WO2019076196A1 - 石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法 - Google Patents

石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法 Download PDF

Info

Publication number
WO2019076196A1
WO2019076196A1 PCT/CN2018/109008 CN2018109008W WO2019076196A1 WO 2019076196 A1 WO2019076196 A1 WO 2019076196A1 CN 2018109008 W CN2018109008 W CN 2018109008W WO 2019076196 A1 WO2019076196 A1 WO 2019076196A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
trimanganese tetraoxide
hours
lubricating additive
ball milling
Prior art date
Application number
PCT/CN2018/109008
Other languages
English (en)
French (fr)
Inventor
何永勇
赵军
李英儒
毛俊元
雒建斌
Original Assignee
清华大学
中国工程物理研究院材料研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 中国工程物理研究院材料研究所 filed Critical 清华大学
Publication of WO2019076196A1 publication Critical patent/WO2019076196A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/10Metal oxides, hydroxides, carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure

Definitions

  • the present disclosure belongs to the field of materials, and in particular, relates to a graphene/trimanganese tetraoxide composite nano-lubricating additive and a synthetic method thereof.
  • the structurally intact graphene has high chemical stability, is not easily modified, has weak interaction with other media, and has a large van der Waals attraction between layers, and it is difficult to form a stable solution in many common solvents. If it is directly mixed with a non-polar organic solvent, the dispersion stability is poor, which may cause the performance of the entire system to decrease. How to solve the problem of easy agglomeration of graphene and stable dispersion in lubricating grease is the key to the study of graphene as a lubricant additive.
  • nanoparticles modified by physical surface are still less stable and susceptible to secondary agglomeration; chemical surface modification often changes the surface characteristics of graphene, for example, the surface of the nanoparticle is coated with a dialkyl group which has good tribological properties.
  • the lubricating properties of compounds such as phosphorothioate have completely changed.
  • the final result is often the comprehensive performance of two or more substances, which is not a true reflection of the lubricating properties of nano-additives.
  • chemically modified graphene has good solubility, the introduction of foreign atoms or functional groups is likely to destroy its structure, resulting in a significant decrease in its performance. For example, the irregular edge of the graphite sheet produces irregular folds, and the destruction of carbon atoms in the layer, which reduces the lubricating properties of graphene.
  • one object of the present disclosure is to propose a graphene/trimanganese tetraoxide composite nano-lubricating additive and a method for synthesizing the same.
  • the method for synthesizing graphene/tri-manganese tetra-compound nano-lubricating additive proposed by the present disclosure has simple process and low production cost, and the prepared graphene/tri-manganese tetra-compound nano-lubricating additive has excellent dispersion stability and lubricating property. It can be directly added to lubricating grease and has great application prospects in lubrication and wear reduction.
  • the van der Waals attraction between graphene can be reduced, the steric hindrance effect between particles can be improved, and the agglomeration of graphene can be reduced, and the addition of nanoparticles can further improve the lubricating properties of the additive.
  • a synergistic lubrication effect is achieved.
  • previous studies on the preparation and application of graphene-supported iron oxide nanoparticles as composite lubricating oil additives have also been studied in the research of graphene surface-loaded copper nanoparticles.
  • the present disclosure provides a method of in situ synthesis of a graphene/trimanganese tetraoxide composite nano-lubricating additive, comprising:
  • the method for synthesizing graphene/tri-manganese-compound nano-lubricating additive of the above embodiment of the present disclosure adopts an in-situ synthesis method, and utilizes manganese ions remaining in a mixture of graphite oxide and/or graphene oxide in the process of preparing graphite oxide.
  • the process does not require impurity removal and can save a lot of load process, the process is simple and efficient, and the production cost is low.
  • the prepared graphene/tri-manganese tetra-compound nano-lubricating additive can have excellent dispersing characteristics and can be directly added. It is stable in the lubricating grease and dispersed in the lubricating grease. At the same time, it has excellent lubrication and anti-wear characteristics, especially in high temperature environment, and the lubrication characteristics are more excellent and stable. It can meet the demanding requirements of mechanical parts and can be widely used in machinery.
  • the method of synthesizing graphene/trimanganese trioxide composite nano-lubricating additive according to the above embodiments of the present disclosure may further have the following additional technical features:
  • step (1) the mass ratio of the graphite, the concentrated sulfuric acid, and the potassium permanganate is 1: (5-15): (3-5).
  • graphite can be sufficiently oxidized.
  • the oxidation reaction is carried out at 30-60 degrees Celsius for 0.5-1.5 hours. Thereby, graphite can be sufficiently oxidized.
  • the concentration of the mixed solution diluted with water is 0.01-1% by weight, preferably 0.05-0.5% by weight, and the ultrasonic time is 1-10 hours, preferably 4- 8 hours.
  • the graphite oxide can be effectively peeled off into graphene oxide.
  • the pH of the graphene oxide mixture is adjusted to be alkaline by adding a basic solid or an alkaline solution.
  • the basic solid is potassium hydroxide.
  • the alkaline solution is ammonia water.
  • the basicity is a pH of 8-14, preferably 9-11.
  • step (4) and step (5) are carried out according to the following steps: (4-1) filtering the mixture obtained in step (3) to obtain a solid product; (5-1) The solid product is subjected to the reduction treatment at 100-700 degrees Celsius for 1-10 hours to obtain a graphene/trimanganese tetraoxide composite product, preferably, at 150-200 degrees Celsius for 1-10 hours. Restore processing. Thereby, the graphene oxide can be sufficiently reduced to obtain a graphene/trimanganese tetraoxide composite product.
  • step (4) and step (5) are carried out according to the following steps: (4-2) evaporating the mixture obtained in step (3) to obtain a solid product; (5-2) The solid product is subjected to the reduction treatment at 150-200 degrees Celsius for 1-10 hours to obtain a graphene/trimanganese tetraoxide composite product, preferably at 150-200 degrees Celsius for 3-5 hours. Restore processing. Thereby, the graphene oxide can be sufficiently reduced to obtain a graphene/trimanganese tetraoxide composite product.
  • the ball milling process is performed using a high energy ball mill having a ball mill tank volume of 50-100 ml, a ball mill ball diameter of 2-5 mm, and a single ball mill mass of 1-5 g.
  • a high energy ball mill having a ball mill tank volume of 50-100 ml, a ball mill ball diameter of 2-5 mm, and a single ball mill mass of 1-5 g.
  • the ball mill speed is 300-600 rpm and the ball milling time is 3-10 hours.
  • the ball milling efficiency and the ball milling effect of the graphene/trimanganese tetraoxide composite product can be further improved, and the particle size distribution of the finally prepared graphene/trimanganese tetraoxide composite nano-lubricating additive is more uniform.
  • the ball mill speed is 500-600 rpm and the ball milling time is 4-5 hours.
  • the ball milling efficiency and the ball milling effect of the graphene/trimanganese tetraoxide composite product can be further improved, and the particle size distribution of the finally prepared graphene/trimanganese tetraoxide composite nano-lubricating additive is more uniform.
  • the present disclosure further provides a graphene/trimanganese tetraoxide composite nano-lubricating additive using the synthetic graphite of the above embodiment of the present disclosure.
  • a method for preparing an olefin/trimanganese oxide composite nano-lubricating additive is described in detail below.
  • the graphene/tri-manganese tetra-compound nano-lubricating additive of the above embodiment of the present disclosure has excellent dispersing characteristics, can be directly added to the lubricating grease and stably dispersed in the lubricating grease, and has excellent lubricating and anti-wear properties, especially
  • the lubrication characteristics are more stable and stable under high temperature environment, which can meet the demanding requirements of mechanical parts and harsh environments. It can be widely used in mechanical engineering and aerospace fields, such as lubrication of automobile engines, gearboxes and aircraft actuators. Easy to use, the application prospects are great.
  • FIG. 1 is a SEM photograph (a) and a TEM photograph (b) of a graphene/trimanganese tetraoxide composite nano-lubricating additive according to an embodiment of the present disclosure.
  • FIG. 2 is an XRD pattern of a graphene/trimanganese tetraoxide composite nano-lubricating additive, in accordance with an embodiment of the present disclosure.
  • FIG. 3 is a graph comparing friction coefficients of graphene/trimanganese tetraoxide composite nano-lubricating additive with other nano-additives according to an embodiment of the present disclosure.
  • the present disclosure provides a method of in situ synthesis of a graphene/trimanganese tetraoxide composite nano-lubricating additive, comprising:
  • the method for synthesizing graphene/tri-manganese-compound nano-lubricating additive of the above embodiment of the present disclosure adopts an in-situ synthesis method, and utilizes manganese ions remaining in a mixture of graphite oxide and/or graphene oxide in the process of preparing graphite oxide.
  • the process does not require impurity removal and can save a lot of load process, the process is simple and efficient, and the production cost is low.
