuse reflection area with light, and detecting the light diffusely reflected by the diffuse reflection area,
    33. The soldering according to any one of claims 20 to 32, wherein detecting the diffusely reflected light includes imaging the first surface shape of the diffuse reflection area by an imaging unit. Method.
  34.  前記測定部に向けて送風することをさらに備える、請求項20から請求項33のいずれか1項に記載のはんだ付け方法。 34. The soldering method according to any one of claims 20 to 33, further comprising blowing air toward the measurement unit.
  35.  前記測定部によって得られる前記拡散反射領域の前記第1の表面形状に基づいて、前記ノズルを含む噴流部を制御することをさらに備える、請求項20から請求項34のいずれか1項に記載のはんだ付け方法。 The control method according to any one of claims 20 to 34, further comprising controlling a jet portion including the nozzle based on the first surface shape of the diffuse reflection area obtained by the measurement unit. Soldering method.
  36.  前記噴流部を制御することは、前記拡散反射領域の前記第1の表面形状と前記ノズルから噴流する前記溶融はんだの第1の目標表面形状に関する第1の形状基準データとを比較することと、前記拡散反射領域の前記第1の表面形状と前記第1の形状基準データとの間の比較結果に基づいて前記噴流部を制御することとを含む、請求項35に記載のはんだ付け方法。 Controlling the jet flow portion comprises comparing the first surface shape of the diffuse reflection area with first shape reference data on a first target surface shape of the molten solder jetted from the nozzle; 36. The soldering method according to claim 35, comprising: controlling the jet portion based on a comparison result between the first surface shape of the diffuse reflection area and the first shape reference data.
  37.  前記測定部によって前記ノズルの第2の表面形状を測定することと、
     前記測定部によって得られる前記ノズルの前記第2の表面形状に基づいて、前記ノズルを制御することとをさらに備える、請求項35または請求項36に記載のはんだ付け方法。
    Measuring a second surface shape of the nozzle by the measurement unit;
    37. The soldering method according to claim 35, further comprising: controlling the nozzle based on the second surface shape of the nozzle obtained by the measurement unit.
PCT/JP2018/037201 2017-10-18 2018-10-04 Soldering apparatus and soldering method WO2019078021A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019549199A JP6844021B2 (en) 2017-10-18 2018-10-04 Soldering equipment, soldering method and manufacturing method of wiring board with parts
CN201880065443.5A CN111201104B (en) 2017-10-18 2018-10-04 Soldering apparatus, soldering method, and method for manufacturing wiring board with component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-201941 2017-10-18
JP2017201941 2017-10-18

Publications (1)

Publication Number Publication Date
WO2019078021A1 true WO2019078021A1 (en) 2019-04-25

Family

ID=66173671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037201 WO2019078021A1 (en) 2017-10-18 2018-10-04 Soldering apparatus and soldering method

Country Status (3)

Country Link
JP (1) JP6844021B2 (en)
CN (1) CN111201104B (en)
WO (1) WO2019078021A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293667A (en) * 1995-04-25 1996-11-05 Nihon Dennetsu Kk Cleaning for warp preventing equipment of soldered board
JPH11233931A (en) * 1998-02-17 1999-08-27 Fujitsu Ten Ltd Oxygen concentration measuring system
JP2008272770A (en) * 2007-04-26 2008-11-13 Kojima Press Co Ltd Stationary solder bath device
JP2016219736A (en) * 2015-05-26 2016-12-22 三菱電機株式会社 Soldering device and soldering method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775775B2 (en) * 1991-08-23 1995-08-16 松下電器産業株式会社 Corrugated surface management device for jet soldering device and soldering device using the same
MY126741A (en) * 1991-11-05 2006-10-31 Matsushita Electric Ind Co Ltd Jig for detecting height of wavy solder surface, method of controlling height of solder surface, soldering apparatus, jig for detecting warp of printed circuit board, and method of producing printed circuit board
WO2010003732A2 (en) * 2008-07-09 2010-01-14 Robert Bosch Gmbh Magnetic position sensor
CN101789452B (en) * 2010-02-03 2011-12-28 秦皇岛东吴电子有限公司 Diffuse reflection type tin-coated welding strip and method for producing same
JP5288012B2 (en) * 2012-01-25 2013-09-11 千住金属工業株式会社 Jet solder height confirmation jig and its handling method
JP6555938B2 (en) * 2015-06-10 2019-08-07 三菱電機株式会社 Molten solder flow state detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293667A (en) * 1995-04-25 1996-11-05 Nihon Dennetsu Kk Cleaning for warp preventing equipment of soldered board
JPH11233931A (en) * 1998-02-17 1999-08-27 Fujitsu Ten Ltd Oxygen concentration measuring system
JP2008272770A (en) * 2007-04-26 2008-11-13 Kojima Press Co Ltd Stationary solder bath device
JP2016219736A (en) * 2015-05-26 2016-12-22 三菱電機株式会社 Soldering device and soldering method

Also Published As

Publication number Publication date
JP6844021B2 (en) 2021-03-17
CN111201104B (en) 2022-05-06
JPWO2019078021A1 (en) 2020-10-01
CN111201104A (en) 2020-05-26

Similar Documents

Publication Publication Date Title
WO2010140375A1 (en) Jet soldering device and soldering method
JP6159124B2 (en) Component mounting equipment
JP5613664B2 (en) Jet solder bath and soldering equipment
WO2007089917A1 (en) Off-axis illumination assembly and method
JP6546999B2 (en) Substrate working system and component mounting apparatus
JP6844021B2 (en) Soldering equipment, soldering method and manufacturing method of wiring board with parts
JP6436854B2 (en) Soldering apparatus and soldering method
JP2008166450A (en) Reflow soldering apparatus and method
JP4707607B2 (en) Image acquisition method for component recognition data creation and component mounter
JP6236073B2 (en) Inspection device, inspection method, and control device
KR100689850B1 (en) Inspection apparatus for printed circuit board
CN111108823A (en) Mounting accuracy measuring system and mounting accuracy measuring method for component mounting line
JP4756638B2 (en) Flow palette, solder flow apparatus and soldering method
CN113399201A (en) Method and apparatus for applying adhesive
JP4494933B2 (en) Electronic component mounting equipment
JP5316594B2 (en) Component mounting system and component mounting method
JP6147185B2 (en) Board work equipment
JP2008021680A (en) Method for measuring terminal height of electronic component
JP6774380B2 (en) How to notify the status of board work equipment and conveyor belts
JP2001257463A (en) Method of detecting height of primary jet solder in jet soldering, and printed wiring board having detection means
JP2009038148A (en) Board conveying device
JP6987974B2 (en) Component mounting system, component mounting device and component mounting method
JP6937643B2 (en) Foreign matter removal unit, foreign matter removal device, inspection device and board division device
JP2007161350A (en) Component aligning device and component aligning method
WO2017170931A1 (en) Imaging device and inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549199

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867992

Country of ref document: EP

Kind code of ref document: A1