  • the prepared graphene/tri-manganese tetra-compound nano-lubricating additive can have excellent dispersing characteristics and can be directly added. It is stable in the lubricating grease and dispersed in the lubricating grease. At the same time, it has excellent lubrication and anti-wear characteristics, especially in high temperature environment, and the lubrication characteristics are more excellent and stable. It can meet the demanding requirements of mechanical parts and can be widely used in machinery.
  • the mass ratio of graphite, concentrated sulfuric acid, and potassium permanganate may be 1: (5-15): (3-5).
  • the graphite by using an excessive amount of concentrated sulfuric acid and potassium permanganate relative to graphite, the graphite can be sufficiently oxidized to insert an oxygen-containing group such as a hydroxyl group, an epoxy group, or a hydroxyl group between the graphite layers, and the interlayer spacing of the graphite is increased. Further, it is advantageous for the subsequent ultrasonic to peel off the graphite oxide to obtain graphene oxide. Further, the inventors have found that by controlling the mass ratio of concentrated sulfuric acid to potassium permanganate to be (5-15): (3-5), the oxidation effect on graphite can be further improved.
  • the oxidation reaction in the step (1), can be carried out at 30 to 60 degrees Celsius for 0.5 to 1.5 hours.
  • the graphite can be sufficiently oxidized by concentrated sulfuric acid and potassium permanganate, thereby facilitating subsequent stripping of the graphite oxide to obtain graphene oxide.
  • the concentration of the mixed solution diluted with water may be 0.01 to 1% by weight, and the ultrasonic time may be 1-10 hours. Thereby, the acidity of the mixed liquid of graphite oxide and/or graphene oxide can be effectively reduced, and the graphite oxide can be effectively peeled off into graphene oxide.
  • the concentration of the mixed solution diluted with water may preferably be 0.05 to 0.5% by weight, and the ultrasonic time may be 4 to 8 hours. Thereby, the acidity of the mixed liquid of graphite oxide and/or graphene oxide can be effectively reduced, and the efficiency and effect of efficiently stripping graphite oxide into graphene oxide can be further improved.
  • the pH of the graphene oxide mixture may be adjusted to be alkaline by adding a basic solid or an alkaline solution.
  • the manganese ions remaining in the solution can be effectively utilized to synthesize the nanometer trimanganese tetraoxide, and the synthesized trimanganese tetraoxide can be uniformly supported on the graphene oxide. on.
  • the alkaline solid is potassium hydroxide and the alkaline solution is ammonia water.
  • the pH of the graphene oxide mixture may be adjusted to 8-14, preferably 9-11 by adding a basic solid or an alkaline solution.
  • the graphene oxide mixed liquid does not need to be subjected to a filtration and washing process, and can be directly adjusted by adding an alkaline substance such as potassium hydroxide.
  • an alkaline substance such as potassium hydroxide.
  • the step (4) and the step (5) may be carried out according to the following steps: (4-1) filtering the mixture obtained in the step (3) to obtain a solid product; (5-1) solid
  • the product is subjected to a reduction treatment at 100 to 700 ° C for 1 to 10 hours to obtain a graphene/trimanganese tetraoxide composite product.
  • the graphene oxide can be sufficiently reduced.
  • the solid product may be subjected to a reduction treatment in an air atmosphere or under vacuum, preferably at 150-200 degrees Celsius for 1-10 hours. Thereby, the reduction efficiency of graphene oxide can be further improved, and a graphene/trimanganese tetraoxide composite product can be obtained.
  • the step (4) and the step (5) may be carried out according to the following steps: (4-2) evaporating the mixture obtained in the step (3) to obtain a solid product; (5-2) solid
  • the product is subjected to a reduction treatment at 150 to 200 ° C for 1 to 10 hours to obtain a graphene/trimanganese tetraoxide composite product.
  • the reduction treatment may preferably be carried out at 150-200 degrees Celsius for 3-5 hours, whereby the reduction efficiency of graphene oxide can be further improved, thereby obtaining a graphene/trimanganese tetraoxide composite product. .
  • the graphene/trimanganese tetraoxide composite product may be repeatedly cleaned by deionized water to be neutral, filtered, and then placed in a blast drying oven. Dry at 50-150 ° C for 2-5 hours.
  • the graphene/trimanganese tetraoxide composite product can be subjected to high-efficiency ball milling treatment to obtain a graphene/trimanganese tetraoxide composite nano-lubricating additive.
  • the ball milling process can be carried out using a high energy ball mill having a ball mill tank volume of 50-100 ml, a ball mill ball diameter of 2-5 mm, and a single ball mill mass of 1-5 g.
  • the ball milling efficiency and the ball milling effect of the graphene/trimanganese tetraoxide composite product can be further improved, and the graphene/trimanganese tetraoxide composite nano lubricating additive can be efficiently prepared, and the graphene/trimanganese tetraoxide can be efficiently prepared.
  • the particle size distribution of the composite nano-lubricating additive is more uniform.
  • the ball milling speed may be 300-600 rpm, and the ball milling time may be 3-10 hours.
  • the ball milling efficiency and the ball milling effect of the graphene/trimanganese tetraoxide composite product can be further improved, and the particle size distribution of the finally prepared graphene/trimanganese tetraoxide composite nano-lubricating additive is more uniform.
  • the ball milling speed may be 500-600 rpm, and the ball milling time may be 4-5 hours.
  • the ball milling efficiency and the ball milling effect of the graphene/trimanganese tetraoxide composite product can be further improved, and the particle size distribution of the finally prepared graphene/trimanganese tetraoxide composite nano-lubricating additive is more uniform.
  • the present disclosure also proposes a graphene/trimanganese tetraoxide composite nano-lubricating additive, and the graphene/tri-manganese tetra-compound nano-lubricating additive adopts the synthetic graphene/the above embodiment of the present disclosure.
  • a method for preparing a nano-lubricating additive of trimanganese tetraoxide is obtained.
  • the graphene/tri-manganese tetra-compound nano-lubricating additive of the above embodiment of the present disclosure has excellent dispersing characteristics, can be directly added to the lubricating grease and stably dispersed in the lubricating grease, and has excellent lubricating and anti-wear properties, especially
  • the lubrication characteristics are more stable and stable under high temperature environment, which can meet the demanding requirements of mechanical parts and harsh environments. It can be widely used in mechanical engineering and aerospace fields, such as lubrication of automobile engines, gearboxes and aircraft actuators. Easy to use, the application prospects are great.
  • the graphene/trimanganese tetraoxide composite nano-lubricating additive may be added to the lubricating grease by physical dispersion, thereby obtaining a stable lubricant.
  • the graphene/trimanganese oxide composite nano-lubricating additive can also be dispersed and blended with other industrial dispersants, and preferably the span 85 achieves the synergistic lubrication effect, thereby further improving the prepared lubrication. Lubrication and anti-wear properties of the agent.
  • the graphene/trimanganese tetraoxide composite nano-lubricating additive may be added in the lubricating grease in an amount of 0.01 to 10% by weight, and may be stirred by magnetic force at room temperature for 2-6 hours, and then at 40 Ultrasonic dispersion at -70 ° C for 1-5 hours.
  • the dispersibility of the graphene/trimanganese oxide composite nano-lubricating additive in the lubricating grease and the stability of the prepared lubricant can be further improved.
  • a lubricant prepared by adding a graphene/trimanganese oxide composite nano-lubricating additive can be widely used in mechanical engineering and aerospace fields, such as automobile engine lubrication, gearboxes, and aircraft actuators. Lubrication of parts.
  • the prepared graphene/tri-manganese tetra-compound nano-lubricating additive is mixed with base oil (PAO 6), magnetically stirred at room temperature for 3 h, and then ultrasonically dispersed at 50 ° C for 1 hour to form graphene/tri-manganese tetra-compound nano-lubrication.
  • the additive has a mass concentration of 0.1 wt% lubricant.
  • FIG. 1 is a SEM photograph (a) and a TEM photograph (b) of a graphene/trimanganese tetraphosphorus composite nano-lubricating additive
  • FIG. 1 is an XRD pattern of a graphene/tri-manganese tetra-compound nano-lubricating additive
  • FIG. 3 is Comparison of friction coefficient between graphene/tri-manganese oxide composite nano-lubricating additive and other nano-additives.
  • the graphene/tri-manganese tetra-compound nano-additive prepared by the present disclosure is more excellent in lubricity.
  • Lubricating medium Coefficient of friction Wear rate (um 3 /N ⁇ m) Graphene/trimanganese tetraoxide composite nano additive 0.08 ⁇ 0.013 1.021 ⁇ 0.137 Graphene additive 0.125 ⁇ 0.021 4.857 ⁇ 1.32 Nano-trimanganese tetraoxide additive 0.153 ⁇ 0.025 9.951 ⁇ 1.774 Graphene + nanometer trimanganese oxide additive 0.141 ⁇ 0.022 6.325 ⁇ 1.524 Base oil 0.196 ⁇ 0.031 12.483 ⁇ 2.137
  • the prepared graphene/tri-manganese tetra-compound nano-lubricating additive is mixed with base oil (PAO 6), magnetically stirred at room temperature for 3 h, and then ultrasonically dispersed at 50 ° C for 1 hour to form graphene/tri-manganese tetra-compound nano-lubrication.
  • the additive has a mass concentration of 0.5% by weight of the lubricant.
  • the prepared graphene/tri-manganese tetra-compound nano-lubricating additive is mixed with base oil (PAO 6), magnetically stirred at room temperature for 3 h, and then ultrasonically dispersed at 50 ° C for 1 hour to form graphene/tri-manganese tetra-compound nano-lubrication.
  • the additive has a mass concentration of 0.5% by weight of the lubricant.
  • the prepared graphene/tri-manganese tetra-compound nano-lubricating additive is mixed with base oil (PAO 6), magnetically stirred at room temperature for 3 h, and then ultrasonically dispersed at 50 ° C for 1 hour to form graphene/tri-manganese tetra-compound nano-lubrication.
  • the additive has a mass concentration of 0.5% by weight of the lubricant.

Abstract

提供了石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法,将石墨与浓硫酸和高锰酸钾混合进行氧化反应,加入双氧水还原未反应的高锰酸钾,加水稀释后超声处理,调节pH至碱性,蒸发或过滤得到固体产物,在高温下进行还原处理,产物经清洗后进行球磨处理,得到复合纳米润滑添加剂。

Description

石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法 技术领域
本公开属于材料领域,具体而言,涉及石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法。
背景技术
随着工业现代化的发展,机械装备正向着高速重载方向发展,其对零部件摩擦副的减摩耐磨性能提出了更高的挑战。为降低机械装备的摩擦能耗及提升运行稳定性,润滑油的使用起到了极大的作用。如今,润滑油和添加剂发展从初期的适应机械运转要求转变到环保与节能的要求。然而传统的抗磨添加剂含有硫磷等基团,易造成金属腐蚀和环境污染问题。石墨烯具有优异的力学性能,其断裂强度可达130Gpa,杨氏模量1.1Tpa。石墨烯优异的力学特性和化学稳定性为其作为纳米润滑添加剂的研究与应用奠定了基础。由于石墨烯在物理化学等不同领域的巨大应用前景,极大地促进了石墨烯制备技术的快速发展和工艺流程的不断完善,为其作为润滑添加剂的应用提供了更好的途径。
然而,结构完整的石墨烯化学稳定性高,不易被修饰,与其他介质相互作用较弱,且层间存在很大的范德华引力,难以在许多常见溶剂中分散形成稳定的溶液。若直接与非极性有机溶剂混合,分散稳定性差,会引起整个体系的性能下降。如何解决石墨烯易团聚及在润滑油脂中的稳定分散是石墨烯作为润滑油添加剂研究的关键。一般地,通过物理表面修饰的纳米微粒仍然不太稳定易发生二次团聚;化学表面修饰往往改变了石墨烯的表面特性,例如在纳米颗粒表面包裹了本身具有良好摩擦学性能的二烷基二硫代磷酸酯等化合物,其润滑性能已经完全发生了改变,最终结果往往是两种甚至多种物质的综合表现,并非是纳米添加剂润滑特性的真实体现。虽然化学修饰的石墨烯具有良好的溶解性,但是由于外来原子或官能团的引入很可能破坏其结构,使其本证性能显著降低。例如石墨片层边缘产生不规整的褶皱弯曲,层内碳原子发生破坏缺失等这些都会降低石墨烯的润滑特性。
因此,开发出一种能够稳定分散到润滑油脂当中,同时具有良好的抗磨减摩效果的石墨烯润滑油添加剂是该领域研究人员亟待解决的问题。
公开内容
本公开旨在至少在一定程度上解决上述技术问题之一。为此,本公开的一个目的在于提出石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法。本公开提出的合成石墨烯/四氧化三锰复合纳米润滑添加剂的方法工艺简单、生产成本低,且制备得到的石墨烯/四氧化三锰复合纳米润滑添加剂具有优异的分散稳定性和润滑特性,可以直接添加到润滑油脂中,在润滑减磨方面具有极大的应用前景。
本公开是基于以下问题提出的:
通过在石墨烯表面负载纳米粒子可以降低石墨烯间的范德华吸引力作用,可提高颗粒间空间位阻效应,进而降低了石墨烯的团聚作用,并且纳米粒子的加入可进一步提升添加剂的润滑特性,达到协同润滑效应。例如,前人研究了石墨烯负载氧化铁纳米颗粒作为复合润滑油添加剂的制备和应用,也有人研究了石墨烯表面负载铜纳米粒的研究工作。
然而,前人工作大多需要提供纯净的氧化石墨或氧化石墨烯作为负载体,即需要充分清洗负载体,该过程费时不经济;此外负载过程往往需要通过两步或多步骤的形成负载纳米粒和还原石墨烯,并且化学还原之后仍然需要大量的清洗去除有毒化学试剂和杂质。
为此,根据本公开的一个方面,本公开提出了一种原位合成石墨烯/四氧化三锰复合纳米润滑添加剂的方法,包括:
(1)将石墨与高质量比的浓硫酸和高锰酸钾混合并进行氧化反应,以便得到含有氧化石墨和/或氧化石墨烯的混合液;
(2)向所述混合液中加入双氧水,以便还原未反应的高锰酸钾,并加水稀释后超声预定时间,以便得到氧化石墨烯混合液;
(3)调节所述氧化石墨烯混合液的pH至碱性,以便反应得到四氧化三锰并负载在所述氧化石墨烯上;
(4)对步骤(3)所得混合物进行蒸发或者过滤,以便得到固体产物;
(5)将所述固体产物在高温下进行还原处理,以便得到石墨烯/四氧化三锰复合产物;
(6)将所述石墨烯/四氧化三锰复合产物经清洗后进行球磨处理,以便得到石墨烯/四氧化三锰复合纳米润滑添加剂。
本公开的上述实施例的合成石墨烯/四氧化三锰复合纳米润滑添加剂的方法采用原位合成法,利用制备氧化石墨过程中残留在氧化石墨和/或氧化石墨烯的混合液中的锰离子来合 成纳米粒子,并使纳米粒子能够均匀地分布在石墨烯上,该过程不需要除杂并能节省大量负载过程,工艺简单高效、且生产成本低。此外,通过采用本公开上述实施例的合成石墨烯/四氧化三锰复合纳米润滑添加剂的方法,可以使制备得到的石墨烯/四氧化三锰复合纳米润滑添加剂具有优异的分散特性,能够直接添加到润滑油脂中并在润滑油脂当中稳定分散,同时,还具有优异的润滑减磨特性,尤其在高温环境下润滑特性更为优异稳定,能够满足机械零部件苛刻环境运行需求,可广泛应用于机械工程及航空航天领域,例如汽车发动机润滑,齿轮箱及飞机作动器等零部件的润滑,使用便捷,应用前景极大。由此,通过采用本公开上述实施例的合成石墨烯/四氧化三锰复合纳米润滑添加剂的方法,可以有效解决石墨烯润滑添加剂制备成本高、耐磨性能差和在润滑油脂中的分散稳定性差等技术问题和实用问题。
另外,根据本公开上述实施例的合成石墨烯/四氧化三锰复合纳米润滑添加剂的方法还可以具有如下附加的技术特征:
在本公开的一些实施例中,步骤(1)中,所述石墨、所述浓硫酸和所述高锰酸钾的质量比为1:(5-15):(3-5)。由此,可以使石墨能够被充分氧化。
在本公开的一些实施例中,步骤(1)中,所述氧化反应是在30-60摄氏度下进行0.5-1.5小时完成的。由此,可以使石墨能够被充分氧化。
在本公开的一些实施例中,步骤(2)中,加水稀释后的混合液的浓度为0.01-1重量%,优选0.05-0.5重量%,所述超声时间为1-10小时,优选4-8小时。由此,可以使氧化石墨被有效剥离为氧化石墨烯。
在本公开的一些实施例中,步骤(3)中,通过添加碱性固体或者碱性溶液调节所述氧化石墨烯混合液的pH至碱性,优选地,所述碱性固体为氢氧化钾,所述碱性溶液为氨水。由此,可以在碱性条件下得到四氧化三锰并使其负载在氧化石墨烯上。
在本公开的一些实施例中,步骤(3)中,所述碱性为pH为8-14,优选9-11。由此,可以有效利用残留在溶液中的锰离子来合成纳米四氧化三锰,并使合成的四氧化三锰能够均匀的负载在氧化石墨烯上。
在本公开的一些实施例中,步骤(4)和步骤(5)按照下列步骤进行:(4-1)对步骤(3)所得混合物进行过滤,以便得到固体产物;(5-1)将所述固体产物进行在100-700摄氏度下保温1-10小时进行所述还原处理,以便得到石墨烯/四氧化三锰复合产物,优选地,在150-200 摄氏度下保温1-10小时进行所述还原处理。由此,可以使氧化石墨烯被充分还原,进而得到石墨烯/四氧化三锰复合产物。
在本公开的一些实施例中,步骤(4)和步骤(5)按照下列步骤进行:(4-2)对步骤(3)所得混合物进行蒸发,以便得到固体产物;(5-2)将所述固体产物进行在150-200摄氏度下保温1-10小时进行所述还原处理,以便得到石墨烯/四氧化三锰复合产物,优选地,在150-200摄氏度下保温3-5小时进行所述还原处理。由此,可以使氧化石墨烯被充分还原,进而得到石墨烯/四氧化三锰复合产物。
在本公开的一些实施例中,所述球磨处理采用高能球磨机进行,所述高能球磨机的球磨罐体积为50-100ml,球磨球直径为2-5mm,单次球磨质量为1-5g。由此,可以进一步提高对石墨烯/四氧化三锰复合产物的球磨效率和球磨效果,进而可以有效制备得到石墨烯/四氧化三锰复合纳米润滑添加剂,并使该石墨烯/四氧化三锰复合纳米润滑添加剂的粒径分布更加均匀。
在本公开的一些实施例中,球磨转速为300-600转/分钟,球磨时间为3-10小时。由此,可以进一步提高对石墨烯/四氧化三锰复合产物的球磨效率和球磨效果,进而使最终制备得到的石墨烯/四氧化三锰复合纳米润滑添加剂的粒径分布更加均匀。
在本公开的一些实施例中,球磨转速为500-600转/分钟,球磨时间为4-5小时。由此,可以进一步提高对石墨烯/四氧化三锰复合产物的球磨效率和球磨效果,进而使最终制备得到的石墨烯/四氧化三锰复合纳米润滑添加剂的粒径分布更加均匀。
根据本公开的第二个方面,本公开还提出了一种石墨烯/四氧化三锰复合纳米润滑添加剂,所述石墨烯/四氧化三锰复合纳米润滑添加剂采用本公开上述实施例的合成石墨烯/四氧化三锰复合纳米润滑添加剂的方法制备得到。
本公开上述实施例的石墨烯/四氧化三锰复合纳米润滑添加剂具有优异的分散特性,能够直接添加到润滑油脂中并在润滑油脂当中稳定分散,同时,还具有优异的润滑减磨特性,尤其在高温环境下润滑特性更为优异稳定,能够满足机械零部件苛刻环境运行需求,可广泛应用于机械工程及航空航天领域,例如汽车发动机润滑,齿轮箱及飞机作动器等零部件的润滑,使用便捷,应用前景极大。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开一个实施例的石墨烯/四氧化三锰复合纳米润滑添加剂的SEM照片(a)与TEM照片(b)。
图2是根据本公开一个实施例的石墨烯/四氧化三锰复合纳米润滑添加剂的XRD图谱。
图3是根据本公开一个实施例的石墨烯/四氧化三锰复合纳米润滑添加剂与其他纳米添加剂摩擦系数对比图。
公开详细描述
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
根据本公开的一个方面,本公开提出了一种原位合成石墨烯/四氧化三锰复合纳米润滑添加剂的方法,包括:
(1)将石墨与高质量比的浓硫酸和高锰酸钾混合并进行氧化反应,以便得到含有氧化石墨和/或氧化石墨烯的混合液;(2)向混合液中加入双氧水,以便还原未反应的高锰酸钾,并加水稀释后超声预定时间,以便得到氧化石墨烯混合液;(3)调节氧化石墨烯混合液的pH至碱性,以便反应得到四氧化三锰并负载在氧化石墨烯上;(4)对步骤(3)所得混合物进行蒸发或者过滤,以便得到固体产物;(5)将固体产物在高温下进行还原处理,以便得到石墨烯/四氧化三锰复合产物;(6)将石墨烯/四氧化三锰复合产物经清洗后进行球磨处理,以便得到石墨烯/四氧化三锰复合纳米润滑添加剂。
本公开的上述实施例的合成石墨烯/四氧化三锰复合纳米润滑添加剂的方法采用原位合成法,利用制备氧化石墨过程中残留在氧化石墨和/或氧化石墨烯的混合液中的锰离子来合成纳米粒子,并使纳米粒子能够均匀地分布在石墨烯上,该过程不需要除杂并能节省大量负载过程,工艺简单高效、且生产成本低。此外,通过采用本公开上述实施例的合成石墨烯/四氧化三锰复合纳米润滑添加剂的方法,可以使制备得到的石墨烯/四氧化三锰复合纳米润滑添加剂具有优异的分散特性,能够直接添加到润滑油脂中并在润滑油脂当中稳定分散,同时,还具有优异的润滑减磨特性,尤其在高温环境下润滑特性更为优异稳定,能够满足 机械零部件苛刻环境运行需求,可广泛应用于机械工程及航空航天领域,例如汽车发动机润滑,齿轮箱及飞机作动器等零部件的润滑,使用便捷,应用前景极大。由此,通过采用本公开上述实施例的合成石墨烯/四氧化三锰复合纳米润滑添加剂的方法,可以有效解决石墨烯润滑添加剂制备成本高、耐磨性能差和在润滑油脂中的分散稳定性差等技术问题和实用问题。
根据本公开的具体实施例,步骤(1)中,石墨、浓硫酸和高锰酸钾的质量比可以为1:(5-15):(3-5)。本公开中通过采用相对于石墨过量的浓硫酸和高锰酸钾,可以使石墨能够被充分氧化,使石墨层间被插入羟基、环氧及羟基等含氧基团,拉大石墨的层间距,进而有利于后续超声对氧化石墨进行剥离得到氧化石墨烯。此外,发明人还发现,通过控制浓硫酸和高锰酸钾的质量比为(5-15):(3-5),可以进一步提高对石墨的氧化效果。
根据本公开的具体实施例,步骤(1)中,氧化反应可以在30-60摄氏度下进行0.5-1.5小时完成。由此,可以使石墨能够被浓硫酸和高锰酸钾充分氧化,进而有利于后续超声对氧化石墨进行剥离得到氧化石墨烯。
根据本公开的具体实施例,步骤(2)中,加水稀释后的混合液的浓度可以为0.01-1重量%,超声时间可以为1-10小时。由此,可以有效降低氧化石墨和/或氧化石墨烯的混合液的酸性,并使氧化石墨被有效剥离为氧化石墨烯。根据本公开的具体实施例,步骤(2)中,加水稀释后的混合液的浓度可以优选为0.05-0.5重量%,超声时间可以为4-8小时。由此,可以有效降低氧化石墨和/或氧化石墨烯的混合液的酸性,并进一步提高氧化石墨被有效剥离为氧化石墨烯的效率和效果。
根据本公开的具体实施例,步骤(3)中,可以通过添加碱性固体或者碱性溶液调节氧化石墨烯混合液的pH至碱性。本公开中通过将氧化石墨烯混合液的pH至碱性,可以有效利用残留在溶液中的锰离子来合成纳米四氧化三锰,并使合成的四氧化三锰能够均匀的负载在氧化石墨烯上。根据本公开的具体实施例,步骤(3)中,可以优选碱性固体为氢氧化钾,碱性溶液为氨水。由此,可以进一步提高利用锰离子和氢氧根离子合成纳米四氧化三锰的反应效率。
根据本公开的具体实施例,步骤(3)中,可以通过添加碱性固体或者碱性溶液调节氧化石墨烯混合液的pH至8-14,优选9-11。由此,可以进一步提高利用锰离子和氢氧根离子合成纳米四氧化三锰的反应质量,并使四氧化三锰能够均匀地负载在氧化石墨烯上。
根据本公开的具体实施例,氧化石墨烯混合液不需进行过滤和清洗过程,可以直接加入氢氧化钾等碱性物质将其调节成碱性。由此,可以省去除杂和额外的负载过程,进而使制备石墨烯/四氧化三锰复合纳米润滑添加剂的方法更加简单高效。
根据本公开的具体实施例,步骤(4)和步骤(5)可以按照下列步骤进行:(4-1)对步骤(3)所得混合物进行过滤,以便得到固体产物;(5-1)将固体产物进行在100-700摄氏度下保温1-10小时进行还原处理,以便得到石墨烯/四氧化三锰复合产物。由此,可以使氧化石墨烯被充分还原。根据本公开的具体实施例,可以在空气环境或真空下对固体产物进行还原处理,优选在150-200摄氏度下保温1-10小时进行。由此,可以进一步提高对氧化石墨烯的还原效率,进而得到石墨烯/四氧化三锰复合产物。
根据本公开的具体实施例,步骤(4)和步骤(5)可以按照下列步骤进行:(4-2)对步骤(3)所得混合物进行蒸发,以便得到固体产物;(5-2)将固体产物进行在150-200摄氏度下保温1-10小时进行还原处理,以便得到石墨烯/四氧化三锰复合产物。由此,可以使氧化石墨烯被充分还原。根据本公开的具体实施例,可以优选在150-200摄氏度下保温3-5小时进行还原处理,由此,可以进一步提高对氧化石墨烯的还原效率,进而得到石墨烯/四氧化三锰复合产物。
根据本公开的具体实施例,步骤(6)中,在进行球磨处理之前,可以利用去离子水对石墨烯/四氧化三锰复合产物进行反复清洗致中性,过滤后放入鼓风干燥箱中,在50-150℃条件下干燥2-5小时。
根据本公开的具体实施例,可以对石墨烯/四氧化三锰复合产物进行高效球磨处理,进而得到石墨烯/四氧化三锰复合纳米润滑添加剂。根据本公开的具体实施例,球磨处理可以采用高能球磨机进行,高能球磨机的球磨罐体积可以为50-100ml,球磨球直径可以为2-5mm,单次球磨质量可以为1-5g。由此,可以进一步提高对石墨烯/四氧化三锰复合产物的球磨效率和球磨效果,进而可以有效制备得到石墨烯/四氧化三锰复合纳米润滑添加剂,并使该石墨烯/四氧化三锰复合纳米润滑添加剂的粒径分布更加均匀。
根据本公开的具体实施例,球磨转速可以为300-600转/分钟,球磨时间可以为3-10小时。由此,可以进一步提高对石墨烯/四氧化三锰复合产物的球磨效率和球磨效果,进而使最终制备得到的石墨烯/四氧化三锰复合纳米润滑添加剂的粒径分布更加均匀。
根据本公开的具体实施例,球磨转速可以为500-600转/分钟,球磨时间可以为4-5小时。 由此,可以进一步提高对石墨烯/四氧化三锰复合产物的球磨效率和球磨效果,进而使最终制备得到的石墨烯/四氧化三锰复合纳米润滑添加剂的粒径分布更加均匀。
根据本公开的第二个方面,本公开还提出了一种石墨烯/四氧化三锰复合纳米润滑添加剂,石墨烯/四氧化三锰复合纳米润滑添加剂采用本公开上述实施例的合成石墨烯/四氧化三锰复合纳米润滑添加剂的方法制备得到。
本公开上述实施例的石墨烯/四氧化三锰复合纳米润滑添加剂具有优异的分散特性,能够直接添加到润滑油脂中并在润滑油脂当中稳定分散,同时,还具有优异的润滑减磨特性,尤其在高温环境下润滑特性更为优异稳定,能够满足机械零部件苛刻环境运行需求,可广泛应用于机械工程及航空航天领域,例如汽车发动机润滑,齿轮箱及飞机作动器等零部件的润滑,使用便捷,应用前景极大。
根据本公开的具体实施例,可以将石墨烯/四氧化三锰复合纳米润滑添加剂通过物理分散添加到润滑油脂中,进而获得稳定的润滑剂。根据本公开的具体实施例,还可以将石墨烯/四氧化三锰复合纳米润滑添加剂与配合其他工业用分散剂的配合分散,优选span 85达到协同润滑的效果,进而进一步提高所制备得到的润滑剂的润滑减磨性。
根据本公开的具体实施例,石墨烯/四氧化三锰复合纳米润滑添加剂在润滑油脂中的加入量可以为0.01-10重量%,且可以在常温下通过磁力搅拌2-6小时,然后在40-70℃的温度条件下超声分散1-5小时。由此,可以进一步提高石墨烯/四氧化三锰复合纳米润滑添加剂在润滑油脂中的分散性和所制备得到的润滑剂的稳定性。
根据本公开的具体实施例,添加石墨烯/四氧化三锰复合纳米润滑添加剂制备得到的润滑剂可广泛应用于机械工程及航空航天领域,例如汽车发动机润滑,齿轮箱及飞机作动器等零部件的润滑。
下面完整地描述本公开的实施例,但保护范围不仅局限于此。
实施例1
(1)在冰浴环境下,将300g浓硫酸和35g高锰酸钾充分混合,然后缓慢加入10g石墨粉,混合均匀后,升温至50℃,反应1h,得到含有氧化石墨和/或氧化石墨烯的混合液;
(2)向混合液中加入80mL的30%双氧水还原未反应的氧化剂,并加入1L去离子水稀释,然后超声振荡保持1h,以便得到氧化石墨烯混合液;
(3)在磁力搅拌作用下,直接向氧化石墨烯混合液中缓慢加入氢氧化钾溶液(20wt%),将混合溶液调成碱性,使其pH=9;
(4)过滤出步骤(3)所得碱性溶液中的固体沉淀物;
(5)将过滤后的固体沉淀物放入鼓风干燥箱中,升温至170℃,保温反应5小时,得到石墨烯/四氧化三锰复合产物;
(6)用5L的去离子水对石墨烯/四氧化三锰复合产物反复清洗致中性,过滤后放入鼓风干燥箱中,在80℃条件下干燥2小时,然后放入高能球磨机进行高速粉碎处理,降低石墨烯片层大小并使其更加均匀,其中,球磨速度为500转/分钟,球磨时间为5小时,得到石墨烯/四氧化三锰复合纳米润滑添加剂。
将制备得到的石墨烯/四氧化三锰复合纳米润滑添加剂与基础油(PAO 6)混合,常温磁力搅拌3h,然后在50℃下超声分散1小时,形成石墨烯/四氧化三锰复合纳米润滑添加剂的质量浓度为0.1wt%的润滑剂。
对制备得到的石墨烯/四氧化三锰复合纳米润滑添加剂进行SEM和TEM以及XRD检测,并比较石墨烯/四氧化三锰复合纳米添加剂与其它纳米添加剂的润滑性能,检测结果分别见图1、图2、图3和表1。其中,图1是石墨烯/四氧化三锰复合纳米润滑添加剂的SEM照片(a)与TEM照片(b),图1是石墨烯/四氧化三锰复合纳米润滑添加剂的XRD图谱,图3是石墨烯/四氧化三锰复合纳米润滑添加剂与其他纳米添加剂摩擦系数对比图。
从图1-3以及表1可以看出,本公开制备得到的石墨烯/四氧化三锰复合纳米添加剂润滑性更为优异。
表1 石墨烯/四氧化三锰复合纳米添加剂与其它纳米添加剂的润滑性能对比表
润滑介质 摩擦系数 磨损率(um 3/N·m)
石墨烯/四氧化三锰复合纳米添加剂 0.08±0.013 1.021±0.137
石墨烯添加剂 0.125±0.021 4.857±1.32
纳米四氧化三锰添加剂 0.153±0.025 9.951±1.774
石墨烯+纳米四氧化三锰添加剂 0.141±0.022 6.325±1.524
基础油 0.196±0.031 12.483±2.137
实施例2
(1)在冰浴环境下,将300g浓硫酸和30g高锰酸钾充分混合,然后缓慢加入10g石墨粉,混合均匀后,升温至50℃反应1h,得到含有氧化石墨和/或氧化石墨烯的混合液;
(2)向混合液中加入80mL的30%双氧水还原未反应的氧化剂,并加入5L去离子水稀释,然后超声振荡保持1h,以便得到氧化石墨烯混合液;
(3)在磁力搅拌作用下,直接向氧化石墨烯混合液中缓慢加入氢氧化钾固体,将混合溶液调成碱性,使其pH=11;
(4)过滤出步骤(3)所得碱性溶液中的固体沉淀物;
(5)将过滤后的固体沉淀物放入鼓风干燥箱中,升温至170℃,保温反应5小时,得到石墨烯/四氧化三锰复合产物;
(6)用3L的去离子水对石墨烯/四氧化三锰复合产物反复清洗致中性,过滤后放入鼓风干燥箱中,在80℃条件下干燥2小时,然后放入高能球磨机进行高速粉碎处理,降低石墨烯片层大小并使其更加均匀,其中,球磨速度为500转/分钟,球磨时间为5小时,得到石墨烯/四氧化三锰复合纳米润滑添加剂。
将制备得到的石墨烯/四氧化三锰复合纳米润滑添加剂与基础油(PAO 6)混合,常温磁力搅拌3h,然后在50℃下超声分散1小时,形成石墨烯/四氧化三锰复合纳米润滑添加剂的质量浓度为0.5wt%的润滑剂。
实施例3
(1)在冰浴环境下,将300g浓硫酸和35g高锰酸钾充分混合,然后缓慢加入10g石墨粉,混合均匀后,升温至45℃反应1h,得到含有氧化石墨和/或氧化石墨烯的混合液;
(2)向混合液中加入80mL的30%双氧水还原未反应的氧化剂,并加入1L去离子水稀释,然后超声振荡保持1h,以便得到氧化石墨烯混合液;
(3)在磁力搅拌作用下,直接向氧化石墨烯混合液中缓慢加入氢氧化钾固体,将混合溶液调成碱性,使其pH=11;
(4)过滤出步骤(3)所得碱性溶液中的固体沉淀物;
(5)将过滤后的固体沉淀物放入鼓风干燥箱中,升温至100℃,保温反应5小时,得到石墨烯/四氧化三锰复合产物;
(6)用5L的去离子水对石墨烯/四氧化三锰复合产物反复清洗致中性,过滤后放入鼓 风干燥箱中,在80℃条件下干燥2小时,然后放入高能球磨机进行高速粉碎处理,降低石墨烯片层大小并使其更加均匀,其中,球磨速度为500转/分钟,球磨时间为5小时,得到石墨烯/四氧化三锰复合纳米润滑添加剂。
将制备得到的石墨烯/四氧化三锰复合纳米润滑添加剂与基础油(PAO 6)混合,常温磁力搅拌3h,然后在50℃下超声分散1小时,形成石墨烯/四氧化三锰复合纳米润滑添加剂的质量浓度为0.5wt%的润滑剂。
实施例4
(1)在冰浴环境下,将90g浓硫酸和12g高锰酸钾充分混合,然后缓慢加入3g石墨粉,混合均匀后,升温至45℃反应1h,得到含有氧化石墨和/或氧化石墨烯的混合液;
(2)向混合液中加入80mL的30%双氧水还原未反应的氧化剂,并加入1L去离子水稀释,然后超声振荡保持1h,以便得到氧化石墨烯混合液;
(3)在磁力搅拌作用下,直接向氧化石墨烯混合液中缓慢加入氢氧化钠溶液(30wt%),将混合溶液调成碱性,使其pH=12;
(4)过滤出步骤(3)所得碱性溶液中的固体沉淀物;
(5)将过滤后的固体沉淀物放入鼓风干燥箱中,升温至200℃,保温反应4小时,得到石墨烯/四氧化三锰复合产物;
(6)用5L的去离子水对石墨烯/四氧化三锰复合产物反复清洗致中性,过滤后放入鼓风干燥箱中,在80℃条件下干燥2小时,然后放入高能球磨机进行高速粉碎处理,降低石墨烯片层大小并使其更加均匀,其中,球磨速度为500转/分钟,球磨时间为5小时,得到石墨烯/四氧化三锰复合纳米润滑添加剂。
将制备得到的石墨烯/四氧化三锰复合纳米润滑添加剂与基础油(PAO 6)混合,常温磁力搅拌3h,然后在50℃下超声分散1小时,形成石墨烯/四氧化三锰复合纳米润滑添加剂的质量浓度为0.5wt%的润滑剂。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一 个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在不脱离本公开的原理和宗旨的情况下在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (17)

  1. 一种合成石墨烯/四氧化三锰复合纳米润滑添加剂的方法,其中,包括:
    (1)将石墨与高质量比的浓硫酸和高锰酸钾混合并进行氧化反应,以便得到含有氧化石墨和/或氧化石墨烯的混合液;
    (2)向所述混合液中加入双氧水,以便还原未反应的高锰酸钾,并加水稀释后超声预定时间,以便得到氧化石墨烯混合液;
    (3)调节所述氧化石墨烯混合液的pH至碱性,以便反应得到四氧化三锰并负载在所述氧化石墨烯上;
    (4)对步骤(3)所得混合物进行蒸发或者过滤,以便得到固体产物;
    (5)将所述固体产物在高温下进行还原处理,以便得到石墨烯/四氧化三锰复合产物;
    (6)将所述石墨烯/四氧化三锰复合产物经清洗后进行球磨处理,以便得到石墨烯/四氧化三锰复合纳米润滑添加剂。
  2. 根据权利要求1所述的方法,其中,步骤(1)中,所述石墨、所述浓硫酸和所述高锰酸钾的质量比为1:(5-15):(3-5)。
  3. 根据权利要求1或2所述的方法,其中,步骤(1)中,所述氧化反应是在30-60摄氏度下进行0.5-1.5小时完成的。
  4. 根据权利要求1-3中任一项所述的方法,其中,步骤(2)中,加水稀释后的混合液的浓度为0.01-1重量%,所述超声时间为1-10小时。
  5. 根据权利要求1-4中任一项所述的方法,其中,步骤(2)中,加水稀释后的混合液的浓度为0.05-0.5重量%,所述超声时间为4-8小时。
  6. 根据权利要求1-5中任一项所述的方法,其中,步骤(3)中,通过添加碱性固体或者碱性溶液调节所述氧化石墨烯混合液的pH至碱性。
  7. 根据权利要求1-6中任一项所述的方法,其中,所述碱性固体为氢氧化钾,所述碱性溶液为氨水。
  8. 根据权利要求1-7中任一项所述的方法,其中,步骤(3)中,所述碱性为pH为8-14。
  9. 根据权利要求1-8中任一项所述的方法,其中,步骤(3)中,所述碱性为pH为9-11。
  10. 根据权利要求1-9中任一项所述的方法,其中,步骤(4)和步骤(5)按照下列步 骤进行:
    (4-1)对步骤(3)所得混合物进行过滤,以便得到固体产物;
    (5-1)将所述固体产物进行在100-700摄氏度下保温1-10小时进行所述还原处理,以便得到石墨烯/四氧化三锰复合产物。
  11. 根据权利要求10所述的方法,其中,步骤(5-1)中,在150-200摄氏度下保温1-10小时进行所述还原处理。
  12. 根据权利要求1-9中任一项所述的方法,其中,步骤(4)和步骤(5)按照下列步骤进行:
    (4-2)对步骤(3)所得混合物进行蒸发,以便得到固体产物;
    (5-2)将所述固体产物进行在150-200摄氏度下保温1-10小时进行所述还原处理,以便得到石墨烯/四氧化三锰复合产物。
  13. 根据权利要求12所述的方法,其中,步骤(5-2)中,在150-200摄氏度下保温3-5小时进行所述还原处理。
  14. 根据权利要求1-13中任一项所述的方法,其中,所述球磨处理采用高能球磨机进行,所述高能球磨机的球磨罐体积为50-100ml,球磨球直径为2-5mm,单次球磨质量为1-5g。
  15. 根据权利要求14所述的方法,其中,球磨转速为300~600转/分钟,球磨时间为3~10小时。
  16. 根据权利要求14所述的方法,其中,球磨转速为500~600转/分钟,球磨时间为4~5小时。
  17. 一种石墨烯/四氧化三锰复合纳米润滑添加剂,其中,所述石墨烯/四氧化三锰复合纳米润滑添加剂采用权利要求1-16任一项所述的方法制备得到。
PCT/CN2018/109008 2017-10-16 2018-09-30 石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法 WO2019076196A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710958604.0 2017-10-16
CN201710958604.0A CN107805530B (zh) 2017-10-16 2017-10-16 石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法

Publications (1)

Publication Number Publication Date
WO2019076196A1 true WO2019076196A1 (zh) 2019-04-25

Family

ID=61585030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109008 WO2019076196A1 (zh) 2017-10-16 2018-09-30 石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法

Country Status (2)

Country Link
CN (1) CN107805530B (zh)
WO (1) WO2019076196A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805530B (zh) * 2017-10-16 2020-06-19 清华大学 石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法
CN108393067B (zh) * 2018-04-03 2021-04-13 中国工程物理研究院材料研究所 一种原位合成四氧化三锰/石墨烯复合吸附剂的方法、其产品及应用
CN113214884B (zh) * 2021-04-20 2022-04-12 清华大学 一种超规整石墨烯基润滑脂的制备方法
CN113512449A (zh) * 2021-07-09 2021-10-19 清华大学 一种复合润滑材料及其制备方法
CN113621420B (zh) * 2021-07-29 2022-06-03 清华大学 一种复合润滑材料的制备方法
CN114162810A (zh) * 2021-11-12 2022-03-11 湖北民族大学 一种石墨烯-铅化合物纳米复合材料及其制备方法
CN114250096B (zh) * 2021-11-30 2022-12-09 盘锦北方沥青股份有限公司 一种复酯型纳米冷冻机油及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022468A (zh) * 2012-11-28 2013-04-03 辽宁师范大学 高比电容Mn3O4/石墨烯复合电极材料的绿色制备方法
CN107805530A (zh) * 2017-10-16 2018-03-16 清华大学 石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022468A (zh) * 2012-11-28 2013-04-03 辽宁师范大学 高比电容Mn3O4/石墨烯复合电极材料的绿色制备方法
CN107805530A (zh) * 2017-10-16 2018-03-16 清华大学 石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XU, JIANGSHENG ET AL.: "A Highly Atom-Efficient Strategy to Synthesize Reduced Graphene Oxide-Mn3O4 Nanoparticles Composites for Supercapacitors", JOURNAL OF ALLOYS AND COMPOUNDS, 25 June 2016 (2016-06-25), pages 949 - 956, XP029685361, DOI: doi:10.1016/j.jallcom.2016.06.247 *
ZHAO, JUN ET AL.: "Mild Thermal Reduction of Graphene Oxide as a Lubrication Additive for Friction and Wear Reduction", RSC ADV., 9 January 2017 (2017-01-09), pages 1766 - 1770, XP055594798 *

Also Published As

Publication number Publication date
CN107805530A (zh) 2018-03-16
CN107805530B (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2019076196A1 (zh) 石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法
Song et al. Facile synthesis of copper/polydopamine functionalized graphene oxide nanocomposites with enhanced tribological performance
TWI544070B (zh) 複合潤滑素材、機油、潤滑脂及潤滑油以及複合潤滑素材之製造方法
CN108441312B (zh) 一种水基2d/0d纳米复合材料润滑剂
CN103073060B (zh) 用作减摩添加剂的六方二硫化钼纳米片的制备方法
CN111440651B (zh) 黑磷烯/氧化石墨烯复合水基润滑添加剂的制备方法
Tang et al. Applications of carbon quantum dots in lubricant additives: A review
Cui et al. Fabrication of carbon dots intercalated MXene hybrids via laser treatment as oil-based additives for synergistic lubrication
Zhao et al. A novel route to the synthesis of an Fe 3 O 4/h-BN 2D nanocomposite as a lubricant additive
Song et al. Facile synthesis of core–shell Ag@ C nanospheres with improved tribological properties for water-based additives
CN103702941A (zh) 用于生产固体润滑剂纳米颗粒的方法以及在油中和水中稳定的润滑剂分散体
CN112920876B (zh) 一种基于核壳结构SiO2@Graphene量子点的钛合金轧制润滑液及其制备方法
CN105176629A (zh) 一种改性纳米二氧化硅润滑油添加剂的制备方法
CN106520256A (zh) 石墨烯/Fe2O3纳米粒子复合润滑油、润滑油添加剂及其制备方法
Wen et al. Fabrication of Ti3C2 MXene and tetradecylphosphonic acid@ MXene and their excellent friction-reduction and anti-wear performance as lubricant additives
CN113652278B (zh) 具有良好导热性能的石墨烯基改性润滑油及其制备方法
CN105950260A (zh) 获得含润滑友好性MoS2纳米颗粒润滑油的方法
CN110862853A (zh) 一种石墨烯/金属氧化物纳米复合润滑材料制备方法
CN111471506B (zh) 一种石墨烯基润滑脂及其制备方法
WO2021012754A1 (zh) 具有长有机碳链可自分散纳米铜的制备方法、纳米铜制剂及其应用
CN113512456A (zh) 一种含氧化亚铜复合改性石墨烯的润滑油的制备工艺
CN111363601B (zh) 氟化氧化石墨烯/二氧化钛纳米润滑添加剂、制法与应用
CN107033987A (zh) 一种部分开带碳纳米管的应用
CN110760365B (zh) 一种氧化石墨烯/二氧化硅-三氧化二铝纳米复合水基润滑剂及其制备方法
CN113512449A (zh) 一种复合润滑材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868450

Country of ref document: EP

Kind code of ref document: A1